Evidence of aerobic and anaerobic methane oxidation coupled to denitrification in agricultural soils

M. I. Khalil
UCD School of Biology and Environmental Science
Climate-Resilient Agri-Environmental Systems (CRAES)-UCD Earth Institute
University College Dublin, Belfield, Dublin 4, Ireland. (E-mail: ibrahim.khalil@ucd.ie)

Rationale
• Agricultural soils may act as either a source or a sink of atmospheric methane (CH₄).
• Its extent depends on soil type, aeration, water regimes, nutrient availability and environmental variables.
• Advancing research on the interactions between CH₄ oxidation and denitrification is a key concern for understanding global C and N cycles.
• This paper reviews recent progress in their functional relationships.

Relationship between CH₄ oxidation and denitrification
Isotope studies show that CH₄ production and oxidation takes place simultaneously in agricultural soils at water content above field capacity i.e. in presence of anaerobic microsites and aerobic-anaerobic interface (Fig. 1).

Fig. 1. Conceptual diagram of the effect of soil water on the N transformations and their interaction with CH₄ oxidation (Khalil and Baggs, 2005)

This results in either aerobic or anaerobic CH₄ oxidation coupled to the highest N₂O emissions, demonstrating a close relationship between CH₄ oxidation and denitrification processes.

Pathways of CH₄ oxidation coupled to denitrification
Methane is a low-cost electron donor for coexisting denitrifiers.

Denitrification is coupled to either aerobic CH₄ oxidation involving direct nitrate/nitrite reduction (partial denitrification, Fig. 2), or

anaerobic relating to nitrite/nitric oxide reduction (complete denitrification).

Fig. 1. Pathways and functional inventory for nitrification and denitrification in association with methanotrophs (Campbell et al. 2011).

(i) NMMO, methane monooxygenase; HAO, NH₃/NO oxidation dehydrogenase; CytS, cytochrome b553; CytL, cytochrome P450; Nir, NO-forming nitrite reductase (NirK, NirS or Octaheme cytochrome c protein); CnOR, cytochrome c-dependent nitric oxide reductase; NirS, NirF, forming siroheme nitrite reductase.

Evidenced by microbial genomics and isotope study
A microbial consortium is involved in the interactive process. Recent research with microbiological techniques prove (Fig. 3):
(i) the occurrence of the coupled process by combining aerobic methanotrophs and denitrifiers, and
(ii) oxidation of ammonium and metabolic by-products, releasing N₂O as a terminal product.

Fig. 3. Postulated pathways aerobic methane oxidation and trophic links between these two processes (Zhu et al. 2016.)

However, the apparent anaerobic phenomenon lacks known genes for dinitrogen (N₂) production.

Isotope studies reveal that methanotrophs could bypass the denitrification intermediate N₂O to produce N₂ and O₂ that oxidizes CH₄ (Fig. 4)

Fig. 4. Pathway of methane oxidation with nitrite (Ettwig et al., 2010).

(nirS/F = nitrite reductase; pmoCAB = particulate methane monooxygenase)

What next?
• Further investigations using both advanced molecular microbiology and isotope tracing techniques are necessary to:
 • elucidate the nature of the processes,
 • better understand the mechanisms in agricultural soils and
 • develop biotechnological solutions to the issues concerning particularly to climate change.

References

Acknowledgements