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Abstract— The purpose of this study is to investigate how data 

from a foot mounted accelerometer can be used to detect motor 

pattern healthy subjects performed walking trails under two 

different conditions; normal and stiff ankle walking. Lower 

body kinematic data were collected as well as accelerometer 

data from both feet. An algorithm is presented which quantifies 

relevant swing phase characteristics from the foot 

accelerometer. Peak total acceleration during initial swing was 

significantly higher in the stiff ankle condition (M = 33.10, SD = 

5.12) than in the normal walking condition (M = 29.47, SD = 

5.75; t(7) = 4.32, p = .003, two-tailed). There was a large effect 

size (eta squared = 0.853). Time between peak acceleration 

during initial swing to foot strike was significantly shorter in 

the stiff ankle condition (M = 0.42, SD = 0.02) than in the 

normal condition (M = 0.44, SD = 0.03; t(7) = -2.54, p = .039, 

two- tailed). There was a large effect size (eta squared = 0.693). 

Simple to process metrics from tri-axial accelerometer data on 

the foot show potential to detect changes in ankle kinematic 

patterns. 

 

I. INTRODUCTION 

raditional gait analysis tools are expensive and take a 

significant amount of time to obtain data from [10]. 

These factors severely limit how often gait analyses can 

be performed on a patient and also limit the number of 

patients gait analysis can be performed on. The complexity 

and cost associated with traditional gait analysis techniques 

it is important for research to address issues concerning the 

use of wearable sensor technology which may allow gait 

analysis to be accessible to more patients in easier to use and 

deployable applications outside the laboratory [7]. 

A significant body of work in the ambulatory monitoring 

field has gone into using inertial measurement units to 

determine kinematic data during various movements [11, 

12]. This approach provides useful data in an easier to use 

set-up than traditional measurement techniques. However, 

the fact that sensors are required on each body segment 

limits such an approach from being applied to deployable, 

every-day monitoring applications. Long-term patient 

monitoring has traditionally obtained metrics such as activity 

recognition, calorie counting or step-counting. While these 

metrics are very useful for many clinicians, there is an 
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opportunity to obtain more detailed quality of movement 

data from the sensors that are used to obtain these gross 

metrics. 

Using shoe embedded sensors is a promising opportunity 

for ambulatory gait monitoring, since it does not require a 

user to apply any extra sensors. Foot mounted sensors have 

been used most commonly to assess spatio-temporal 

parameters of gait [18]. Accelerometers at the foot have 

been used to detect foot strike (FS) [6]. The addition of a 

gyroscope allows for toe-off (TO) identification as well as 

measurement of step length [5, 8, 9]. Spatio-temporal 

parameters are useful for identifying important phases of the 

gait cycle, for calorie estimation and for identifying large 

changes in movement patterns. However, kinematic changes 

in gait are not always associated with changes in step time 

and step length. Early disease or injury development could 

potentially be detected by identifying changes in lower body 

kinematics that are not necessarily associated with spatio-

temporal changes in gait.  

Previous work has shown the potential for shoe mounted 

accelerometers to predict lower body kinematic patterns 

during gait in a long-term monitoring scenario [13]. This 

approach only worked well when a complex calibration was 

performed on each patient. Perhaps, replicating traditional 

measurement tools is not necessary. Perhaps, the inertial 

data from the foot on its own could be used to determine if 

an abnormal gait pattern exists. 

Capturing gait metrics with inexpensive sensors in an 

unobtrusive manner, while people go about their daily lives 

would allow for more patients to have their gait analyzed on 

a regular basis [1]. This may allow more people to live 

healthier lives and decrease health-care costs by allowing for 

earlier intervention in disease and injury development [21]. 

The aim of this investigation is to determine if data from a 

foot mounted accelerometer can be used to identify change 

in a person’s gait patterns. 

II. METHODS 

Eight participants were recruited for the study; six female 

and two male. Ethical approval was granted by the 

Universities ethical review board and each subject signed an 

informed consent form. The participants average age was 

27.4 years (+/- 2.67 years), their average weight was 59.1 

kgs (+/- 12.4 kgs) and their average height was 1.68m (+/- 

0.11m).  

Each subject performed ten 15m walking trials in a 

biomechanics laboratory under two conditions; normal 

walking and a simulated stiff ankle gait. Stiff ankle gait was 

simulated by use of a lace up ankle brace which restricted 

ankle plantar-flexion. Both conditions were done at the same 
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walking speed. Walking speed was determined at the end of 

each trial by finding stride distance and stride time for the 

right heel marker and dividing them together. An average 

walking speed was determined from the normal walking 

trials and stiff ankle trials were only included if they were 

within 0.20 m/s of the normal walking average. The stiff 

ankle condition was included to attempt to replicate diseases 

that result in limited ankle range of motion; such as 

Parkinson’s disease, stroke, diabetes mellitus and cerebral 

palsy [14, 15]. Ankle sprains and injuries can also result in 

abnormal plantar-flexion activity during walking. Subjects 

wore their normal, everyday shoes during the walking trials. 

A CODA motion capture system (Charnwood Dynamics, 

Leicestershire, UK) was used to collect kinematic data. 

Markers were placed on the participants right and left sides 

at the following locations, PSIS, ASIS, greater trochanter, 

femoral condyle, fibular head, lateral malleolus, heel and 5
th

 

metatarsal. An IMU (Xsens MTx, Enschede, Netherlands) 

was placed on the dorsal aspect of each subjects shoe above 

the shoe laces, held in place with athletic tape. The sensor 

was placed on the dorsum on each foot so that the distal 

aspect of the sensor lined up with a perpendicular line 

coming from the 5
th

 metatarsal (Fig 1). 

 
Figure 1.  Inertial sensor placement on the dorsum of the foot. The local x 

and y acceleration were used to find FS as well as to quantify aspects of the 

swing phase during gait. 

A. Accelerometer processing 

Accelerometer data was analyzed using MATLAB 2009b 

(Mathworks, Massachusetts, USA). Gyroscope and angle 

data were not used because the purpose of this study was to 

see if accelerometer data alone could be used to determine 

changes in gait patterns. Total acceleration (TA) was 

calculated from x, y and z acceleration signals by using 

equation 1. 

 

Total acceleration (TA) = sqrt (Ax
2
+Ay

2
+Az

2
)                   (1) 

 

The 3-axis data were transformed due to the fact that 

looking at specific axes is very sensitive to how the sensor is 

mounted on the shoe.  Very small changes in mounting 

location could be erroneously flagged as a change in 

movement if the data were to be looked at on each axis 

individually.  This is a trade off and it has been chosen to 

pick usability at the expense of accuracy.  TA cannot show 

what is happening in which axis, but by using TA it means 

that any user can mount the sensor on their shoe properly 

and will be able to generate useful results.  This is important 

for the case where a user is mounting a sensor on their shoe 

or a manufacturer is creating the shoe with a 3-axis 

accelerometer built in.   

An algorithm was created to quantify aspects of the 

acceleration signal from each walking trial post test. First, 

the fundamental frequency of TA was determined and then 

TA was band pass filtered between 0.3 Hz to the 

fundamental frequency. On the sinusoidal resultant curve, 

positive going zero crossings were used to estimate where 

initial swings were and negative going zero crossings were 

used to estimate where FS occurred. Initial swing peaks 

were found in a range around the positive going zero 

crossing point and FS was found according to a previously 

published method [6].  

Two variables were calculated from the accelerometer 

data. Peak TA during initial swing (PTAIS) and the time 

between PTAIS to FS (TTAFS). Figure 1 shows a typical 

TA curve during a gait cycle and where these features occur. 

PTAIS is of interest because it shows how quickly the foot is 

being moved just after TO. Abnormal movement patterns 

around TO are likely to result in different acceleration 

patterns during initial swing and PTAIS may be able to pick 

these up. TTAFS is a timing variable which likely has a 

scalar relationship to swing time, but requires less 

processing and sensors to find since it does not include TO.  

 
Figure 2.  TA data from the right foot for a typical swing cycle and the 

quantified accelerometer variables. The dark limbs on the stick figure 

represent the right arm and leg. 



  

B. Statistics 

The accelerometer variables were averaged over each of 

the five trials for each condition for each subject. A two-

tailed, paired samples t-test was used to test the null 

hypothesis that the accelerometer variables could not detect 

the change in gait between the constrained gait conditions 

and their speed matched controlled conditions.  

A two-tailed, paired samples t-test was also used to 

investigate differences in walking speed and ankle 

kinematics to see if there was a significant difference in 

these factors between the conditions. Associated effect sizes 

(eta squared) were calculated and quantified according to 

Field as 0.10 = small effect size, .030 = medium effect size 

and 0.50 = large effect size [3]. The level of significance was 

set at p < 0.05. 

 

III. RESULTS 

There was not a statistically significant difference in 

walking speed between the normal (M = 1.422, SD = .141) 

and stiff ankle walking condition (M = 1.366, SD = .195), 

t(7) = 1.55, p = .165 (Table 1). 

Peak ankle plantar-flexion was significantly decreased the 

normal walking condition (M = -23.96, SD = 3.33) 

compared to the stiff ankle walking condition (M = -15.05, 

SD = 3.34), t(7) = -5.477, p < 0.05 (Table 2).  

 

 
Figure 3.  Peak ankle plantar flexion during initial swing compared 

between the normal and stiff ankle trials for each subject. Ankle movement 
was restricted in all subjects in the stiff ankle condition. 

 

PTAIS values were significantly higher in the stiff ankle 
condition (M = 33.10, SD = 5.12) compared to the normal 
walking condition (M = 29.47, SD = 5.75; t(7) = 4.32, p = 
0.003, two-tailed, Figure 4). There was a large effect size (eta 
squared = 0.853). TTAFS values were significantly lower in 
the stiff ankle condition (M = 0.42, SD = 0.02) compared to 
the normal walking condition (M = 0.44, SD = 0.03; t(7) = -
2.54, p = 0.039, two-tailed, Figure 5). There was a large 
effect size (eta squared = 0.693). Walking speed and hip and 
knee kinematics were not altered between the conditions. 
Ankle kinematics, PTAIS and TTAFS were changed between 
the conditions (Tables 1 & 2). 

 

Figure 4.  Change in PTAIS for each subject from the normal walking 
condition to the stiff ankle walking condition. Error bars show standard 

deviations.  

 

Figure 5.  Change in PTAIS for each subject from the normal walking 

condition to the stiff ankle walking condition. Error bars show standard 

deviations. 

TABLE I.  TOTAL ACCELERATION AND SPATIO-TEMPORAL 

GAIT METRICS 

 PTAIS* TTAFS* Speed Stride 

length 

Stride 

time 

Units m s-1 s-1 sec m s-1 m sec 

Stiff 

ankle 

29.47 

(5.74) 

.436 (.028) 1.35 

(.204) 

1.493 

(157.6) 

1.12 

(.103) 

Normal 

walking 

33.01 

(5.12) 

.421 (.022) 1.43 

(.141) 

1.535 

(118.2) 

1.08 

(.068) 

Mean values per group (SD), ** indicates significant difference between 

groups 

TABLE II.  KINEMATIC GAIT METRICS 

 Peak 

ankle 

plantar-

flexion * 

Peak ankle 

dorsi-

flexion 

stance 

Peak ankle 

plantar-

flexion ang 

velocity* 

Peak ankle 

dorsi-flexion 

angular 

velocity* 

units deg deg deg s-1 deg s-1 

Stiff 

ankle 

-15.03 

(3.37) 

10.21 (4.76) -25.63 (5.87) 14.48 (2.96) 

Normal 
walking 

-23.96 
(3.33) 

11.54 (4.17) -35.07 (6.85) 20.15 (3.76) 

Mean values per group (SD), ** indicates significant difference between 

groups 
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IV. DISCUSSION 

The main finding of this study is that simple to process 

metrics from tri-axial accelerometer data on the foot show 

potential to be used to detect changes in ankle movement 

patterns. Walking kinematic patterns were altered in the stiff 

ankle condition; peak ankle plantar flexion around toe-off 

was significantly reduced compared to the normal walking 

condition. Peak ankle angular velocities during the gait cycle 

were also significantly reduced in the stiff ankle condition. 

PTAIS was significantly higher and TTAFS was 

significantly shorter in the stiff ankle condition. The changes 

in kinematics and foot acceleration data were not due to 

different walking speeds between the two conditions. 

Walking speed between the two conditions was not 

significantly different. 

In the discussion the functional implications of the 

changes detected in the stiff ankle condition will be 

discussed. Then the reasons why this research is relevant 

will be presented and the final point will address how this 

research relates to other research in the area. 

A. Functional implications 

Limiting the range of motion at the ankle in the stiff ankle 

condition resulted in subjects having significantly higher 

PTAIS values as measured by the accelerometer. The 

decreased range of motion at the ankle may have resulted in 

plantar-flexion coming to a stop more quickly than in the 

normal walking condition, resulting in increased 

deceleration. This would show up as larger values on the TA 

curve since it is an indication of the magnitude of 

acceleration in any direction. Hip and knee kinematics were 

not significantly altered in the stiff ankle condition, so the 

large PTAIS value of the stiff ankle condition is not due to 

compensatory movements by proximal joints. 

TTAFS was shorter in the stiff ankle condition. This was 

likely due to the fact that the limited plantar-flexion range of 

motion meant that TO occurred earlier in the gait cycle and 

the foot had less distance to travel to FS. 

B.  Context 

Preliminary results from this study indicate that PTAIS 

and TTAFS may be able to detect a limited ankle joint range 

of motion. For such an application, specific kinematic data 

appears not to be necessary, as long as an altered gait pattern 

can be identified. Such a change could warn a patient or a 

clinician that an altered gait pattern has emerged and a more 

in-depth check up is necessary to figure out what the cause 

is. Neuromuscular diseases that have been shown to 

sometimes result in limited ankle range of motion include; 

Parkinson’s disease, stroke and diabetes mellitus [14, 15]. 

Ankle sprains and injuries would also result in abnormal 

ankle activity during walking and tracking injury 

rehabilitation progression may be useful using the methods 

described here. 

Monitoring movements such as the ankle pattern is 

essential in the management of children with cerebral palsy 

and has been shown to be essential in decision making 

process prior to orthopedic surgical procedures [20]. A 

ubiquitous monitoring tool such as an accelerometer in the 

shoe would allow for daily monitoring, as opposed to a 

laboratory assessment which is costly and likely to be 

months or years apart. 

Many studies on using inertial sensor technology to 

quantify human movement utilize some combination of 

accelerometers, gyroscopes and magnetometers [11, 12]. 

Data from an accelerometer alone was used in this study 

because accelerometers are inexpensive, small and require 

little processing. It is important to consider how to determine 

quality of movement information using as few sensors as 

possible because patients are more likely to use a system if it 

requires fewer sensors [1, 2]. The algorithm to process data 

presented in this paper is a simple algorithm that requires 

very little processing compared to algorithms that attempt to 

remove gravity and solve for global co-ordinate axes [11, 

16]. This is an important factor for long term monitoring of 

gait because less processing results in longer battery lives for 

the sensors or local smart-phones that are processing the 

data. 

C.  Relationship to other research 

The technique discussed in this research is intended 

toward long-term monitoring scenarios. Pedometers and 

accelerometers are two of the most commonly used tools in 

long -term monitoring studies [17, 19]. Research is mainly 

focused on step-counting, activity recognition or calorie 

consumption estimation. While these are all very useful 

metrics, it is not known if they are affected by subtle 

changes in gait patterns which may indicate early on-set 

disease or injury development. Preliminary data from our 

study under a constrained gait condition indicates that data 

from a shoe mounted accelerometer can be used to identify 

that an altered gait pattern has emerged. 

Previous work has attempted to estimate lower limb joint 

kinematics using a regression equation with data from a shoe 

mounted IMU [4]. They found that this approach worked 

well if regression equations could be developed for each 

subject individually, which required subjects to initially 

walk in a biomechanics laboratory with optical markers and 

shoe mounted IMUs. This individual calibration is costly 

and time consuming, which limits the use of such a 

technique. Only normal, healthy gait was tested, so it is 

unclear how such a method would work if a subject were to 

walk at different speeds, or with different motor patterns due 

to disease or injury development. The technique presented in 

this paper does not involve any patient specific calibration. 

Previous research using wearable sensor technology to 

monitor gait patterns over time has measured stride length 

from a lumbar mounted accelerometer to detect changes in 

the medicated state of Parkinson’s patients [13]. Stride 

length changed by more than 0.1m, which is a large amount. 

Kinematic gait patterns can change while stride length 

remains relatively stable. In our study lower body kinematics 

changed from the normal to the stiff ankle condition, while 

stride length changed by only 0.042m on average, as Table 1 

shows. Stride length alone likely has a limited role in 

ubiquitous gait monitoring to detect more subtle changes in 

gait patterns, which may indicate early on-set injury or 

disease development. 



  

A limitation from this study is that the constrained gait 

condition was artificially induced and was not a result of an 

actual disease or injury. For this reason, these results must 

be considered preliminary until further work is done on an 

injured or diseased population. 

The main finding of this study is that preliminary results 

show that simple to process data from a shoe mounted 

accelerometer can be used to identify an abnormal ankle 

movement pattern during walking. 
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