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Abstract— This paper extends our previous work on the
selective excitation of mechanical vibration modes in MEMS
devices using Pulsed Digital Oscillators. It begins by presenting
extensive simulation results using the set of iterative maps that
model the system and showing that it is possible to activate two
or three spatial modes (resonances) of the mechanical structure
with a Pulsed Digital Oscillator (PDO). The second part of this
paper presents experimental results corroborating the theory and
simulation results. It is shown that it is possible to separately
excite vibration modes of the device by setting a few parameters
of the PDO structure such as the sampling frequency and the
sign of the feedback loop.

Index Terms— Microelectromechanical systems (MEMS), mi-
croresonators, sigma-delta modulation, multimode control.

I. I NTRODUCTION

The detection of frequency shifts or amplitude changes in
vibrating MEMS devices in response to an external stimulus is
a mechanism widely used in applications such as the sensing
of pressure, mass change, acceleration, etc. Many efforts
have been made in recent years to improve the perfomance
of MEMS resonant sensors (i.e. see [1], [2] and papers cited
there). For instance, the sensitivity of such sensors often
depends on the resonant frequency of the MEMS structure,
which is usually excited in one of its mechanical modes.

In the particular case of gravimetric resonant sensors,
several works show that operating at higher frequencies (orin
higher order modes) can be an effective way to increase their
sensitivity to mass changes [3]–[5]. Parametric resonance
amplification is an example of an efficient technique that
allows the excitation of the same mechanical structure at a
higher frequency to improve sensitivity [6], [7]. Moreover, the
activation of higher vibration modes to increase performance
has been also reported in atomic force microscopes [8],
[9] and in piezoelectric sensors and actuators [10], where
electrodes have been specifically designed to activate certain
modes. Additionally, in gyroscope applications it is often
desired to avoid the activation of certain resonant modes of
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the inertial mass [11], [12].

One can conclude that the selective activation of different
vibration modes of a MEMS resonator is a suitable way to
improve performance in a large number of applications. Thus,
the objective of this paper is to show that Pulsed Digital
Oscillators may be an easy and efficient tool for this purpose.

Pulsed Digital Oscillators (see fig. 1) are structures that
can work as mass-change resonant sensors [13], [14]. Part I
of this work [15] describes the theory that demonstrates
how PDOs may be used to selectively excite self-sustained
resonant mechanical modes in MEMS structures. To this
effect, it has been shown there that a beam cantilever can
be described through a set of iterative equations, with each
iterative map responsible for a spatial vibration mode. It
has also been proved that for a spatial mode there will be
regions of oscillations (with large amplitude limit cycles) and
‘forbidden’ or anti-oscillation regions (with small amplitude
limit cycles). The presence of these opposite regions opens
the possibility of the selective excitation of one of the spatial
modes if a few controlling parameters of the PDO system are
chosen correctly.

The main purpose of the current paper is to present
results of numerical simulations and experiments in order
to prove that several spatial modes (or resonances) of a
MEMS structure can be controlled easily by the feedback
loop parameters of the PDO structure. At first, numerical
simulations are mostly focused on the simplest, but common,
case when the first two mechanical modes are taken into
consideration (Sec II). However, we consider as well in
general outline the particular case of the third resonance
mode (Sec. III). The results of numerical simulations are
presented and discussed. We show the planes spanned by
controlling parameters of the system with distributions ofthe
oscillation amplitudes and frequencies and discuss at which
values of the sampling frequency the excitation of higher
spatial modes is possible.

Later, the experimental work validating the proposed ap-
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Fig. 1. General single feedback topology of the pulsed digital oscillator.
The circuit topology consists of a resonator, a 1-bit quantizer (sign function),
and a delay filter,G(z) = z−(L+1). The position of the MEMS resonator is
evaluated at each sampling time, and short pulses of force are applied to it.

proach is presented. We prove the feasibility of exciting
different vibration modes in a MEMS cantilever by working
with the controlling parameters of a PDO. In order to ap-
proximately locate the different mechanical vibration modes
of the MEMS resonator used, FEM, discrete-time simulations
and vibrometer-only measurements of the structure have been
first carried out (Sec. IV). Then, according to the theory
previously derived, several settings for sampling frequency,
sign and delays in the PDO feedback loop are applied to
our PDO experimental framework (Sec. V). The activation of
each resonant mode is tested with a scanning laser Doppler
vibrometer. This measurement technique allows us to obtain
accurate information about the displacement and velocity with
time (or frequency) and position along the top surface of
the device under test. The corresponding results are in good
agreement with the theory and simulations.

II. RESULTS OF NUMERICAL SIMULATIONS

A. Statement of the problem

Let us first give here a brief overview of the problem.
In order to obtain a lumped model of different resonant
modes of the mechanical structure in the PDO, Part I of
this paper [15] analyses a partial differential equation (PDE)
of a cantilever. An order-reduction strategy has been applied
to the PDE consisting of discretising the initial distributed
system by means of a set of spatial eigenmode functionsψi(ξ).
As a result, a set of ordinary differential equations has been
obtained that represents the dynamics of each spatial mode as
the mass-spring-damper equation with appropriate parameters.

This system is subjected to pulsed excitation. Between
two sampling instants the resonator moves freely, and at
each sampling event its velocity is instantaneously changed
by the applied delta-pulse. This allows a description of an
individual spatial mode in terms of an iterative map with
the dimensionless displacement and velocity as dynamical
variables:
(

xi,n+1

vi,n+1

)

= αiR(2πfi)

(

xi,n

vi,n

)

+

(

0
ζi

)

bn−L , (1)

for i = 1, . . . ,M being the number of a spatial mode. In
these equations,R(θ) =

(

cos θ − sin θ
sin θ cos θ

)

is the rotation matrix
by the angleθ, L + 1 is the number of delay blocks in the
feedback loop andbn is the sequence of signs of the resonator
position bn = sgn

∑M
i=1

xi(τn)ψi(ξs) expressed through the
basis functionsψi of spatial modes. The parameters in (1)

are expressed through the sampling frequencyfs and the
parameters of the mass-spring-damper equations for spatial
modes:γ (dissipation),Ω2

i (the frequency of theith mode)
andF0i (the amplitude of the external driving).
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whereρi is the dimensionless damping parameter,fi is the
normalised sampling ratio in terms of the paper [16] (or
normalised frequency in terms of the paper [17]),ζi is the
normalised increment (note that it depends on the sign of the
feedback loopσ) andαi is the contraction factor. In (1), the
first letter of the index, i.e. “i”, refers to the number of a spatial
mode, and the second letter, i.e. “n”, refers to the iteration
number.

Let us emphasise the particular case when the first two
spatial modes are considered. It is very convenient to establish
the correlation between the parameters that refer to the first
and the second modes in explicit form. So let us introduce the
ratio of the spatial frequencies of the modes as follows:

ν =
Ω2

Ω1

, (3)

and apply it to connect the set of parameters for the modes:
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(4)

For the case of two resonances it is convenient to rewrite the
expression for the sequencebn in the formbn = x1,n +βx2,n,
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Fig. 2. Regions of the normalised frequenciesf1,2 that correspond to the
oscillation and anti-oscillation regimes of the first (a) and the second (b)
spatial modes. The left vertical axis shows the scale off1, the right vertical
axis showsf2 for the convenience.
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Fig. 3. Plane of parameters (γ, f1) — the dissipation parameter and the normalised frequency in which the shades of the grey colour show the intensity
of oscillations. Plot (a) shows the amplitude of oscillations of the first spatial mode, while plot (b) shows the amplitude of oscillations of the second spatial
mode. The actuating and sensing structures are placed atξs = ξa = 1, β = µ = −1.

whereβ = ψ2(ξs)/ψ1(xs) is the ratio of the basis functions
at the point of position sensing. The coefficientµ is defined as
the ratio of the spatial function values at the point of actuation
µ = ψ2(ξa)/ψ1(ξa). Note that from the beginning we have
introduced into our theory such parameters as the frequencies
of the eigenmodes. As a consequence, the parameters that
we use for formulation of the iterative system cannot be
considered as independent ones, i.e. we have to change the
values of controlling parameters according the expressions (4).
For instance, in the experimental set the sampling frequency
is measured with respect to the frequency of the fundamental
mode (i.e. the first spatial mode with the lowest frequency),
thus, the sampling ratiof1 is given as a “basic” parameter.
The value off2 can be obtained simply by re-calculatingf1
with the ratioν.

B. Oscillation and anti-oscillation regimes

As noted in [14], energy can be put into or extracted from
the resonator. When the velocity of the resonator is positive,
applying a positive impulse leads to an increase in kinetic
energy. On the other hand, when the velocity is negative,
applying a positive impulse will decrease the energy. Sustained
oscillations in the PDO are reached if the feedback signσ is
selected correctly.

This physical mechanism leads to the presence of the
oscillation and antioscillation regimes [18] in the iterative
equations (1) for a single spatial mode. We will use one of the
following terms:oscillation mode (or regime) oroscillations
to refer to large amplitude oscillations when kinetic energy
is added to the resonator by the force pulses. We will use
the termanti-oscillationmode (regime) oranti-oscillationsto
denote very small amplitude oscillations (with corresponding
limit cycles situated near the origin) when energy is extracted
from the resonator by the force pulses [18].

For an arbitrary number of the delaysL+ 1 and the signσ
of the feedback loop, the regions of antioscillations (or regions

with no ‘tuned’ frequency [17]) for a single mode of the PDO
are defined by the following expressions:

σ = 1 : f ∈
(

1 + 2k

2(L+ 1)
,
1 + k

L+ 1

)

,

σ = −1 : f ∈
(

k

L+ 1
,

1 + 2k

2(L+ 1)

)

,

(5)

for any integerk.
Oscillation and anti-oscillation areas calculated from for-

mula (5) are shown in Fig. 2. The left vertical axis indicates
the normalised frequency (sampling ratio)f1 with respect to
the temporal frequency of the first mode and the right vertical
axis shows the normalised frequency (sampling ratio)f2. In
Fig. 2(a), the light gray areas correspond to the oscillation
regions of the first mode, and in Fig. 2(b) the dark gray region
correspond to oscillations of the second mode. The blank areas
correspond to the antioscillations for both spatial modes.As
is seen from the figure, there will be regions of overlapping,
i.e., simultaneous oscillations of the first and second modes,
In this case, the output of the PDO can display either the first
or the second mode, depending on additional conditions, such
as initial conditions or the MEMS geometry parameters.

C. Distribution of the oscillation amplitude for the first and
the second mode.

We start with the most standard case when the actuating
and sensing systems are placed at the end of the beam. The
parameters that describes the structure of the MEMS are the
following: β = µ = −1. The dynamics of the system (1)
are studied in the plane spanned by the controlling parameters
(γ, f1) — the dissipation parameter and the sampling ratio
(normalised sampling frequency).

Let us first estimate the contribution of each spatial mode
to the overall oscillations. Figure 3 shows the distribution of
the oscillation amplitudes in the plane (γ, f1). The additional
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Fig. 4. Plane of parameters (γ, f1) — the dissipation parameter and the
normalised frequency in which the grey shades show the output frequency.
The casefD ≈ f∗

1,D
is shown by the light gray,fD ≈ f∗

2,D
by the dark

grey, and blank regions show that the output frequencyfD corresponds to
neither modes frequenciesf∗

1,2,D
. The actuating and sensing structures are

placed atξs = ξa = 1, β = µ = −1.

vertical axis shows the normalised frequencyf2 for the
convenience of readers. Plot 3(a) represents this distribution
for the amplitude of the first spatial mode, and plot 3(b)
the distribution for the second mode. Figures 3(a) and (b)
are calculated with respect to some value ofAmax in the
following way. At each pair of the parameters(γ, f1), the
system (1) is iterated; the obtained amplitudes of oscillations
are compared toAmax and, based on this comparison, we
estimate the magnitude of oscillations and assign a colour to
a point (γ, f1). The higher the amplitude of oscillations, the
darker the shade that represents the corresponding point inthe
plane. All planes presented in the paper are calculated withthe
zero initial conditionsx0,i = y0,i = 0.

As seen in Fig. 3, we can divide the plane into parts where
the first mode is dominating and parts where the first mode is
suppressed. According to the formulas (5), the regionsfs <
0.5 and1 < fs < 1.5 correspond to the oscillations of the first
mode (however, these regions include a lot of subsets with the
oscillations of the second mode as well).

A considerable rise of the second mode amplitude is ob-
served at0.5 < f1 < 1 and1.5 < f1 < 2, i.e. in the regions of
the anti-oscillations of the first mode. In general, the maximum
amplitude of the second mode is lower than the maximum
amplitude of the first one. Note that the device is designed to
operate at a high-Q factor, i.e. at small values of the dissipation
parameterγ. In the presented planes, bands that represents the
intensity of oscillations (of both modes) still exist at higher
values ofγ, however, the oscillations decay noticeably as the
dissipation increases. Note that the stripes in Fig. 3(b) that
show the second mode oscillations appear strictly at values
of the sampling frequency that correspond to the oscillation
regime of the second mode.

D. Frequency of the PDO output

Since the PDO is a digital oscillator, the oscillation fre-
quency can be directly calculated from the output bitstream
[14], [17], [18]. The resulting oscillation frequency isfosc =
fsfD, wherefD is the digital frequency extracted from the
bitstream.

It was shown in [14] that using the standard linear analysis
of the oscillator loop and taking into account the sampled
impulse response of the MEMS device, one can get a good
approximation of the digital frequency from the expression

f∗

i,D =
1

2π
cos−1 (ai cos(2πfi)) ∈ (0, 0.5) , (6)

whereαi is the contraction factor andfi is the normalised
sampling ratio introduced by the formulas (2) and the indexi
refers to theith eigenmode.

In the previous section we have shown that depending on
the sampling ratio and the sign of the feedback term the PDO
oscillations can be associated with either the first or the second
mode. This conclusion was drawn based on the analysis of the
oscillation amplitude after iterating the system (1). In fact, the
only output we typically obtain from the PDO is the bitstream
provided by the comparator which is the sign of the sampled
position of the resonator. This allows us to get the information
about the frequency of oscillations, not the amplitude. The
important question is: which spatial mode frequency does the
output frequency correspond to?

We will use the route suggested in [17] to generate the aux-
iliary sequence and obtain the digital frequency of oscillations
fD. The qn sequence is defined as follows

qn =

{

1, if bn 6= bn+1 ,

0, if bn = bn+1 .
(7)
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Fig. 5. (a) Typical limit cycles. (1) is the limit cycle displayed by the
dynamical variables(x1,n, v1,n) that correspond to the first spatial mode,
(2) is the limit cycle displayed by the second mode. (b) A typical profile
of the beam as a function of the longitudinal coordinateξ; The dashed line
with mark “1” shows the profile that corresponds to the first spatial mode; the
dashed line with mark “2” shows the profile that corresponds to the second
spatial mode. The actual profile of the beam as the superposition of the two
modes is illustrated by the black solid line.γ = 0.005 andf1 = 0.19 .
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The digital frequency of oscillations can now be written as

fD =
1

2
·

N
∑

n=1

qn

N
(8)

Now, at each pair of the parameters(γ, f1) we can calculate
the digital frequency of oscillations by using (8) and compare
the result with the theoretical approximation (6). The plane
of parameters that shows the output frequency is presented in
Fig. (4). The digital frequency of the output is illustratedin
the plane in the following manner: the light gray areas show
that the output frequency corresponds to the first mode (fD ≈

f∗

1,D), the dark gray areas to the second mode (fD ≈ f∗

2,D)
and the blank areas indicate that the output is close to neither
of them. As expected, there is broad correspondence between
the planes shown in fig. 3 and fig. 4: at the values ofγ and
f1 when the first spatial mode is excited, the digital frequency
of the PDO output is the frequency of the first eigenmode. In
addition, when the second spatial mode is excited, the output
frequency is the frequency of the second eigenmode. Note
that the digital frequency does not correspond to either of the
eigenmodes if the parameters are taken from the antioscillation
regions for both modes. This implies that the digital frequency
extracted from the output allows us to “recognise” what type
of oscillations is displayed by the cantilever and associate it
with a proper spatial mode.

E. Examples of system dynamics

Now let us illustrate the system dynamics in terms of the
first and second spatial mode. Figure 5(a) shows typical limit
cycles displayed by the variablesx1,n, v1,n (the limit cycle
denoted as “1”) andx2,n, v2,n (the limit cycle denoted as “2”).
The profile of the beam is given in Fig. 5(b). The amplitude
of the second mode is smaller than the amplitude of the first
one, however it affects the overall profile of the cantileverand
causes its distortion.

An opposite example that illustrates the dominance of the
second mode is shown in Fig. 6. Note that normally the
amplitude of the suppressed mode is significantly smaller
than the amplitude of the dominating one, as demonstrated
in Fig. 6(a). The actual profile of the cantilever corresponds
to the second mode and the distortion of the profile caused by
the first one is negligible (see Fig. 6(b)).

F. Control of two resonant modes

In the previous sections we have studied the standard case
when both the actuating and sensing structures are placed at
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Fig. 7. Plane of parameters (γ, f1) — the dissipation parameter and the normalised frequency in which the shades of the grey colour show the intensity
of oscillations. Plot (a) shows the amplitude of oscillations of the first spatial mode, while plot (b) shows the amplitude of oscillations of the second spatial
mode. The actuating and sensing structures are atξs = ξa ≈ 0.88, β = µ = −0.5.
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Fig. 8. Plane of parameters (γ, f1) — the dissipation parameter and the normalised frequency in which the shades of the grey colour show the intensity
of oscillations. Plot (a) shows the amplitude of oscillations of the first spatial mode, while plot (b) shows the amplitude of oscillations of the second spatial
mode. The actuating and sensing structures are atξs = 0.3, ξa = 1, β = 3.85, µ = −1.

the end of the cantilever. Next, we consider what rearrange-
ments in the entire picture of the spatial modes may be caused
by minor shifting of the sensing and actuating systems.

The choice of the parametersβ and µ considerably in-
fluences the systems behaviour. The first parameter defines
the proportion of the modes in the sequence of the sampled
resonator position. The value ofβ should guarantee that the
contribution of both modes to the measured position are of
the same order. The second parameter,µ, is responsible for
the “portion” of the external driving that is received by each
mode.

Figure 7 shows the plane of parameters with the amplitude
distributions of the first and the second spatial modes (cases
(a) and (b)). The plots are calculated atξs = ξa ≈ 0.88, which
means that the actuating (and sensing) points are shifted a little
from the edge of the beam. The coefficients in this case are
β = µ = 0.5. This change ofβ andµ does not affect the first
mode, however, by comparing of Fig. 7(b) with Fig. 3(b) one
can conclude that the intensity of oscillations that correspond
to the second spatial mode reduced.

This can be explained qualitatively as follows: the amplitude
of oscillations depends on the amplitude of the external driving
(or on the normalised incrementYi in terms of the map (1)).
The incrementYi is defined in turn by the functionψi(xa).
In the region0.8 < ξ < 1.0, the functionψ2(ξ) varies over a
wide range of values from0 to−2, whereas the functionψ1(ξ)
changes a little. The closer the actuation point toξa ≈ 0.78
(the zero of the functionψ2), the smaller the value of the
incrementY2 that is responsible for the second mode and the
smaller the “portion” of the external driving that is received
by the this mode.

Next, it is natural to consider the special case when the
sensing and actuating systems are separated and placed at
different points of the microcantilever. By adjusting the points
ξs (or the parameterβ) and ξa (or the parameterµ), one
can achieve better control of the excitation or suppressionof

higher modes. For instance, one can put the sensing system
at ξs = 0.3, where the functionψ2(ξs) has a large value than
ψ1(ξs). Thus, we can expect that oscillations corresponding
to the second resonant mode will be significant.

The example illustrated by Fig. 8 was calculated forξs =
0.3 andξa = 1 (β = 3.85 andµ = −1). In this case, there are
many regions with oscillations that correspond to the second
resonant mode (see fig. 8(b)). Moreover, these regions appear
at the values of the sampling ratio0 < f1 < 0.5 and 1.0 <
f1 < 1.5, i.e. in the region where we normally observed only
the first mode (compare with Fig. 3).

III. C ONTROL OF THREE RESONANT MODES

The aim of this section is to extend the theory and results
presented earlier to the case of three resonances. It is known
that sensors that utilise higher resonant modes can carry out
more precise measurements, since the higher the resonant
frequency of the device, the more sensitive it is to a change in
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the external stimulus. It follows that one way to improve the
resolution of measurements is to switch to a higher mechanical
mode of the same sensor.

In order to examine three resonances, we include the third
pair of iterative equations from (1) with appropriate parameters
and incorporate the additional coefficientsβ′ and µ′ that
describe the relative contribution of the third mode to the
position sensing and cantilever actuation. The sequence ofthe
sampled position of the resonator now is

sn = sign{y1(nT ) + βy2(nT ) + β′y3(nT )} , (9)

The parameters of the third system are defined by (2) in the
same manner as in the previous case with two modes.

We may suggest two assumptions concerning the frequency
of the third resonance. The first one is to assume that the
third mode frequencyf0 3 (f03 > f0 2) follows from the
1D theory that was presented in our previous work. The
coefficients that describe the actuation and sensing systems
areµ′ = ψ3(ξa)/ψ1(ξa) andβ′ = ψ3(ξs)/ψ1(ξs).

However we should note that a real MEMS cantilever is a
more complicated structure than a simple 1D beam and it is
capable of demonstrating torsional deflections as well. More
general analysis of the structure shows that there are a number
of mechanical modes that include 3D motion of the plate with
frequencies that could be less than the frequencyf03 given
by the 1D theory. Thus, the other possibility is to introduce
the frequency of the modef03 and the coefficientsµ′ andβ′

based upon results obtained from experiments, 3D modelling
or any additional assumptions. We have chosen here the third
resonance predicted by the 1D theory developed earlier.

The results presented earlier have shown that the primary
parameter that is responsible for “switching” from the funda-
mental first mode to the second mode is the sampling ratio
(normalised frequency). Figure 2 has shown the regions of the
oscillations and anti-oscillations for the first and the second

mode and the results of numerical simulations have proved that
the second mode can be observed strictly on the condition that
the sampling frequency corresponds to the oscillation intervals.

Similar to Fig. 2, we present now Fig. 9, that shows regions
of oscillations for the first three spatial modes (plots (a),(b)
and (c) respectively) calculated from the expressions (5).As
in the previous case, there will be regions of overlapping —
simultaneous oscillations of several spatial modes.

Note that if one can observe the oscillation regimes for
multiple spatial modes at the same sampling frequency, the
output of the PDO depends on the initial conditions and the
geometric parameters of sensing and actuating systems. For
the zero initial conditions and typical values ofβ, β′, µ and
µ′ we consider in the paper, it is more likely that the cantilever
will display a mode with a lower frequency. Thus, we expect
that the third resonance can be observed clearly if the first and
the second mode are in anti-oscillations.

The distribution of the oscillation amplitudes for the third
mode is presented in Fig. 10 (we do not give the plots with
distributions of the lower modes since they look similar to
those shown in Fig. 3). There are narrow bands in the figure
where the third mode amplitude is significant, and values of
f1 (or f3) correspond precisely to the oscillation regions (see
fig. 9). Note that these regions are very narrow and decay as
the dissipation parameterγ increases.

The example that illustrates the dominance of the third mode
at the parametersγ andf3 taken from the gray (or oscillation)
region in Fig. 10 is shown in Fig. 11. Figure 11(a) presents
the limit cycles displayed by the variablexi,n and vi,n. The
profile of the beam is shown in Fig. 11(b). The dashed lines
show the corresponded profiles of the three spatial modes and
the solid line shows the actual profile of the beam.

In this part, we have demonstrated that the PDO is capable
of actuating different vibration modes (or resonances) of the
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Fig. 11. (a) Typical limit cycles. (1) is the limit cycle displayed by the
dynamical variables(x1,n, v1,n) that correspond to the first spatial mode,
(2), (3) are the limit cycle displayed by the second and the third modes. (b) A
typical profile of the beam as a function of the longitudinal coordinateξ; The
dashed lines with mark “1”, “2” and “3” show the profiles that correspond to
the first, second and third spatial modes; The actual profile of the beam as a
superposition of the three modes is shown as the black solid line. γ = 0.001
andf1 = 0.75 .
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Fig. 12. Microscope photograph of the MEMS resonator. The Wheatstone
bridge used to sense deflection is located in the central beam, while the
resistors that actuate the device are placed in the externalbeams.

mechanical structure. Numerical simulations have shown that
changing the sampling frequency and the sign of the feed-
back loop allows control of the oscillation and antioscillation
regimes for a given resonance, and, as a consequence, allows
actuation of higher modes. Our next step is to prove it
experimentally with a PDO setup.

IV. EXPERIMENTAL SETUP

A. MEMS resonator

The MEMS resonator used in our experimental work is
a silicon cantilever manufactured in a bulk micromachining
process, being originally designed for gas sensing applications
[19]. It consists of a squared silicon plate, with 1000µm
long, 1000µm wide and 5µm thick, suspended and anchored
to a SOI wafer through three rectangular beams of 150
µm long and 200µm wide (see Fig. 12). Device actuation
is thermoelectrical, performed through two heating resistors
placed in the outer beams. These resistors are covered by
a layer of silicon oxide, so that the difference in thermal
expansion coefficients between silicon and silicon oxide causes
the deflection of the beam/bridge structure. Deflection sensing
is done using a piezoresistive Wheatstone bridge located in
the central beam. Thermal and mechanical separation between
sensing and actuation structures is provided by 150µm x 150
µm empty areas.

The frequency of the fundamental mechanical mode of
this device, extracted from the process batch, is in the range
between 3.88 and 5.09 kHz [19]. However, the linear theory of
transversal vibrations for elastic beams can be used to obtain
estimated frequency values for the three first vibration modes
(see [20] or the cited formula in part I of the work [15]).
Thus, for a cantilever beam with 1150µm long, 1000µm, 5
µm thick, and material parameters from [19], such theoretical
values are 4.56 kHz for the first mode, 28.59 kHz for the
second and 80.06 kHz for the third one.

Additionally, in order to obtain some additional information
about the mechanical behaviour of the MEMS device, a series
of FEM simulations using the Coventorware environment
have been performed. These simulations are intended only
to approximately obtain the frequency ranges corresponding
to the vibration modes, thus second order effects concerning
geometries or materials, such as uncertainty in the SOI wafer
thickness or non-idealities and tolerances of the manufacturing
process have not been considered. As a consequence, both the
geometrical structures simulated and the results obtainedare
approximate but sufficient for our purposes.

Moreover, let us remark that the models and the theory
of excitation of different vibration modes developed in this
work apply basically to 2D MEMS devices, but the resonator
used in the experiments is a true 3D device. Then, let us take
into consideration here only those modes obtained from FEM
simulations that exhibit a strong longitudinal component,i.e.
strong enough to be captured by the sensing structure placed
in the central beam of the device. According to this, Fig. 13
shows the first three vibration modes of this type, located
respectively around 4.17, 28.36 and 82.65 kHz.

On the other hand, a first set of measurements have been
performed in order to exactly locate the first mechanical
vibration modes. To this effect velocity and displacement of
different points in the resonator have been measured with
a scanning Polytec MSV 400 laser-doppler vibrometer. A
laser beam was pointed with the aid of a microscope down
to the vibrating surface, and scattered back through the mi-
croscope objective towards the interferometric sensor. Laser
Doppler signal was converted to velocity using a Polytec
VD02 decoder. By monitoring several points of the device,
an average measurement of displacement or velocity of the

Fig. 13. First (a), second (b) and third (c) longitudinal vibration modes for the MEMS resonator structure of Fig. 12 obtained with Coventorware mechanical
simulations.
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Fig. 14. Three first MEMS resonator vibration modes obtainedwith a
vibrometer after a frequency sweep.

whole structure, in its out-of-plane motion, was obtained.
The result of this first set of measurements was the velocity

spectrum of the MEMS resonator after a frequency sweep
in the 0-400 kHz range. As it can be seen in Fig. 14, the
resonant frequencies obtained with the vibrometer for the first
three longitudinal modes (4.473 kHz, 30.55 kHz 88.48 kHz)
fairly agree with the previous approaches based either on
linear theory and in FEM simulations. Let us remark that all
measurements made with the vibrometer equipment have been
done on air conditions, thus damping losses are not negligible.

B. Experimental setup

One of the main objectives of this work is to demonstrate
experimentally the feasibility of separately exciting different
vibration modes in a MEMS device by setting a few pa-
rameters of a PDO structure. The experimental framework
developed for this purpose, described in Fig. 15, is based
on the single feedback PDO architecture with a variable
number of delays. It consists of a specific analog board, which
includes the MEMS actuation and sensing interface circuits
plus the sign detector, and a DE2 commercial digital board

Fig. 15. Experimental setup.

from Terasic Technologies, based on a Cyclone II FPGA from
Altera.

The digital system programmed in the FPGA, described in
VHDL, implements the PDO digital feedback loop and the
components necessary to obtain the PDO digital output, store
it temporarily in an on-board SRAM and send it via USB to
a computer for further processing. The switches of the board
are used to easily set the PDO circuit parameters that allow
to separately excite different vibration modes in the resonator,
i.e. the sampling frequency (fs) and the sign and the number
of delays of the digital feedback loopL.

Let us note that one of the most important features of PDO
systems is a direct digital output from their intrinsic built-
in analog to digital conversion. However it is also possible
to obtain data in analog format, but this requires continuous
position sensing and some extra measurement equipment. Only
for comparison purposes, this analog method has been also
used in this work: the output signal from the instrumentation
amplifier located after the MEMS position sensing structure
has been sent to an oscilloscope, and a universal counter has
been used to obtain the oscillation frequencies.

V. EXPERIMENTAL RESULTS AND DISCUSSION

Since the objective of this section is to experimentally
verify the theoretical expectations outlined in previous sections
for the excitation of individual vibration modes with PDO
structures, the first step was to configure a PDO circuit in
order to excite the first vibration mode detected in Fig. 14. To
this effect, a configuration was chosen that sets an oscillation
regime for frequencies around 4.4 kHz, but it also puts into
antioscillation regime the frequency ranges around the other
two longitudinal vibration modes considered (see Fig. 9). To
this effect, the sampling frequency wasfs = 139 kHz and
the number of delays in the feedback loop wasL = 4. The
corresponding results, measured with a vibrometer, are shown
in Fig. 16 (a). It is easy to see there that the first vibration
mode is reached and that the dominant oscillation frequency
is 4.46 kHz, a value very close to that obtained in Fig. 14 and
to the value obtained with FEM simulations.

Then the PDO circuit was configured to separately excite
the two other vibration modes detected in Fig. 14. For ex-
ample, Fig. 16(b) corresponds to a configuration that sets an
oscillation regime for frequencies around 30.5 kHz and setsan
antioscillation regime for the frequency ranges corresponding
to the other two vibration modes, thus, the sampling frequency
was againfs = 139 kHz andL = 13. The results shown in
Fig. 16(b) suggest that the second longitudinal vibration mode
was reached and it has an oscillation frequency of 30.6 kHz,
a value again closer to that of Fig. 14 and to the simulations.
In the same way, the third longitudinal vibration mode was
successfully located at 88.41 kHz forfs = 139 kHz and
L = 16 (see Fig. 16(c)).

Figure 17 shows three oscilloscope screenshots of the
MEMS deflection waveforms, extracted from the so-called
PDO ’analog’ output, for the same experimental cases as
in Fig. 16. Digital channel D0 (not shown in the figure)
corresponds to the sampling clock. All measurements shown in
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Fig. 16. Vibrometer results of cantilever deflection and velocity spectrum when the PDO system is configured to excite (a)only the first longitudinal mode
of the resonator, (b) only the second one, and (c) only the third one.

Fig. 17 have been done placing the resonator inside a vacuum
chamber, so they correspond to low pressure conditions around
0.1 mPa, with damping losses drastically reduced. Let us note
that good sinusoidal waveforms are obtained.

On the other hand, Fig. 18 experimentally illustrates that
PDO oscillation frequencies and spectra can be easily obtained
from the digital output, using only standard tools for digital
processing. What Fig. 18 shows is a pseudo-transient (the

Fig. 17. Oscilloscope screen captures of the MEMS deflectionwaveforms
corresponding to the first (up), second (middle) and third (bottom) vibration
modes for the same experimental cases as in Fig. 16.

horizontal axis is the number of samples instead of time)
of the digital frequencies obtained when changing the PDO
configuration, with a fixedfs = 139 kHz, to successively pass
from the first to the second and, after, to the third vibration
mode of the resonator. These digital frequencies have been
obtained from the bit stream of the PDO after low pass filtering
and decimation, and they allow identifying the oscillation
frequency of each vibration mode. Thus, in the first step
of Fig. 18.b, fD = 0.0328, so the oscillation frequency is
fD · fs = 4.56 kHz, which corresponds to the first vibration
mode. In the same way, we havefD = 0.2218 and a frequency
fD · fs = 30.83 kHz for the second step or vibration mode.

The interpretation of the third step of digital frequency
shown in Fig. 18 is not straightforward. Indeed, it is already
known that the third vibration mode is located at about 89
kHz and that the sampling frequency is 139 kHz, so we have
a sample ratiofOSC/fs > 0.5 and the PDO is working
in under sampling conditions. Therefore, aliasing occurs and
the multiplication of spectra prevents the identification of the
oscillation frequency asfD·fs. However, a previous work from
the authors [21] demonstrates that in PDOs working in under
sampling conditions it is possible to extract the oscillation fre-
quency when the sample ratio segment that includesfOSC/fs

is already known. To this effect the following expression might
be applied,

fOSC =

{

(

r
2

+ fD

)

fs, if r is even ,
(

r+1

2
− fD

)

fs, if r is odd ,
(10)

being r the integer part of[2fOSC/fs]. In our caser = 1
andfD = 0.362, so the oscillation frequency is calculated as
(1 − fD) · fs = 88.65 kHz, close to the value measured for
the third vibration mode of the MEMS resonator using the
so-called analog method.

Finally, let us note that a good agreement exists between
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Fig. 18. Digital frequency values obtained after switchingthe PDO
configuration to successively excite the first, second and third vibration modes
of the MEMS resonator.

TABLE I

COMPARISON BETWEEN THE EXPECTED THEORETICAL, SIMULATIONS

AND MEASURED FREQUENCY VALUES[KHZ] OBTAINED FOR THE FIRST

THREE MODES OF THEMEMS RESONATOR

Linear FEM Vibrometer PDO
theory simulations characterisation measurements

First mode 4.56 4.17 4.47 4.46

Second mode 28.59 28.36 30.55 30.60

Third mode 80.06 82.65 88.48 88.41

the theory, simulation and experimental results obtained.Such
agreement is shown in table I, where theoretical, simulations
and experimental results for the three vibration modes are
summarized and compared.

VI. CONCLUSIONS

In this paper we have shown that spatial modes (or mechan-
ical resonances) of the MEMS structure used in a PDO system
can be controlled by a small number of parameters of such a
system. We have first considered in detail the simplest, but
common, case when the first two mechanical modes are taken
into consideration and later incorporated the third resonance
mode into the statement of the problem. We have shown
the planes spanned by controlling parameters of the system
with distributions of the oscillation amplitudes and frequencies
and discussed at which values of the sampling frequency the
excitation of higher spatial modes is possible.

This selective excitation of different vibration modes of a
MEMS resonator with configurable PDO systems has also
been experimentally demonstrated. Experimental results agree
both with previous theory and with mechanical FEM sim-
ulations. PDO circuits with three different feedback loop
configurations have been implemented and tested in order to
obtain the first three longitudinal vibration modes of a MEMS
resonator. In this way, it is concluded that PDO capabilities
for sensing applications based on frequency shift detection are
strongly improved.
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