
Title First Things First: Providing Metacognitive Scaffolding for Interpreting Problem Prompts

Authors(s) Prather, James, Pettit, Raymond, Becker, Brett A., et al.

Publication date 2019-03-02

Publication information Prather, James, Raymond Pettit, Brett A. Becker, and et al. “First Things First: Providing 

Metacognitive Scaffolding for Interpreting Problem Prompts.” ACM Press, 2019.

Conference details The SIGCSE Technical Symposium, Minneapolis, Minnesota, USA, February 27th - 2nd March 

2019

Publisher ACM Press

Item record/more 

information

http://hdl.handle.net/10197/10160

Publisher's statement © ACM, 2019. This is the author's version of the work. It is posted here by permission of ACM for 

your personal use. Not for redistribution. The definitive version was published in SIGCSE '19 

Proceedings of the 50th ACM Technical Symposium on Computer Science Education (2019} 

http://doi.acm.org/10.1145/3287324.3287374

Publisher's version (DOI) 10.1145/3287324.3287374

Downloaded 2024-03-28T04:02:09Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A978-1-4503-5890-3&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F10160


First Things First: Providing Metacognitive Scaffolding for
Interpreting Problem Prompts

James Prather
Abilene Christian University

Abilene, Texas, USA
jrp09a@acu.edu

Raymond Pettit
Abilene Christian University

Abilene, Texas, USA
rsp05b@acu.edu

Brett A. Becker
University College Dublin

Dublin, Ireland
brett.becker@ucd.ie

Paul Denny
The University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

Dastyni Loksa
University of Washington
Seattle, Washington, USA

dloksa@uw.edu

Alani Peters
Abilene Christian University

Abilene, Texas, USA
alp13d@acu.edu

Zachary Albrecht
Abilene Christian University

Abilene, Texas, USA
zca16a@acu.edu

Krista Masci
Abilene Christian University

Abilene, Texas, USA
klc10b@acu.edu

ABSTRACT
When solving programming problems, novices are often not aware
of where they are in the problem-solving process. For instance,
students who misinterpret the problem prompt will most likely not
form a valid conceptual model of the task and fail to make progress
towards a working solution. Avoiding such errors, and recovering
from them once they occur, requires metacognitive skills that enable
students to reflect on their problem-solving processes. For these
reasons, developing metacognitive awareness is crucially important
for novice students. Previous research has shown that explicitly
teaching key steps of programming problem-solving, and having
students reflect on where they are in the problem-solving process,
can help students complete future programming assignments. Such
metacognitive awareness training can be done through personal
tutoring, but can be difficult to implement without a high ratio
of instructors to students. We explore a more scalable approach,
making use of an automated assessment tool, and conduct a con-
trolled experiment to see whether scaffolding the problem-solving
process would increase metacognitive awareness and improve stu-
dent performance. We collected all code submissions by students in
both control and experimental groups, as well as data from direct
observation using a think-aloud protocol. We found that students
who received the intervention showed a higher degree of under-
standing of the problem prompt and were more likely to complete
the programming task successfully.

CCS CONCEPTS
• Social and professional topics → CS1; • Human-centered
computing → User studies;

KEYWORDS
CS1, automated assessment tools, metacognitive awareness

ACM Reference Format:
James Prather, Raymond Pettit, Brett A. Becker, Paul Denny, Dastyni Loksa,
Alani Peters, Zachary Albrecht, and Krista Masci. 2019. First Things First:
Providing Metacognitive Scaffolding for Interpreting Problem Prompts. In
Proceedings of the 50th ACM Technical Symposium on Computer Science
Education (SIGCSE ’19), February 27-March 2, 2019, Minneapolis, MN, USA.
ACM,NewYork, NY, USA, 7 pages. https://doi.org/10.1145/3287324.3287374

1 INTRODUCTION
Solving a programming problem requires careful navigation through
multiple learning steps [25]. With only one mistake, the novice pro-
grammer could find themselves lost in the weeds without any idea
as to why they are lost or stuck [36]. This is because novice pro-
grammers usually lack metacognitive awareness [14, 24, 28, 38]
– the ability to think about and reflect on their problem-solving
process – and cannot articulate it to a peer or instructor. The lack
of this crucial skill in novice programmers could help to explain
the tremendously high failure rate in computer science [4, 47], es-
pecially since the highest-performing novices tend to display some
aspects of metacognitive awareness or other self-regulated learning
strategies [10].

There are two general approaches to solving this problem: ex-
plicit instruction in the classroom [24, 25] or implicit training
through careful design of the automated assessment tool or in-
telligent tutoring system used in the course, through which stu-
dents complete their homework [36]. Loksa et al. [25] investigated
metacognitive awareness in novice programmers using an explicit
strategy by making students aware of and coaching them through
six problem-solving stages: (1) reinterpret the prompt, (2) search

https://doi.org/10.1145/3287324.3287374
https://doi.org/10.1145/3287324.3287374


for analogous problems, (3) search for solutions, (4) evaluate a po-
tential solution , (5) implement a solution, (6) evaluate implemented
solution. Before receiving help, students had to identify to an in-
structor where they were in these six stages, therefore reflecting
on their programming process and practicing metacognitive aware-
ness. Prather et al. [36] took this framework and applied it to the
design of an automated assessment tool (AAT) to understand where
the tool currently failed to implicitly support novice metacognition.
They found five points at which the design of the AAT adversely im-
pacted novice metacognitive awareness and called for future work
to investigate each one. Three of the difficulties they highlighted
applied to the first learning stage, reinterpret the prompt. Their anal-
ysis revealed the importance for students to correctly interpret the
problem statement from the outset. They highlighted several diffi-
culties that resulted if an incorrect conceptual model was formed
early in the problem-solving process, such as a reluctance to recon-
sider a misconstrued conceptual model. They hypothesize that an
explicit prompt from an AAT, checking that students understand a
problem initially, may be particularly useful in this regard.

Prior work has suggested that focusing on the problem prompt
can provide enough scaffolding to help novices build metacognitive
awareness [17]. In this paper, we investigate whether asking novice
programmers to solve a randomly generated test case immediately
after reading the problem prompt can help them overcome metacog-
nitive difficulties encountered at that learning stage and, therefore,
should be incorporated into the design of AATs for better implicit
metacognitive training.

We investigate the following research question:
• RQ:Can solving a randomly generated test case immediately
after reading a problem prompt help novice programmers
overcome metacognitive difficulties encountered in the early
stages of problem-solving?

We report on a think-aloud study with CS1 students completing
a timed programming exercise in order to determine if the inter-
vention produces a noticeable impact on metacognitive awareness
in an experimental group, over those in a control group.

2 RELATEDWORK
2.1 Automated Assessment Tools
As this study centers around the use of automated assessment tools
(AATs) and their design, it is important to first briefly consider
AATs, their history, and how they have been designed (or not) to
support metacognitive awareness. There is a long history of devel-
opment, testing, and improvement of AATs [1, 12, 20, 21, 26, 34].
However, these AATs are not generally designed to improve the
user’s metacognitive awareness [36]. The only discussion in the
literature about AATs that could be related to one of the stages
from Loksa’s framework [25] addresses stage 5, implement a so-
lution, which centers on enhancing compiler error message feed-
back. Compiler error messages have long been documented to be a
great source of confusion and frustration to students [9, 29, 32, 46].
How novices encounter error messages has been linked to success
through Jadud’s EQ [22] and enhanced compiler error messages
(ECEMs) have shown potential in reducing EQ and to have positive
effects on similar error metrics [5, 8]. This indicates that the addi-
tion of ECEMs can help students to better understand the errors

in their solution and therefore reduce the overall amount of errors
encountered. Accordingly, several researchers have attempted to
add ECEMs into their AATs [3, 16, 41, 48]. A few researchers have
reported empirical results on the efficacy of ECEMs, though the
efficacy of this approach is an ongoing debate [6, 7, 11, 35, 37]. Like-
wise, a few researchers have attempted to take a human-factors
approach to the design of ECEMs, highlighting the importance of
human-centered design in AATs [18, 29, 30, 37, 46].

2.2 Metacognition in Novice Programmers
Introductory programming courses often focus solely on syntax and
data structures, but there is a growing consensus among computer
science education researchers that there should be more empha-
sis on assisting the novice in building a mental scaffold around
which they can correctly place knowledge and in doing so, develop
metacognitive awareness [10, 14, 19, 25, 28, 38, 43]. Metacognitive
awareness is, simply put, knowing about knowing. Applied to pro-
gramming, it is not just knowledge of the problem and how to solve
it, but knowledge of where one is in the problem-solving process
and self-reflection on that state [31].

A few studies, such as Falkner et al. [15] and Hauswirth &
Adamoli [19] report on experiments designed to measure novice
programmers’ metacognitive awareness, self-reflection, or self-
awareness of learning strategies. The most comprehensive study
to date on promoting metacognitive awareness in novice program-
mers is by Loksa et al. [25]. As discussed in Section 1, they identified
six distinct problem-solving stages that learners iteratively progress
through. They reported on an intervention at a code campwhere the
control group was taught how to code and the experimental group
was additionally trained in these six problem-solving stages and the
use of an IDEwith an Idea Garden. They reported that students with
this training were significantly more productive, required less help,
and displayed a positive shift in growth mindset. This indicates that
modified pedagogical approaches and programming environments
warrant development. Some successful modifications, however, are
difficult to scale or hard to implement for online learning tech-
nologies, such as massively open online courses, which Loksa et al.
acknowledged as a limitation of their work.

Prather et al. [36] recently reported on an intervention designed
to explore the metacognitive difficulties faced by novices when us-
ing AATs, using the work of Loksa et al. as a theoretical framework.
They conducted a think-aloud study with novice programmers solv-
ing a programming problem while using Athene, an AAT with a
long history of empirical work [33, 35–37, 45]. The five metacog-
nitive difficulties they report are shown in Table 1. The first three
of these identified difficulties involve forming an appropriate con-
ceptual model of the problem. They found that the students who
successfully solved the problem were consistently more likely to
correctly interpret the problem statement before beginning to write
code. Moreover, the most common error made by those students
unable to complete the programming problem was failure to build
a correct conceptual model of the problem. Prather et al. argue
that the single greatest weakness of modern AATs is that they
merely present a problem to be solved, assuming that students will
eventually conceptualize the problem correctly and allowing the



Table 1: Observed difficulties to metacognitive awareness by
novices using AATs from [36].

Metacognitive Difficulty Explanation
Forming Forming the wrong conceptual

model about the right problem
Dislodging Dislodging an incorrect conceptual

model of the problem may not be
solved by re-reading the prompt

Assumption Forming the correct conceptual
model for the wrong problem

Location Moving too quickly through one or
more stages incorrectly leading to a
false sense of accomplishment and
poor conception of location in the
problem-solving process

Achievement Unwillingness to abandon a wrong
solution due to a false sense of being
nearly done

submission of code without any assurances as to how the problem
has been interpreted by the student.

3 METHODOLOGY
In this paper we investigate whether providing an explicit metacog-
nitive prompt - one that requires solving a test case immediately
after reading the problem prompt in an AAT - will assist novice
programmers in overcoming the metacognitive difficulties identi-
fied by Prather et al. [36]. We presented the programming problems
in our automated assessment tool, Athene, and the test cases were
crafted in the Canvas LMS.

3.1 Think-Aloud Study
During the sixth week of CS1 at Abilene Christian University, one
researcher, who was not the professor of record, appeared in both
sections of the course to solicit student participation, discuss the
study, and administer IRB requirements. Students were asked to
participate in exchange for three perfect daily quiz scores, which
they would receive regardless of how well they performed in the
study. Not participating was guaranteed to not have any negative
consequences on their grades. A total of 36 out of 41 students chose
to participate. Because there were two sections of the course, the
first section was chosen as the control group (n=17) and the second
section as the experimental group (n=21). Students in both control
and experimental groups signed up for a time slot to meet one
of the researchers in the lab for an hour-long one-on-one session
where the student was observed completing a programming assign-
ment using the think-aloud protocol [39]. The session consisted
of a five-minute warm-up exercise to help the student become
familiar with the task of talking aloud as suggested by [44] and
[49], a 35-minute programming task where the student was given a
problem in Athene and asked to solve it in the allotted time, and a
20-minute detailed feedback session where each student was given

personalized advice based on the observations of the researcher.
This hour-long one-on-one format is based on the methodology of
Prather et al. [36]. The programming language students used was
C++.

The general format of the think-aloud study follows the usability
testing guidelines found in Rubin and Chisnell [39], including pre-
and post-testing checklists and scripts. At the beginning of each
think-aloud session, the evaluator read from a script outlining the
reason for the session, the goal of the session, and what was ex-
pected of the student. The warm-up exercise was to write a program
that would output "Hello, world." This particular task was chosen to
reduce cognitive load introduced by the programming task during
the warm-up. After completing the warm-up exercise, students
were asked to complete the programming task within a time limit
of 35 minutes. The task was this: given n integers, compute whether
there were more positive or negative integer numbers provided as
input. For this problem, students would need to understand the
following concepts: console input, console output, conditionals, and
loops. This problem is identical to the one used by Prather et al. [36].
The course was structured in such a way that the problem corre-
lated with course topics at the time and therefore should have been
familiar but moderately challenging. While each student worked
to solve the problem, a researcher took extensive notes on what
the student did and said. Interactions during the programming task
between the researcher and student were kept to a minimum, as per
Ericsson and Simon [13]. After reading the problem prompt, the
control group was allowed to immediately begin coding, while the
experimental group was immediately directed to solve a test case
quiz inside of Canvas simply asking students to calculate the output
of the program described in the prompt given a random set of input.
Once the students in the experimental group had passed the test
case quiz, they were allowed to begin writing code. This meant that
the experimental group had slightly less time to complete the task
than the control. We discuss and reject this as a potential threat to
validity in Section 3.3.

Prior work has shown that participants trained in metacognitive
strategies exhibit a positive shift in growth mindset [25]. We also
explored this, by investigating whether participants had a shift
towards a growth mindset from pre- to post-testing scores. In both
groups, before reading the problem prompt and after solving the
problem or time had expired, students were asked to answer how
they felt about three growth mindset statements, which we took
from Scott and Ghinea [42]. One statement endorsed a fixedmindset
(Q1. "I do not think I can really change my aptitude for program-
ming") and two statements endorsed the growth mindset (Q2. "I do
not have a fixed level of programming aptitude and hard work can
change it"; and Q3. "I believe I am able to achieve a high level of
programming aptitude, with enough practice"). Participants were
asked to rate how much they agreed with the three statements on
a five-point Likert scale.

3.2 Qualitative Coding Process
Participant observation allowed us to record the participants’ ac-
tions, apparent thought and problem-solving process, and exter-
nal reactions to error messages and other feedback. Participant-
specific data were separately recorded, tagged, and then moved



into ATLAS.ti, a qualitative software analysis package. We used
a collaborative coding process for the initial stage of coding the
qualitative observation session notes [40]. The codebook was devel-
oped collaboratively among multiple researchers. Two researchers
then independently coded 10% of the data (without knowing how
the other had coded the data). A third researcher used Cohen’s
Kappa [2] to measure agreement between coders and found an
interrater reliability rate of 67.2%, which is classified as "substantial
agreement" [27]. With this initial step complete and having verified
the accuracy of the double-blind coding process, a second step was
taken where the two coders worked through their disagreements
about which codes were used, refining the codebook [27]. Follow-
ing this, the lead researcher proceeded to code the rest of the data.
When the first stage was completed, we used ATLAS.ti to identify
major themes within the data. These themes, grounded on the data,
are explored in Section 4.2.

3.3 Threats to Validity
Four threats to the validity of this study are: 1. the potential for
increased cognitive load during the think-aloud sessions; 2. the fact
that the two groups were naturally split into two course sections;
3. the fact that the experimental group had slightly less time than
the control group to complete the main task; and 4. students in the
experimental group may have taken cues from the tasks researchers
asked them to do. We address these in order here

Participants in the think-aloud study were in a one-on-one set-
ting, were asked to think-aloud, and did not have access to any of
their previously written assignments. It is possible that all of these
factors increased student cognitive load in the think-aloud study.
We attempted to offset this ‘think-aloud factor’ by adding in the
warm-up exercise as suggested by Teague et al. [44] and Whalley
and Kasto [49]. Furthermore, students who did not complete the
warm-up exercise were given a correctly working warm-up exercise
to help ensure that students were starting from a common place.
In terms of writing code for the programming task, we asked all
students to use Notepad, which is a plain text editor. This was to
ensure that all students used the same environment, and to prevent
students with knowledge of more advanced programming tools
from utilizing their features for an advantage.

As the control and experimental groups were determined by the
two sections of the course, we conducted a post-test analysis onmid-
term test scores to compare the similarity of students in each group.
The mean score of students in the control group was 0.73 (SD = 0.19)
and the mean score of students in the experimental group was 0.81
(SD = 0.15). An independent samples t-test (unequal variances, two-
tail) showed that the difference in these scores is not statistically
significant (t(29) = 1.43, p = 0.16), allowing us to conclude that that
there is no significant difference in ability between the groups.

As discussed in Section 3, by design, the control group was al-
lowed to immediately begin coding, while the experimental group
was immediately directed to solve a quiz inside of Canvas consisting
of a randomly generated test case. Once the students in the experi-
mental group had passed the test case quiz, they were allowed to
begin writing code. This meant that the experimental group had
slightly less time to complete the task than the control. We do not
believe this is a serious threat to validity for two reasons. First, no

participant in the experimental group spent more than a minute on
the test case quiz. Second, we believe that by requiring students to
reflect on the prompt, we merely formalized a necessary step that
students should have been taking anyway, and is an essential part
of the study design.

Finally, the students in the experimental group may have taken
their involvement in the experiment somewhat more seriously than
those in the control. Students in the experimental group were asked
to solve the test case before coding and somay have spent more time
reading the prompt to pass the quiz and more carefully thinking
about the solution where they would have otherwise not done so.
This is an artifact of our methodology and one we hope to address
in future work.

4 RESULTS
The quantitative data collected from the experiment consisted of
answers to the growth mindset statements, completion times for
both control and experimental groups, number of code submission
attempts, and the number of attempts on the test case quiz by each
student in the experimental group. We first present this quantita-
tive data, followed by insights from the qualitative coding process
discussed above.

4.1 Quantitative Results
Table 2 shows the completion rate, mean time and mean number of
submissions for the experimental and control groups. "Submissions"
refers to a compilation and run against test cases. Participants in the
control group completed the programming task at a rate of 52.94%
and those that completed it took 23.82 minutes on average with an
average of 7.59 code submission attempts. In contrast, participants
in the experimental group completed the programming task at a
rate of 76.19% and those that completed it took 22.62 minutes on
average with an average of 4.48 code submission attempts. From
these basic results, it appears that the intervention helped more
participants complete the programming task compared to those
that did not receive the intervention - the experimental group had
a higher completion rate, faster time, and fewer attempts required
to complete. However, several of the other data points were incon-
clusive as we discuss below.

Table 2: Programming task performance of control and ex-
perimental groups

Control Experimental
Correct completion rate 52.94% 76.19%
Mean time (minutes) 23.82 22.62

Mean code submissions 7.59 4.48

Participants answered the growth mindset questions on a five-
point Likert scale and we mapped their answers into a delta change
value from before and after the programming task. This revealed
a change of +0.308 on average in the control group and +0.000 on
average in the experimental group. This seems to indicate that the
intervention did not have a positive impact on participants’ growth
mindset. This could be explained by the fact that the experimental



group displayed a higher level of growth mindset overall from
the beginning. Another possible explanation for the increase in
growth mindset in the control group (vs none in the experimental),
is that perhaps working a problem and completing it in 35 minutes
increased participants’ confidence in their own abilities. Finally,
recent research has begun to question whether the mindset of a
student impacts performance, with one recent study (published
after we conducted this experiment) concluding that it did not [23].

Finally, only one participant in the experimental group needed
to submit the test case quiz more than once. In that one case, the
student arrived at the correct answer on the second attempt, but did
not complete the programming task. The four other participants
in the experimental group that did not complete the programming
task all correctly answered the test case quiz on the first attempt.
Therefore, this data alone explains very little as there was no corre-
lation between the number of test case attempts and programming
task completion.

4.2 Qualitative Results
We tagged data in 1,116 places in the observation notes and post-
session interviews, using Loksa et al. [25] and Prather et al. [36]
as our theoretical frameworks. As we tagged and coded the data,
trends began to naturally emerge from the data, which are explored
below.

4.2.1 Experimental Group. Participants in the experimental group
who submitted a correct code solution tended to display and verbal-
ize higher metacognitive skills and behaviors. For instance, when
asked to describe how he/she normally goes about solving a prob-
lem in Athene, participant 27 (P27) described themselves as walk-
ing through five of the six stages of problem-solving. Furthermore,
all participants in the experimental group, except for one, verbal-
ized a correct understanding of the purpose of the intervention
when asked directly about it. P31, who completed the problem in 9
minutes, said that the intervention "help[ed] you understand the
problem beforehand, make sure you understand the logic behind
it." Most participants verbalized something similar. However, P31
also added that it, "helped me understand that when you dont́ enter
anything it would be equal," which is an edge case not explicitly
described in the instructions. P43, who completed the problem in
15 minutes, voiced their appreciation for the intervention, saying,
"I usually freak out reading the prompt, but doing a test case helped
me breathe and know that I know how to do it." P29, who completed
the problem in 20 minutes, described how solving a test case im-
mediately after reading the prompt, "made me realize that I didn’t
read the problem very well because I needed to go back and read it
again before I answered the quiz." However, requiring students to
solve a test case before coding did not entirely eliminate students
from struggling with the Assumption metacognitive difficulty (see
Table 1). P21, who completed the problem in 30 minutes, correctly
solved the test case on their first attempt, and then went on to at-
tempt to solve a similar problem students in CS1 had already seen,
"More Even or Odd", where the program must determine if there
are more even or odd numbers provided as input. After the eighth
submission, P21 re-read the prompt, but continued to attempt to
solve the wrong problem, struggling with both the Location and
Achievement metacognitive difficulties. Only after 11 submissions

did P21 re-read the prompt a third time and realize their mistake.
In the post-session interview, P21 said that the intervention was,
"Probably to evaluate the psychology of walking into something
and thinking you may not be able to do it... but it helps you know
that you can do it", which was not at all the intended purpose.

Participants in the experimental group who did not submit a
correct code solution tended toward two behaviors: those that un-
derstood the intervention and those that did not. A few participants
in this group were able to understand the prompt but were un-
able to implement a solution, usually becoming stuck on syntax
or edge test cases. For instance, P33’s code was extremely close
to a correct solution, but they did not understand the purpose of
the intervention, saying, "it wants to see if I can read a program."
Others, however, suffered from various metacognitive difficulties.
P39 faced the Assumption difficulty, thinking that he/she was solv-
ing the problem about even and odds, but discovered this error
upon re-reading the prompt after 12 minutes. Other participants
suffered from the Forming difficulty, such as P42 who struggled to
understand the problem, even after correctly solving a test-case,
and re-read the instructions five times, each time saying things
like, "okay, I’m stupid...that was stupid...dang that changes every-
thing," and, "Oh. Okay. I see now. Well that just makes all that work
pointless." P36 also suffered from the Forming difficulty, but did
not re-read the problem after initially correctly solving a test case.
In the post-session interview, he/she said they did not know why
they were required to solve a test case before beginning to code.
The only participant to incorrectly solve the first test case was
P34, who solved it on the second attempt. He/she also struggled
with the Forming difficulty as he/she repeatedly attempted to count
the number of times there were an equal amount of positive or
negative numbers before the input had ended. In the post-session
interview, he/she said that solving the test case, "tests our problem
skills instead of the computer’s to see if we can spot the differences
first...it made me count how I was formatting the text ’cause my
compiler does it for me." It is clear that P34 did not understand the
intervention.

4.2.2 Control Group. The control group, who were not asked
to solve a test case before they could begin writing code, naturally
separated itself during the qualitative tagging and coding process
into two distinct groups: those that reconsidered the prompt at least
once and those that did not. Ten out of 17 participants did not once
re-read the problem prompt, but only one out of that ten, P07, faced
any kind of metacognitive difficulty. Even though four of the ten did
not arrive at a correct solution, only P07 failed due to an incorrect
conceptual model of the problem (a manifestation of the Forming
difficulty), while the others all struggled with syntax. The other
seven participants in the control group who re-read the prompt
more than once were often inclined to go back multiple times
looking for clues when they became stuck, with one re-reading
only once, four re-reading three times, and one re-reading five
times. P18, who re-read the problem prompt five times, faced the
Forming difficulty, and despite so much time spent re-reading the
prompt, also faced the Dislodging difficulty as re-reading did not
appear to change his/her incorrect conceptual model.



However, metacognitive difficulties involving the participants’
conceptual models of the problems were not the only ones en-
countered. For instance, P17, who re-read the prompt three times,
submitted an incorrect solution 13 times (none of which included
a loop). This was despite the fact that he/she verbalized their con-
fusion as to Athene not recognizing their loop. None of the error
messages that he/she encountered in Athene helped him/her to
realize that they had failed to correctly adapt and implement a
solution, representing a Location difficulty. The others in this group
all re-read the problem prompt displaying multiple metacognitive
behaviors, including forming a correct conceptual model, but faced
syntax issues, some of which were overcome.

5 DISCUSSION
The unexpected results from this study lead to some interesting
implications and a call for further research. First, those in the exper-
imental group were much more successful at solving the problem
than the control group. The qualitative results suggest that, for
those in the experimental group, understanding why the interven-
tion took place seems to correlate with success. Most participants
verbalized that the intervention helped them think through the
problem, including P31 and P29 who said that it helped them un-
derstand the problem or address a wrong idea very early in the
problem-solving process.

Second, contrary to our expectations, two participants in the
experimental group still thought they were solving a different prob-
lem ("More Even or Odd", which they remembered from another
part of the course) than they actually were. This behavior was also
noted by Prather et al. [36] and was the motivating example for de-
signing this particular intervention. We expected this intervention
would prevent students from forming the wrong conceptual model
because students were explicitly made to choose what the output
should be for a given set of input, which included the words "More
Positive," "More Negative," or "Equal". Even more perplexing is that
there were no negative numbers used in the input of the interven-
tion test case quiz, so even if they thought they were solving the
"More Even or Odd" problem, there was no case where answering
Equal would have made sense if a participant was trying to solve
that problem with the input provided. However, we cannot know
how many students would have confused the present problem for
another, but were prevented from doing so due to the interven-
tion. Based on the overwhelmingly positive qualitative feedback
from the experimental group indicating how much the intervention
helped them, it is possible that it helped a few escape this issue.
One possible explanation for the described phenomenon is that
it is an artifact of the intervention using randomly generated test
cases and that some sets of input could be interpreted as from the
"More Even or Odd" problem. Therefore, one outstanding question
is: How do randomly generated test cases impact studies like this?
Perhaps if students had to solve two or three test cases that were
carefully crafted to expose different gaps in their conceptual mod-
els, then it might prevent the Assumption difficulty, and perhaps
help mitigate against the Forming difficulty as well. Overall, there
was no clear distinction between the groups in terms of qualitative
results, with the experimental group showing difficulty with at
least four of the five difficulties (Assumption, Location, Achievement,

and Forming), and the control group demonstrating at least three
(Location, Forming, and Dislodging).

Third, we expected that re-reading the problem prompt would be
associated with a higher likelihood of solving the problem for those
in the control group, but from our results, that is clearly not the
case. In fact, it seems like exactly the opposite. One possible expla-
nation for this effect is that the students who already possess some
metacognitive abilities only need to read the prompt once before
successfully reinterpreting the prompt and creating an accurate
conceptual model. This suggests that re-reading the prompt could
be an indicator of metacognitive difficulties. This leads us to another
outstanding question: Is there a correlation between number of times
a student re-reads a problem prompt and the number and severity
of metacognitive difficulties faced? Understanding this relationship
would provide a better look into how and why students lacking
metacognitive abilities are struggling to create correct abstractions
and conceptual models of the problems they are asked to solve and
could provide a fruitful avenue for future automated assessment
tool modification.

6 CONCLUSION
In this paper, we presented a think-aloud study of CS1 students
in order to determine if specific modifications to an automated
assessment tool would improve metacognitive awareness in novice
programmers.

Our quantitative data showed promising results, particularly
with a higher completion rate, faster completion time, and fewer
attempts required to complete for the experimental group. However,
data on the pre- and post-test questions, and results on the test case
quiz completion were not conclusive. Nonetheless, qualitative data
showed that participants in the experimental group who submit-
ted a correct code solution tended to display and verbalize higher
metacognitive skills and behaviors, especially regarding correct
conceptual models of the problem.

Other indicators showed mixed results, with some participants
demonstrating signs of good metacognitive awareness, but others
obviously struggling with several of the metacognitive difficulties
that novices face when using automated assessment tools identi-
fied by [36] (Table 1). There was no clear distinction between the
groups, with the experimental group showing difficulty with at
least four of the five difficulties (Assumption, Location, Achievement,
and Forming), and the control group demonstrating at least three
(Location, Forming, and Dislodging).

The primary contribution of this work is two-fold. First, our
results indicate that this line of research, although not conclusive,
warrants future work. Second, we have identified two specific ques-
tions for future work: 1.How do randomly generated test cases impact
studies like this? and 2. Is there a correlation between the number
of times a student re-reads a problem prompt and the number and
severity of metacognitive difficulties faced?

Our future work includes replicating this work at a larger scale,
with higher numbers of participants from multiple diverse insti-
tutions. We feel this is required as the results from this study are
promising but not conclusive. In addition we aim to work towards
answering the two questions set out above.



REFERENCES
[1] Kirsti M Ala-Mutka. 2005. A survey of automated assessment approaches for

programming assignments. Computer science education 15, 2 (2005), 83–102.
[2] Mousumi Banerjee, Michelle Capozzoli, Laura McSweeney, and Debajyoti Sinha.

1999. Beyond kappa: A review of interrater agreement measures. Canadian
journal of statistics 27, 1 (1999), 3–23.

[3] Titus Barik, Jim Witschey, Brittany Johnson, and Emerson Murphy-Hill. 2014.
Compiler error notifications revisited: an interaction-first approach for helping
developers more effectively comprehend and resolve error notifications. In Com-
panion Proceedings of the 36th International Conference on Software Engineering.
ACM, 536–539.

[4] Theresa Beaubouef and John Mason. 2005. Why the high attrition rate for
computer science students: some thoughts and observations. ACM SIGCSE
Bulletin 37, 2 (2005), 103–106.

[5] Brett A Becker. 2016. A new metric to quantify repeated compiler errors for
novice programmers. In Proceedings of the 2016 ACM Conference on Innovation
and Technology in Computer Science Education. ACM, 296–301.

[6] Brett A Becker, Graham Glanville, Ricardo Iwashima, Claire McDonnell, Kyle
Goslin, and Catherine Mooney. 2016. Effective compiler error message enhance-
ment for novice programming students. Computer Science Education 26, 2-3
(2016), 148–175.

[7] Brett A Becker, Kyle Goslin, and Graham Glanville. 2018. The Effects of Enhanced
Compiler Error Messages on a Syntax Error Debugging Test. In Proceedings of the
2018 ACM Conference on Innovation and Technology in Computer Science Education.
ACM, 640–645.

[8] Brett A Becker and Catherine Mooney. 2016. Categorizing compiler error mes-
sages with principal component analysis. In 12th China-Europe Int’l Symposium
on Software Engineering Education (CEISEE 2016), Shenyang, China. 28–29.

[9] Brett A. Becker, CormacMurray, Tianyi Tao, Changheng Song, Robert McCartney,
and Kate Sanders. 2018. Fix the First, Ignore the Rest: Dealing with Multiple
Compiler Error Messages. In Proceedings of the 49th ACM Technical Symposium
on Computer Science Education. 634–639.

[10] Susan Bergin, Ronan Reilly, and Desmond Traynor. 2005. Examining the role of
self-regulated learning on introductory programming performance. In Proceedings
of the first international workshop on Computing education research. ACM, 81–86.

[11] Paul Denny, Andrew Luxton-Reilly, and Dave Carpenter. 2014. Enhancing syn-
tax error messages appears ineffectual. In Proceedings of the 2014 conference on
Innovation & technology in computer science education. ACM, 273–278.

[12] Christopher Douce, David Livingstone, and James Orwell. 2005. Automatic test-
based assessment of programming: A review. Journal on Educational Resources in
Computing (JERIC) 5, 3 (2005), 4.

[13] Karl Anders Ericsson and Herbert Alexander Simon. 1993. Protocol analysis. MIT
press Cambridge, MA.

[14] Anneli Eteläpelto. 1993. Metacognition and the expertise of computer program
comprehension. Scandinavian Journal of Educational Research 37, 3 (1993), 243–
254.

[15] Katrina Falkner, Rebecca Vivian, and Nickolas JG Falkner. 2014. Identifying
computer science self-regulated learning strategies. In Proceedings of the 2014
conference on Innovation & technology in computer science education. ACM, 291–
296.

[16] Thomas Flowers, Curtis A Carver, and James Jackson. 2004. Empowering students
and building confidence in novice programmers through Gauntlet. In Frontiers in
Education, 2004. FIE 2004. 34th Annual. IEEE, T3H–10.

[17] Xun Ge and Susan M Land. 2003. Scaffolding studentsâĂŹ problem-solving
processes in an ill-structured task using question prompts and peer interactions.
Educational Technology Research and Development 51, 1 (2003), 21–38.

[18] Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R Klemmer. 2010.
What would other programmers do: suggesting solutions to error messages. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 1019–1028.

[19] Matthias Hauswirth and Andrea Adamoli. 2017. Metacognitive calibration when
learning to program. In Proceedings of the 17th Koli Calling Conference on Com-
puting Education Research. ACM, 50–59.

[20] Jack Hollingsworth. 1960. Automatic graders for programming classes. Commun.
ACM 3, 10 (1960), 528–529.

[21] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. 2010. Review
of recent systems for automatic assessment of programming assignments. In Pro-
ceedings of the 10th Koli Calling International Conference on Computing Education
Research. ACM, 86–93.

[22] Matthew C Jadud. 2006. An exploration of novice compilation behaviour in BlueJ.
Ph.D. Dissertation. University of Kent.

[23] Antti-Juhani Kaijanaho and Ville Tirronen. 2018. Fixed versus Growth Mindset
Does not Seem to Matter Much: A Prospective Observational Study in Two
Late Bachelor level Computer Science Courses. In Proceedings of the 2018 ACM
Conference on International Computing Education Research. ACM, 11–20.

[24] Dastyni Loksa and Andrew J Ko. 2016. The role of self-regulation in programming
problem solving process and success. In Proceedings of the 2016 ACM Conference
on International Computing Education Research. ACM, 83–91.

[25] Dastyni Loksa, Andrew J Ko, Will Jernigan, Alannah Oleson, Christopher J
Mendez, and Margaret M Burnett. 2016. Programming, Problem Solving, and Self-
Awareness: Effects of Explicit Guidance. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems. ACM, 1449–1461.

[26] Andrew Luxton-Reilly, Simon, Ibrihim Albluwi, Brett A. Becker, Michail Gian-
nakos, Amruth N. Kumar, Linda Ott, James Paterson, Michael James Scott, Judy
Sheard, and Claudia Szabo. 2018. Introductory Programming: A Systematic Lit-
erature Review. In Proceedings of the 2018 ITiCSE Conference on Working Group
Reports (ITiCSE-WGR ’18). ACM, New York, NY, USA. in press.

[27] Kathleen M MacQueen, Eleanor McLellan, Kelly Kay, and Bobby Milstein. 1998.
Codebook development for team-based qualitative analysis. CAM Journal 10, 2
(1998), 31–36.

[28] Murali Mani and Quamrul Mazumder. 2013. Incorporating metacognition into
learning. In Proceeding of the 44th ACM technical symposium on Computer science
education. ACM, 53–58.

[29] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011. Measuring
the effectiveness of error messages designed for novice programmers. In Proceed-
ings of the 42nd ACM technical symposium on Computer science education. ACM,
499–504.

[30] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011. Mind your
language: on novices’ interactions with error messages. In Proceedings of the 10th
SIGPLAN symposium onNew ideas, new paradigms, and reflections on programming
and software. ACM, 3–18.

[31] Janet Metcalfe and Arthur P Shimamura. 1994. Metacognition: Knowing about
knowing. MIT press.

[32] Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth Simon, Lynda
Thomas, and Carol Zander. 2008. Debugging: the good, the bad, and the quirky–a
qualitative analysis of novices’ strategies. In ACM SIGCSE Bulletin, Vol. 40. ACM.

[33] Raymond Pettit, John Homer, Roger Gee, SusanMengel, and Adam Starbuck. 2015.
An empirical study of iterative improvement in programming assignments. In
Proceedings of the 46th ACM Technical Symposium on Computer Science Education.
ACM, 410–415.

[34] Raymond Pettit and James Prather. 2017. Automated Assessment Tools: Too
Many Cooks, Not Enough Collaboration. J. Comput. Sci. Coll. 32, 4 (April 2017),
113–121. http://dl.acm.org/citation.cfm?id=3055338.3079060

[35] Raymond S Pettit, JohnHomer, and Roger Gee. 2017. Do Enhanced Compiler Error
Messages Help Students?: Results Inconclusive. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education. ACM, 465–470.

[36] James Prather, Raymond Pettit, Kayla Holcomb McMurry, Alani Peters, John
Homer, and Maxine Cohen. 2018. Metacognitive Difficulties Faced by Novice
Programmers in Automated Assessment Tools. In Proceedings of the 2018 ACM
Conference on International Computing Education Research. ACM, 74–82.

[37] James Prather, Raymond Pettit, Kayla Holcomb McMurry, Alani Peters, John
Homer, Nevan Simone, and Maxine Cohen. 2017. On Novices’ Interaction with
Compiler Error Messages: A Human Factors Approach. In Proceedings of the 2017
ACM Conference on International Computing Education Research. ACM, 74–82.

[38] Ido Roll, Natasha G Holmes, James Day, and Doug Bonn. 2012. Evaluating
metacognitive scaffolding in guided invention activities. Instructional science 40,
4 (2012), 691–710.

[39] Jeffrey Rubin and Dana Chisnell. 2008. Handbook of usability testing: how to plan,
design and conduct effective tests (2 ed.). John Wiley & Sons.

[40] Johnny Saldaña. 2015. The coding manual for qualitative researchers. Sage.
[41] Tom Schorsch. 1995. CAP: an automated self-assessment tool to check Pascal

programs for syntax, logic and style errors. In ACM SIGCSE Bulletin, Vol. 27.
ACM, 168–172.

[42] Michael J Scott and Gheorghita Ghinea. 2014. On the domain-specificity of
mindsets: The relationship between aptitude beliefs and programming practice.
IEEE Transactions on Education 57, 3 (2014), 169–174.

[43] Teresa M Shaft. 1995. Helping programmers understand computer programs: the
use of metacognition. ACM SIGMIS Database 26, 4 (1995), 25–46.

[44] Donna Teague, Malcolm Corney, Alireza Ahadi, and Raymond Lister. 2013. A
qualitative think aloud study of the early neo-piagetian stages of reasoning in
novice programmers. In Proceedings of the Fifteenth Australasian Computing
Education Conference-Volume 136. Australian Computer Society, Inc., 87–95.

[45] Dwayne Towell and Brent Reeves. 2009. From Walls to Steps: Using online
automatic homework checking tools to improve learning in introductory pro-
gramming courses. (2009).

[46] V Javier Traver. 2010. On compiler error messages: what they say and what they
mean. Advances in Human-Computer Interaction 2010 (2010).

[47] Christopher Watson and Frederick WB Li. 2014. Failure rates in introductory
programming revisited. In Proceedings of the 2014 conference on Innovation &
technology in computer science education. ACM, 39–44.

[48] Christopher Watson, Frederick WB Li, and Jamie L Godwin. 2012. Bluefix: Using
crowd-sourced feedback to support programming students in error diagnosis and
repair. In International Conference on Web-Based Learning. Springer, 228–239.

[49] Jacqueline Whalley and Nadia Kasto. 2014. A qualitative think-aloud study of
novice programmers’ code writing strategies. In Proceedings of the 2014 conference
on Innovation & technology in computer science education. ACM, 279–284.

http://dl.acm.org/citation.cfm?id=3055338.3079060

