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Abstract— This paper extends our previous work on the the inertial mass [11], [12].
selective excitation of mechanical vibration modes in MEMS

devices using Pulsed Digital Oscillators. It begins by pre=iting  gne can conclude that the selective activation of different
extensive simulation results using the set of iterative mapthat

model the system and showing that it is possible to activatevd Yibfaﬁon modes of a _MEMS resonator is a Sl?itat?'e way to
or three spatial modes (resonances) of the mechanical struze iImprove performance in a large number of applications. Thus
with a Pulsed Digital Oscillator (PDO). The second part of this the objective of this paper is to show that Pulsed Digital

paper presents experimental results corroborating the thery and  Oscillators may be an easy and efficient tool for this purpose
simulation results. It is shown that it is possible to separtely

excite vibration modes of the device by setting a few paramets - . )
of the PDO structure such as the sampling frequency and the Pulsed Digital Oscillators (see fig. 1) are structures that

sign of the feedback loop. can work as mass-change resonant sensors [13], [14]. Part |
of this work [15] describes the theory that demonstrates
how PDOs may be used to selectively excite self-sustained
resonant mechanical modes in MEMS structures. To this
effect, it has been shown there that a beam cantilever can
. INTRODUCTION be described through a set of iterative equations, with each
The detection of frequency shifts or amplitude changes iterative map responsible for a spatial vibration mode. It
vibrating MEMS devices in response to an external stimigushias also been proved that for a spatial mode there will be
a mechanism widely used in applications such as the sensiegions of oscillations (with large amplitude limit cycjeend
of pressure, mass change, acceleration, etc. Many effdftgsbidden’ or anti-oscillation regions (with small amplde
have been made in recent years to improve the perfomatiogt cycles). The presence of these opposite regions opens
of MEMS resonant sensors (i.e. see [1], [2] and papers citdte possibility of the selective excitation of one of thetsda
there). For instance, the sensitivity of such sensors ofterodes if a few controlling parameters of the PDO system are
depends on the resonant frequency of the MEMS structuokosen correctly.
which is usually excited in one of its mechanical modes.

Index Terms— Microelectromechanical systems (MEMS), mi-
croresonators, sigma-delta modulation, multimode contrb

The main purpose of the current paper is to present
In the particular case of gravimetric resonant sensorgsults of numerical simulations and experiments in order
several works show that operating at higher frequencies(orto prove that several spatial modes (or resonances) of a
higher order modes) can be an effective way to increase th®IEMS structure can be controlled easily by the feedback
sensitivity to mass changes [3]-[5]. Parametric resonanio®p parameters of the PDO structure. At first, numerical
amplification is an example of an efficient technique thaimulations are mostly focused on the simplest, but common,
allows the excitation of the same mechanical structure atcase when the first two mechanical modes are taken into
higher frequency to improve sensitivity [6], [7]. Moreoy#re consideration (Sec Il). However, we consider as well in
activation of higher vibration modes to increase perforoeangeneral outline the particular case of the third resonance
has been also reported in atomic force microscopes [8lode (Sec. Ill). The results of numerical simulations are
[9] and in piezoelectric sensors and actuators [10], whepeesented and discussed. We show the planes spanned by
electrodes have been specifically designed to activataicertcontrolling parameters of the system with distributiondhof
modes. Additionally, in gyroscope applications it is oftewoscillation amplitudes and frequencies and discuss attwhic
desired to avoid the activation of certain resonant modes \alues of the sampling frequency the excitation of higher

o . . o spatial modes is possible.
Copyright (c) 2009 IEEE. Personal use of this material isnyed.
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are expressed through the sampling frequerigyand the
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ig. 1. General single feedback topology of the pulsed aigiscillator. (= ——— a = exp )
The circuit topology consists of a resonator, a 1-bit qu@nt{sign function), 9121 /1 — p? 1— P?

and a delay filterG(z) = 2~ (Z+1), The position of the MEMS resonator is
evaluated at each sampling time, and short pulses of foeagaplied to it.  where Pi is the dimensionless damping parameperjs the

normalised sampling ratio in terms of the paper [16] (or
) L __normalised frequency in terms of the paper [17]),is the
proach is presented. We prove the feasibility of excitingoymalised increment (note that it depends on the sign of the
different vibration modes in a MEMS cantilever by workingeedback loopr) and o; is the contraction factor. In (1), the

with the controlling parameters of a PDO. In order to afrst |etter of the index, i.e.i, refers to the number of a spatial
proximately locate the different mechanical vibration resd mode, and the second letter, i.ex”* refers to the iteration

of the MEMS resonator used, FEM, discrete-time simulationg;mper.
and vibrometer-only measurements of the structure have bee| gt ys emphasise the particular case when the first two

first carried out (Sec. IV). Then, according to the theorypatial modes are considered. It is very convenient to ksttab
previously derived, several settings for sampling fre@¥en the correlation between the parameters that refer to thee firs
sign and delays in the PDO feedback loop are applied fad the second modes in explicit form. So let us introduce the

our PDO experimental framework (Sec. V). The activation Qhtio of the spatial frequencies of the modes as follows:
each resonant mode is tested with a scanning laser Doppler qQ
2

= ®)

vibrometer. This measurement technique allows us to obtain v=—
accurate information about the displacement and veloditly w iy
time (or frequency) and position along the top surface @ind apply it to connect the set of parameters for the modes:

the device under test. The corresponding results are in good p1
agreement with the theory and simulations. P2= "3
Il. R o= Ay,
. ES;JL;’S OF :)1|UMERICAL SIMULATIONS Vi-2% @
A. Statem(-ento -t e problem | _ ‘" M_Cl m N M_Cl
Let us first give here a brief overview _of the problem. 2T W o2
In order to obtain a lumped model of different resonant IR I
modes of the mechanical structure in the PDO, Part | of am=a)y M P~y

this paper [15] analyses a partial differential equatioBEP
of a cantilever. An order-reduction strategy has been agpli
to the PDE consisting of discretising the initial distriedt
system by means of a set of spatial eigenmode funciio(g.
As a result, a set of ordinary differential equations hashbee f (a)
obtained that represents the dynamics of each spatial neode a B
the mass-spring-damper equation with appropriate pasaset 175 ]

This system is subjected to pulsed excitation. Between :
two sampling instants the resonator moves freely, and at 15—
each sampling event its velocity is instantaneously change 1
by the applied delta-pulse. This allows a description of an ]
individual spatial mode in terms of an iterative map with 1]
the dimensionless displacement and velocity as dynamical ]
variables:
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for i = 1,..., M being the number of a spatial mode. In
these equationdR(#) = (<9 ~*n0) is the rotation matrix

sinf cosf
by the angled, L + 1 is the number of delay blocks in the )
. . g. 2.
feedback |00p and, is the sequence of sIgns of the resonatd(jilscillation and anti-oscillation regimes of the first (a)dathe second (b)

. M
position b, = sgn}_;—, z:(7n)vi(&s) expressed through thespatial modes. The left vertical axis shows the scalgfofthe right vertical
basis functions); of spatial modes. The parameters in (13xis showsf; for the convenience.

For the case of two resonances it is convenient to rewrite the
expression for the sequenggin the formb,, = 1, + Bxa.n,

(b)
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Regions of the normalised frequencigs: that correspond to the
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Fig. 3. Plane of parameters/,(f1) — the dissipation parameter and the normalised frequemayhich the shades of the grey colour show the intensity
of oscillations. Plot (a) shows the amplitude of oscillagoof the first spatial mode, while plot (b) shows the ampétuad oscillations of the second spatial
mode. The actuating and sensing structures are placéd-até, =1, 3 =pu = —1.

where 3 = (&) /11 (xs) is the ratio of the basis functionswith no ‘tuned’ frequency [17]) for a single mode of the PDO
at the point of position sensing. The coefficignis defined as are defined by the following expressions:

the ratio of the spatial function values at the point of atitua 149 14k

uw = 12(&,)/11(&). Note that from the beginning we have oc=1: f (7, —) ,
introduced into our theory such parameters as the fregegnci 2(L+1) L+1 (5)
of the eigenmodes. As a consequence, the parameters that o= —1-: fe < k L+ 2k >

we use for formulation of the iterative system cannot be L+1'2(L+1))"

considered as independent ones, i.e. we have to changefg?eany integerk.
values of controlling parameters according the expres€p  ogcillation and anti-oscillation areas calculated from fo

For instance, in the experimental set the sampling frequeng 13 (5) are shown in Fig. 2. The left vertical axis indicates
is meagured W|th respegt to the frequency of the fundamen§al ,ormalised frequency (sampling rati) with respect to
mode (i.e. the first spatial mode with the lowest frequencythe temporal frequency of the first mode and the right vertica
thus, the sampling ratig is given as a “basic” parameter.,yis shows the normalised frequency (sampling rafio)In
The value off, can be obtained simply by re-calculatifg  rig 2(a), the light gray areas correspond to the osciltatio
with the ratiow. regions of the first mode, and in Fig. 2(b) the dark gray region
N . _ ) correspond to oscillations of the second mode. The blardsare
B. Oscillation and anti-oscillation regimes correspond to the antioscillations for both spatial modes.
As noted in [14], energy can be put into or extracted frong seen from the figure, there will be regions of overlapping,
the resonator. When the velocity of the resonator is p@sitii.e., simultaneous oscillations of the first and second repde
applying a positive impulse leads to an increase in kinetig this case, the output of the PDO can display either the first
energy. On the other hand, when the velocity is negativg; the second mode, depending on additional conditionsy suc

applying a positive impulse will decrease the energy. $usta as initial conditions or the MEMS geometry parameters.
oscillations in the PDO are reached if the feedback siga

selected correctly.
This physical mechanism leads to the presence of tfe
oscillation and antioscillation regimes [18] in the itévat the second mode.
equations (1) for a single spatial mode. We will use one of theWe start with the most standard case when the actuating
following terms:oscillation mode (or regime) opscillations and sensing systems are placed at the end of the beam. The
to refer to large amplitude oscillations when kinetic eergparameters that describes the structure of the MEMS are the
is added to the resonator by the force pulses. We will ugllowing: 8 = p = —1. The dynamics of the system (1)
the termanti-oscillationmode (regime) oanti-oscillationsto  are studied in the plane spanned by the controlling paramete
denote very small amplitude oscillations (with corresgogd (v, f1) — the dissipation parameter and the sampling ratio
limit cycles situated near the origin) when energy is extrdc (normalised sampling frequency).
from the resonator by the force pulses [18]. Let us first estimate the contribution of each spatial mode
For an arbitrary number of the delays+ 1 and the signr  to the overall oscillations. Figure 3 shows the distribntif
of the feedback loop, the regions of antioscillations (gioas the oscillation amplitudes in the plane,(f;). The additional

Distribution of the oscillation amplitude for the first @n
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D. Frequency of the PDO output

Since the PDO is a digital oscillator, the oscillation fre-
qguency can be directly calculated from the output bitstream
[14], [17], [18]. The resulting oscillation frequency j5s. =
fsfp, where fp is the digital frequency extracted from the
bitstream.

It was shown in [14] that using the standard linear analysis
of the oscillator loop and taking into account the sampled

S

o)

I . .

075 impulse response of the MEMS device, one can get a good
. 4 approximation of the digital frequency from the expression

0.5 | —— .
B * _ —1 . .

025 2 fip= 5, €08 (a; cos(2m f;)) € (0, 0.5) , (6)

0 . 0 where «; is the contraction factor and; is the normalised
o sampling ratio introduced by the formulas (2) and the index
0 0001 0002 0003 0004  0.005 pling ratio ni y
Y refers to theith eigenmode.

' S In the previous section we have shown that depending on
Fig. 4. Plane of parameters;(f1) — the dissipation parameter and thethe sampling ratio and the sign of the feedback term the PDO
normalised frequency in which the grey shades show the bditequency. . . . . .

The casefp =~ f ,, is shown by the light grayfp ~ f , by the dark oscﬂlatmqs can be a_lssomated with either the first or tbe_mé

grey, and blank regions show that the output frequefigy corresponds to mode. This conclusion was drawn based on the analysis of the
neither modes frequenciefy’ , ,,. The actuating and sensing structures argygijllation amplitude after iterating the system (1). Iotfahe
placed A, =&a =1, f=p = —1. only output we typically obtain from the PDO is the bitstream
provided by the comparator which is the sign of the sampled
position of the resonator. This allows us to get the inforarat
about the frequency of oscillations, not the amplitude. The

vertical axis shows the normalised frequengy for the important question is: which spatial mode frequency does th

convenience of readers. Plot 3(a) represents this digtribu (iutput frequency correspond t0?
for the amplitude of the first spatial mode, and plot 3(b . o

e : We will use the route suggested in [17] to generate the aux-
the distribution for the second mode. Figures 3(a) and (Hi)ar sequence and obtaingt%e digital 1[‘re]uer?c of oSl
are calculated with respect to some value Af,,. in the Yy Seq 9 q y

following way. At each pair of the paramete(s, f1), the fp. The g, sequence is defined as follows

system (1) is iterated; the obtained amplitudes of osiithast 1 if by £b
are compared t4,,,, and, based on this comparison, we Gn = { R AR (7
estimate the magnitude of oscillations and assign a cotour t 0, if by =bny1.

a point (v, f1). The higher the amplitude of oscillations, the
darker the shade that represents the corresponding pdim in
plane. All planes presented in the paper are calculatedtigth
zero initial conditionsry ; = yo,; = 0.

As seen in Fig. 3, we can divide the plane into parts where _
the first mode is dominating and parts where the first mode is R
suppressed. According to the formulas (5), the regifins '
0.5 and1 < fs; < 1.5 correspond to the oscillations of the first
mode (however, these regions include a lot of subsets wéth th 1.
oscillations of the second mode as well). : 2

500 —

(b)

A considerable rise of the second mode amplitude is ob-
served ab.5 < f; < 1andl.5 < f; < 2, i.e. in the regions of
the anti-oscillations of the first mode. In general, the maxin -
amplitude of the second mode is lower than the maximum . T -
amplitude of the first one. Note that the device is designedto ‘ ‘ ‘ ‘
operate at a high-Q factor, i.e. at small values of the dig&ip 41000 500 0 500 XX
parametery. In the presented planes, bands that represents the

: : Mot : : p Fig. 5. (a) Typical limit cycles. (1) is the limit cycle displed by the
intensity of oscillations (of both modes) still exist at heg dynamical variablegx1,,,v1,») that correspond to the first spatial mode,

values ofy, however, the oscillations decay noticeably as the) is the limit cycle displayed by the second mode. (b) A ¢ppiprofile
dissipation increases. Note that the stripes in Fig. 3(lj} ttef the beam as a function of the longitudinal coordingteThe dashed line

Hlati : ith mark “1” shows the profile that corresponds to the firsitih mode; the
show the second mode oscillations appear SmCtly at Vall’ﬁ%]hed line with mark “2” shows the profile that corresporaishe second

of the sampling frequency that correspond to the osciltati@patial mode. The actual profile of the beam as the supeigosit the two
regime of the second mode. modes is illustrated by the black solid ling.= 0.005 and f1 = 0.19.

-500 —




/1 p), the dark gray areas to the second modlg & f5 p)
and the blank areas indicate that the output is close toereith
of them. As expected, there is broad correspondence between
the planes shown in fig. 3 and fig. 4: at the valuesyaind
f1 when the first spatial mode is excited, the digital frequency
B S S A A of the PDO output is the frequency of the first eigenmode. In
400 —| addition, when the second spatial mode is excited, the outpu
(b) . .

1 frequency is the frequency of the second eigenmode. Note
0 ° that the digital frequency does not correspond to eithehef t

3 eigenmodes if the parameters are taken from the antiaswilla

regions for both modes. This implies that the digital fregue
extracted from the output allows us to “recognise” what type
of oscillations is displayed by the cantilever and asseciat
with a proper spatial mode.

ViV (a)

800 —|

400 —|

-800 —

200 A T T
-1200 -800 -400 0 400 800 Xy Xy

Fig. 6. (a) Typical limit cycles. (1) is the limit cycle disled by the = =Xamples of system dynamics
Eiy)namiﬁal IvariabIeIS(actljl,n,Ivl,ngI tk?at r::orresporéld to dthe(fti)gst S&iﬁal rfnlod& Now let us illustrate the system dynamics in terms of the
2) is the limit cycle displayed by the second mode. A tgpiprofile g ; ; ; P
of the beam as a function of the longitudinal coordingterhe dashed line first and ,Second spatlal mOd,e Figure S(a) ShOWS _typlcat limi
with mark “1” shows the profile that correspond to the firsttipanode; the Cycles displayed by the variables ,,v1, (the limit cycle
dashed line with mark “2” shows the profile that correspondh® second denoted as “1") ands ,,, v, (the limit cycle denoted as “2”)_
spatial mode. The actual profile of the beam as the supeigrogif the two . ’ g ; ; ;
modes is illustrated by the black solid ling.= 0.005 and f, — 0.024 . The profile of the beam is given in Fig. 5(b). The amplitude
of the second mode is smaller than the amplitude of the first
one, however it affects the overall profile of the cantilexad
The digital frequency of oscillations can now be written as CaUSes its distortion. , _
An opposite example that illustrates the dominance of the
g: second mode is shown in Fig. 6. Note that normally the
1 n:1qn 8 amplitude of the suppressed mode is significantly smaller
fp = 29 N (8) than the amplitude of the dominating one, as demonstrated
in Fig. 6(a). The actual profile of the cantilever correspond

NOW’. at each pair of the p_arqmeténs fl). we can calculate to the second mode and the distortion of the profile caused by
the digital frequency of oscillations by using (8) and COMePAL - fict one is nealiaible (see Fig. 6(b))
the result with the theoretical approximation (6). The plan gg g '

of parameters that shows the output frequency is presented i

Fig. (4). The digital frequency of the output is illustrated F Control of two resonant modes

the plane in the following manner: the light gray areas show In the previous sections we have studied the standard case
that the output frequency corresponds to the first mgges£ when both the actuating and sensing structures are placed at
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Fig. 7. Plane of parameters/ ,(f1) — the dissipation parameter and the normalised frequemayhich the shades of the grey colour show the intensity
of oscillations. Plot (a) shows the amplitude of oscillagoof the first spatial mode, while plot (b) shows the ampétad oscillations of the second spatial
mode. The actuating and sensing structures atg at £, ~ 0.88, 8 = u = —0.5.
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Fig. 8. Plane of parameters/,(f1) — the dissipation parameter and the normalised frequemayhich the shades of the grey colour show the intensity
of oscillations. Plot (a) shows the amplitude of oscillagoof the first spatial mode, while plot (b) shows the ampétad oscillations of the second spatial
mode. The actuating and sensing structures atg at 0.3,&, = 1, 8 = 3.85, u = —1.

the end of the cantilever. Next, we consider what rearrangggher modes. For instance, one can put the sensing system
ments in the entire picture of the spatial modes may be caused, = 0.3, where the function),y(¢,) has a large value than
by minor shifting of the sensing and actuating systems. (). Thus, we can expect that oscillations corresponding

The choice of the parameter$ and i considerably in- O the second resonant mode will be significant.
fluences the systems behaviour. The first parameter defineshe example illustrated by Fig. 8 was calculated or=
the proportion of the modes in the sequence of the sampléd and¢, =1 (8 = 3.85 andp = —1). In this case, there are
resonator position. The value ¢f should guarantee that themany regions with oscillations that correspond to the seécon
contribution of both modes to the measured position are &sonant mode (see fig. 8(b)). Moreover, these regions appea
the same order. The second parameteris responsible for at the values of the sampling ratio< f; < 0.5 and1.0 <

the “portion” of the external driving that is received by bac./1 < 1.5, i.e. in the region where we normally observed only
mode. the first mode (compare with Fig. 3).

Figure 7 shows the plane of parameters with the amplitude
distributions of the first and the second spatial modes tcase [1l. CONTROL OF THREE RESONANT MODES

(a) and (b)). The plots are calculatedtat= ¢, ~ 0.88, which  The aim of this section is to extend the theory and results
means that the actuating (and sensing) points are shifiéitéa | presented earlier to the case of three resonances. It isrknow
from the edge of the beam. The coefficients in this case aryt sensors that utilise higher resonant modes can catry ou
p = p=0.5. This change ofs and . does not affect the first more precise measurements, since the higher the resonant

mode, however, by comparing of Fig. 7(b) with Fig. 3(b) ongrequency of the device, the more sensitive it is to a change i
can conclude that the intensity of oscillations that cqroesl

to the second spatial mode reduced.

This can be explained qualitatively as follows: the ampliéu
of oscillations depends on the amplitude of the externairyi
(or on the normalised incremetfit in terms of the map (1)). 7
The increment; is defined in turn by the functio;(z,).
In the region0.8 < ¢ < 1.0, the functiony» (&) varies over a
wide range of values frorh to —2, whereas the function, (£)
changes a little. The closer the actuation pointjox 0.78
(the zero of the function)s), the smaller the value of the oo
incrementY; that is responsible for the second mode and the
smaller the “portion” of the external driving that is reoedv
by the this mode.

Next, it is natural to consider the special case when the ,
sensing and actuating systems are separated and placed .
different points of the microcantilever. By adjustlng tmms Fig. 9. Normalised frequencieg; 2,3 that correspond to the regions of

& (or the parameter?) and ¢, (or the parametey:), one oscillation (in gray) and anti-oscillation (in white) magidor the first (a),
can achieve better control of the excitation or suppressfon second (b) and third (c) spatial modes of the cantilever.
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fl f3 mode and the results of numerical simulations have prowed th

o g‘z‘ the second mode can be observed strictly on the conditidn tha
175 — C 30 the sampling frequency corresponds to the oscillatiomiats.
1 28 Similar to Fig. 2, we present now Fig. 9, that shows regions
159 *ij of oscillations for the first three spatial modes (plots (&),
125 . and (c) respectively) calculated from the expressionsAS).
| =20 in the previous case, there will be regions of overlapping —
1 18 simultaneous oscillations of several spatial modes.
1 Z}Z Note that if one can observe the oscillation regimes for
07 . multiple spatial modes at the same sampling frequency, the
os =10 output of the PDO depends on the initial conditions and the
J Zi geometric parameters of sensing and actuating systems. For
0.25 — Cy the zero initial conditions and typical values 8f 5/, 1 and
1 2 1/ we consider in the paper, it is more likely that the cantiteve
0 L L B 0 will display a mode with a lower frequency. Thus, we expect
0 0.001 0.002 0.003 0.004 0.005

that the third resonance can be observed clearly if the firdt a
Y the second mode are in anti-oscillations.

Fig. 10. Plane of parameters,(f1) in which the shades of the grey colour The .dlstrlbutlon OT the_ oscillation amphtudes for the thlr_

show the amplitude of oscillations of the third spatial mo@ike actuating Mode is presented in Fig. 10 (we do not give the plots with

and sensing structures aregat= 1,6, =1, = —1, B =1 p=-1and distributions of the lower modes since they look similar to

p=t those shown in Fig. 3). There are narrow bands in the figure

where the third mode amplitude is significant, and values of
1 (or f3) correspond precisely to the oscillation regions (see

he external stimulus. It follows th ne w improve th )
the external stimulus. [t follows that one way 1o Improve t ig. 9). Note that these regions are very narrow and decay as

resolution of measurements is to switch to a higher mechhnighe dissipation parameter increases

mode of the same sensor. The example that illustrates the dominance of the third mode

I_n or.der t9 examine three resonances, we |.nclude the thgfjthe parameterg and f3 taken from the gray (or oscillation)
pair of iterative equations from (1) with appropriate paeens region in Fig. 10 is shown in Fig. 11. Figure 11(a) presents

. " o ,
and incorporate the additional coefficient$ and p’ that the limit cycles displayed by the variable , andv,.,. The

describe the relative contribution of the third mode to thgrofile of the beam is shown in Fig. 11(b). The dashed lines

Fs)(a)rsr:tl(l)en dsens_ltr]g anfdtﬁannlever ta ctuatlo_n. The sequentieeof show the corresponded profiles of the three spatial modes and
pied position of the resonator now 1 the solid line shows the actual profile of the beam.
$n = sign{yy (nT) + By (nT) + Bys(nT)} 9) In this part, we have demonstrated that the PDO is capable
of actuating different vibration modes (or resonances)hef t

The parameters of the third system are defined by (2) in the
same manner as in the previous case with two modes.

We may suggest two assumptions concerning the frequency
of the third resonance. The first one is to assume that the
third mode frequencyfos (fos > fo2) follows from the Vv,
1D theory that was presented in our previous work. The ’
coefficients that describe the actuation and sensing sgstem e 3
are ' = 13(Eq) /11(€a) and ' = (&) /11 (€. 0 : S

However we should note that a real MEMS cantilever is a i ;
more complicated structure than a simple 1D beam and it is : 1.2
capable of demonstrating torsional deflections as well.evior ' v
general analysis of the structure shows that there are aeumb ]
of mechanical modes that include 3D motion of the plate with
frequencies that could be less than the frequefigygiven
by the 1D theory. Thus, the other possibility is to introduce
the frequency of the modg); and the coefficients’ and 5’ 0 : : : ‘
based upon results obtained from experiments, 3D modelling -80 40 0 40 X, X
or any additional assumptions. We have chosen here the third

; ; Fig. 11. (a) Typical limit cycles. (1) is the limit cycle disyyed by the
resonance predicted by the 1D theory developed earlier. dynamical variablegx1,,,v1,») that correspond to the first spatial mode,

The results presented earlier have shown that the primagy (3) are the limit cycle displayed by the second and tirel tmodes. (b) A
parameter that is responsible for “switching” from the fand typical profile of the beam as a function of the longitudinabainate¢; The

: ; : hed lines with mark “1”, “2" and “3” show the profiles thatreespond to
mental first mode to the second mode is the sampllng raﬂ?ésfirst, second and third spatial modes; The actual profith@beam as a

(normalised frequency). Figure 2 has shown the regionseof tiperposition of the three modes is shown as the black soid+ = 0.001
oscillations and anti-oscillations for the first and thecsat andfi =0.75.

(2)

40 —




The frequency of the fundamental mechanical mode of
this device, extracted from the process batch, is in theaang
between 3.88 and 5.09 kHz [19]. However, the linear theory of
transversal vibrations for elastic beams can be used tanobta
estimated frequency values for the three first vibration @sod
(see [20] or the cited formula in part | of the work [15]).
Thus, for a cantilever beam with 11%0m long, 1000um, 5
pm thick, and material parameters from [19], such theorktica
values are 4.56 kHz for the first mode, 28.59 kHz for the
second and 80.06 kHz for the third one.

Additionally, in order to obtain some additional infornati
Fig. 12. Microscope photograph of the MEMS resonator. Theesittone 200Ut the mechanical behaviour of the MEMS device, a series
bridge used to sense deflection is located in the central bediite the 0of FEM simulations using the Coventorware environment
resistors that actuate the device are placed in the extbeaahs. have been performed. These simulations are intended only

to approximately obtain the frequency ranges correspandin
] ] ] ] to the vibration modes, thus second order effects conogrnin
mechanical structure. Numerical simulations have showih %eometries or materials, such as uncertainty in the SOlwafe
changing the sampling frequency and the sign of the fee@ickness or non-idealities and tolerances of the manurfax
bac_k loop aIIow_s control of the oscillation and antiostita process have not been considered. As a consequence, both the
regimes for a given resonance, and, as a consequence, allg§metrical structures simulated and the results obtaimed
actuation of higher modes. Our next step is to prove é‘pproximate but sufficient for our purposes.

experimentally with a PDO setup. Moreover, let us remark that the models and the theory
of excitation of different vibration modes developed insthi
IV. EXPERIMENTAL SETUP work apply basically to 2D MEMS devices, but the resonator

used in the experiments is a true 3D device. Then, let us take

A. MEMS resonator into consideration here only those modes obtained from FEM
The MEMS resonator used in our experimental work isimulations that exhibit a strong longitudinal componéuet,

a silicon cantilever manufactured in a bulk micromachiningtrong enough to be captured by the sensing structure placed
process, being originally designed for gas sensing agjgits. in the central beam of the device. According to this, Fig. 13
[19]. It consists of a squared silicon plate, with 10pénh shows the first three vibration modes of this type, located
long, 1000um wide and 5um thick, suspended and anchoredespectively around 4.17, 28.36 and 82.65 kHz.
to a SOI wafer through three rectangular beams of 1500n the other hand, a first set of measurements have been
um long and 200um wide (see Fig. 12). Device actuationperformed in order to exactly locate the first mechanical
is thermoelectrical, performed through two heating ressst vibration modes. To this effect velocity and displacemeit o
placed in the outer beams. These resistors are covereddifferent points in the resonator have been measured with
a layer of silicon oxide, so that the difference in therma scanning Polytec MSV 400 laser-doppler vibrometer. A
expansion coefficients between silicon and silicon oxidesea laser beam was pointed with the aid of a microscope down
the deflection of the beam/bridge structure. Deflectionisgnsto the vibrating surface, and scattered back through the mi-
is done using a piezoresistive Wheatstone bridge locatedcitoscope objective towards the interferometric sensoset.a
the central beam. Thermal and mechanical separation betwB®ppler signal was converted to velocity using a Polytec
sensing and actuation structures is provided by A&0x 150 VD02 decoder. By monitoring several points of the device,
um empty areas. an average measurement of displacement or velocity of the

b/ y Modal Displacement Mag.
X

um 0.0E+00 25€E.01 5.0€-01 15601 10E+00

Fig. 13. First (a), second (b) and third (c) longitudinal reition modes for the MEMS resonator structure of Fig. 12 iakthwith Coventorware mechanical
simulations.



from Terasic Technologies, based on a Cyclone || FPGA from
Altera.
aars i : : ] The digital system programmed in the FPGA, described in
(7 st o i VHDL, implements the PDO digital feedback loop and the
RIS f components necessary to obtain the PDO digital outpute stor
: é it temporarily in an on-board SRAM and send it via USB to
X ierogand W : a computer for further processing. The switches of the board
] are used to easily set the PDO circuit parameters that allow
to separately excite different vibration modes in the reson
i.e. the sampling frequency () and the sign and the number
of delays of the digital feedback loap.
Let us note that one of the most important features of PDO
systems is a direct digital output from their intrinsic buil
in analog to digital conversion. However it is also possible
Frequency [Hz] x10° to obtain data in analog format, but this requires contirsuou
position sensing and some extra measurement equipmemt. Onl
Fig. 14. Three first MEMS resonator vibration modes obtaiméth a for comparison purposes, this analog method has been also
vibrometer after a frequency sweep. used in this work: the output signal from the instrumentatio
amplifier located after the MEMS position sensing structure
has been sent to an oscilloscope, and a universal counter has
Eﬁen used to obtain the oscillation frequencies.

Velocity [m/s]
o

10

whole structure, in its out-of-plane motion, was obtained.
The result of this first set of measurements was the veloc

spectrum of the MEMS resonator after a frequency sweep

in the 0-400 kHz range. As it can be seen in Fig. 14, the V. EXPERIMENTAL RESULTS AND DISCUSSION

resonant frequencies obtained with the vibrometer for tise fi Since the objective of this section is to experimentally

three longitudinal modes (4.473 kHz, 30.55 kHz 88.48 kH%)e

. . ) . rify the theoretical expectations outlined in previoest®ns
fairly agree with the previous approaches based either gn fy P P

. . . . pr the excitation of individual vibration modes with PDO
linear theory and in FEM simulations. Let us remark that a ) . o
structures, the first step was to configure a PDO circuit in

measurements made with the vibrometer equipment have b%en

. o . .- order to excite the first vibration mode detected in Fig. 1at. T
done on air conditions, thus damping losses are not netmglbfhis effect, a configuration was chosen that sets an osaillat

_ regime for frequencies around 4.4 kHz, but it also puts into
B. Experimental setup antioscillation regime the frequency ranges around theroth
One of the main objectives of this work is to demonstratevo longitudinal vibration modes considered (see Fig. @). T
experimentally the feasibility of separately excitingfeient this effect, the sampling frequency wgs = 139 kHz and
vibration modes in a MEMS device by setting a few pathe number of delays in the feedback loop was- 4. The
rameters of a PDO structure. The experimental framewotkrresponding results, measured with a vibrometer, arersho
developed for this purpose, described in Fig. 15, is basgdFig. 16 (a). It is easy to see there that the first vibration
on the single feedback PDO architecture with a variabtaode is reached and that the dominant oscillation frequency
number of delays. It consists of a specific analog board, lwhiis 4.46 kHz, a value very close to that obtained in Fig. 14 and
includes the MEMS actuation and sensing interface circuiis the value obtained with FEM simulations.
plus the sign detector, and a DE2 commercial digital boardThen the PDO circuit was configured to separately excite
the two other vibration modes detected in Fig. 14. For ex-
ample, Fig. 16(b) corresponds to a configuration that sets an
oscillation regime for frequencies around 30.5 kHz and aets
antioscillation regime for the frequency ranges corresjom
. Analog to the other two vibration modes, thus, the sampling frequen
> position to was againf, = 139 kHz andL = 13. The results shown in
osclloseope i 16(b) suggest that the second longitudinal vibratiarden

Analog board

MEMS
CANTILEVER

 Clockinput  was reached and it has an oscillation frequency of 30.6 kHz,

i ' a value again closer to that of Fig. 14 and to the simulations.

GEEE;?EOR [mmm*‘ — In the same way, the third longitudinal vibration mode was
Digtel DIVIDER successfully located at 88.41 kHz fgf, = 139 kHz and

L =16 (see Fig. 16(c)).
Figure 17 shows three oscilloscope screenshots of the
| | MEMS deflection waveforms, extracted from the so-called
Sign sel. Delay sel.  fg sel. PDO ’analog’ output, for the same experimental cases as
in Fig. 16. Digital channel DO (not shown in the figure)
Fig. 15. Experimental setup. corresponds to the sampling clock. All measurements shown i

samples «— UsSB RAM
toPC Digital board
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Fig. 16. Vibrometer results of cantilever deflection andoe#y spectrum when the PDO system is configured to excitergh) the first longitudinal mode
of the resonator, (b) only the second one, and (c) only the thne.

Fig. 17 have been done placing the resonator inside a vaculianizontal axis is the number of samples instead of time)
chamber, so they correspond to low pressure conditionsxdrowf the digital frequencies obtained when changing the PDO
0.1 mPa, with damping losses drastically reduced. Let us nabnfiguration, with a fixedfs = 139 kHz, to successively pass
that good sinusoidal waveforms are obtained. from the first to the second and, after, to the third vibration
On the other hand, Fig. 18 experimentally illustrates th&tode of the resonator. These digital frequencies have been
PDO oscillation frequencies and spectra can be easilyrddai obtained from the bit stream of the PDO after low pass filggrin
from the digital output, using only standard tools for didjit and decimation, and they allow identifying the oscillation
processing. What Fig. 18 shows is a pseudo-transient (fiiequency of each vibration mode. Thus, in the first step
of Fig. 18.b, fp = 0.0328, so the oscillation frequency is
fp - fs = 4.56 kHz, which corresponds to the first vibration
g 2007/ B 500v/ @ - 3380¢ 1000y Sp £ @ 108V mode. In the same way, we hayg = 0.2218 and a frequency
fp - fs = 30.83 kHz for the second step or vibration mode.
The interpretation of the third step of digital frequency
shown in Fig. 18 is not straightforward. Indeed, it is alnead
known that the third vibration mode is located at about 89
kHz and that the sampling frequency is 139 kHz, so we have
| a sample ratiofosc/fs > 0.5 and the PDO is working
in under sampling conditions. Therefore, aliasing occurs a
the multiplication of spectra prevents the identificatidrtte
oscillation frequency agp - fs. However, a previous work from
the authors [21] demonstrates that in PDOs working in under
sampling conditions it is possible to extract the oscitiatire-
quency when the sample ratio segment that inclyidgs/ 1
is already known. To this effect the following expressiomhti
be applied,

Freq(1): 4.57kHz
0 1oov/ @ 500v/ §

| |Freq(D): 140kHz

[T Ampl(1): 5.13V
& 33408 2000%/

[

Stop £ 1.08V

Freq(1): 31.1kHz || Freq(D, ): 139kHz
@ 100v/ @ 500/ @

|| Ampl(1 ): 156V |

] & 334.05 10005/ Stop £ 1.06V

L+ fp)fs, if ris even,
fosc = (3+1 ) it is odd (10)
(T_fD)fsv It rIs odd,
. M being » the integer part of2fosc/fs]. In our caser = 1
and fp = 0.362, so the oscillation frequency is calculated as
J (1 —fp)- fs = 88.65 kHz, close to the value measured for
Fig. 17. Oscilloscope screen captures of the MEMS defleatiameforms the third vibration mode of the MEMS resonator using the
corresponding to the first (up), second (middle) and thimtt@m) vibration SO-called analog method.
modes for the same experimental cases as in Fig. 16. Finally, let us note that a good agreement exists between

Freq(1): 89kHz | Freq(D, ): 141kHz 11 Ampl(1): 1.66V

]
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Fig. 18. Digital frequency values obtained after switchitige PDO (5]

configuration to successively excite the first, second aind thibration modes

of the MEMS resonator. (6]
TABLE |
COMPARISON BETWEEN THE EXPECTED THEORETICALSIMULATIONS [7]

AND MEASURED FREQUENCY VALUES[KHZ] OBTAINED FOR THE FIRST
THREE MODES OF THEMEMS RESONATOR

(8]

Linear FEM Vibrometer PDO
theory | simulations | characterisation| measurementg
First mode 4.56 4.17 4.47 4.46 [9]
Second mode| 28.59 28.36 30.55 30.60
Third mode | 80.06 82.65 88.48 88.41

[20]

the theory, simulation and experimental results obtaiSedh
agreement is shown in table I, where theoretical, simulatio , ,
and experimental results for the three vibration modes are
summarized and compared.
[12]
VI. CONCLUSIONS

In this paper we have shown that spatial modes (or mechgy
ical resonances) of the MEMS structure used in a PDO system
can be controlled by a small number of parameters of sucgl%
system. We have first considered in detail the simplest, bu
common, case when the first two mechanical modes are taken
into consideration and later incorporated the third reroaa 15]
mode into the statement of the problem. We have sho&m
the planes spanned by controlling parameters of the system
with distributions of the oscillation amplitudes and freqaies [16]
and discussed at which values of the sampling frequency thg
excitation of higher spatial modes is possible.

This selective excitation of different vibration modes of @8]
MEMS resonator with configurable PDO systems has alSo
been experimentally demonstrated. Experimental resgtesea
both with previous theory and with mechanical FEM sim-lg]
ulations. PDO circuits with three different feedback loo
configurations have been implemented and tested in order to
obtain the first three longitudinal vibration modes of a MEM&9]
resonator. In this way, it is concluded that PDO capabslitig,y)
for sensing applications based on frequency shift detectie
strongly improved.

11

VIlI. ACKNOWLEDGEMENTS

This work was supported by the Spanish government
through the TEC2007-67951/MIC (FEDER) project and by
Science Foundation Ireland.

REFERENCES

N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined inertizensors,”
Proceedings of the IEEEvol. 86, pp. 1640-1659, 1998.

T. Ono and M. Esashi, “Mass sensing with resonating #hma silicon
beams detected by a double-beam laser Doppler vibroméfegsure-
ment Science and Technologl. 15, pp. 1977-1981, 2004.

S. Dohn, R. Sandberg, W. Svendsen, and A. Boisen, “Ergthrfienc-
tionality of cantilever based mass sensors using higheresyddpplied
Physics Lettersvol. 86, p. 233501, 2005.

M. K. Ghatkesar, V. Barwich, T. Braun, J.-P. Ramseyer, G&rber,
M. Hegner, H. P. Lang, U. Drechsler, and M. Despont, “Highedes
of vibration increase mass sensitivity in hanomechanieattitevers,”
Nanotechnologyvol. 18, p. 445502, 2007.

X. Xia and X. Lin, “Resonance-mode effect on microcaewér mass-
sensing performance in airReview of Scientific Instrumentgol. 79,
p. 074301, 2008.

W. Zhang, R. Baskaran, and K. L. Turner, “Effect of cubiontinearity
on auto-parametrically amplified resonant MEMS mass s€nSensors
and Actuators Avol. 102, pp. 139-150, 2002.

W. Zhang and K. L. Turner, “Noise analysis in parametrgsonance
based mass sensing,” iRroceedongs of 2004 ASME International
Mechanical Engineering Congress and Expositiénaheim, California
USA, 13-20 November 2004.

T. Wu, W. Chang, and J. Hsu, “Effect of tip length and nofraad
lateral contact stifness on the flexural vibration respsms@atomic force
microscope cantileversMicroelectronic Engineeringvol. 71, pp. 15—
20, 2004.

W. Chang, H. Lee, and T. Chen, “Study of the sensitivitytioé first
four flexural modes of an AFM cantilever with a sidewall prgbe
Ultramicroscopy vol. 108, pp. 619-624, 2008.

J. Sanchez-Rojas, J. Hernando, and et al., “Piezoielestodal sen-
sors/actuators based on microplates applying surfacér@decpattern-
ing,” in In proc. of 15th International Conference on Solid-Statas®es,
Actuators and Microsystems (TRANSDUCERS-O0&nver, CO, USA,
June, 21-25 2009.

] C. Acar and A. M. Shkel, “Structural design and experita¢ character-

ization of torsional micromachined gyroscopes with nosereant drive
mode,” Journal of Micromechanics and Microengineerjngpl. 14, pp.
15-25, 2004.

S. Sung, W. Sung, C. Kim, S. Yun, and Y. Lee, “On the modsahed
control of MEMS vibratory gyroscope via phase-domain asialyand
design,” Transactions on Mechatronicsol. 14, pp. 446-455, 2009.
M. Dominguez, J. Pons-Nin, J. Ricart, A. Bermejo, andHigueras
Costa, “A novelX — A pulsed digital oscillator (PDO) for MEMS,”
IEEE Sensors Jvol. 5, pp. 1379-1388, Dec. 2005.

M. Dominguez, J. Pons-Nin, J. Ricart, A. Bermejo, Eguiéras Costa,
and M. Morata, “Analysis of thes — A pulsed digital oscillator for
MEMS,” IEEE Trans. Circuits Syst., Ivol. 52, pp. 2286-2297, Nov.
2005.

E. Blokhina, J. Pons, J. Ricart, O. Feely, and M. Domemgu‘Control
of MEMS vibration modes with Pulsed Digital Oscillators: rP& —
Theory,” IEEE Trans. Circuits Syst, lsubmitted for publication.

A. Teplinsky and O. Feely, “Limit cycles in a MEMS oseitbr,” IEEE
Trans. Circuits Syst. JIvol. 55, pp. 882-886, Sep. 2008.

M. Dominguez, J. Pons-Nin, and J. Ricart, “Generalaiyits of pulsed
digital oscillators,”IEEE Trans. Circuits Syst, vol. 55, pp. 2038-2050,
2008.

M. Dominguez, J. Pons-Nin, and J. Ricart, “Applicatiof pulsed digital
oscillators in 'reverse mode’ to eliminate undesired Miorgs in high-Q
MEMS resonators,” irProc. IEEE International Symposium on Circuits
and Systems 200Rlew Orleans, USA, May 27-30, 2007, pp. 925-928.
M. Morata, “Resonadores micromecanizados para sucagiiin en
la deteccion de gases,” Ph.D. dissertation, UniversitatoAoma de
Barcelona, 2004.

K. Graff, Wave Motion in Elastic Solids New York: Dover Publications
Inc, 1975.

M. Dominguez, J. Pons-Nin, J. Ricart, and E. Figuetafie MEMS
pulsed digital oscillator (PDO) below the Nyquist limitSensors and
Actuators A vol. 136, pp. 690-696, 2007.



