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A Distribution Network Expansion Planning Model considering

Distributed Generation Options and Techo-Economical Issues

Alireza Soroudi∗,a, Mehdi Ehsana

aDepartment of Electrical Engineering, Sharif University of Technology, Tehran, Iran.

Abstract

This paper presents a dynamic multi-objective model for distribution network expansion,

considering the distributed generations as non-wire solutions. The proposed model simul-

taneously optimizes two objectives namely, total costs and technical constraint satisfaction

by finding the optimal schemes of sizing, placement and specially the dynamics (i.e., tim-

ing) of investments on DG units and/or network reinforcements over the planning period.

An efficient heuristic search method is proposed to find non-dominated solutions of the

formulated problem and a fuzzy satisfying method is used to choose the final solution. The

effectiveness of the proposed model and search method are assessed and demonstrated by

various studies on an actual distribution network.

Key words: Distributed generation, Fuzzy satisfying method, Soft constraint handling,

Immune algorithm, Multi-objective optimization.

List of Symbols

P
grid
t,dl Active power purchased from grid in year t and demand level dl

Y t
ij Admittance magnitude between bus i and j, in year t

θt
ij Admittance angle between bus i and j, in year t

S
grid
t,dl Apparent power imported from grid in year t and demand level dl

Iℓ,t,dl Current magnitude of ℓth feeder in year t and demand level dl
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Capℓ Capacity limit of potential feeder ℓ

Captr Capacity limit of potential transformer

I
t

ℓ,s Critical operating limit of feeder ℓ in year t

S
t

tr,c Critical operating limit of existing substation feeding the network, in year t

µfk(Xn) Degree of minimization satisfaction of kth objective function by solution Xn

d Discount rate

τdl Duration of demand level dl

ICdg Investment cost of a DG unit

Cℓ Investment cost of feeder ℓ

Ctr Investment cost of transformer in substation

dℓ Length of feeder ℓ in km

P
dg

lim Maximum operating limit of a DG unit

ςmax Maximum mutation probability

ςm Mutation probability in mth cloning process.

Nb Number of buses in the network

Np Number of population

Nℓ Number of feeders in the network

NO Number of objective functions

Ndl Number of considered demand levels

OCdg Operation cost of a DG unit

T Planning horizon
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1. Introduction

Distributed Generations (DGs) are defined as the small power resources, located

closely to the load points [1]. The role of DG units is increased in the last decade by

providing different benefits like cost reduction, reliability of supply, ancillary services,

emission reduction, postponement of the transmission and distribution expansion for DG-

owner, Distribution Network Operators (DNO) and socio-political acceptance [2, 3]. The

traditional method for improving the technical and economical performance of a distri-

bution network, is investing in network components. In some market models, the DNO is

authorized to install DG units in his territory [4] along with network reinforcement [4, 2].

However, in some power markets, the DNOs are unbundled from DG ownership while it

is done by non-DNO entities [5]. Different models have been proposed in the literature

addressing the integration of DG units in distribution networks which consider different

objectives, including technical (voltage profile[6], voltage stability improvement [7]), eco-

nomical (network investment deferral [8, 9], active loss reduction [10, 11, 12, 13, 14]) and

environmental (emission reduction [15]) issues. One way of treating with multi-objective

problems is converting them into a single objective model [16, 17, 13, 6]. This may deprive

the planner of having a set of solutions to do tradeoff analysis. The Pareto optimality

concept [18] is used in some models [10, 19, 12, 14, 20] to overcome this problem. These

models have some benefits such as: it is not necessary to resolve the problem if the prior-

ities of objectives are changed and they can easily deal with incommensurable objective

functions [18]. However, there are some shortcomings associated to the reported multi-

objective models of DG-owned DNO, such as: first, they are static and all investments

are designed to be done at the beginning of the planning horizon to meet the load at

the end of planning period [12]. Considering the time value of money confirms that this

assumption makes the planning procedure unrealistic because the solution is proposed to

satisfy the load at the end of the planning horizon but implemented at the beginning of

it. The second problem is that they do not simultaneously consider the network and DG

investment and just use one of their planning options namely, DG units [12, 19, 20] or

reinforcement of the distribution network [14].

In this paper, a planning model for distribution system is formulated which is multi-
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objective, dynamic and also considers DG units as a planning option along with network

reinforcement for DNO. A two-stage algorithm is proposed to solve the problem. In the

first stage, the set of Pareto optimal solutions is found using a hybrid multi-objective

Immune Genetic Algorithm (IGA), and in the second stage, the best solution is chosen

using a fuzzy satisfying technique. The proposed model aims to provide a comprehensive

multi-objective model which covers at all three aspects of placement, sizing and timing of

DG and network investments simultaneously. The main contributions of this paper are:

1. A dynamic multi-objective dynamic integrated DG and distribution network plan-

ning model is proposed.

2. An efficient hybrid heuristic search method is proposed for solving the proposed

model

This paper is set out as follows: section 2 presents the problem formulation, section 3

sets out the proposed solution method for solving the problem. The simulation results of

the proposed model and solution method are presented in section 4 and finally, section 5

states the findings of this work.

2. Problem Formulation

The proposed planning model is formulated and presented in this section. The decision

variables are defined as the number of DG units from each specific technology, to be

installed in bus i, in year t, i.e., ξdg
i,t ; reinforcement decision in feeder ℓ, in year t, i.e.

γℓ
t , which can be 0 or 1, and finally the number of new installed transformers in year

t, i.e. ψtr
t . The assumptions used in problem formulation, constraints and the objective

functions are explained next.

2.1. Assumptions

The following assumptions are employed in problem formulation:

• The daily load variation is modeled using a load duration curve which is divided into

Ndl discrete demand levels. Assuming a base load in the beginning of the planning

horizon, i.e. SD
i,base, a Demand Level Factor, i.e. DLFdl, and a demand growth rate,
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i.e. α, the demand in bus i, in year t and in demand level dl is described as:

SD
i,t,dl = SD

i,base ×DLFdl × (1 + α)t (1)

• The DNO purchases the energy from the main grid or/and produce it using DG

units to supply the customers. In this paper, the variation of electricity price in

each demand level is modeled by multiplication of two factors namely, base price,

i.e. ρ, and a Price level Factor in demand level dl, i.e. PLFdl [17].

• The DNO is authorized to invest in DG units and/or network components in an

integrated framework.

2.2. Constraints

There are two types of constraints which should be satisfied in power system planning

problems: soft and hard constraints [21]. The hard constraints should be fully satisfied

and no violation of them is accepted. However, there are some constraints called the soft

constraints which their violation can be tolerated to some degree, in hope of achieving

a better solution if other criteria are considered [21]. It is possible to deal with soft

constraints the same as the hard constraints but this may cause narrowing the feasible

solution space. For this reason, the constraints considered here are grouped into two

separate categories: the hard and soft constraints. Each category is explained as follows:

2.2.1. Hard Constraints

The hard constraints considered here are explained next:

Power Flow Constraints. The power flow equations that should be satisfied in year t and

demand level dl are:

−PD
i,t,dl +

∑

dg

P
dg
i,t,dl = Vi,t,dl

Nb
∑

j=1

Y t
ijVj,t,dlcos(δi,t,dl − δj,t,dl − θt

ij) (2)

−QD
i,t,dl +

∑

dg

Q
dg
i,t,dl = Vi,t,dl

Nb
∑

j=1

Y t
ijVj,t,dlsin(δi,t,dl − δj,t,dl − θt

ij)

Where, P dg
i,t,dl and Qdg

i,t,dl are the active and reactive power produced by DG unit in year t

and demand level dl, respectively.
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Operating limits of DG units . The DG units should be operated considering the limits

of their primary resources, i.e.:

P
dg
i,t,dl ≤

t
∑

t́=0

ξ
dg

i,t́
× P

dg

lim (3)

Where,
∑t

t́=0 ξ
dg

i,t́
denotes the investments done until year t.

The power factor of DG unit is kept constant [22, 23], as follows:

cosϕdg =
P

dg
i,t,dl

√

(P dg
i,t,dl)

2 + (Qdg
i,t,dl)

2

= const. (4)

2.2.2. Soft Constraints

The satisfaction of a soft constraint, in contrary to the hard constraints, is not de-

scribed by a binary value (one or zero). Because the hard constraints are either fully

satisfied or not, but in soft constraints, the satisfaction is defined as a number varying

between zero and one. In [24] and [21], a fuzzy model is proposed to model the satisfac-

tion of soft constraints. Fuzzy modeling is used to quantify the satisfaction of technical

constraints of voltages and thermal limits of feeders and substation. This paper extends

this concept to be used in the dynamic multi-year distribution network expansion problem

with different demand levels as follows:

Voltage profile. The voltage magnitude of each bus should be kept between the safe op-

erating limits. These limits are dependent on operating condition of the system under

study. There are two ways to handle this constraint namely, considering it as a hard con-

straint [17, 19, 20] or considering it as a soft constraint [24, 21]. If the planner considers

the voltage profile as a hard constraint, the violation of this constraint is not tolerated

regardless of its severity and duration. But modeling it as a soft constraint helps him

to tradeoff between the violation of them (degrading the system performance) and the

associated cost saving.

The membership function of the voltage constraint satisfaction is represented by a

trapezoidal fuzzy number [12] as depicted in Fig.1. Observe that a voltage magnitude

between the upper and lower safe operating limits of bus i, i.e. V i,s, V i,s, has a satisfactory

value of 1. As the voltage exceeds these limits, the value of satisfaction decreases until it
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becomes zero after the critical voltage values of bus i, i.e., V i,c, V i,c. The upper and lower

critical values of voltage in bus i, are defined as follows:

V i,c = (1 + ǫVi ) × V i,s (5)

V i,c = (1 − ǫVi ) × V i,s

Where, ǫVi and ǫVi are the upper and lower limits of permissible voltage constraint dissat-

isfaction in bus i, respectively.

The membership function of the voltage constraint satisfaction can be mathematically

represented as:

µV
i,t,dl =



























Vi,t,dl−V i,c

V i,s−V i,c
V i,c ≤ Vi,t,dl ≤ V i,s

1 V i,s ≤ Vi,t,dl ≤ V i,s

Vi,t,dl−V c

V i,s−V i,c
V i,s ≤ Vi,t,dl ≤ V i,c

0 else

(6)

The minimum value of voltage constraint satisfaction, i.e. µV
i,t,dl, over all buses of

the network, can provide information about the overall voltage condition in year t and

demand level dl, as follows:

µV
t,dl = min

i=1:Nb

(µV
i,t,dl) (7)

The values obtained from (7) show the condition of voltage constraint satisfaction for

overall network, in demand level dl and year t. Since there is more than one demand level

in a real system, the planner will have different satisfaction levels of voltage constraint

for a given network. To obtain an index which shows the condition of the network in year

t, it is proposed in this work to calculate the weighted average of satisfaction of voltage

over the demand levels, as follows:

µV
t =

∑Ndl

dl=1 τdl × µV
t,dl

∑Ndl

dl=1 τdl

(8)

In (8), if the network does not fully satisfy the voltage constraints in demand level dl but

the duration of this dissatisfaction is short, the voltage constraint satisfaction is not very

degraded in the whole year t.

Thermal limit of feeders and Substation. To maintain the security of the feeders and

the substation, the flow of current/energy passing throw them should be kept below the
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feeders/substation capacity limit. The safe operating limit of feeder ℓ until year t, i.e I
t

ℓ,s,

is calculated as follows:

I
t

ℓ,s = I
t=0

ℓ + Capℓ ×
t

∑

t́=1

γℓ
t́

(9)

Where, Capℓ ×
∑t

t́=1 γ
ℓ
t́

represents the added capacity of feeder ℓ due to the investments

made until year t.

The critical operating limit of feeder ℓ until year t, i.e I
t

ℓ,c, is calculated as follows:

I
t

ℓ,c = (1 + ǫIℓ) × I
t

ℓ,s (10)

Where, ǫIℓ is the maximum accepted toleration for dissatisfaction of thermal limit con-

straint of feeder ℓ.

A strictly monotonically decreasing and continuous function is considered for modeling

the satisfaction of this limit of feeder ℓ, as depicted in Fig.2 and formulated as follows:

µI
ℓ,t,dl =















1 Iℓ,t,dl ≤ I
t

ℓ,s

Iℓ,t,dl−I
t
ℓ,c

I
t
ℓ,s−I

t
ℓ,c

I
t

ℓ ≤ Iℓ,t,dl ≤ I
t

ℓ,c

0 Iℓ,t,dl ≥ I
t

ℓ,c

(11)

The minimum value of thermal capacity constraint satisfaction, i.e. µI
ℓ,t,dl, over all feeders

of the network, can provide information about the overall feeder condition in year t and

demand level dl, as follows:

µI
t,dl = min

ℓ=1:Nℓ

(µI
ℓ,t,dl) (12)

An index is needed to reflect the overall performance of the system regarding the thermal

limits of feeders, in year t. The average weighted value of µI
t,dl over all demand levels can

provide such information as follows:

µI
t =

∑Ndl

dl=1 µ
I
t,dl × τdl

∑Ndl

dl=1 τdl

(13)

The capacity of substation until year t, i.e. S
t

tr, is equal to the initial capacity plus

the added capacity until year t, as follows:

S
t

tr,s = S
t=0

tr,s + Captr ×
t

∑

t́=1

ψtr
t́

(14)
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Where, Captr×
∑t

t́=1 ψ
tr
t́

represents the added capacity of substation resulting from adding

new transformers until year t. The upper critical operating limit of substation, i.e. Str,c,

is calculated as follows:

S
t

tr,c = (1 + ǫtr) × S
t

tr,s (15)

Where, ǫtr is the maximum permissible dissatisfaction of thermal limit constraint of sub-

station.

The satisfaction of this constraint is calculated as follows:

µSgrid

t,dl =















1 S
grid
t,dl ≤ Str,s

S
grid
t,dl

−Str,c

S
t
tr,s−S

t
tr,c

Str,s ≤ S
grid
t,dl ≤ Str,c

0 S
grid
t,dl ≥ S

t

tr,c

(16)

µSgrid

t =

∑Ndl

dl=1 τdl × µSgrid

t,dl
∑Ndl

dl=1 τdl

The maximum permissible dissatisfaction of each soft constraint is determined by planner,

based on his experience and operating condition of the system under study.

2.3. Objective Functions

The proposed model minimizes two objective functions, namely, total costs and tech-

nical dissatisfaction, as follows:

min {OF1, OF2}

subject to:(1) → (16)

The objective functions are formulated next.

2.3.1. Total Costs

The first objective function, i.e., OF1, to be minimized is the total costs which includes

the cost of electricity purchased from the grid, the installation and the operating costs of

the DG units and finally the reinforcement costs of the distribution network. The cost of

purchasing electricity from the grid, i.e. GC, can be determined as:

GC =
T

∑

t=1

Ndl
∑

dl=1

PLFdl × ρ× P
grid
t,dl × τdl ×

1

(1 + d)t
(17)
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Installation costs of the DG units, i.e. DGIC, can be calculated as:

DGIC =
T

∑

t=1

Nb
∑

i=1

∑

dg

ξ
dg
i,t × ICdg ×

1

(1 + d)t
(18)

The operating costs of the DG units, i.e. DGOC, can be calculated as:

DGOC =
T

∑

t=1

Nb
∑

i=1

∑

dg

Ndl
∑

dl=1

τdl ×OCdg × P
dg
i,t,dl ×

1

(1 + d)t
(19)

The reinforcement cost of the distribution network is the sum of all costs paid for installa-

tion and operation of new feeders and transformers. The total feeder reinforcement cost,

i.e. LC, and substation reinforcement cost, i.e. SC, are calculated as follows:

LC =
T

∑

t́=1

Nℓ
∑

ℓ=1

Cℓ × dℓ × γℓ
t́
×

1

(1 + d)t
(20)

SC =
T

∑

t́=1

Ctr × ψtr
t́
×

1

(1 + d)t

Thus, OF1 is defined as:

OF1 = GC +DGIC +DGOC + LC + SC (21)

2.3.2. Technical constraints satisfaction

The second objective function to be minimized is the dissatisfaction of technical con-

straints. The average technical dissatisfaction, denoted by ATDt, is defined as the maxi-

mum average dissatisfaction of all technical constraints as follows:

ATDt = 1 −min
{

µV
t , µ

I
t , µ

Sgrid

t

}

(22)

To demonstrate the severity of technical constraint violation, another index is proposed

here called Maximum Technical Dissatisfaction in year t, i.e. MTDt, as follows:

MTDt = 1 −min
{

µV
t,dl, µ

I
t,dl, µ

Sgrid

t,dl

}

(23)

The weighted average of severity and average technical dissatisfaction in year t is calcu-

lated and the objective function to be minimized is proposed here as the maximum value

of this quantity over the planning horizon as:

OF2 = max
t

(w1 × ATDt + w2 ×MTDt) (24)
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Where, w1 and w2 are the weight factors reflecting the importance of the average technical

dissatisfaction, i.e. ATDt, and the severity of technical dissatisfaction over the planning

horizon, i.e. MTDt, respectively. These factors are specified by the planner.

3. The proposed solution Method

The problem formulated in Section 2, is a mixed integer non-linear multi-objective

problem. These kinds of problems can be solved by defining a set of weights representing

the priorities of objectives and transforming it into a single-objective problem. The short-

comings of this method [18] has been the motivation for using Pareto optimality concept.

The heuristic search methods are able to easily deal with more than one objective function

in a single run by finding a set of non-dominated solutions instead of a single solution.

The principles of multi-objective optimization are as follows: Suppose F (X) is the vector

of objective functions, and H(X) and G(X) represent equality and inequality constraints,

respectively. A multi-objective optimization problem is formulated as follows:

min F (X) = [f1 (X) , ..., fNO
(X)] (25)

Subject to:

{G (X) = 0̄, H (X) ≤ 0̄}

X = [x1, · · · , xm]

Suppose X1 and X2 belong to the solution space. X1 dominates X2 if:

∀k ∈ {1...NO} fk (X1) ≤ fk (X2) (26)

∃k′ ∈ {1...NO} fk′ (X1) < fk′ (X2)

Each solution is checked to find if it is dominated by any other solution or not. If a solution

is found which is not dominated by any other solution, it belongs to the first Pareto front,

i.e. FN=1. The solutions of the first Pareto front are removed and remaining solutions are

checked for the conditions of (26) to find the solutions of second Pareto front, i.e. FN=2.

The process is repeated for the remaining fronts. In this context, the Non-dominated

Sorting Genetic Algorithm (NSGA-II) [12] and Immune Algorithm [25] have been applied

to multi-objective optimization in power systems planning applications. In the present
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work, a hybrid Immune-Genetic Algorithm (IGA) is proposed to find the Pareto optimal

front of the solution space. The proposed algorithm strengthens the Immune algorithm by

incorporating the crossover operator of Genetic Algorithm (GA), for better exploration of

solution space. The solution algorithm proposed here consists of two stages. In the first

stage, a hybrid Immune-GA method is proposed and the solutions which form the Pareto

optimal front are found and in the second stage, the best solution is selected considering

the planner’s preferences. Both stages are described as follows:

3.1. Stage I: Finding the Pareto optimal front using hybrid Immune-GA method

The Immune Algorithm (IA), first introduced in [26], is inspired by the immune system

of human body. When external particles (antigens) enter into the human body, the

immune cells (antibodies) have to detect and remove them. The antibodies are randomly

generated by immune system and the ones with better match to the antigens are selected

and reproduced (colonized) [27]. This idea is used to deal with optimization problems

by considering the objective functions and the constraints as antigens while the solutions

construct the antibodies [28]. The Immune Algorithm is an iterative process which creates

an initial solution and tries to improve its performance through three operators namely,

affinity factor, hyper mutation and clonal selection [29]. The affinity factor is a measure of

fitness for each solution which shows how antibodies (solutions) have detected (optimized)

the antibodies (objective functions and constraints). The hyper mutation operator is the

same as mutation operator in Genetic Algorithm (GA) [27], but in IA, the probability

of mutation is proportional to the inverse value of affinity factor of the solution. This

means that if the affinity factor of a solution is low, it will be more mutated to explore

the solution space and vice versa. The clonal selection is an operator to give a chance of

reproduction to each solution. This chance is proportional to the affinity factor of each

solution. The concept of fitness in multi-objective optimization is different with single

objective optimization because more than one objective should be optimized. The Pareto

optimality [18], is used to provide a pseudo fitness value for solution n, i.e. Xn, to be

used as its affinity factor, i.e. AFn. The AFn should be defined in a way that effectively

reflect two important aspects of multi-objective optimization namely, the ability of Xn in

minimizing the objective functions and also maintaining the diversity among the solutions
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and the ability of solution in minimizing the objective functions. This is done by sorting

the solutions into different Pareto optimal fronts [18]. The process of fitness assignment

is as follows: all of the solutions are sorted to find out the Pareto front they belong. This

will determine the front number of each solution, i.e. FN. To evaluate the diversity of the

solutions found in each Pareto front, global diversity factor, i.e. GD, is introduced and

calculated. This factor shows the average distance of solutions in a given Pareto front.

Since there are more than one objective function, a local diversity factor for solution n

regarding objective function k, i.e. LDk
n, is defined here as :

LDk
n =

∑

Xm∈FNn

|fk (Xn) − fk (Xm)|

MDk

(27)

Where, in (27), the summation is done over all solution existing in the same Pareto front

as Xn. The MDk is the maximum distance between the solutions of the mentioned Pareto

front, regarding just the kth objective function. Then LDk
n, is normalized by dividing it

by the maximum value of LDk
n over all solutions in the mentioned Pareto front as :

LDk
n =

LDk
n

max(LDk
n)

(28)

The global diversity factor for each solution is then calculated as the average of its

local diversities as follows:

GDn =

NO
∑

k=1

LDk
n

NO

(29)

Having FNn and GDn in hand, the affinity factor of solution n, is defined as follows:

AFn = w3 × (FNn)−1 + w4 ×GDn (30)

The first term in (30) guides the population toward the lower Pareto optimal fronts and

the second term insures the diversity among the solutions. In order to calculate the global

diversity of the nth solution, i.e. GDn, a local diversity factor, i.e. LDk
n, is defined for

each objective function [18]. In initial iterations, a small number of solutions belong

to the first Pareto front, so getting closer to Pareto optimal front is more important

than maintaining the diversity among them. It is necessary to enable the algorithm in

distinguishing between the solutions in different Pareto fronts, w3 and w4 in (30) are

adaptively selected which guarantees that the solution belonging to a lower Pareto front
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has a bigger affinity factor than a solution belonging to an upper front level (w3 is bigger

than w4 in the initial iterations) and when most of the solutions are in the Pareto optimal

front, w4 is chosen bigger than w3 to maintain the diversity among the solutions. To do so,

each antibody, is a vector containing the investment decision for DG units and network.

the steps of the first stage of the solution algorithm are as follows:

Step 1. Generate N initial random solutions.

Step 2. Set iteration=1.

Step 3. Calculate OF1, OF2 for each solution.

Step 4. Sort the solutions based on the Pareto front they belong to and the global diversity

of each solution using (29).

Step 5. Calculate the affinity factor using (30) for each antibody.

Step 6. Save the best N antibodies in the memory.

Step 7. If the stopping criterion is met, go to step (13), else, continue.

Step 8. Set the cloning counter, i.e. m=1.

Step 9. Select two antibodies of memory, i.e. Xp, Xq based on their affinity factors, using

roulette wheel method.

Step 10. Determine the cloning number, i.e. Km, and the mutation probability, i.e. ςm, as

follows:

Km = round(β ×N ×
AFp + AFq

2max(AFn)
) (31)

ςm = ςmax ×
AFp + AFq

2max(AFn)

Where, round is a function which returns the nearest integer value, β is a control

parameter for regulating the number of reproduction in cloning process, ςmax is

the maximum mutation probability.

Step 11. Clone the selected two antibodies Km times and generate 2Km new antibodies

and save them.

Step 12. Check if m < N , then increase cloning counter by one and go to step 9, else con-

struct the new population of antibodies using the union of old and new antibodies,

increase iteration by one and go to step 3.
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Step 13. End.

The flowchart of the two stages of the proposed method is depicted in Fig.3.

3.2. Stage II (Selecting ‘the best’ solution)

The ultimate goal of the planner is to choose the “most preferred” solution among

the Pareto optimal front. A fuzzy satisfying method [30] is used in this paper to find the

‘the best’ solution. The principles of this method are as follows: for each solution in the

Pareto optimal front, Xn, a membership function is defined as µfk(Xn). This value, which

varies between 0 to 1, shows the level of which Xn belongs to the set that minimizes the

objective function fk. A linear membership function [31] is used in the present work for

all objective functions, as follows:

µfk(Xn) =















0 fk (Xn) > fmax
k

fmax
k

−fk(Xn)

fmax
k

−fmin
k

fmin
k ≤ fk(Xn) ≤ fmax

k

1 fk (Xn) < fmin
k

(32)

A conservative decision maker tries to maximize minimum satisfaction among all objec-

tives or minimize the maximum dissatisfaction [30]. The final solution can then be found

as:

max
n=1:Np

( min
k=1:NO

µfk(Xn)) (33)

4. Simulation Results

The proposed methodology is applied to an actual distribution network which is shown

in Fig.4. This system has 573 sections and 180 load points. The average load and power

factor at each load point are 55.5 kW and 0.9285, respectively. This network is fed

through a 20kV substation with, S̄t=0
tr,s = 20 MVA. The options for reinforcing the network

are as follows: transformers with a capacity of Captr=10 MVA and a cost of Ctr=0.2

Million $ for each; replacing the feeders at a cost of Cℓ=0.15 Million $/km [32]. In this

paper, the DG technology is assumed to be Gas turbine [17] but this is not limiting the

ability of the model for considering other DG technologies. Four demand levels, i.e.,

minimum, medium, base and high are considered here with DLFdl are 0.75, 0.87, 1 and

1.25 respectively; the PLFdl values associated to these demand levels are 0.65, 0.82, 1
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and 1.65, respectively; The duration of each demand level, i.e. τdl, is 2920, 2920, 2847

and 73 hours, respectively; the stopping criterion is reaching to a maximum number of

iterations. Other simulation assumptions and characteristics of the DG units [33, 34] are

presented in Table. 1. The formulated problem was implemented in MATLAB [35] and

solved using the proposed two-stage algorithm and 40 non-inferior solutions are found.

The maximum and minimum values of all objectives (of proposed dynamic model) are

shown in Table 2. The variation of individual cost terms of (21) are shown in Fig. 5.

The grid cost, i.e. GC, increases with the decrease of DG investment. This means that if

DNO invests in DG units he can expect reduction of costs he should pay to main grid for

purchasing energy. In this section, the effect of soft constraint handling of the problem

is investigated and then the following comparisons are made: first, the obtained results

of the proposed model and those obtained from other planning models are compared.

Secondly, the proposed solution algorithm is compared with other heuristic techniques,

as follows:

4.1. Effect of soft constraint handling of the problem

The purpose of this section is to investigate the effect of considering the voltage limit

and feeder/substation constraint as soft constraints instead of hard constraints. This

analysis will help the planner to understand how much money should be spent to improve

the technical condition of the network. The proposed model enables the planner to handle

the degree of softness of the constraints. If the mentioned constraints should be fully sat-

isfied (ǫVi , ǫ
V
i , ǫ

I
ℓ , ǫ

I
ℓ , ǫtr = 0), then OF2 will be equal to zero (no technical dissatisfaction).

On the other hand, the planner may be interested to know the effect of relaxation of these

constraints (to some degree) on the other objective function, i.e. OF1. To compare both

cases, the planner can search the Pareto optimal front for the solution with maximum and

minimum relaxation of the soft constraints. The solution which has OF2 = 0, represents

the hard constraint modeling and has OF1 = 4.0474× 107$. The maximum value of OF2

is 0.9757 which means the maximum relaxation of the soft constraints. The total cost

associated to this solution is OF1 = 3.5323× 107$. This means, the maximum relaxation

of soft constraints allows the planner reduce the total costs up to 5.1506 × 106$. This

is the maximum economic benefit the DNO can get by soft handling voltage and feeder
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limit constraints. However, the DNO is allowed to decide about the degree of relaxation

of these constraints.

4.2. Comparing the proposed dynamic model with other planning models

The purpose of this section is comparing the ability of proposed dynamic model and

other planning models of the literature. The proposed model is compared with five other

planning models which are listed in Table. 6. The models named A, B and C are static

because they do not consider the timing of investment and assume that all investment

decisions are done at the beginning of the planning horizon. The pareto optimal front

found by these models and the non-inferior solutions of the proposed model are depicted

in Fig.6. As it is obvious in Fig.6, model B and C can not reach to OF2 lower than 0.5

in the given iterations. Since models B and C use just one of the planning options, so it

was predictable that the can not compete with model A which use both DG units and

network reinforcement simultaniously. As can be seen in Fig.6, for every solution proposed

in Pareto front of A, B and C models, the planner can find a solution in the Pareto optimal

front of the proposed model with lower objective functions. This means that the solutions

found by static models are dominated (see 26) by at least one solution of proposed model.

The same comparison can be done between the proposed model and the model D and

E which consider timing of investment and are dynamic ones. The model D just uses

network reinforcement and model E considers just DG units. As it can be concluded

from Fig.7, all solutions provided by model D and E are dominated by the solutions of

proposed model. In order to make the analysis more sensible, the results obtained by the

model C and the proposed model are quantitatively compared as follows: suppose that

the planner is looking for a solution which has a technical dissatisfaction satisfaction less

that a certain level. Let’s assume that this limit is 0.25, determined by the planner based

on the requirements of the system under study. In Fig.7, all of the solutions located to

the left of OF2 = 0.25, are accepted for the planner. Both of the models can provide such

a solution, but the question is “which one should be chosen?”. The most logical answer to

this question is that if the only important criteria is satisfying the condition OF2 < 0.25,

selecting the minimum cost among the qualified solutions would be the best choice. The

values of objective functions associated to solutions found by each model (proposed model
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and static model C) are as shown in Table 3. The technical satisfaction in the solution

proposed by static model is better than the dynamic model. The technical dissatisfaction,

it is reduced by 0.2416− 0.2235 = 0.0181 and the total cost is increased by 3.799× 106$.

This means if the only criterion is OF2 < 0.25, the solution obtained by proposed model is

cheaper than the solution of static model and using the proposed model reduces the cost

up to 3.799 × 106$. In the last case, the selection of the best solution was biased toward

just one of the objective functions, i.e. OF2, but in some cases, it is needed to consider

both objectives. If the planner is going to make a tradeoff between the satisfaction of

both objectives, the method introduced in section 3.2 should be used. The (33) is applied

on the solutions found by both models and the best solutions and the satisfaction degrees

of each objective function are given for each model, in Table 4. The proposed planning

schemes of both models are given in Table 5. The best solution of model C, proposes to

invest in DG units and also in network reinforcement. In this solution, 8 DG units will be

in stalled in the network. All of the investments are taken place in first year as specified

in Table 5. On the other hand, the best solution of the proposed model, uses both of

planning options, DG and network. It proposes to install 7 DGs in the system but the

investment is done during the planning horizon. Analyzing the satisfaction levels of both

objectives given in Table 4, shows that the solution obtained by dynamic model, has a

better performance in minimizing both objectives.

4.3. Comparing the IGA with IA and GA methods

The Pareto optimal front of the solutions is found using IGA method. To investigate

the value of this algorithm, it is needed to be compared to other heuristic methods. Since

the IGA is a hybrid of immune algorithm and GA, the comparison is done between IGA,

GA and IA. To compare the performance of any two search methods, it is needed to

compare their performance in finding the best solutions. In single objective problems,

it is done by comparing the best solution found by each algorithm. In multi-objective

problems, the comparison should be made between the Pareto optimal fronts found by

each algorithm. The ability of solutions in dominating (see (26)) the others, is a measure

of their performance. The formulated problem is solved using both GA and Immune algo-

rithm. The number of population and maximum iteration for all of the three algorithms
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are considered the same as each other and the Pareto optimal front of all of them are

depicted in Fig.8. The number of non-inferior solutions found by GA, is 37 and for IA

is 35. The variation range of objective functions, in both GA and IA are is the same as

IGA, but as it is clear in Fig.8 the solutions found by IGA dominate the solutions of GA

and IA.

5. Conclusions

This paper presents a dynamic multi-objective formulation of Distribution network ex-

pansion planning problem integrated with DG options and an Immune-GA based method

to solve the formulated problem. The proposed two-stage algorithm finds the non-

dominated solutions by simultaneous minimization of total costs and technical dissat-

isfaction in the first stage and uses a fuzzy satisfying method to select the best solution

from the candidate set in the second stage. The novel planning model is applied to an

actual distribution network and its flexibility and effectiveness is demonstrated through

different studies and comparative analyses. The results show the Pareto optimal front

found by formulated model and solved by IGA, is more efficient than other studied alter-

native models and solution methods. It should be noted that the proposed model can be

directly used in power market model in which the DNO is authorized for DG integration

in addition to the network reinforcement. However, in power market models where the

DG investment is done by independent investors instead of DNO, the provided informa-

tion would also be useful as an economical and technical signal for regulators. It can be

used for regulating the incentives to encourage the private section to invest in what DG

technology and where, to be more beneficial. The research is in under way to consider

the uncertainties associated to DG units and electricity price in the future work.
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• Figure 1: Membership function of technical satisfaction of voltage constraints

• Figure 2: Membership function of thermal capacity for feeders and substation

• Figure 3: The flowchart of the two stages of the proposed model

• Figure 4: Single-line diagram of an actual 574-node distribution network

• Figure 5: Variations of different cost terms in pareto optimal front

• Figure 6: Comparison of Pareto optimal front found by proposed model to other

static models

• Figure 7: Comparison of Pareto optimal front found by proposed model to other

dynamic models

• Figure 8: Comparison of Pareto optimal front found by IGA, GA and IA
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Table 1: Data used in the study

Parameter Unit Value

T year 10

Np 100

w1 = w2 0.5

S
t=0

tr MVA 40

ρ $/MWh. 70

OCdg $/MWh 50

ICdg $/MVA 500000

α % 3.5

β % 10

d % 12

V i,s Pu 1.05

V i,s Pu 0.95

ǫVi = ǫVi % 2

ǫIℓ = ǫIℓ % 3

ǫtr % 5

ςmax % 5

Maximum iteration 1000

Table 2: Variation ranges of objective functions in Pareto optimal front

OF1(107$) OF2

fmin
k 3.5323 0

fmax
k 4.0474 0.9757

Table 3: Comparison between the solutions with OF2 < 0.25 in model C and proposed dynamic model

Model OF1(107$) OF2

Proposed model 3.8933 0.2139

Model C 4.2732 0.2098
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Table 4: Comparison between the best solutions in other models and proposed model

Model OF1(107$) OF2 µf2 µf1

Proposed model 3.7806 0.50417 0.4833 0.5180

Model C 4.1086 0.50417 0.4833 0

Table 5: Investment plans in different cases

Planning DG Network Reinforcement

models ξ
dg
t,i i t SC(×106$) LC(×106$) t

Proposed model

1 37 1 0 0.0944 1

1 50 1 0 0.3812 2

1 180 1 0 0.7364 3

1 288 1 0 1.1471 4

1 324 1 0 0.2387 5

1 37 3 0.2 1.2994 6

1 73 5 0 0.2422 7

1 467 7 0 0.8504 8

0 0.2326 9

0 1.3917 10

Model C

1 324 1 0.2 6.8102 1

1 180 1

1 324 1

1 252 1

1 360 1

1 467 1

1 288 1

1 50 1
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Table 6: Different models of DG and distribution planning

Planning options

Model Timing DG Network reinforcement

A N N Y

B N Y N

C N Y Y

D Y N Y

E Y Y N

Proposed model Y Y Y
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Figure 1: Membership function of technical satisfaction of voltage constraints

Figure 2: Membership function of thermal capacity for feeders and substation
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Figure 3: The flowchart of the two stages of the proposed model
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