<table>
<thead>
<tr>
<th>Title</th>
<th>Lighting up kinase action in platelets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Smolenski, Albert P.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2017-07</td>
</tr>
<tr>
<td>Publication information</td>
<td>Journal of thrombosis and haemostasis, 15 (7): 1484-1486</td>
</tr>
<tr>
<td>Publisher</td>
<td>Wiley</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/9285</td>
</tr>
<tr>
<td>Publisher's statement</td>
<td>This is the author's version of the following article: Smolenski, A. (2017) "Lighting up kinase action in platelets", 15 (7): 1484 1486 which has been published in final form at http://dx.doi.org/</td>
</tr>
<tr>
<td>Publisher's version (DOI)</td>
<td>10.1111/jth.13725</td>
</tr>
</tbody>
</table>

The UCD community has made this article openly available. Please share how this access benefits you. Your story matters! (@ucd_oa)

Some rights reserved. For more information, please see the item record link above.
Lighting up kinase action in platelets

Albert Smolenski

UCD School of Medicine, UCD Conway Institute, University College Dublin, Dublin 4, Ireland

Corresponding author:

Albert Smolenski

UCD Conway Institute
University College Dublin
Belfield
Dublin 4
Ireland

Phone: +353-1-716-6746
Fax: +353-1-716-6701
E-mail: albert.smolenski@ucd.ie
In this issue of the Journal of Thrombosis and Haemostasis Hiratsuka et al. [1] present novel data on the roles of extracellular signal-regulated kinase (ERK) and cAMP-dependent protein kinase (PKA) during thrombus formation in mice.

Platelet functions are highly regulated by signaling networks involving at least 300 protein kinases [2]. Platelets express members of the mitogen-activated protein kinase (MAPK) family including p42 ERK2 and, at lower concentrations, p44 ERK1. Both ERK isoforms are activated by agonists like von Willebrand factor, collagen, thrombin, ADP and thromboxane A2 [3-7]. ERK activation depends on MAPK kinase (MKK-1 or MEK) and involves Gq, Gi, phospholipase C and Src family kinase signaling [5, 8]. Active ERK has been shown to stimulate thromboxane A2 production [5] and to contribute to platelet aggregation [4, 9]. Downstream substrates of ERK have not been identified in platelets so far.

PKA comprises a group of proteins all of which are expressed in human platelets including the regulatory subunits Iα, Iβ, IIα, IIβ and the catalytic subunits α, β, γ [2]. PKA is activated by cAMP following G-protein α-s (Gs)-mediated stimulation of adenylate cyclase (AC). A key Gs-coupled receptor in platelets is the IP-receptor for prostacyclin (prostaglandin I$_2$, PGI$_2$), a short-lived molecule released from healthy endothelial cells. Other Gs-coupled receptors are A$_{2A}$ and A$_{2B}$ receptors for adenosine and vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide receptor 1 [10]. Gs-mediated AC activation is balanced by Gi-mediated AC inhibition mainly through the Gi-coupled P2Y$_{12}$ receptor for ADP. The cAMP/PKA pathway is known as strong inhibitory pathway and PKA activation has been shown to induce disaggregation of platelet aggregates [11-13]. PKA action involves the phosphorylation of a large number of substrate proteins [14, 15].

To study kinase activity in living cells sensor proteins based on Förster resonance energy transfer (FRET) have been developed [16, 17] and optimized [18, 19]. The structure of the sensors consists of consensus substrate phosphorylation sites for ERK (PDVPRTP,
phosphorylated residue underlined) or PKA (LLRRATL) as well as corresponding phosphorylation site binding domains which are separated from the phosphorylation sites by optimized linker domains. Phosphorylation of the threonine residues within the substrate sites by endogenous ERK or PKA leads to intramolecular interactions resulting in FRET between attached fluorescent proteins. These kinase sensors have been expressed and studied in transgenic mouse models before [20-22] and in the present study an analysis of the platelets of these animals is presented.

Initially Hiratsuka et al. [1] confirmed that sensor expression did not affect overall platelet functions as measured by flow cytometry of surface markers. FRET responses were then analysed in three experimental settings: isolated platelets adherent to collagen, isolated platelets perfused through collagen coated flow chambers, and in vivo thrombus formation after laser injury of subcutaneous arterioles. Platelets expressing the ERK sensor responded to thrombin treatment with an increased FRET signal, as expected. Blockage of MEK with PD0325901, a specific MEK inhibitor [23], abolished the thrombin-induced ERK signal. Flow chamber experiments indicated pronounced ERK activation during aggregate formation. In the laser injury model ERK activity was low during the early phase of thrombus initiation and increased strongly during the propagation and growth of the thrombus remaining high in the late stabilization phase. MEK inhibition with PD0325901 potently blocked thrombus initiation and reduced thrombus size when applied at later stages of thrombus development. These data indicate a more important role for ERK during tethering of platelets, aggregation and thrombus formation than currently appreciated.

Analysis of isolated PKA sensor expressing platelets confirmed that FRET could be triggered by activators of the cAMP pathway, but not by ADP, thrombin, or NO-donors. Surprisingly, PKA appeared to be stimulated during platelet aggregation in spite of the absence of endothelial cells in the flow chamber. Analysis of PKA function during thrombus growth in arterioles led
to further unexpected findings. During the propagation and stabilization phases of thrombus formation a clear activation of PKA was detectable throughout the thrombus. A particularly strong PKA signal was observed at the downstream side of the growing thrombus where platelets were seen to detach. PKA activation with a membrane-permeable cAMP analog, dbcAMP, before laser injury completely prevented thrombus initiation similar to MEK inhibition. However, dbcAMP was not able to dissolve the established thrombus in spite of inducing increased signals by the PKA sensor. This inability of dbcAMP to dissolve the aggregate coincided with a lack of inhibition of ERK activation.

Some of these observations challenge current concepts of PKA function and regulation. The prevention of thrombus initiation in arterioles by dbcAMP is compatible with the established inhibitory role of the cAMP/PKA in platelets. PKA activation at the downstream shell of the thrombus concomitant with platelet detachment matches the capacity of the cAMP pathway to trigger disaggregation in the in vitro setting [11-13]. In a previous study of thrombus development after vascular injury constitutively active Gi signaling was associated with increased size of the thrombus shell and inhibition of the Gi-coupled P2Y_{12} receptor was shown to reduce the shell area [24]. These data indicate that the cAMP/PKA pathway might be able to not only prevent thrombus formation but also to limit thrombus growth. However, the FRET studies presented by Hiratsuka et al. [1] present evidence of PKA activity throughout the entire thrombus including the core area around the site of vascular injury. Interestingly, it was recently shown that P2Y_{12}-dependent Gi signaling contributes to the development of a tight seal in the core area of the thrombus which prevents extravascular protein accumulation [25]. Gi-mediated inhibition of cAMP production might be required to balance PKA activation in the thrombus core. These observations suggest that activating and inhibitory pathways might, at least to some degree, be active simultaneously during thrombus development. The lack of effect of cAMP-analogs, which activate PKA directly, on ERK function and thrombus dissolution cannot be
attributed to Gi-mediated reduction of cAMP production. Therefore, it remains unclear why dbcAMP, in contrast to PD0325901, is not able to dislodge the thrombus. Regarding the mechanisms of PKA activation during thrombus formation a number of possibilities can be envisaged. Since PKA is usually thought to depend on the short-lived endothelial mediator PGI$_2$, endothelial PGI$_2$ might contribute to PKA activation in the thrombus shell. However, it is difficult to imagine how PGI$_2$ would be able to penetrate into the thrombus core. Furthermore, PKA activation was also seen in the flow chamber setting in the absence of endothelial cells and thus, presumably, also of PGI$_2$. These observations might indicate PGI$_2$-independent activation of cAMP signaling. Possible mechanisms include other, currently unknown, IP-receptor ligands released by platelets, a role for adenosine receptors, inhibition of phosphodiesterase-mediated cAMP degradation in the presence of high basal rates of AC, or new ways of AC or PKA activation. Of note, an alternative cAMP-independent pathway of PKA activation has been described based on thrombin-induced detachment of the catalytic subunit of PKA from a NFkB complex [26].

Possible limitations of the present study include the specificity of the biosensor constructs. Given the fact that only short substrate peptides were used as kinase targets it cannot be ruled out that kinases other than ERK or PKA might contribute to sensor phosphorylation and FRET activity. Moreover, the subcellular localization of the sensors and their accessibility to kinases and phosphatases could affect the signals obtained. For example, PKA is known to be attached to anchoring proteins resulting in compartmentalized PKA signaling [27]. Another issue is the resolution of current imaging methods. It was not possible to clearly identify single platelets in the laser injury studies of the present paper. Since the sensors have to be studied in separate models it is currently also not possible to establish if ERK and PKA activation actually concurred in the same platelets at the same time. Specific markers might be helpful to distinguish between core and shell structures of the developing thrombus in future studies [24].
Nevertheless, integrating FRET sensors into platelet studies represents an important methodological and conceptual advance. The pronounced effects of the MEK inhibitor might indicate MEK/ERK as new targets for anti-platelet therapy. The observed involvement of PKA not only in thrombus prevention but also during thrombus formation is likely to stimulate further research on the role of cAMP/PKA signaling in haemostasis and thrombosis.

Addendum

A. Smolenski wrote the manuscript.

References

