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Abstract

Power systems are one of the most complex dynamic systems due to their multi-time

scale and non-linear nature. This work focuses in particular on the electromechanical

dynamics of power systems which are hybrid (discrete-continuous) and are therefore

studied using a set of Hybrid Differential-Algebraic Equations (HDAEs) or Discon-

tinuous Right-Hand Side DAEs (DRHS DAEs). Traditional HDAEs possess several

challenges during modeling, implementation, and numerical simulation stages, de-

pending on the nature of the discontinuities arising from different applications.

This thesis studies the impact of discontinuities on power system physical stability

as well as on the numerical stability of a solver considering two specific discontinuous

models. The first model is an under load tap changing transformer, which intro-

duces a discrete variable in the DRHS DAEs due to the physical operation of the

transformer. The second model is a proportional-integral controller used in different

components of power systems, e.g. voltage source converter and automatic voltage

regulators which introduces a discontinuity in the state and algebraic variables of

DRHS DAEs. In particular, a thorough discussion of the deadlock and chattering

issues during time-domain simulation arise from the latter model is provided. This

discussion is based on two time domain simulation techniques widely used in power

system tools, namely, time-stepping and event-driven method. To solve the deadlock

and chattering issues in both of these simulation techniques, a theoretical approach

given by Filippov is proposed.

Case studies with small to large sizes, e.g., single machine infinite bus, WSCC 9-

bus, IEEE 14-bus, 74-bus Nordic system and all-island Irish system with 1479-buses

connected to a simplified 63-bus Great Britain system through a high-voltage direct

xv



current link are considered and tested in the thesis. Simulation results indicate the

importance of accurate modeling and implementation of discontinuous models for

dynamic analysis.
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1 Introduction

Reliable electric energy supply, i.e. electric power systems are the main drive force

of modern society. Therefore the secure and stable operation of power systems is

of utmost importance. However, the security assessment of power systems is not a

trivial task due to their complexity, non-linearity and multi-time scales, as illustrated

in Figure 1.1 [56]. This thesis focuses on dynamics ranging from milliseconds to

minutes range, typically known as electro-mechanical dynamics.

Electro-mechanical dynamic processes are studied through a dynamic phasor

model consisting of nonlinear Differential Algebraic Equations (DAEs) [69, 76], as

follows,

ẋ = f(x, y) , (1.1)

0 = g(x, y) , (1.2)

where f and g are the differential and algebraic equations respectively; x and y are

the vector of state and algebraic variables respectively. This set of DAEs possesses

a continuous (or smooth) manifold near the operating point or system equilibrium.

However, the large disturbance analysis of power systems is characterized by complex

interactions between continuous dynamics and discrete events due to transformer tap

position, controller saturation, generator over-excitation limit, etc. These kinds of

discontinuities can significantly influence the system behavior [57]. Therefore, power

system models should properly take into account all the non-linearities related to

1
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Figure 1.1: Illustration of power system time scales.

the discontinuous behavior, and analysis tools should provide accurate predictions

of the system behavior under severe conditions. When these discontinuities are

included in a set of continuous DAEs, the resulting model is called a set of Hybrid

Differential-Algebraic Equations (HDAEs) [76]. As the “Hybrid” term is often

referred to as mixed analog and digital modeling, in this work, to avoid confusion the

DAE formulation is called as Discontinuous Right-Hand Side DAEs (DRHS DAEs).

Power system tools use different approaches to describe such discontinuities of the

models in time domain simulation to capture complete dynamic behavior, and the

development of a systematic model using DAEs has received little attention [63]. A

comprehensive literature review on this topic is given in Chapter 2. The objective of

this work is to model the power system as a set of DRHS DAEs using a systematic

approach suitable for computer language implementation.

An important aspect of discontinuities is that, depending on their nature, they

significantly impact the power system’s physical stability and numerical stability.
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For instance, the tap changing mechanism of a regulating transformer introduces a

discrete variable on the DAEs given by (1.1-1.2) [58]. Whereas controller saturation,

e.g., lag, lead-lag, and Proportional-Integral (PI) controllers, introduce discrete

quantities in state and algebraic variables [8]. The discrete variables related to

tap changers severely impact the slow or long-term voltage stability [43, 64, 112],

which is related to physical stability. And the discrete variables coupled into the

algebraic and the state variables impact both physical and numerical stability. For

example, limits on a integer-order PI controller or a fractional-order PI controller

can cause a numerical instability in different applications, namely, voltage sourced

converters [59, 60] and automatic voltage regulators [48]. References [48, 59, 60]

propose heuristic methods to ensure numerical stability during simulation of these

models. However, heuristic techniques introduce artificial oscillations in the solution

and severely impact numerical solver performance [48]. The second objective of this

work is to thoroughly study the non-smooth behavior of power system components

that includes discrete variables in their models. Finally, to address numerical

instability, this work proposes a theoretical approach given by Filippov [49].

1.1 Thesis Overview and Contributions

This thesis first studies the mathematical model of power systems represented by

DRHS DAEs. Then it discusses the impact of two discontinuous models (tap changer

transformer and PI limiters) on dynamic response and numerical simulation. To this

aim, the following research topics are addressed.

i. Modeling: Available mathematical representations of power systems modeled

as DRHS DAEs are reviewed and relevant examples are presented. A compre-
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hensive discussion of the modeling framework used in this work is given using

an illustrative example.

ii. Under Load Tap Changers: The working principle of tap changer transformer

or Under Load Tap Changers (ULTCs) are discussed. The mathematical

models of possible ULTC control techniques are presented. The impact of

these ULTC control methods on long-term voltage stability is studied. Finally,

impact of the stochastic variations from renewable energy integration on the

transformer operation is discussed.

iii. PI Control Limiters: Limiting methods on PI controllers commonly adopted

in Voltage-Sourced Converter (VSC) based applications are presented. The

numerical issues that arise due to implementation based on the IEEE Standard

421.5-2016 are studied. To alleviate these issues, a solution based on the

mathematical theory developed by Filippov is proposed. The proposed design

is validated and compared with available heuristic solutions, considering both

constant and variable limits. Finally, limiters of fractional-order PI controllers

are discussed.

The remainder of the thesis is organized as follows.

Chapter 2 provides an overview of the hybrid modeling of power systems. Among

several methods, this work considers hybrid modeling based on Hybrid Automata

(HA). Section 2.1 provides a literature review on hybrid modeling. In Section 2.2, a

brief description of HA and a modeling structure based on HA with an illustrative

example is given. Next, the modeling approach and event handling of the simulation

tool dome, which is mainly used in this thesis, is described with an illustrative ex-

ample in Section 2.3. Finally, Section 2.4 draws conclusions on the matter discussed
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in Chapter 2.

Chapter 3 considers under load tap changing transformers as an example of a

model where the physical operation is discrete. This chapter aims to show how this

kind of discrete behavior impacts the physical stability of power systems. Section 3.1

outlines the motivation of Chapter 3. Section 3.2 briefly introduces tap changer

transformers and Section 3.3 presents the discrete and continuous models of ULTCs

and their controllers for dynamic studies. Section 3.5 discusses the dynamic response

of these devices considering deterministic scenarios. These deterministic case studies

show that ULTCs can both improve the transient behavior of the system, and

in occasions, cause instability. Section 3.6 includes load and wind speed models

formulated as stochastic differential equations that properly capture the probability

distribution and auto-correlation of the stochastic processes. Section 3.7 presents

a stochastic case study. This considers a small Irish distribution network and

shows how the stochastic variations impact the occurrence of tap position change.

Section 3.8 draws conclusions.

PI control limiters are considered in Chapter 4. Section 4.1 presents a literature

review on the applications of PI controllers. Section 4.2 introduces different lim-

iting methods of PI controllers and Section 4.3 discusses the implementation and

numerical issues associated with PI controllers with anti-windup limiters. Using

an illustrative example Section 4.3 explains how one of the anti-windup, namely,

IEEE Std. 421.5-2016 model method introduce a deadlock of a numerical solver.

Section 4.4 presents the model of the VSC, its controllers along with tuning method

and shows how the limiting methods are applied to the controllers of the VSC-based

devices. Section 4.5 to Section 4.7 illustrate the dynamic behavior of the PI limiters

of VSCs through the WSCC 9-bus network and two real-world case studies: (i) a
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1,479-bus dynamic model of the all-island Irish system connected to a simplified

63-bus dynamic model of the Great Britain system through an High-Voltage Direct

Current (HVDC) link that represents the East-West Interconnector (EWIC); and

(ii) a 74-bus dynamic model of the Nordic system with the inclusion of a Static

Synchronous Compensator (STATCOM) device. A discussion on simulation results

and conclusions are given in Section 4.8 and Section 4.9, respectively.

Chapter 5 revisits the deadlock phenomenon that was briefly introduced in

Chapter 4 and proposes a mathematical theory given by Filippov to prevent such

deadlock. To this aim, Section 5.1 presents a literature review on application of

Filippov Theory (FT). Section 5.2 studies the deadlock of numerical integration

techniques related to the IEEE Std. AW model. Section 5.3 briefly discusses FT

and Section 5.4 shows how this theory effectively removes the deadlock by smoothing

the trajectories. Two examples are discussed: an illustrative example and a simple

single-machine power system network. In order to implement an input-output based

IEEE Std. 421.5-2016 PI controller, Section 5.5 presents a generalized FT based

hybrid model for software implementation of Filippov system models. Numerical

validations of the generalized design are presented in Section 5.6 and Section 5.7

using two applications, namely, a relay feedback model and the IEEE Std. 421.5-

2016 AW PI model, respectively using the Modelica language as well as the power

system software tool dome. Section 5.8 draws relevant conclusions.

The FT based IEEE Std. PI model is extended to consider variable limits for

the VSC-based applications in Chapter 6. In Section 6.1 a literature review on

the current limiter of VSCs is given. Section 6.2 discusses the current limiter and

fault ride-through functionalities of VSCs. Section 6.3 discusses the FT based IEEE

Std. 421.5-2016 PI model to impose variable limits. Section 6.3 also validates this
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model through an illustrative example. The impact of variable limits of VSCs along

with the PI controller implementations on power system dynamics is presented in

Section 6.4 through two case studies: (i) a VSC-HVDC link in the WSCC 9-bus

network; (ii) the Nordic system with a VSC-based STATCOM. Section 6.5 provides

conclusions relevant to this Chapter.

Fractional Order PI (FOPI) controllers are proposed in different power system

applications because of their robust performance for a wide range of operating

conditions. Chapter 7 considers limiters on FOPI controllers. Section 7.1 presents a

literature review on the fractional calculus and its application. The models of windup

and AW limiters of FOPI controllers is given in Section 7.3 following a background

on the theory of fractional calculus for control applications given in Section 7.2.

Section 7.3 also provides an in depth explanation of a numerical convergence issue

during the time domain simulation with inclusion of the FOPI configuration of

conditional integrator AW method. A comparison of the impact of FOPI limiter

models on the AC voltage regulation of power systems is given in Section 7.4 through

VSC-based STATCOM. Conclusions are drawn in Section 7.5.

Finally, Chapter 8 draws relevant conclusions of the overall thesis and suggests

future work directions.

1.2 Publications

� Papers related to the thesis:

– Journal Papers:

1. M. A. A. Murad, M. Liu and F. Milano, “Modeling and Simulation of
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variable limits on conditional anti-windup PI-Controller for VSC-Based

Devices,” submitted in IEEE Transactions on Circuits and Systems I.

2. M. A. A. Murad, F. Milano, “Chattering-Free Modelling and Simula-

tion of Power Systems with Inclusion of Filippov Theory,” Electric Power

Systems Research, Volume 189, 106727, 2020.

3. M. A. A. Murad and F. Milano, “Modeling and Simulation of PI-

Controllers Limiters for the Dynamic Analysis of VSC-Based Devices,”

in IEEE Transactions on Power Systems, vol. 34, no. 5, pp. 3921-3930,

Sept. 2019.

– Conference Papers:

4. M. A. A. Murad, L. Vanfretti and F. Milano, “Modeling and Simulation

of Filippov System Models with Sliding Motions using Modelica,” 2020

American Modelica Conference, On-line event, 22-24 September 2020.

5. M. A. A. Murad, G. Tzounas, F. Milano, “Modeling and Simulation

of Fractional Order PI Control Limiters for Power Systems”, 21st IFAC

World Congress (IFAC 2020), Berlin, Germany, on-line event, 12-17 July

2020.

6. M. A. A. Murad, B. Hayes and F. Milano, “Application of Filippov

Theory to the IEEE Standard 421.5-2016 Anti-windup PI Controller,”

2019 IEEE Milan PowerTech, Milan, Italy, 2019, pp. 1-6.

7. M. A. A. Murad, F. M. Mele and F. Milano, “On the Impact of Stochas-
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Power & Energy Society General Meeting (PESGM), Portland, OR, 2018.
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Systems Computation Conference (PSCC), Dublin, 2018, pp. 1-7.

– Book Chapter:

9. M. A. A. Murad, M. Chiandone, G. Sulligoi, F. Milano, “Long term

Voltage Control, in Converter-Based Dynamics and Control of Modern

Power Systems,” editors: A. Monti, F. Milano, E. Bompard and X. Guil-

laud, Academic Press, November 2020.
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2 Hybrid Modeling of Power System

2.1 Introduction

Systems that describe evolution of states over time are known as dynamical

systems. If the states show mixed continuous and discrete behavior, then these

systems are often called “hybrid dynamical systems” [114] or simply “hybrid sys-

tems”. The terminology “hybrid systems” was used in this context for the first

time by Witsenhausen in 1966 [118]. Few examples of such systems are: automated

highway systems, computer-controlled systems, gear shift control. Specific math-

ematical models have to be developed to capture and study this hybrid behavior.

These models have two main parts: one with differential or difference equations

for the continuous states and another with discrete description or automata to

model discrete changes. The mathematical models proposed to deal with the hybrid

systems that arise in engineering as well as in other disciplines, e.g. economics and

sociology, show a variety of structures. An overview of possible modeling methods

is discussed in [71]. The techniques mentioned here are, hybrid automata [72, 73],

timed automata or hybrid Petri Nets [37,80,92], differential automata [106], discrete

event systems [32,122]. Note that these methods are used to describe a hybrid model

of a particular application.

Power systems fall into the category of hybrid dynamical systems. Therefore,

different modeling structures mentioned above are applied to power systems. How-
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ever until now, methods to develop power system models based on hybrid nature

or DRHS DAEs have not been fully investigated. In [61] and [63] a hybrid system

representation of the power system by Hiskens is proposed based on Hybrid Au-

tomata (HA) [26]. This method allows solving power system inverse problems [58],

trajectory sensitivity analysis [62] and time domain simulation [63]. Using Hiskens’s

formulation, a simulation framework is built in [39]. HA is also used in [46,101,102]

for power system stability analysis, in [103] for the analysis of cascading failure, in

[104] for control of a micro-grid. Another framework based on Hybrid Input/Output

Automata (HIOA) is proposed in [50] to analyze power systems with relay control.

Hybrid modeling of power systems using Petri Nets is described in [90] and Discrete

EVent System (DEVS) is proposed in [109]. Among these different hybrid modeling

frameworks, HA is one of the best approaches to capture discontinuous dynamics

because it is based on the theory of numerical approximations [107]. That is why in

this work HA formulation is adopted.

In this chapter, a brief description of HA and a modeling structure based on HA

with an illustrative example is given in Section 2.2. Next, the modeling approach

and event handling of the simulation tool dome, which is used in this thesis, is

described with an illustrative example in Section 2.3. Finally, Section 2.4 draws

conclusions on the matter discussed in this chapter.

2.2 Hybrid Automata

The modeling formalism of HA is an extension of finite-state machines where

each discrete state is associated with a continuous state model. This method is

conveniently applied to a vast range of engineering applications. It is a transition
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system with inclusion of continuous dynamics and consists of locations, transitions,

invariants, guards, n-dimensional continuous functions, jump functions, and syn-

chronization labels [68].

� Definition (Hybrid Automaton) [72]: A hybrid automation H is a collection

H = (Q,X,f , Init, Dom, E,G,R), where

– Q = {q1, q2, · · ·} is a set of discrete states;

– X = Rn is a set of continuous states;

– f(·, ·) : Q×X → Rn is a collection vector fields that describe the continuous

dynamics, each set of vector fields is assumed to be Lipschitz continuous on

the location domain for Q in order to ensure that the solution exists and is

unique;

– Init ⊆ Q×X is a set of initial states;

– Dom(·) : Q→ 2X is a domain, describe conditions that continuous state has

to satisfy in given mode;

– E ⊆ Q×Q is a set of edges;

– G(·) : E → 2X is a guard condition that specifies subset of state space where

certain transition is enabled;

– R(·, ·) : E ×X → 2X is a reset map that specifies how new continuous states

are related to previous continuous states.

Any physical system described by HA can also be represented through graphs

with the definition given above. Interested readers are referred to the reference [72]

for further description of those schematics.
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2.2.1 Hiskens’s Model

In [61] and [63], power systems are formulated as a set of Differential Switched

Algebraic and State-Reset (DSAR) equations, based on hybrid automata. This

general representation captures all the characteristics of power system dynamics.

The DSAR model is as follows:

ẋ = f(x, y, z) , (2.1)

ż = 0 , (2.2)

0 = g(0)(x, y) , (2.3)

0 =


gi

−
(x, y, z) ys,i < 0 ,

gi
+
(x, y, z) ys,i > 0 ,

i = 1, ...., s (2.4)

z+ = hj(x
−, y−, z−) yr,j = 0 j ∈ 1, ..., r (2.5)

where x is the vector of continuous dynamic state variables, y is the vector of

algebraic state variables and z is the vector of discrete dynamic state variables.

Equations (2.1) describe the differential equations, (2.3) and (2.4) describe the

switched algebraic equations and (2.5) the state-reset equations. The superscript

− stands for pre-event and + for post event values. The DSAR model (2.1)-(2.5)

is a finite set of continuous DAEs expressed explicitly for each discrete variable

change. This approach has been used for electro-mechanical dynamic analysis for

power systems [58].

� Illustrative example I:

In order to demonstrate the ability of the DSAR structure, a simple power system

network is considered with a tap-changing transformer. The test system consists of
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Figure 2.1: A single static generator connected to an infinite bus with a dynamic load.

four buses, one slack bus, one tap changing transformer, three transmission lines

and one dynamic load. This test system and data are taken from [61] and is shown

in Figure 2.1. In Figure 2.1 x1,x2 and x3 are the line reactances in per unit.

The continuous dynamics of the real power load in bus 4 (B4) considered as a

first order dynamic exponential recovery load given by:

Tpẋp(t) = −xp(t) + po(vt(t)
αs − vt(t)αt)

pL(t) = xp(t) + povt(t)
αt ,

(2.6)

where, xp is the load state driving the actual load demand pL; vt is the voltage at the

load bus; αs and αt are exponents and po is the nominal active power load. The load

undergoes an initial transient given by the term pov
αt
t during a voltage disturbance

and recovery of the load dictated by the time constant Tp.

Tap changing logic of the transformer is for low voltages i.e. for increasing tap

ratio. Note that this tap changing transformer models are discussed in details in

the next chapter. The model can be represented in the DSAR form as,
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ẋ1 = y1y7

0 = y2 − v3 + vlow

0 = y3 − y4 + z1

0 = y6 −m+mmax −mstep/2

0 = mv2 − v3

0 = y1 − 1 if y2 < 0

0 =


y1

y4 − x1 if y2 > 0

0 = y7 − 1 if y6 < 0

0 = y7 if y6 > 0

0 = y5 − x1 + z1 + Ttap if y3 < 0

0 = y5 − x1 + y4 + Ttap if y3 > 0
z+

1 = x−1

m+ = m− +mstep when y5 = 0 ,

where v2 and v3 are the bus 2 and 3 voltages respectively; m is the transformer tap

ratio; x1 is the state variable considered as a timer; Ttap is the time delay of the

consecutive tap changes; mmax is the maximum tap ratio; mstep is the tap step and

vlow is the voltage dead-band. All other algebraic (y1−y7) and discrete variable (z1)

are internal variables.

The simulation is carried out by tripping the line with reactance, x2 = 0.4 at
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Table 2.1: Parameters of the illustrative example I

Component Parameters

Slack |v| = 1.05, ∠θ = 0

Transformer vlow = 1.04, mmax = 1.1, Ttap = 20 s, mstep = 0.0125

Load po = 0.4 pu(MW), Tp = 5, αt = 2, αs = 0
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Figure 2.2: Trajectories of illustrative example I.

t = 10 s. The initial tap position is set to 1.0375. Data of the test system is given

in Table 2.1. The simulation results are shown in Figure 2.2. The dynamics of the

tap-changing transformer are driven by different events that govern the behavior of
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the timer. If the voltage is within the dead-band (y2 > 0) or the tap position is

at the upper limit (y6 > 0) then the timer is blocked. When the voltage is outside

the dead-band (y2 < 0), the timer will run and if the timer reaches Ttap(y5 = 0),

a tap change occurs. After every tap change, the timer is reset but not necessarily

blocked.

From the simulation results shown in Figure 2.2, it is evident that the proposed

DSAR structure is capable of simulating combined continuous and discrete dynamics

of power systems. However, Hiskens’s formalism requires an additional algebraic

variable for each discrete change. This is not strictly necessary. Moreover, this

method is prone to deadlock if a sliding condition appears [60]. This is further

addressed in Chapter 4-6.

2.3 Modeling in DOME

The hybrid framework used in this work considers a modified version of Hiskens’s

method. This framework does not require to create an additional algebraic variable

(shown in Section 2.3.3), allows to identify deadlock situations (discussed in Chapter

5 and 6). In addition a semi-implicit method [75] is used to represent the math-

ematical model of power systems instead of an explicit DAE. The details of this

modeling framework are discussed in this section.
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2.3.1 Semi-implicit DAE Formulation

The following DRHS DAE formulation is used to represent the hybrid dynamical

power systems,

T (x, y)ẋ = f(x, y, z) , (2.7)

R(x, y)ẋ = g(x, y, z) ,

where f are the differential equations, g are the algebraic equations, x, x ∈ Rnx are

the state variables, e.g. generator rotor speeds, and y, y ∈ Rny , are the algebraic

variables, e.g. bus voltage magnitudes and z, z ∈ Nnz , are the discrete variables,

e.g. status of discontinuous state variables. The functions f , g are at least C1.

T (x, y) and R(x, y) are nx × nx and my × nx. Observe that this model becomes

an explicit hybrid DAE, if T (x, y) = Inx , where Inx is the identity matrix of order

nx and R(x, y) = 0.

Equation (2.7) is a collection of continuous DAEs, one per each discrete variable

(z) change using if-then rules. This is illustrated below,

if (condition) :


T (x, y)ẋ = f1(x, y, z1) ,

R(x, y)ẋ = g1(x, y, z1) .

(2.8)

else :


T (x, y)ẋ = f2(x, y, z2) ,

R(x, y)ẋ = g2(x, y, z2) .

(2.9)

In dome, it is assumed that the numerical integration technique utilised to

solve the time domain simulation is based on an implicit method, e.g., the implicit
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trapezoidal method (ITM) or a backward-differentiation formula (BDF) [76]. It

is also assumed that the elements of the Jacobian matrix of the DAEs, say As =(
fx fy
gx gy

)
, are computed analytically and no symbolic re-factorization is required when

a discrete variable is changed.

2.3.2 Event Handling

The conditions in the brackets of “if-else” block in (2.8-2.9) generally depend on

time and/or state or algebraic variables. These conditions are known as time event

and state event respectively [28] and briefly described below.

� Time Events: If the exact time at which discontinuity is known in advance

of the simulation, it is known as a “time event”. For example, opening a line

connecting two buses at a certain time in a power system network during a time

domain simulation can be scheduled in advance. As it is possible to set the point

in time, a value change of discrete variable such events are handled efficiently.

� State Events: If the time of occurrence of a discontinuity is not known in

advance, it is known as “state event”. For example, if a state variable is limited

to a constant magnitude, one does not know “a priori” if and when the variable

will take the limit value. In such case, only the event condition is known rather

than the event time and the event condition is specified in terms of a continuously

varying state or algebraic variable.

The simulation of state events is not easy to implement because it requires to

solve several issues, such as: event location, transversal intersections, exits from

the discontinuity surface, sliding motions, etc. There are basically two methods to
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perform all these tasks, namely, time stepping and event driven techniques. Both

techniques are considered in dome and briefly discussed below.

� Time stepping method: This method ignores the event location’s detection

and relies on the local error estimation to ensure the error remains acceptably

small when a discontinuity occurs [41]. This method is common in power system

software tools because it is less computationally demanding [47].

� Event driven method: This method detects the accurate time of the events

using an event function. When the numerical simulation reaches an event point,

the simulation restarts from that point [93]. Event functions are usually speci-

fied implicitly, i.e., in the form of zero-crossing functions. Therefore, the event

detection method relies on when a variable associated with it crosses through

zero [28,111].

2.3.3 Illustrative Example II

Consider the Single Machine Infinite Bus (SMIB) system shown in Figure 2.3,

the generator is equipped with an Automatic Voltage Regulator (AVR) as depicted

in Figure 2.4. This AVR model is a DC1C type [8] and is described by the following

differential and algebraic equations (considering the upper limit):
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Figure 2.3: A single generator connected to an infinite bus.
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Figure 2.4: Block diagram of the DC1C type AVR.

Trv̇m = vg − vm , (2.10)

Tav̇r1 = (ka(vref − vm − vr2 −
kf
Tf
vf )− vr1)z1 , (2.11)

Tf v̇r2 = −(
kf
Tf
vf + vr2) , (2.12)

Tev̇f = −(vfke − vr) , (2.13)

0 = vr1z1 + vmax
r z2 − vr . (2.14)

where vg is the measured voltage; vref is the reference voltage; Tr, Ta, Tf and Te are

the time constants; ka and kf are gains; vf is the generator field voltage; vm, vr1,

vr2 are the internal state variables and vr is the algebraic variable.
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The anti-windup limiter [8] on the amplifier of the AVR is implemented by

changing the status of the discrete variables z1 and z2 (for simplification only upper

limit is discussed), as follows,

if vr1 ≥ vmax
r :


z1 = 0 ,

z2 = 1 ,

(2.15)

else :


z1 = 1 ,

z2 = 0 ,

(2.16)

and the right hand side of the equations (2.11 and 2.14) are automatically switched.

For both time stepping and event driven method the zero crossing or the event

function is vr1 − vmax
r .

In this example, the elements of Jacobian matrix As are derived analytically.

This AVR block has, x = [vm vr1 vr2 vf ]
T ; y = [vr]; f(x, y, z) are given by (2.10-

2.13) and g(x, y, z) is given by (2.14). The elements of the As related to the AVR

block are calculated using the partial derivatives: fx = [∂f(x,y,z)
∂x

]; fy = [∂f(x,y,z)
∂y

];

gx = [∂g(x,y,z)
∂x

] and gy = [∂g(x,y,z)
∂y

]. Therefore calculating,

fx =



∂f1
∂vm

∂f1
∂vr1

∂f1
∂vr2

∂f1
∂vf

∂f2
∂vm

∂f2
∂vr1

∂f2
∂vr2

∂f2
∂vf

∂f3
∂vm

∂f3
∂vr1

∂f3
∂vr2

∂f3
∂vf

∂f4
∂vm

∂f4
∂vr1

∂f4
∂vr2

∂f4
∂vf


=



−1 0 0 0

−kaz1 −z1 −kaz1 −kakf
Tf
z1

0 0 −1 − kf
Tf

0 0 0 −ke


, (2.17)
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Table 2.2: Parameters of the SMIB system

Name Values

Generator M = 8, D = 0, x′d = 0.25, xd = 1, pm = 1, T ′d0 = 6

Line x13 = 0.3, x23 = 0.5

Load pl = 0.7, ql = 0.01

AVR ka = 20, ke = 1, kf = 0.06, Ta = 0.2, vmax
r = 1.5,

Tr = 0.001, Te = 1, Tf = 0.35

fTy =

[
∂f1
∂vr

∂f2
∂vr

∂f3
∂vr

∂f4
∂vr

]T
=

[
0 0 0 1

]T
, (2.18)

gx =

[
∂g1
∂vm

∂g1
∂vr1

∂g1
∂vr2

∂g1
∂vf

]
=

[
0 z1 0 0

]
, (2.19)

gy =

[
∂g1
∂vr

]
=

[
−1

]
. (2.20)

The DAEs of the AVR (2.10-2.14) and Jacobian matrices (2.17-2.20) are used to

implement the model in dome. By following this, all other models are implemented

too. Considering a third-order type generator model [76] the SMIB system (see

Figure 2.3) is simulated by applying a three-phase fault at time t = 1 s for 150 ms

and the parameters of all the components are given in Table 2.2. This perturbation

at 1 s is an example of a time event. The trajectories of vr1, vf , v3 and z1 are

shown in Figure 2.5. Following the fault state variable vr1 reaches to the maximum

limit and the discrete variable z1 switches to zero. This makes the right-hand side

of equation (2.11) zero and precludes the windup affect. This is an example of a

state event. A little bit after the fault is cleared vr1 returns within the limit and the

integration starts again through switching z1 to 1. In addition, for every switching of
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Figure 2.5: Trajectories of vr1, vf , v3 and z1 in the SMIB system.

z1, a re-factorization of the Jacobian matrices is completed. However, the diagonal

elements remain non-null to avoid the singularity.

2.4 Conclusions

This chapter introduces hybrid dynamical systems and discusses power systems’

mathematical modeling as a class of hybrid systems. Specific implementations of

hybrid models representing power systems for time-domain simulation are presented

and illustrated through two examples. Hybrid automata are the most effective

implementations and this is the model adopted in this thesis.
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3 Under Load Tap Changers

3.1 Introduction

Long-term voltage control is aimed at maintaining the voltage magnitude of buses

at the transmission and distribution levels within a given range and properly share

the reactive power among available resources. The most common long-term voltage

controllers equip the Under-Load Tap Changer (ULTC) transformers that interface

transmission and distribution networks.

Most transformers those interfacing the transmission with the distribution sys-

tems, have under-load tap changing capability. The modeling of such transformers

is crucial for long term voltage stability analysis [112] due to the presence of non-

linearity (dead-band, time delay, discrete tap positions) in these transformers. Even

though the circuit model of tap changing transformers is well known, the model of

the controller of such devices differs depending on the applications and/or imple-

mentations [77].

As the integration of stochastic distributed renewable energy resources increases,

undesirable voltage fluctuations are observed in different levels of power systems.

While this behavior is expected, to properly reproduce the precise dynamic behavior

of ULTC regulators through simulations is not a trivial task. Moreover, as thor-

oughly discussed in this chapter, the ULTC controller’s implementation significantly
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impacts the overall system dynamic response. This chapter addresses this modeling

issue from a dynamic point of view, considering stochastic variation of the load

power consumption and wind power generation at the distribution system level.

The effect of stochastic distributed generation such as wind power and photo-

voltaic on the frequency of tap change and performance of the ULTC have been

studied in [17, 70, 99]. These studies are relevant from the economic point of view

as 50% of maintenance cost of such transformers is related to the number of tap

operations. However, the aforementioned studies are based on step-wise power flow

solutions, and do not consider the dynamic behavior of ULTC controllers. Studies

based on time domain or quasi-steady-state simulations are considered in [96] and

[12], respectively. These references do not consider stochastic modeling.

Most of the previous studies showed the behavior of ULTC transformers consid-

ering either steady-state power flow or quasi steady-state analyses. This is adequate

enough for the appraisal of power system operation. However, when considering a

short period, e.g. within a time frame of 5 to 15 minutes, stochastic fluctuations due

to loads and distributed generation can lead to variations of the tap changers that

might not be captured using a steady-state or quasi-steady state approaches. That

is why the focus of this chapter is on ULTC operations occurring in a time scale of

15 minutes.

The remainder of this chapter is organized as follows. Section 3.2 briefly in-

troduces tap changer transformers and and Section 3.3 presents the discrete and

continuous models of ULTCs and their controllers for dynamic studies. Section 3.5

discusses the dynamic response of such devices considering deterministic scenarios.

Section 3.6 includes load and wind speed models formulated as stochastic differential

equations which properly capture the probability distribution and autocorrelation of
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the stochastic processes and Section 3.7 presents the stochastic case study. Finally,

in Section 3.8, conclusions are drawn.

3.2 Under-Load Tap Changer

Transformers are ubiquitous in transmission and distribution systems. They

connect sections of the network at different voltage levels. Depending on the system

structure, these transformers are:

� Step-up transformers at generator terminals;

� Transformers connecting different transmission voltage levels; and

� Transformers feeding a distribution system.

Voltage control through changing transformer ratios by using “taps” at different

voltage level is a common strategy. For example transformers feeding to a distribu-

tion system compensate changes in the voltage due to changes in the load without

interruption employing a automatic tap changing mechanism. Such transformers

are often known as Load Tap Changing (LTC) or ULTC or On Load Tap Changing

(OLTC) transformer. Details of fundamentals on transformers can be found in [51].

Next the modeling of the circuit of ULTC transformers as well as a variety of discrete

and continuous voltage control schemes are discussed.
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Figure 3.1: A tap-changer under-load transformer with a voltage controller.

3.3 Model

The general scheme of an ULTC transformer with automatic voltage control is

shown in Figure 3.1. Three main physical components compose these transformers:

(i) an automatic voltage regulator; (ii) a tap changer with a switching mechanism;

and (iii) the main transformer.

The voltage regulator includes: (i) a measuring element to measure the voltage

(or reactive power) on the connected bus; (ii) a unit to compare the difference

between measured and reference quantity; (iii) a dead-band element that reduces

the sensitivity of the controller; and (iv) a time-delay element that limits the number

of variations of the tap position.

The tap changer selects a tap to change from the previous position using a

switching principal and there exists several switching mechanisms. Few commonly

found mechanisms are: the high-speed resistor type, the reactor type and the vacuum

type [42]. The whole process of the tap changer is achieved through a driving

mechanism.

An illustration of the switching sequence of a resistor-oil type ULTC comprising
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Figure 3.2: Sequence of switching of tap changer: tap selector (a-c) and diverter switch
(d-g) [42].

a diverter switch and a tap selector in Figure 3.2. The tap selector first selects the

tap at no load (see (a)-(c) in Figure 3.2). Next, the diverter switch transfers the

load current selected tap from the tap in operation (see (d)-(g) in Figure 3.2). A

driving mechanism completes the switching tasks.

3.3.1 Circuit

Figure 3.3 shows the equivalent circuit of a two-winding transformer assuming

the tap is on the primary [76]. As v̄′h = v̄h/m, the currents injections at buses h′
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Figure 3.3: Equivalent circuit of the transformer with tap ratio module and series
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ȳT
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Figure 3.4: Equivalent circuit of a transformer.

and k are:


ī′h

īk

 = ȳT


1
m2 − 1

m

− 1
m

1



v̄h

v̄k

 . (3.1)

Considering the physical buses h and k and including magnetization and iron

losses on the primary winding (see Figure 3.4), one obtains:
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īh

īk

 =


gFe + jbµ + ȳT

1
m2 −ȳT 1

m

−ȳT 1
m

ȳT



v̄h

v̄k

 , (3.2)

where ȳT = (rT + jxT )−1; gFe, bµ, rT and xT are transformer iron loss, magnetizing

susceptance, resistance and reactance respectively. Finally, the power injections at

buses h and k are:

ph = v2
h(gFe + gT/m

2)− vhvk(gT cos θhk + bT sin θhk)/m ,

qh = −v2
h(bµ + bT/m

2)− vhvk(gT sin θhk − bT cos θhk)/m ,

pk = v2
kgT − vhvk(gT cos θhk − bT sin θhk)/m , (3.3)

qk = −v2
kbT + vhvk(gT sin θhk + bT cos θhk)/m .

Where ph and qh are the active and reactive powers at bus h; pk and qk are the

active and reactive powers at bus k; θhk is the angle difference between bus h and k

i.e., θhk = θh − θk; gT is the transformer conductance.

3.4 Control

In this section, two commonly used control models are considered based on the

references [27, 77, 112, 119], namely, (i) the discrete model and (ii) the continuous

model.
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3.4.1 Discrete model

In this model, the tap ratio m is a discrete variable that can take only fixed

values in the range of mmax and mmin by a fixed step ∆m. The tap ratio can move

up or down by one step ∆m if the controlled voltage vk deviates more than a given

dead-band db with respect to the reference voltage vref for longer than a given period

∆t. The switching logic of the tap ratio is:

m(t) = m(t−∆t) + f
(
e(t), c(t), τ(t)

)
∆m , (3.4)

where e models the dead-band, τ the time-delay, c is a memory function that stores

the time elapsed since the tap change and τ = τd + τm is the time delay. τd is the

adjustable time delay of the controller and τm mechanical switching time delay. The

e and c are expressed as:

e(∆v(t),m(t−∆t), db,mmax,mmin) =
1, if ∆v(t) > db and m(t−∆t) < mmax ,

−1, if ∆v(t) < −db and m(t−∆t) > mmin ,

0, otherwise ,

(3.5)

c(e(t), c(t−∆t)) =
c(t−∆t) + ∆t, if e(t) = 1 and c(t−∆t) ≥ 0 ,

c(t−∆t)−∆t, if e(t) = −1 and c(t−∆t) ≤ 0 ,

0, otherwise ,

(3.6)

(3.7)
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where t is the current simulation time, t−∆t is the previous simulation step.

The function f depends upon the mode of operation: sequential or non-sequential

mode. The control mechanism of sequential and non-sequential models are shown

in Figures 3.5 and 3.6, respectively. The timer is reset after each tap change in

non-sequential mode whereas in sequential mode the timer is reset only after the

voltage is back within the dead-band range.

m = m+∆m

τ > τd

∆v < db

Count1

τ > τm

Count2Hold

∆v < db

∆v > db ∆v > db

Figure 3.5: Sequential control mode.

m = m+∆m

τ > τd

reset

Count1

τ > τm
Count2Hold

∆v < db

∆v > db

Figure 3.6: Non-sequential control mode.

The function f is as follows:

� For non-sequential mode,

f
(
e(t), c(t), τ(t)

)
=

1, if e(t) = 1 and c(t) > τ(t)

−1, if e(t) = −1 and c(t) < τ(t)

0, otherwise ,

(3.8)
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� For sequential mode,

f
(
e(t), c(t), τ(t)

)
=

1, if e(t) = 1 and c(t) > τ(t) ,

for subsequent taps if e(t) = 1 and c(t) > τm(t)

−1, if e(t) = −1 and c(t) > τ(t) ,

for subsequent taps if e(t) = −1 and c(t) > τm(t)

0, otherwise ,

(3.9)

the time delay τ can be fixed or variable. In case of variable time delay, the higher the

voltage error the faster the tap change. Depending on different time-delay settings

four different discrete models are considered for both sequential and non-sequential

mode and summarized below:

� D1: both delays are fixed, τd = τd,0 and τm = τm,0;

� D2: τd is combination of fixed and variable time, τd = τd,0 · db
|∆v| + τd,1 and τm is

fixed, τm = τm,0;

� D3: τd is variable, τd = τd,0 · db
|∆v| and τm is fixed, τm = τm,0;

� D4: both delays are variable, τd = τd,0 · db
|∆v| and τm = τm,0 · db

|∆v| .

3.4.2 Continuous model

The continuous control model approximates the tap ratio step ∆m to be small,

so that tap ratio m can vary continuously. The time delays are approximated as a
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lag transfer function and the tap ratio differential equation is given by:

ṁ(t) = −Hm(t) +K
(
vk(t)− vref

)
, mmin ≤ m(t) ≤ mmax , (3.10)

where H, K, vk and vref are the integral deviation, inverse time constant, secondary

bus voltage and controlled reference voltage, respectively. The dead-band is not

included in this model. Note that it is possible to create an equivalent continuous

model of each discrete model discussed in the previous Section [77].

3.5 Deterministic Case Studies

The impact of the voltage control action of different Under-Load Tap Changer

(ULTC) discrete controller implementations to the long-term voltage stability is

studied in this section using deterministic case studies.

3.5.1 Case Study 1: Four-Bus System

The four bus system presented in Section 2.2 is used. Compared to the illustrative

example I discussed in Section 2.2, only the network data is modified to consider

ULTC impedance. This is illustrated in Figure 3.7 and the ULTC data are given

in Table 3.1. The adjustable and mechanical switching time delay parameters are

also given in Table 3.1. To prevent unnecessary tap changes a non-zero adjustable

time delay is generally used and depending the tap change switching mechanism the

switching delay is varied. The range of these delay parameters is discussed in [112].

In this example The contingency consists of a line outage between B1 and B2 at

t = 5 s (x = 0.4). Figures 3.8-3.9 show the trajectories of voltage at bus 3 for
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Figure 3.7: A single static generator connected to an infinite bus.

Table 3.1: Base case parameters of the test system of Figure 3.7

Component Parameters

Discrete
Model

db = 4%, ∆m = 0.0125, τd,0 = 15 s, τd,1 = 5 s, τm,0 = 8 s

All ULTCs mmax = 1.1, mmin = 0.8, rt = 0, xt = 0.4 pu
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Figure 3.8: Voltage magnitude at bus 3 using non-sequential discrete ULTC models.

non-sequential and sequential discrete models respectively.

Following the disturbance, the voltage response is faster using the sequential

models compared to the non-sequential models. This is due to the reset logic of the

time delay (see Figures. 3.5-3.6). While using non-sequential tap changers the delay

setting is reset after each tap change however for sequential model reset happens

after the voltage level is restored within the normal operating range. That is why a

faster response is achieved for sequential type model.
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Figure 3.9: Voltage magnitude at bus 3 using sequential discrete ULTC models.

Comparing all non-sequential models (NS D1 - NS D4) and sequential models (S

D1 - S D4), the voltage response is comparatively faster when moving from delay

settings D1 to D4 because the time delay changes dynamically depending on the

voltage deviation. Moreover, all ULTCs restore the voltage at the same voltage

so number of tap operation is same for all ULTCs. These results indicate that

the sequential model with variable time delay (D4) restores the voltage within the

dead-band faster compared to all other discrete tap changers.

3.5.2 Case Study II: Nodic-32 System

The Nordic test system presented in [64] is used for the second deterministic

case study. The system includes 74 buses; 102 branches, of which 20 step-up and

22 distribution transformers with ULTCs; 20 generators, of which 7 are round rotor

and 13 are salient pole types, with Turbine Governors (TGs), Automatic Voltage

Regulations (AVRs), Power System Stabilizers (PSSs), and Over-Excitation Limiters

(OELs). The system consists of four areas: North, Central, Equivalent and South.

The base case of the system is heavily loaded with large power transfers from North
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Figure 3.10: Voltages at the generator and distribution buses in dome and reference [64].

to Central areas. The power flow results achieved in dome for the base case are very

close to the results given in [64]. Figure 3.10 shows the comparison of bus voltages

in generator terminals and distribution buses respectively. Small mismatches in the

power flow results are due the ULTCs in the network.

All dynamic models used in this case study match those reported in [64], except

for the OELs, which are modeled as in [76]. Therefore using dome trajectories

achieved do not match exactly with reference [64], however dynamic solution shows

similar stability issue. The parameters of all devices are also given in [64]. All

distribution transformers are equipped with a ULTC controller with dead-band db =

2%, maximum and minimum tap position are mmax = 1.2 and mmin = 0.8 with step

size ∆m = 0.01. The values for the time delays are given in Table 3.2.

The comparison discussed in this section considers the dynamic response follow-

ing a three-phase fault at bus 4032, occurring at t = 1 s and cleared at t = 1.06

s by opening the line between buses 4032-4044. Transient response of voltage of a

distribution bus at the Central area is shown in Figures 3.11-3.12 for non-sequential

and sequential discrete tap changers respectively.

The line trip following the fault forces power to flow North-Central corridor over

the remaining lines. However, the reactive power capabilities of the Central and
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Table 3.2: Delays of ULTCs

Transformer
Delays (s)

Transformer
Delays (s)

τd0 τd1 τm τd0 τd1 τm

11-1011 30 5 8 41-4041 31 5 9

12-1012 30 5 9 42-4042 31 5 10

13-1013 30 5 10 43-4043 31 5 11

22-1022 30 5 11 46-4046 31 5 12

1-1041 29 5 12 47-4047 30 5 8

2-1042 29 5 8 51-4051 30 5 9

3-1043 29 5 9 61-4061 30 5 10

4-1044 29 5 10 62-4062 30 5 11

5-1045 29 5 11 63-4063 30 5 12

31-2031 29 5 12 71-4071 31 5 9

32-2032 31 5 8 72-4072 31 5 11
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Figure 3.11: Voltage magnitude at bus 1 using non-sequential discrete ULTC models.

Northern generators impacts the maximum power delivered to the Central loads.

On the other hand, the ULTCs try to restore the voltages of the distribution buses

and load powers. In this case, however, the amount of power that the ULTCs

have to restore is greater than the maximum power that can be delivered by the

generation and the transmission system and, hence, a voltage instability occurs,

which eventually leads to a voltage collapse. It is discussed in the previous example
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Figure 3.12: Voltage magnitude at bus 1 using sequential discrete ULTC models.

that the sequential models restore the voltage level faster compared to the non-

sequential models. However in this case study if the ULTCs act faster the power

mismatch will happen faster which in turn results in a faster collapse. The collapse

occurs in the time scale of minutes, hence the notation long-term voltage instability.

Similar to Case Study 1 in Section 3.5.1, due to the dependency of the time-

delay of the tap switching on the voltage error, non-sequential and sequential ULTC

controllers show different transient responses. Due to its slow response, the non-

sequential ULTCs controllers take a longer time than sequential ULTC controllers

to drive the system to collapse.

3.6 Stochastic Modeling

This section outlines the load consumption and wind speed models considered

in the stochastic case study discussed in the example of Section 3.7. These models

include stochastic perturbations modeled by means of the following Itô-type differ-
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ential equation:

η̇(t) = a
(
η(t), t

)
+ b
(
η(t), t

)
ξ(t) , (3.11)

where η is the state variable that describes the stochastic process, a and b are the

drift and the diffusion terms respectively, and ξ is the white noise, i.e. the formal

time derivative of the Wiener process [52]. Equation (3.11) is a general expression

that can take into account both Gaussian and non-Gaussian processes and is thus

appropriate to model load power variations [78] and wind speed fluctuations [121].

3.6.1 Voltage Dependent Load

The well-known Voltage Dependent Load (VDL) model is given by [76]:

pL(t) = −pL,o(v(t)/vo)
γ ,

qL(t) = −qL,o(v(t)/vo)
γ ,

(3.12)

where pL,o and qL,o are the active and reactive powers at the the nominal voltage

vo; v is the voltage magnitude of the bus where the load is connected; and γ is the

power exponent. For the VDL model γ = 2.

Merging together the stochastic equation (3.11) and the load equations (3.12)

lead to a Stochastic VDL (SVDL) load model. Since load variations are approxi-

mately Gaussian and show a constant standard deviation, we define the diffusion

terms a and b in (3.11) to resemble an Ornstein-Uhlenbeck process [78]. The resulting
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SVDL load model is:

pL(t) = (−pL,o + ηp(t))(v(t)/vo)
γ ,

qL(t) = (−qL,o + ηq(t))(v(t)/vo)
γ ,

η̇p(t) = αp(µp − ηp(t)) + bpξp(t) ,

η̇q(t) = αq(µq − ηq(t)) + bqξq(t) ,

(3.13)

where the α terms are the speed at which the stochastic variables η are “attracted”

towards the mean values µ, and the b terms represents the volatility of the processes.

3.6.2 Wind Speed

To emulate the wind speed, a and b in (3.11) must be defined so that the prob-

ability distribution of η is a Weibull process. It is also important to reproduce the

autocorrelation of the wind speed, which is assumed to be exponentially decaying.

This can be achieved through the regression theorem and the stationary Fokker-

Planck equation, as thoroughly discussed in [121]. The resulting drift and diffusion

terms are:

a
(
η(t)

)
= −α ·

(
η(t)− µW

)
,

b
(
η(t)

)
=
√
b1

(
η(t)

)
· b2

(
η(t)

)
,

(3.14)

where α is the autocorrelation coefficient; µW is the mean of the Weibull distribution;

and

b1

(
η(t)

)
=

2 α

pW

(
η(t)

) ,
b2

(
η(t)

)
= λ · Γ

(
1 +

1

k
,

(
η(t)

λ

)k)
− µW · e−(η(t)/λ)k ,
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where pW is the Weibull Probability Density Function (PDF); Γ is the incomplete

Gamma function; k and λ are the shape and scale parameters of the Weibull

distribution, respectively.

3.7 Stochastic Case Study

The test network considered in this example is a small Irish distribution system

with both radial and meshed configurations [81]. The network includes eight buses,

six loads, two wind generation, one slack bus and eight transmission lines. The

operating nominal voltage of B1-B8 is 38 kV and the buses are fed by an ULTC

type step down transformer from a 110 kV network. The network topology is shown

in Figure 3.13. Network parameters can be found in [81].

The active and reactive power loading of the system are 15.02 MW and 8.29

MVAr respectively and the nominal wind farm capacities are 12 MW and 20 MW

at B5 and B3 respectively. 5% of the loads is a SVDL modeled as in (3.13) and the

95% is modeled as constant PQ (γ = 0 in (3.13)). The wind generator model is a

5th-order doubly-fed induction generator with variable-speed wind turbine having

discrete pitch control, first-order AVR, turbine governor and Maximum Power Point

Tracking (MPPT). The input to wind turbine is a stochastic wind modeled as in

(3.14).

Five different case studies are considered for different delay and dead-band set-

tings of the discrete ULTC models. 500 15-minute Monte Carlo simulations are

considered for each model and parameter set. The average number of tap operations

using sequential type ULTCs for different dead-band and time-delay settings are
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Figure 3.13: Topology of the test distribution network [81].

Table 3.3: Average number of tap operations using sequential discrete models

Cases
Parameter

D1 D2 D3 D4
db τd0 τm0

C1 2.2 15 8 4.40 3.46 4.72 7.94

C2 2.4 15 8 2.43 2.23 2.56 2.60

C3 2.5 15 8 1.79 1.68 1.83 1.85

C4 2.5 20 10 1.60 1.43 1.64 1.66

C5 3 15 8 0.97 0.95 0.97 0.97

given in Table 3.3. As expected, the higher the time delay and dead-band, the lower

the number of tap changes. This case study only considers sequential type ULTCs.

Due to the stochastic variation of the load and wind speed, non-sequential ULTC

controller models also yield similar results as sequential types because of similar

delay logic of first tap switch.

Figures 3.14 and 3.15 show 500 trajectories of the voltage at bus 1 for cases C1

and C5 (see Table 3.3) with D1 type discrete model. These figures also include

the mean, µ, and µ ± 3σ, where σ is the standard deviation. The mean and the

44



Figure 3.14: 500 stochastic trajectories and statistical properties of the bus 1 voltage
using sequential discrete model (D1) for case C1.

Figure 3.15: 500 stochastic trajectories and statistical properties of the bus 1 voltage
using sequential discrete model (D1) for case C5.

standard deviation of the 500 trajectories are calculated at every time instant of the

simulation interval which is 0.01 s. Observe that the distribution of the trajectories

is non-Gaussian. The average voltage trajectory is similar in both figures, however

C1 shows more than four times the tap operations of C5. Thus stochastic variations

are important to take account for preventing unnecessary tap changes.
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3.8 Conclusions

This chapters presents modeling and control of ULTCs for deterministic and

stochastic studies. The dead-band and delay settings of ULTCs play a vital role in

voltage restoration or collapse of the system. The deterministic case studies shows

that with the same number of tap changes sequential and non-sequential models

show different dynamic response. Though sequential models are preferred for a

faster dynamic performance but they can also contribute to faster system collapse.

Therefore this aspect has to taken account during system planning.

This Chapter presents an in detail stochastic case study through Monte Carlo

simulation to calculate the number of tap changes considering a 15-minute operating

window. When considering stochastic processes, the time domain analysis can

properly take account for ULTC tap variations as these cannot be rightly captured

considering steady-state analysis. Until now only steady-state analysis is considered.

Simulation results also allow concluding that, depending on the ULTC control

model, the number of tap operations can be significantly different, so it is crucial to

implement the right control logic accurately. This is another aspect that cannot be

captured by conventional steady-state analyses.
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4 Limiters of PI Controllers

4.1 Introduction

PI controllers are ubiquitous in power system applications, such as FACTS

devices [97], VSCs [91], IEEE standard excitation system models ST4C, ST6C,

ST8C, AC7C and AC11C [8], standard model for type-III wind turbine generators

developed by the Western Electricity Coordinating Council (WECC) [2], among

others because of their simple structure, easy tuning and overall good dynamic per-

formance. While the normal operation of PI controllers is univocal and straightfor-

ward to implement, there is no commonly accepted standard for the implementation

of hard limits on PI controllers. This modeling uncertainty is particularly critical

for VSC-based applications where it is crucial to keep the currents of the converter

within their operational limits. Also, due to the open access market and integration

of stochastic renewable energy, VSC applications of power systems are currently

often operated closer to their limits.

Figure 4.1 shows a real-world example of such a situation, where the High-

Voltage Direct Current (HVDC) links of Great Britain are operated at their limits

for a significant period of time during daily operation [3]. To protect the converter

switches from any over current the VSCs employ current limiters. Therefore it

is important to take into account the current limiters of VSC-based devices and

adequately model their hard limits.
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Figure 4.1: Power flow through the HVDC links of Great Britain (GB): Moyle (0.5 GW),
East–West Interconnector (0.5 GW), HVDC Cross-Channel (CH, 2 GW) and BritNed (1
GW) in July 03-04, 2017 [3].

This chapter addresses the modeling issue of PI controllers from a simulation

point of view and studies the impact of different implementations of PI limiters on

the dynamic response of power systems.

The remainder of this chapter is organized as follows. Section 4.2 introduces

different limiting methods of PI controllers and Section 4.3 discusses the implemen-

tation and numerical issues associated with PI controllers with anti-windup limiters.

Next, Section 4.4 presents the model of the VSC, its controllers along with tuning

method and shows how the limiting methods are applied to the controllers of the

VSC-based devices. Then Section 4.5-Section 4.7 illustrate the dynamic behavior

of the PI limiters of VSCs through WSCC 9-bus network and two real-world case

studies: (i) a 1,479-bus dynamic model of the all-island Irish system connected

to a simplified 63-bus dynamic model of the GB system through an HVDC link

that represents the East-West Interconnector (EWIC); and (ii) a 74-bus dynamic
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model of the Nordic system with the inclusion of a STATCOM device. Finally a

brief discussion on simulation results and conclusions are drawn in Section 4.8 and

Section 4.9 respectively.

4.2 PI Controllers

The Proportional, Integral and Differential (PID) control is the most common

control technique utilized in engineering applications. In power systems, the deriva-

tive component is often dropped as it can deteriorate the dynamic performance due

to the presence of noise and the occurrence of large disturbance [16]. Thus in this

work PI controllers are considered.

Figure 4.2 shows the schemes of the PI controllers considered in the remainder of

this chapter. These include an unconstrained standard PI model; a PI with windup

limiter; the PI with conditional integrator anti-windup limiter recommended by the

IEEE standard 421.5-2016; three back-calculation (or tracking anti-windup) anti-

windup types of PI controllers limiters; and a PI with combined conditional and

back-calculation limiter. Each model is discussed below.

4.2.1 Linear Model

PI0 is the conventional model without constraints:

ẋ = kiu ,

y = kpu+ x ,

(4.1)

where u, y, x, kp and ki are the input, output without limits, state variable,
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2016 with conditional integrator; (PI3) back calculation type I, (PI4) back calculation type
II; (PI5) back calculation with delay; and (PI6) combined conditional and back calculation.

proportional and integral gains, respectively.
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4.2.2 Windup Limiter

The PI1 model only limits the output y and thus the integral action is continuous

(smooth). This model is given by (4.1) and:

w =


wmax if y ≥ wmax ,

y if wmin < y < wmax ,

wmin if y ≤ wmin ,

(4.2)

where w is the limited output of the controller; wmax and wmin are the maximum

and minimum limits respectively.

4.2.3 Anti-windup Limiters

Models PI2 to PI6 include an anti-windup (AW) limiter. Only the AW models

commonly used in power system devices and software tools are considered. The

interested reader can find a detailed theoretical treatment of AW limiters of PI

controllers in [54].

� Conditional integrator: Conditional integration techniques consist in switch-

ing off the integration to avoid windup effects depending on certain conditions on

the variables of the PI. There are several definitions of the switching conditions

[116]. PI2 implements the solution proposed in IEEE Standard 421.5-2016 for
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power system applications, as follows [8]:

if y ≥ wmax : w = wmax and ẋ = 0 ,

if y ≤ wmin : w = wmin and ẋ = 0 ,

otherwise : w = y = kpu+ x and ẋ = kiu .

(4.3)

� Back calculation: The back calculation technique consists in tracking the

difference v = y − w and using v as a feedback signal to compensate the input

of the integrator channel of the PI when the output limits are binding. This

method is also known as tracking anti-windup or anti-reset windup and can be

implemented in several ways [108]. Three different tracking types are considered.

Among these, two utilize the feedback signal with gain (PI3 and PI4); and the

third one implements the feedback as a pure delay (PI5).

The model of PI3 is [65]:

ẋ = kiu− k̂sv , (4.4)

where k̂s = kiks and ks is the feedback gain.

The model of PI4, which is used in the software tool Simscape [6], is [59]:

ẋ = kiu− ksv , (4.5)

PI5 is available in the software tool EMTP-RV [74] among several other AW

techniques. The integral action is:

ẋ = ki(u− vd) , (4.6)
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where vd = v(t − τ) is the delayed feedback signal and τ is the constant time

delay.

� Combined conditional and back-calculation: Model PI6 combines a con-

ditional integration and a back calculation approach, where the summing point

that performs the feedback to the integral term is replaced by a switch [76,116].

The status of the switch depends on the following conditions:

if y 6= w, and uy > 0 : ẋ = ki(u− v) ,

otherwise : ẋ = kiu .

(4.7)

4.3 Numerical Issues

This section discusses numerical issues arising from the software implementation

of PI controller models presented in Section 4.2, as well as available techniques and

modeling solutions to avoid such issues. In particular, this section discusses the

deadlock (or chattering) phenomenon that occurs in model PI2 [48, 60]. Particular

care is devoted to properly distinguish numerical problems due to the discretization

required by computer-based integration schemes from the actual behavior of the PI

controllers due to their hardware implementation. It is important that the discussion

of section considers limit values of PI controller models are constant during time

domain simulation.

4.3.1 Software Implementation of PI controllers

The software implementation of models PI0 to PI6 is discussed below.
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� Model PI0 is linear and, thus, does not show any numerical issues, except those

due to possible discontinuities and jumps of the input signal u, which are not

discussed here.

� Model PI1 implements a windup limiter. This means that only the output

algebraic variable w is affected by the limits. The windup limits do not lead

to any numerical issue.

� Model PI2 can be implemented in various ways, some of which are known to

lead to numerical issues. The numerical issue is addressed in Section 4.3.2. The

implementation consists in introducing a discrete variable z in the equation of

the integrator channel of the PI:

ẋ = kiuz , (4.8)

with z = 1 if the output of the PI controller is not saturated, and z = 0 otherwise.

If, during the simulation, z switches from 1 to 0, x becomes constant.

� Models PI3-PI4 do not switch the dynamic state during the simulation, so it does

not require to use a discrete variable and do not present numerical integration

issues.

� Model PI5 uses a delay, whose integration can lead to spurious oscillations, even

with A-stable integration schemes such as the ITM [21]. However, no numerical

issue arises for the typical values of the delays of model PI5 used in power system

applications.

� Model PI6 is described by a set of hybrid DAEs, i.e., DAEs that mix continuous

and discrete variables. It has to be noted that, in this case, discrete variables are

part of the actual hardware implementation, not just a modeling issue. Physical
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Boolean variables, however, are treated in the same way as those introduced to

emulate windup and anti-windup limits in models PI1 and PI2, respectively.

4.3.2 IEEE Standard 421.5-2016

The state transitions of PI2 model are illustrated in Figure 4.3. The model has

three different states namely, integration (INT); maximum (MAX) and minimum

(MIN). In this section a simple example is used to explain the deadlock phenomenon

that can occur when using model PI2.

ẋ = 0

y ≥ wmax

y < wmax

INT

ẋ = kiu

MAXMIN
y ≤ wmin

y > wmin

ẋ = 0

Figure 4.3: State transitions of the anti-windup PI controller model.

Let us assume that the following input signal is given to a model PI2:

if t > 2 & t < 6 then: u̇ = −1 ,

else: u̇ = 1 ,

and assume the following parameters, wmax = 1.2, wmin = −1.2, ki = 20, kp = 1 and

the initial values for t = 0 are x0 = 0.05 and u0 = 0. The system is simulated for 10

s with a time step 0.001 s. Simulation results are shown in Figure 4.4. Below, we

describe how a deadlock condition is reached.

� For t < 2 the input u to the PI controller increases. Hence, the algebraic variables

of the PI, y and w, increase. Just before 1 second, y > wmax = 1.2, w becomes

constant, the integrator is locked and ẋ switches to 0.
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Figure 4.4: Simple example to explain the deadlock phenomenon that occurs with the
PI2 model.

� For t > 2, u and y decrease.

� At t = 3.317 s, y < 1.2 and the integrator should unlock. However, at the very

same time, u > 0 and, so, also ẋ > 0. Then x will increase, thus causing y to

increase again towards wmax. Depending on the time step of the integration and

on the value of ẋ and on the rate of change of the input u, a deadlock (cycling)

situation can arise which consists in locking and unlocking the state variable x

preventing the numerical integration to converge.

In the next chapter it is shown that this issue cannot be removed by reducing the
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max
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ẋ = kiu

MAX

kput + xt−1 ≥ wb
max

kput + xt−1 < wb

max

Figure 4.5: State transitions of the anti-windup PI controller for existing solutions:
superscripts a and b indicate the deadband- and time delay-based techniques, respectively.

time step of the integration scheme, thus, this deadlock is not just a software issue.

In any case, the digital hardware implementations also work with discrete quantities

and are thus prone to the same issues as the numerical integration. There exists

several techniques to avoid the numerical deadlock of the IEEE Std. type AW PI

controller. These are the following.

� DB (S1): A deadband (DB) is included into the switching logic of the integrator

[59]. The DB is implemented in such a way that if the integrator is locked, it can

not be unlocked unless the output w reaches the DB boundary. This technique is

illustrated in Figure 4.5. This solution also known as hysteresis [60], with similar

properties and issues of the deadband. As resulting equations for both approaches

are same, in this work DB approach is considered.

� LIT (S2): A decoupled AW on the integrator [48], known as Limited Integrator

Technique (LIT). The complete model is given by the following two sets of if-then

loops:

if y ≥ wmax : w = wmax ,

if y ≤ wmin : w = wmin ,

otherwise : w = y = kpu+ x , and

(4.9)
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if x ≥ xmax and kiu ≥ 0 : x = xmax and ẋ = 0 ,

If x ≤ xmin and kiu ≤ 0 : x = xmin and ẋ = 0 ,

otherwise : ẋ = kiu .

(4.10)

� Semi-implicit (S3): This technique consists in using a semi-implicit DAE

formulation [48] to convert the integrator state variable into an algebraic variable

to continue the simulation during deadlock.

� TD (S4): To move from the INT state to the MAX or the MIN, this method

considers the value of the integrator state variable from the previous time step

(see Figure 4.5).

� No-Convergence (S5): A simulator forces the solver to move to the next time

step after certain number of iterations even if the solver does not converge.

The drawbacks of the techniques: DB, TD and No-Convergence above are that

they do not truly represent the hybrid model and introduce artificial chattering.

Though it does not show chattering, the semi-implicit formulation (S3) does not

consider the effect of disturbances of the input to evaluate state transitions while

the state is in the deadlock region [48]. Moreover, the semi-implicit formulation

requires a solver-dependent implementation and is not supported by most software

tool. Finally, LIT does not yield same mathematical model of IEEE Std. (PI2).

In the remainder of this chapter, only DB and LIT are considered. Note that

using a DB of 0.005 the trajectory of the PI shown in Figure 4.4 does not show a

deadlock. However, the value of the DB is problem-dependent and cannot be fixed

a priori. Further discussion on this point is provided in Section 4.7.1.
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4.4 Voltage-Sourced Converter

In recent years, the voltage-sourced converter (VSC) has become the most com-

mon AC/DC device for renewable generation, energy storage systems and HVDC

connections. Both electromagnetic and averaged models have been proposed [91].

For the purpose of transient stability analysis, the Average Value Models (AVM) of

electronic converters appears the most adequate [30,31]. The AVM of the VSC along

with its control, parameter tuning and constraints are presented in the remainder

of this section.

4.4.1 Dynamic Model of the VSC

The configuration of a VSC is depicted in Figure 4.6 which includes a transformer

in the AC side, a bi-directional AC/DC converter, a condenser and its controllers.

Converter
AC SideDC Side

AC

DC

PWM

ControlInner

Level Control

Outer

Level Control

u1

u1

lac rac

vd vq

iref
ac,d

irefac,q

iac,d

iac,q

v̄acv̄t

pac + jqac

uref
2

gsw

u2

uref
2

Figure 4.6: VSC scheme interfacing a DC grid with an AC grid.

The dynamics of the AC side of the VSC considering a rotating dq-frame are
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given by:

raciac,d + lac
diac,d

dt
= ωaclaciac,q + vac,d − vt,d ,

raciac,q + lac
diac,q

dt
= −ωaclaciac,d + vac,q − vt,q ,

(4.11)

where rac + jxac is the aggregated impedance of the converter and transformer

impedances (xac = ωaclac, lac is the inductance), rac is the resistance; ωac, vac, iac

and vt are the frequency, AC grid voltage, AC side current and AC terminal voltage,

respectively. The power balance between the AC and DC sides of the converter is

given by:

pac + vdcidc − ploss −
1

2
cdc
d(v2

dc)

dt
= 0 , (4.12)

where pac = (3
2
)(vac,diac,d + vac,qiac,q);

1
2
cdc

d(v2dc)

dt
is the energy variation in the capac-

itor; ploss = (3
2
)raci

2
ac + gswv

2
dc are the circuit and switching losses of the converter

respectively, with i2ac = i2ac,d + i2ac,q and gsw is obtained from a given constant

conductance g0 and the quadratic ratio of the actual current to the nominal one, as

follows [82]:

gsw = g0

(
idc

inom
dc

)2

. (4.13)

In the equations above, AC quantities are expressed in the dq-reference frame,

achieved through a Phase-Locked Loop (PLL). The PLL forces the angle of the

dq-frame to track the angle θac.
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4.4.2 VSC Control

Figure 4.7 shows the vector-current control considered in this work. This control

strategy uses a dq-composition with the grid voltage as phase reference, an inner

current control loop to decouple the current into its d and q components. The

reference currents for the inner control are achieved using an outer or high level

controller loop.
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Inner Control Loop Converter

Figure 4.7: VSC converter and inner current control in dq-frame.

An outer control loop utilizes the d component to control active power or DC

voltage, and the q component to control reactive power or AC voltage. Both inner

and outer loops are implemented with PI controllers [19, 98]. Based on the current

limiting method of the VSCs, the outer control loop can have a constant or variable

limits. Figure 4.8 shows the possible configurations for the outer control loop. In

this chapter only constant limits on PIs i.e. configuration [I] is considered and other

types are discussed in Chapter 6.
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Figure 4.8: Outer control configurations: [I] constant limits; [II] variable limits with
wind-up PIs and [III] variable limits with AW PIs.

4.4.3 Current Limiters

Active and reactive power transfer capabilities are always constrained in VSC-

based devices. Violations of the operating limits can occur following a large dis-

turbances such as a fault or a line outage. Protections strategies aim at recovering

VSC currents to the pre-fault steady state. Depending on the power-electronic

interface, commonly found protection mechanisms include [113]: (i) ac-side over-

current limiting; (ii) modulation index limiting; (iii) reactive current boosting during

faults; and (iv) fault-ride-through during ac faults.

The advantage of using the control structure described in Section 4.4.2 is that

it can limit the current flowing into the converter during the disturbances. In the

implemented model of the VSC, such current limitation strategy is achieved through

the PI controllers and the current limiter of the outer loop. Current limit values are

chosen based on the priority between active (p) power or DC voltage and reactive

(q) power or AC voltage depending on the applications.
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For configuration [I] in Figure 4.8, if the priority is given to the active power or

DC voltage, iref
ac,d is limited to the maximum current capacity ±imax whereas iref

ac,q is

limited in such a way that the total current does not exceed the maximum current

rating of the converters [19], as follows:

imax
d = imax ,

imax
q =

√
i2max − i2ac,d .

(4.14)

4.4.4 Tuning of the Controller

The tuning of the PI controllers is carried out considering the closed-loop dy-

namic response of the system when the PI control is not limited. In practice, PI

controllers are first designed without explicitly considering saturation constraints.

Then an anti-windup limiter is applied to reduce the windup effect [16], [34]. Since

the model of a non-saturated PI controller is unique, the first step will always result

in same proportional and integral gain parameters for all the PI models considered

in this Chapter.

The structure of the controllers for both d- and q-axis current control loops

are identical and so are assumed to be their parameters. The gains for the PI

controllers in the inner control are chosen based on the pole cancellation technique

as follows [30],

kp =
lc
τc

and ki =
rc

τc
, (4.15)

where lc and rc are the inductance and resistance respectively, τc is the desired time

constant of the closed loop step response, the typical range of τc for VSC-based

applications is [0.5, 5] ms [11]. A trial-and-error technique is used for the tuning
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Figure 4.9: WSCC 9-bus test system with a VSC-based STATCOM connected at bus 8.

of the outer controllers and the back calculation gains for PI3 and PI4. However

feedback gains in PI3 and PI4 can be tuned using other techniques, i.e., a Linear

Matrix Inequality (LMI) technique such as the one discussed in [105].

4.5 Case Study I: WSCC 9-Bus System

The WSCC 9-bus test system (see Figure 4.9) with a VSC-based STATCOM,

connected at bus 8 is used for time domain simulation. The test network consists

of three synchronous machines, three two-winding transformers, three loads and six

transmission lines. All generators are equipped with AVRs and TGs. The current

limit is set by giving priority to reactive power. The STATCOM parameters are

given in Table 4.1.

4.5.1 WSCC-9 Bus: Simulation Results

A three phase fault at bus 6 was simulated at t = 1 s and cleared after 80

ms through disconnecting the line that connects buses 6 and 9. This line is put
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Table 4.1: VSC-based STATCOM parameters

Name Values

Converter xac = 0.041 pu, rac = 0.003 pu

Current Limits imax
q = 0.3 pu, imin

q = −0.23 pu, ilimac,d = ±0.01 pu

Outer Control ko,q
p = 5.5, ko,d

p = 50, ko,q
i = 45, ko,d

i = 25

Inner Control ki,q
p = 0.2, ki,d

p = 0.2, ki,q
i = 20, ki,d

i = 20

ko,q
p , ko,d

p , k
o,q
i , k

o,d
i are the outer level q and d axis proportional and integral gains;

ki,q
p , ki,d

p , k
i,q
i , k

i,d
i are the inner level q and d axis proportional and integral gains.
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9-bus system: using using PI0 - PI3 (left); using PI0 and PI4 - PI6 (right).

back in service at t = 6 s. Simulation is carried out considering both the upper

and lower current limits (see Table 4.1) of the PIs (PI0 - PI6) controlling AC and

DC voltages. The trajectories of the voltage at bus 8 (v Bus 8) and q-axis current

reference (iref
ac,q) are shown in Figures 4.10 and 4.11, respectively, for the different PI

controller configurations.
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The response of PI0 (no limits) is used as reference for the comparison. PI3 - PI6

provide fairly similar transient responses because they consider a feedback when the

output hits the limit. The non-zero feedback signal drives the integrator in order to

restore the output to within limit, therefore these models provide similar transient

responses. For all the PI types the current reference converges to steady state,

however the convergence rate is different. It is evident from Figures 4.10 and 4.11

that there is a considerable difference in the transient behavior when considering

different anti-windup strategies (PI2 - PI6) because of difference in the response of

the integrator state variable.

4.5.2 Effect of Feedback Gain of PI3 and PI4

The response of the WSCC 9-bus test system facing the same disturbance in

previous Section using different ks of the PI3 and PI4 are now studied. The

trajectories of the bus voltage (v Bus 8) and state variables of AC voltage controller

are shown in Figure 4.12. It can be seen that there are differences in the trajectories

due to the different values of the feedback gain parameter. To ensure a relatively fast

response of the integrator, it is recommended to use a higher value of this feedback

gain. Nevertheless a higher feedback gain does not ensure a better transient response

(see Figures 4.12 - 4.13). So it is important to tune this parameter appropriately.

4.6 Case Study II: Irish System

This case study considers the all-island Irish transmission system connected

through the VSC-HVDC link, namely, the East-West Interconnector (EWIC), to the
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GB grid. The Irish network is built based on the static data provided by the Irish

transmission system operator, EirGrid Group, and the dynamic data defined based

on power plant capacities and technologies [83]. The system consists of 1,479 buses,

1,851 transmission lines and transformers, 245 loads, 22 Synchronous Generators

(SGs) with AVRs and TGs, 6 PSSs, 173 wind generators of which 139 are doubly-

fed induction generators (DFIGs) and 34 with constant speed wind turbine. The

GB grid is based on [20] and consists of 63 buses (29 high voltage buses, 33 generator

buses, 1 HVDC link), 98 transmission lines, 30 synchronous generators with AVRs

and TGs (28 thermal, 2 hydro), 3 DFIGs, 29 loads.
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Table 4.2: HVDC link and cable parameters

Name Parameter

Rating 500 MW

DC voltage ±200 kV

AC voltage 400 kV

Cable (each) r = 3.7 Ω, l = 0.0365 mH

Converter rac = 1−3 pu, xac = 1.3−3 pu, cdc = 93.6 µF, gsw = 7−5 pu

4.6.1 VSC-HVDC Link: Simulation Results

The initial operating condition assumes that 450 MW are imported from the

GB system to the Irish grid through the EWIC, which is modeled as a symmetric

monopole-type VSC as described in [44] and parameters used are listed in Table 4.2.

In nominal conditions, the VSC on Irish side to be acting as inverter (DC to AC)

and the VSC at GB side is acting as rectifier (AC to DC). The VSC controller limits

on both sides of the EWIC are imposed based on converter rating and priority is

given to active power.

The contingency consists of a three phase fault occurring at 0.2 s, cleared after

60 ms and located near to VSC on the Irish side of the EWIC. During the fault, both

the AC voltage and active power controllers of the VSC on the Irish side reach their

limits. The responses of the outer controller state variables, outputs and reactive

powers provided by the VSC for different PI controllers are shown in Figures 4.14-

4.18. The response of model PI0 is included for reference to show the behavior of the

system when no limits are included. Simulation results clearly show that different PI

limiter models lead to considerably different transient behaviors. Relevant remarks

on each PI model are given below.

The windup limiter of PI1 does not lock the integral variable x when the limits are
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binding, which results in a slower recovery to the control mode after the disturbance.

This poor performance is typical of windup limiters, which are thus not to be

recommended.

The AW limiter of model PI2 locks the integrator state variable as soon as the

PI limits are binding as shown in the zoom in Figures 4.14 and 4.15. The response

of model PI2 is thus faster than that of all other PI models.
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Figure 4.17: Response of the output of the AC voltage controller of the Irish-side VSC.

For the back calculation models PI3 to PI6, the integral term of the controller is

recomputed through a feedback signal and reset to a new value so that it prevents

the integrator from winding up.

As the disturbance lasts 60 ms and is cleared before the integrator settles to a

new value (see Figures 4.14-4.15), back calculation methods show different responses

(see Figures 4.16-4.17) compared to model PI2, also with respect to the active and

reactive power supports (the trajectory of the reactive power is shown in Figure
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Figure 4.18: Response of the reactive power support of the Irish-side VSC.

4.18).

Finally, both models PI3 and PI4 include a feedback gain. If same gain values

are used, due to their different implementations, namely (4.4) and (4.5), the two

models show a different behavior. Special care, thus, has to be taken when tuning

these models and/or switching among PI models.

4.7 Case Study III: Nodic-32 System

The Nordic system presented in Section 3.5.2 is used with a VSC-based STAT-

COM. The STATCOM is connected to the Nordic test system at bus 1044. Thus

the current limits of the VSC device are set in such a way that priority is given to

the q-axis component.
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4.7.1 STATCOM: Comparison of Alternative Solutions of

IEEE Standard

The comparison discussed in this section considers the dynamic response of the

PI controllers following a three-phase fault at bus 4044, occurring at t = 1 s and

cleared at t = 1.06 s. Two scenarios are studied: (a) the fault is cleared by opening

the line between bus 4044-4032 at t = 1.06 s, then the line is re-closed at t = 5 s;

and (b) the fault is cleared at t = 1.06 s without opening any line.

In both scenarios, the conventional implementation of model PI2 shows the

numerical issues discussed in Section 4.3.2. Using other integration methods, i.e.,

second order BDF and implicit backward Euler, and reducing the time step or

changing to adaptive step size do not remove the deadlock problem. This allows

comparing the performance of methods S1 and S2, discussed in Section 4.3.2. The

conventional PI2 model leads to a deadlock at t = 1.605 s (see the vertical line in

Figure 4.19). Model PI2-S1 with a DB of 0.002 allows completing the simulation.

For model PI2-S2, which never shows the deadlock issue, the integrator is limited

to the same values as the current reference limits.

Figures 4.19 and 4.20 show the trajectories of the q-axis current reference of

the VSC outer control and its corresponding state (xqv,ac) with the input (uv,ac =

vref
ac − vac) for both contingencies respectively. Figure 4.20 also shows the reactive

power provided by the STATCOM.

While model PI2-S1 avoids the deadlock phenomenon, its transient response

depends on the magnitude of the DB and the severity of the contingency. If the DB

is too small or the contingency is too severe, the deadlock can occur again. Model
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PI2-S2 never shows the trajectory deadlock but can lead to significant differences in

the transient response and final steady-state conditions because the integrator state

is not locked unless it hits a limit (see Figure 4.20). Unfortunately, the exact values

of such limits for integrator state are often unknown. Typically, same limits as the

algebraic PI output are used, but this is not necessarily the best approach as the

state variable can wind up independently (and inconsistently) with respect to the
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output of the PI.

4.7.2 STATCOM: Comparison of all PI models

Figures 4.21 and 4.22 show the reactive power response of models PI0 to PI6

using the scenarios (a) and (b) described in Section 4.7.1. DB=0.002 is used for

model PI2-S1.

Compared to previous case study, the impact of PI model differences on the

transient response is more significant. In particular, Figure 4.21 shows that the

response of models PI0 and PI1 are not acceptable.

Back calculation models PI3 and PI4 leads the STATCOM to absorb reactive

power whereas model PI2-S1 leads to the opposite behavior, at least for a few

seconds. This mixed response can be changed by reducing the feedback gain value.

However a high feedback gain value is recommended to reset the integrator quickly

[16,59]. Tracking methods with delay and the combined type (models PI5 and PI6)

show better transient response than the other PI types considered in this case study.

4.8 Discussion on Simulation Results

PI models with AW limiters are to be preferred to windup ones due to their

faster transient response. However, since there are several ways to implement AW

limiters, it is difficult to anticipate the response of each PI model. Results depend

not only on the PI model itself, but also on the severity of the disturbance, the PI

parameters, network configuration and initial operating point.
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Figure 4.22: Scenario (b): reactive power support from STATCOM, using models PI0
to PI6.

For the IEEE PI model (PI2), a deadband (or hysteresis) or other numerical

solutions can be required to avoid trajectory deadlock. This raises a variety of

implementation issues. An early reference [15] suggests that this problem is not only

a software issue due to the discretization of the integration scheme and that it can

affect also the physical digital controller. However, in practice, the input quantities

to the controller will eventually change and possibly unlock the device. On the other
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hand, in simulations, the deadlock prevents the integration scheme to converge and

is thus critical to identify and/or avoid it with adequate software implementation

“tricks.” It is worth mentioning that PI2 is also tested in Modelica based software

tool OpenModelica [5] and Dymola [1] where solvers are strictly separated from

models. Solvers in OpenModelica and Dymola also show same numerical chattering

issue as Dome shows. This will be further discussed in the next Chapter.

Compared to the other AW types, model PI2 provides a better transient response,

namely, fast convergence to post disturbance equilibrium, as well as low over- and

under-shoot. It is also worth noticing that the deadlock issue does not occur if

kp = 0.

The main advantage of back calculation models PI3 to PI6 is that they intrinsi-

cally avoid the deadlock. There is also no difference in the response of the hardware

and software implementations of these models. But they have other issues. Since

the state variable of the integrator is never really locked, their time response is

slower, which can deteriorate the overall performance of the VSC controllers. Then

models PI3 to PI5 require tuning an extra parameter, and model PI6 is intrinsically

complex due to the mix of continuous and discrete variables and logical operations.

Tuning the back calculation gain or delay requires particular care because of their

significant impact on the overall PI dynamic behavior.

The test systems considered in this Chapter are dominated by conventional

synchronous generation and, hence, the dynamics of electronic converters have

a smaller impact on the overall system. For high-dimensional nonlinear sets of

differential-algebraic equations often the results can not be generalized. The best

that can be done is to show possible issues and discuss why these issues appear.

Based on the results of this Chapter, it is fair to conclude that the models of
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the limiters of the PI controllers can vary significantly the behavior of the VSC

controllers, and, if the penetration of such devices is high, also that of the overall

grid.

4.8.1 Remarks and Recommendations

According to the literature, the most commonly used anti-windup method on a

PI controller is the back calculation. Despite being a standard, the model described

in the IEEE standard 421.5-2016 is less common and among all considered models,

the IEEE standard, in fact, is the most complex as it requires to introduce a fictitious

deadband to work properly. Models PI3 and PI4, on the other hand, are the simplest

models.

� Dynamic Performance:

For small disturbances, e.g., load variations and line outages without faults, all

PI models show very similar transient response, even if they saturate. This has

to be expected as, for light disturbances, the differences in state variable between

the PI models that lock their internal state variable (IEEE standard) and those

that do not (back calculation, PI3-PI6) is small. So in this cases, models PI3 to

PI6 are to be preferred as they do not create numerical issues.

On the other hand, significant differences of the dynamic response of the PI

models are observed for large disturbances, e.g., faults and large generator out-

ages. In these cases, the dynamic response of the IEEE standard PI model is the

best choice as it locks the PI internal state variable and reduce the delay of the

operation of the controller when the input signal is back to normal.

� Best practice:
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For dynamic analysis of real-world power system networks the best practice is to

carefully model PI controllers according to the actual hardware and specifications

provided by the vendors of the VSC devices. If the real implementation is

unknown, the choice becomes a trade-off between dynamic performance and

implementation complexity. Whenever priority is the performance following a

large disturbance, IEEE standard (PI2) is recommended. To avoid trajectory

deadlock a deadband should be considered in the implementation. In order to

avoid implementation complexity a back calculation method is preferred. In

particular, the model PI4 is recommended and if a trial and error tuning technique

is preferred to avoid complex tuning techniques, a convenient initial guess of

the back calculation gain is ks ≈ (1/ti), where ti = kp
ki

, is the integral time

constant [14].

4.9 Conclusions

The Chapter shows that different implementations of PI control limiters result in

significantly different transient responses of interconnected power systems. Among

the considered implementations of the anti-windup types, three main groups based

on their characteristic features: (i) conditional integration (PI2); (ii) feedback-type

integrators (PI3 - PI5) and (iii) combined conditional and feedback-type integrators

(PI6) are identified. Furthermore it reviews and compares the dynamic behavior of

VSC-HVDC links and STATCOM device considering different PI controller models

with windup and anti-windup limiters. Simulation results indicate that anti-windup

limiters are to be preferred but their implementation and design require particular

care. The PI model based on the IEEE Standard 421.5-2016 shows the fastest
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dynamic response but also the most critical implementation, which can lead to

numerical issues.

Due to the world-wide trend to increase the penetration of VSC-based generation,

it appears more and more important to pay attention to modeling aspects, such as PI

limiters, that in the past have been often overlooked. The Chapter also distinguishes

between modeling and solver issues to serve the practitioners who deals with power

system dynamic analysis and software implementation.
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5 Applications of Filippov Theory

5.1 Introduction

Filippov theory (FT) generalizes the discontinuities on the first-order ordinary

differential equations and provides proper switching conditions. Moreover, if the

solution enters into a constrained subset of the state space, typically known as

sliding, the formalism given by Filippov [49] allows defining a vector field on the

sliding surface to properly handle discontinuities. This theory has been applied

in other fields, e.g., in power electronics [53]; and energy harvesters [55] to study

sliding bifurcations. However, attempts to apply the FT to power system dynamic

analysis have not been conducted thus far. In this work the focus is on the smooth

continuation of trajectories during numerical simulation.

While effective, the FT-based approach poses several challenges, especially with

respect to the numerical integration of DAEs. The main challenge is the definition of

the analytical conditions and, thereafter, the implementation of a robust algorithm

to automatically switch between different discontinuous states through capturing

accurate non smooth dynamics [24,40].

This Chapter discusses in details the deadlock behavior that prevents the nu-

merical integration of trajectories related to IEEE Std. AW PI controller. Then the

proof of concept of the application of FT on the IEEE Std. AW PI model is given.
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After that a general purpose hybrid model for software implementation of Filippov

system models is proposed. Finally the effectiveness of the generalized design is

discussed using one mechanical system model and the IEEE Std. AW PI model.

The deadlock of numerical integration techniques related to the IEEE Std. AW

model is presented in Section 5.2. Section 5.3 briefly discusses Filippov theory

and Section 5.4 shows how FT effectively removes the deadlock by smoothing the

trajectory using two examples: an illustrative example and a simple single machine

power system network. Section 5.5 presents the generalized FT based hybrid model

and its software implementation. Numerical validation of the generalized design

is presented in Section 5.6 and Section 5.7 using two applications namely, a relay

feedback model and the IEEE Std. AW PI model, respectively using the Modelica

language as well as the power system software tool dome. Finally, Section 5.8 draws

conclusions.

5.2 Numerical Integration

This section describes the numerical issues intrinsic of the IEEE AW PI model

considering three commonly used numerical integration techniques, namely Back-

ward and Forward Euler and Trapezoidal. An in depth analysis in the context of

exclusive numerical integration approaches: explicit partitioned method, execution-

list based method, and implicit trapezoidal method also given in [33].

Let us assume that at the beginning of the simulation, the input to the PI

controller has an initial integrating state (INT) that is within the controller limits

(see Figure 4.3) and that such an input the output reaches its maximum limit at t1.
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Then, at t1, one has:

xt1 + kput1 = wmax , (5.1)

where xt1 and ut1 are the values of the integrator state variable and input, respec-

tively, at t1. Now, let us assume that the condition to switch back to the INT state

are satisfied at t2, as follows:

y < wmax . (5.2)

While the state is in the maximum state (MAX), the value xt1 is constant and

ut2 is the input at t2. Thus, re-writing (5.2):

xt1 + kput2 < wmax ⇒ ut2 <
wmax − xt1

kp
= ut1 , (5.3)

considering kp > 0, if the input ut2 becomes lower than ut1 i.e. condition (5.3) is full-

filled then a transition from the MAX state to the INT state will happen. Assuming

at t2 the input ut2 decreases from ut1 at an integration step and ∆u = ut2 −ut1 < 0.

Depending on the integration method, and the step size h, the change in state

variable ∆x = xt2 − xt1 , can be obtained as:

� Backward Euler: ∆x = hẋt2 = kihut2 ,

� Forward Euler: ∆x = hẋt2−1 = kihut1 ,

� Trapezoidal: ∆x = h
2
(ẋt2−1 + ẋt2) = ki

h
2
(ut1 + ut2).

Assuming ki > 0 and ut2 > 0, then ∆x > 0. For a feasible transition from the

MAX to the INT state at the end of the integration step, y < wmax must hold i.e.

∆x+ kp∆u < 0 , (5.4)
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using the values of ∆x and ∆u into (5.4) for the Backward Euler integration method,

one has:

kihut2 + kp(ut2 − ut1) < 0 ,

⇒ ut2
ut1

<
1

1 + kih
kp

.
(5.5)

Similarly for the Forward Euler and Trapezoidal method, one has:

ut2
ut1

< 1− kih

kp
,
ut2
ut1

<
kp − h

2
ki

kp + h
2
ki
. (5.6)

The conditions (5.5)-(5.6) need to be satisfied to switch from the MAX to the

INT region. Otherwise a deadlock situation arises. The deadlock consists in an

infinite loop where the state variables switch between the MAX and INT states.

For implicit integration schemes, the deadlock also prevents the solver to converge

at a given time step and thus the simulation gets stuck. Note that the conditions

(5.5)-(5.6) depend on the integration step-size h, gain values and current value of

the input. The deadlock originates due to the time discretization of the numerical

integration scheme. For h→ 0, in fact, the conditions (5.5)-(5.6) are always satisfied

and the deadlock does not occur.

5.3 Filippov Theory

Filippov systems form a subclass of discontinuous dynamical systems which can

be described by a set of first-order ordinary differential equations (ODEs) with

a discontinuous right-hand side [49]. Consider the following switched dynamical
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system:

ẋ = f(x) =


f1(x) when h(x) < 0

f2(x) when h(x) > 0

(5.7)

where, the event function h : Rn → R and an initial condition x(t0) = x0 are known.

The state space Rn is split into two regions R1 and R2 separated by a hyper-

surface Σ where R1, R2 and Σ are characterized as (see Figure 5.1),

R1 = {x ∈ Rn | h(x) < 0},

R2 = {x ∈ Rn | h(x) > 0},

Σ = {x ∈ Rn | h(x) = 0},

(5.8)

such that Rn = R1∪Σ∪R2, assuming that the gradient of h at x ∈ Σ never vanishes,

hx(x) 6= 0 for all x ∈ Σ.

R1

R2

Σ

Figure 5.1: The state space with two regions divided by a hyperspace.

The vector field on Σ is defined by Filippov continuation approach, known as

Filippov convex method [49]. This method states that the vector field on the surface

of discontinuity is a convex combination of the two vector fields in the different
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regions of the state-space:

ẋ = f(x) =


f1(x), x ∈ R1

co{f1(x), f2(x)}, x ∈ Σ

f2(x), x ∈ R2

(5.9)

where, co(f1, f2) is the minimal closed convex set containing f1 and f2, i.e.

co{f1, f2} = {fF : x ∈ Rn → Rn : fF = (1− α)f1 + αf2}, (5.10)

where α ∈ [0, 1].

Definition 1: An absolutely continuous function x : [0, τ ] → Rn is said to be a

solution of (5.7) in the sense of Filippov, if for almost all t ∈ [0, τ ] it holds that

ẋ ∈ F (x(t))

where F (x(t)) is close convex hull in (5.10).

Now, the question is what happens when the trajectory of ẋ = f1(x), with x(0) =

x0 reaches at Σ in finite time. The possibilities are: (a) transversal crossing, (b)

attractive sliding or repulsive sliding and (c) smooth exit. Filippov formulated a

first order theory to decide what to do in such situations. This theory is outlined

below.
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5.3.1 Filippov First Order Theory

Filippov first order theory defines the vector field if the solution approaches the

discontinuous surface. Let x ∈ Σ and n(x) is the unit normal to Σ at x i.e.

n(x) = hx(x)
‖hx(x)‖ where, hx(x) = ∇h(x) and ∇ = ∂

∂x
; the components of f1(x) and

f2(x) onto the normal to the Σ are nT (x)f1(x) and nT (x)f2(x) respectively.

� Transversal Crossing: If at x ∈ Σ,

(nT (x)f1(x)).(nT (x)f2(x)) > 0, (5.11)

the trajectory leaves Σ, and two cases are possible. The system will move to R2

with f = f2, if nT (x)f1(x) > 0 (see Figure 5.2[I]) or it will enter to R1 with

f = f1, if nT (x)f1(x) < 0.

f1(x)

f1(x)
f1(x)

f2(x)
f2(x)

f2(x)

Σ

Σ

n(x) n(x)x(t)

x(t) x(t)

R2 R2

R1
R1

a1 b1

[I] [II]

Figure 5.2: Different regions of the state space with [I] transversal and [II] sliding
trajectory.
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� Sliding mode: Sliding occurs, at x ∈ Σ if,

(nT (x)f1(x)).(nT (x)f2(x)) < 0 . (5.12)

The sliding mode can be an attracting or a repulsive one. An attracting sliding

mode will occur if (see a1 in Figure 5.2[II]),

(nT (x)f1(x)) > 0 and (nT (x)f2(x)) < 0, x ∈ Σ. (5.13)

While sliding along Σ, time derivative fF is given by:

fF (x) = (1− α(x))f1(x) + α(x)f2(x), (5.14)

where, α(x) is given by [proof, see [49]]:

α(x) =
nT (x)f1(x)

nT (x)(f1(x) − f2(x))
· (5.15)

The sliding mode continues until one of the vector fields starts to point away.

� Exit conditions:

If, while in sliding mode, one of the vector fields drifts away, the solution continues

above or below the sliding surface (see b1 in Figure 5.2[II]). The exit point is

calculated by finding either the root α(x) = 0 or α(x) = 1 as appropriate.

The following remarks are relevant:

– If fF (x) 6= f1(x), fF (x) 6= f2(x) such a solution is often called a sliding

motion.
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– A solution having an attractive sliding mode exists and is unique, in forward

time.

– If at the point of discontinuity, condition (5.12) becomes ≤ 0 and f1(x) 6=

f2(x) then a continuous vector-valued function fF (x) is given which deter-

mines the velocity of motion ẋ = fF (x) along the discontinuity line. If

nT (x)f1(x) = 0 then fF (x) = f1(x); if nT (x)f2(x) = 0 then fF (x) =

f2(x).

If the signs are opposite in (5.13) the sliding mode is called repulsive and does

not generally have a unique solution. For this reason, the repulsive sliding mode

is not considered in this work.

5.4 Illustrative Examples

In order to demonstrate the application of Filippov theory on IEEE AW PI

controller two illustrative case studies are considered. The first case study is similar

to the example discussed in Section 4.3.2 and the second one considers an SMIB

power system network used in Section 2.3.3. The algorithm described in [93] is

applied for numerical simulation. These results are achieved using simulation tool

Matlab [4]. Furthermore the results are compared with DB (S1) and LIT (S2) based

techniques discussed in Section 4.3.2.
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5.4.1 Example I

Let the following signal be the input signal to the IEEE AW PI controller:

if t < 3 then: u̇ = 1 ,

else: u̇ = −1 ,

(5.16)

and the parameters considered are, ki = 3, kp = 1, wmax = 1.2, wmin = −1.2 and the

initial values at t = 0 are x0 = 0.5, and u0 = 0. The mathematical model for upper

limit becomes:

ẋ = f(x) =



f1(x) = fns =

 u̇

kix1

 when h(x) < 0 ,

f2(x) = fs =

u̇
0

 when h(x) > 0 ,

where fns and fs are the differential equations when the controller is not saturated

and saturated, respectively and u varies according to (5.16). The controller output

signal y = kpx1 + x2. The switching manifold is given by: h(x) = y − 1.2. So,

hx(x) = [∂h(x)
∂x1

∂h(x)
∂x2

]T = [kp 1]T , and the normal to the switching surface is:

nT (x) = [kp 1].

The simulation results are shown in Figure 5.3 and how FT is applied at each

discontinuous point described below.

� t = 0 (s): With initial conditions [0; 0.5], h(x) < 0, thus the system starts in the

non-saturated region and is modeled with f = fns.
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Figure 5.3: Response of trajectories using Filippov theory.

� t = 0.4268 (s): The system has struck the switching manifold i.e. h(x) = 0 with

u = 0.4268. At the switching surface, calculating,

nT (x)f1(x) = [1 1]


1

3(0.4268)

 = 2.2804 ,

nT (x)f2(x) = [1 1]


1

0

 = 1 .

The system undergoes a transversal intersection since [nT (x)f1(x)].[nT (x)f2(x)] =

2.2804 > 0. Since nT (x)f1(x) > 0, the system moves region with f = fs.

� t = 3 (s): a time dependent switching occurs, exactly at that moment for u̇ = −1,

and h(x) > 0 so, the system continues with f = fs. For values of t greater than

3, the input signal now starts to decrease.
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� t = 5.5728 (s): The system has again struck the switching manifold with u =

0.4268. At this point, calculating,

nT (x)f1(x) = [1 1]


−1

3(0.4268)

 = 0.2804 ,

nT (x)f2(x) = [1 1]


−1

0

 = −1 .

[nT (x)f1(x)].[nT (x)f2(x)] = −0.2804 < 0 and according to (5.13), the system

slides along Σ. Next, the sliding vector field on Σ is calculated using (5.14,5.15):

α(x) =
nT (x)f1(x)

nT (x)(f1(x) − f2(x))
=

3u− 1

3u
,

fF (x) = (1− α(x))f1(x) + α(x)f2(x)

=


x1

x2

 =


−1

1

 .

� t = 5.6663 (s): At this point, α(x) = 0 for u = 1
3

and the trajectory leaves Σ

with vector field fns.

� Comparison with DB and LIT: The DB value for S1 used is 0.003 and the

integrator is limited ±1.1 for S2. The simulation results are shown in Figure 5.4.

Using FT and LIT (S2) the trajectory continues smoothly before and after each

event; the DB approach will always results in chattering whenever a deadlock
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Figure 5.4: Comparison of trajectories using Filippov theory (FT), deadband approach
(S1).
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Figure 5.5: Block diagram of AVR and PSS.

condition appears.

5.4.2 Example II: Single Machine Infinite Bus

Consider the SMIB system shown in Figure 2.3, the generator is equipped with

an AVR and a PSS as depicted in Figure 5.5. The generator model is a third order

type; the PSS consists of a stabilizer gain and a lead lag block and the AVR is an

static type with PI control [76]. The dynamics of the system is described by a set

of explicit DAEs in the following form,
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ẋ = f(x, y) , (5.17)

0 = g(x, y) , (5.18)

where x and y are the vector of state and algebraic variables respectively.

For this test system, x = [δ ω e′q va xi s1]T , y = [v1 v3 θ1 θ3 vf c1 c2 c3]T , where

δ, ω, e′q are the rotor angle, rotor speed and q-axis transient voltage respectively; va,

xi and s1 are the state variables of AVR and PSS; v1, v3, θ1, θ3 are the bus voltages

and angles respectively; vf is the generator field voltage; c1, c2, c3 are the algebraic

variables of PSS.

The algebraic equations of the SMIB system are given by,

0 = −pe + b13v1v3sin(θ1 − θ3) ,

0 = b13v3v1sin(θ3 − θ1) + b23v3sin(θ3) + pl ,

0 = −qe + b13[v2
1 − v1v3cos(θ1 − θ3)] ,

0 = b13[v2
3 − v3v1cos(θ3 − θ1)] + b23[v2

3 − v3cos(θ3)] + ql ,

0 = −vf + kpva + xi ,

0 = c1 − uinks ,

0 = c2 − c1(1− T1

T2

) ,

0 = c3 − c1(
T1

T2

)− s1 ,

where b13 = 1/x13 and b23 = 1/x23 are known line parameters; kp, ks, T1 and T2 are

the control parameters of AVR and PSS; input to the PSS is uin = ω; pl = pl0( v3
v30

),

ql = ql0( v3
v30

)2, v30 is known from power flow calculation; pl0 and ql0 are the active

and reactive power of the load respectively; the reactive and active power of the
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generator are: qe = − 1
x′d

[v2
1−e′qv1cos(θ1−δ1)], pe =

e′qv1
x′d

sin(δ−θ1) respectively. Note

that, the voltage and angle of the infinite bus are v20 = 1 and θ20 = 0 respectively.

The PI controller in AVR (see Figure 5.14) is an IEEE Std. type. Lets consider

the switching manifold for an upper limit, h(x) = kpva +xi− vmax. When h(x) < 0,

the differential equations of the SMIB system are given by ,

δ̇ = ω , (5.19)

ω̇ =
1

M
(pm − pe −Dω) , (5.20)

ė′q =
1

T ′d0

(vf −
xd
x′d
e′q +

xd − x′d
x′d

v1cos(δ − θ1)) , (5.21)

v̇a = (ka(v
ref + c3 − v1)− va)/Ta , (5.22)

ẋi = kiva , (5.23)

ṡ1 =
1

T2

(c2 − s1) , (5.24)

where xd, x
′
d are the d-axis synchronous and transient reactance respectively; T ′d0, M ,

D and pm are the d-axis open circuit transient time constant, the mechanical starting

time, the damping coefficient and the mechanical power input to the generator

respectively; vref is the reference voltage; Ta, ki and ka are the control parameters

of AVR and PSS.

When h(x) > 0 i.e. the field voltage reaches to its upper limit (vmax) then (5.21)

and (5.23) will be switched and all other states will remain same, as follows:

ė′q =
1

T ′d0

(vmax − xd
x′d
e′q +

xd − x′d
x′d

v1cos(δ − θ1)) , (5.25)

ẋi = 0 . (5.26)
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Table 5.1: Parameters of the AVR and PSS

Name Values

AVR ka = 2, Ta = 0.005, kp = 5.5, ki = 35, vmax = 1.58,

vmin = −1.5, vref = 1

PSS ks = 1.5, T1 = 0.23, T2 = 0.12

We consider f1(x, y) is (5.19)-(5.24) and f2(x, y) is (5.19), (5.20), (5.25), (5.22),

(5.26) and (5.24). Calculating, hx(x) = [∂h(x)
∂x1

∂h(x)
∂x2

... ∂h(x)
∂x6

]T = [0 0 0 kp 1 0]T ,

and the normal to the switching surface is: nT (x) = [0 0 0 kp 1 0].

The initial values of the state variables and algebraic variables are calculated from

the power flow solution and are: x0 = [δ0 ω0 e
′
q0 va0 xi0 s10]T = [0.702 0 1.10 0 1.478 0]T ,

y0 = [v10 v30 θ10 θ30 vf0 c10 c20 c30]T = [1 0.962 0.473 0.156 1.478 0 0 0]T . The

parameters of the generator, load and lines are given in Table 2.2 and rest of the

component’s parameters are given in Table 5.1.

The SMIB test system is simulated by applying a step increase to load (pl0 =

0.701, ql0 = 0.015) and voltage reference set-point of AVR (vref = 1.01) at 5 s. The

response of the PI controller state, field voltage and limited field voltage (v∗f ) using

FT are shown in Figure 5.6. To explain how FT is applied during each event, h(x);

r1 = nT (x)f1(x, y) and r2 = nT (x)f2(x, y) are shown in Figure 5.7. Simulation

results clearly show that a piece-wise smooth solution is achieved using Filippov

solution technique. Relevant remarks on the simulation results are given below:

� For the initial operating point of the system h(x) < 0, so the system simulation

starts with f1(x, y).

� At 5 s the disturbance is applied and a little bit after that the system reaches to

the switching manifold i.e. h(x) = 0. Due to the condition (5.11) and r1 > 0 (see
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Figure 5.6: Response of the state and field voltage using Filippov theory.

Figure 5.7) a transversal crossing is happened. The system switches to f2(x, y)

and the integrator state and the field voltage become constant (see Figure 5.6).

The system continues with f2(x, y) as long as h(x) > 0.

� At t = 5.153 s, h(x) = 0 again (see the arrow in Figure 5.7) and the conditions

(5.12) and (5.13) are met, so an attracting sliding mode occurs on h(x) = 0. The

vector field (fF (x, y)) and α(x,y) are calculated numerically using (5.14) and

(5.15). Therefore during that sliding h(x) remains at 0, the system continues

with fF (x,y) (see Figures 5.6-5.7).

� The system moves to f1(x, y) when h(x) < 0.

The theory of Filippov assumes systems are modeled using ODEs. However in

this example, the system model employs DAEs to simulate power systems. The

application of FT was possible due to the fact that h(x) depended only on the

state variables and not the algebraic ones. In addition, the case studies shows the

effectiveness of FT for upper limit of the IEEE AW PI controller but it is trivial to
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apply for lower limit too. For completeness Figure 5.8 compares the DB and LIT

with the FT (only the integrator state is shown).
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5.5 General-Purpose Design

According to FT, for every switching manifold a system can have three states, the

two states for h(x) < 0 (R1) and h(x) > 0 (R2), and a new state called SLIDING,

characterized by h(x) = 0. For implementation in a software tool, two discrete

variables are introduced, say z1 and z2, into the differential equations, as follows:

ẋ = f1(x)z1(1− z2) + f2(x)(1− z1)(1− z2) + fF (x)z2 . (5.27)

Observe that in the above equation, depending on the values of z1 and z2 (e.g.

1 or 0), a proper vector field needs to be activated during time domain simulation.

Figure 5.9 shows the changes in (z1, z2) for the three states and the conditions to

move from one state to another. All these conditions are based on FT and are

evaluated the moment at which the event function (h(x)) crosses zero.

In the SLIDING state the value of z2 = 1. This automatically deactivates f1(x)

and f2(x) (see (5.27)) without the need of changing the value of z1. So the previous

value (z1) is retained. The sliding vector field fF (x) is derived explicitly according

to (5.14). The exit conditions are defined based on (5.15). In particular, α(x) = 0

and α(x) = 1 are the conditions that indicate to move to the R1 and R2 regions,

respectively.

5.5.1 Implementation

The generalized design is applied to IEEE Std. AW PI controller to create a

modular model so that one implementation can be used in different power system
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Figure 5.9: Generalized state transitions of Filippov systems.

components. This is presented in Section 5.7. In addition it can be also applied to

other Filippov system models for example, Stick-Slip system [93], Relay Feedback

System [93]. In Section 5.6 one such system is discussed.

For implementation in a computer language of this design a event driven or a

time stepping approach can be used. Both approaches are previously discussed in

Section 2.3.2. In following the applications presented utilize the Modelica language

[7] considers an event driven implementation and the case studies utilize Dome

considers a time stepping implementation.

5.6 Application I: A Relay Feedback System

A relay feedback system with single-input and single-output is as follows [93]:

ẋ = Ax+Bu ,

y = Cx ,

u = −sgn(y) ,

(5.28)
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or

ẋ =


Ax+B, when Cx < 0 ,

Ax−B, when Cx > 0 ,

(5.29)

where,

A =



−(2ζω + 1) 1 0

−(2ζω + ω2) 0 1

−ω2 0 0


,B =



1

−2σ

1


,C =



1

0

0


.

The state vector of this model is x = [x1, x2, x3]T and the discontinuity surface Σ is

defined by h(x) = x1. Re-writing the dynamical system according to FT,

ẋ = f(x) =


f1(x) when h(x) < 0 ,

f2(x) when h(x) > 0 ,

(5.30)

with

f1(x) =



−(2ζω + 1)x1 + x2 + 1

−(2ζω + ω2)x1 + x3 − 2σ

−ω2x1 + 1


,

f2(x) =



−(2ζω + 1)x1 + x2 − 1

−(2ζω + ω2)x1 + x3 + 2σ

−ω2x1 − 1


.
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Here, hx(x) = [1 0 0]T , thus on Σ (i.e. x1 = 0), calculating,

r1 = −(2ζω + 1)x1 + x2 + 1 , r2 = −(2ζω + 1)x1 + x2 − 1 .

The sliding vector field on Σ obtained using equations (5.14,5.15):

α(x) = (−(2ζω + 1)x1 + x2 + 1)/2 ,

fF (x) =



0

b+ 4(−(2ζω + 1)x1 + x2 + 1)/2

c− 2(−(2ζω + 1)x1 + x2 + 1)/2


,

where b = −(2ζω + ω2)x1 + x3 − 2σ and c = −ω2x1 + 1.

This example is implemented using Modelica language both in direct form (with-

out considering FT) and using the proposed FT based formulation. The parameters

considered are: ζ = 0.05, ω = 25 and σ = −1.

OpenModelica and Dymola were used to simulate this example, however these

tools halt when simulating this example without considering FT. In OpenModelica,

all solvers fail to simulate and report an error message because of deadlock. On

the other hand, Dymola’s solver DASSL fails to continue the simulation. However

some fixed time step solvers for example: RkFix2 (second order Runge Kutta) and

Euler allows to continue simulation exposing chattering. The simulation results

obtained using Dymola are shown in Figures 5.10-5.11. Observe that chattering

does not occur for the model implemented following the proposed approach based

on FT. Because of unnecessary chattering during the simulation, the results are not
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Figure 5.10: Time derivative of state variable (ẋ1) of the relay feedback system model
without (NF) and with (F) Filippov theory simulated in Dymola.
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Figure 5.11: Time derivative of state variable (ẋ2) of the relay feedback system model
without (NF) and with (F) Filippov theory simulated in Dymola.

mathematically correct and it is not possible to understand the dynamic behavior

of the real physical system. Therefore this generalized design overcomes deadlock

and chattering and provides a smooth dynamic response.

Finally the validation of the results of Modelica tools against the implementation

in Matlab [93] is shown in Figure 5.12. The Modelica code of this example is posted

online: https://github.com/ALSETLab/Modelica_Fillipov_Sliding_Models.
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Figure 5.12: State space response for the relay feedback system obtained in different
simulation software tools using Fillipov theory.

5.7 Application II: IEEE Std. AW PI Controller

Power systems models are described as DAEs. Therefore the input to a PI

controller can be an algebraic or a state variable depending on the application.

However FT is based exclusively on ODEs. References [10, 23, 24] where FT is

applied into DAEs propose two possible ways briefly discussed in following.

� The first method converts the DAEs into ODEs. For example, if (5.18) can be re-

write as y = k(x), then (5.17) can be converted into ẋ = f(x, k(x)). However

for power system, the relation in (5.18) is non-linear and it is not trivial to convert

the DAEs into ODEs.

� The second method considers directly the DAEs described by (5.17) and (5.18).

However due to the lack of a theory on the coupling between the algebraic

equations during sliding this method is still an open research [40].

Considering the limitations of the available methods to apply FT directly into all
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form of DAEs, this Section presents a FT-based modular general purpose model of

the IEEE Std. AW PI controller that is compatible with DAEs.

Let us consider the PI controller in Figure 5.13. This system is represented by

(4.3) and

u̇ = (v1 − u)/T ,

v1 = v − vref ,

(5.31)

where v1 is the controlled signal and vref is the reference signal.

+

- v1v

v
ref

1

1 + sT

u

wmax

wmin

kp
s

ki w

Figure 5.13: Generalized IEEE Std. anti-windup PI controller based on FT.

According to FT, the dynamical equations of this system can be represented as

(considering the upper limit only),

ẋ = f(x) =


f1(x) if h(x) < 0 ,

f2(x) if h(x) > 0 ,

with

f1(x) =


(v1 − u)/T

kiu

 , f2(x) =


(v1 − u)/T

0

 ,

and the surface Σ is defined by zero of h(x) = y − wmax = kpu + x − wmax and
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hx(x) = [∂h(x)
∂u

∂h(x)
∂x

]T = [kp 1]T ; nT (x) = [kp 1] . Hence

r1 = (kp 1)


(v1 − u)/T

kiu

 = kp
(
(v1 − u)/T

)
+ kiu ,

r2 = (kp 1)


(v1 − u)/T

0

 = kp
(
(v1 − u)/T

)
.

(5.32)

If a sliding condition is met, the sliding vector field on Σ using (5.14) and (5.15)

becomes:

α(x) =
kp((v1 − u)/T ) + kiu

kiu
,

fF (x) =


(v1 − u)/T

−kp((v1 − u)/T )

 .

(5.33)

An AW PI controller based on (5.32) and (5.33) provides correct dynamic re-

sponse for any disturbance and transient condition. This is obtained through the

introduction of the low pass filter. The FT, in fact, requires that all input signals are

smooth (i.e. continuous and differentiable) variables. The low pass filter, however

introduces a small delay in the transient behaviour of the input and, thus, has to

be tuned so that its dynamic is faster than that of the PI controller. Since power

system DAE models are intrinsically stiff, the condition on the dynamic of the low

pass filter can be easily accommodated by any solver designed for transient stability

analysis.

Based on (5.32) and (5.33), the controller has three states, the two states for
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h(x) < 0 (INT) and h(x) > 0 (MAX), and a new state called SLIDING, character-

ized by h(x) = 0. For the computer implementation of the FT-based AW PI model

the integrator differential equations, as follows:

ẋ = kiu z1 −
(
kp(v1 − u)/T

)
z2 .

To consider the lower limit, h(x) = y − wmin = kpu + x − wmin and hx(x) =

[∂h(x)
∂u

∂h(x)
∂x

]T = [kp 1]T ; nT (x) = [kp 1] . Therefore, following a similar proce-

dure, the minimum (MIN) state is implemented.

5.7.1 SMIB with ST4C Excitation System

The SMIB system presented in Section 5.4.2 (see Figure 2.3) is considered in

this case study. However, the AVR is replaced with a simplified version of the ST4C

static excitation system [8]. Observe that in this AVR there are two PI controllers.

Utilizing the modular model in the previous section only one implementation is used

with different inputs and outputs. Therefore one instance of the implemented model

can be used as many times required by any application.
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Figure 5.14: Control diagram of the ST4C static excitation system with inclusion of a
PSS.
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Table 5.2: Parameters of the ST4C AVR

Name Values

AVR Tr = 0.005, kpr = 10, kir = 25, kpm = 2, kim = 20,

Ta = 0.02, Tg = 0.005, kg = 0.18, vmax
G = 99, vref = 1

Except the AVR parameters, same values of all other parameters of the SMIB

system given in Table 2.2 are used. For all PI models and the lag filter model (see

Figure 5.14), the maximum and minimum values of the AW limiter are 2 and −0.8,

respectively. The AVR parameters are given in Table 5.2.

As discussed in Section 5.2, the numerical integration of the IEEE AW PI

controller can fail as a consequence of several factors. In the following, we consider

two disturbances for which the solver gets stuck for validating the FT based AW

PI controller. The Modelica-based simulation tool Dymola is used to solve all

simulations for this case study. The deadband (DB) and time delay (TD) based

PI controllers described in Section 4.3.2 are used for comparison. In all case studies

the value of DB is 0.001. The time constant of the lag filter is T = 0.001 s for the

FT-based AW PI model.

� Contingency I: A three phase fault occurring at 5 s and cleared after 100 ms is

simulated in the SMIB system. Following the disturbance, both the PI controllers

and the lag block of the AVR reaches their limits. Figure 5.15 shows the state-

space representation (xim, ẋim) of one the AW PI controller included in the AVR

(see Figure 5.14). The FT-based AW PI controller provides a smooth response

compared to the DB and TD implementations. Thus the main advantage of

the FT model is that it removes the artificial chattering. To realize how this

chattering is removed observe the sliding vector field in (5.33). During the
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Figure 5.16: Trajectory of the output of the AVR.

sliding mode, the FT-based implementation allows increasing the integrator state

variable consistently to the decrease of proportional channel of the controller. On

the other hand, DB and TD models increase the integrator state variable by

imposing some delay. This delay originates the chattering.

Compared to these techniques, the FT-based AW PI model requires less state

events along the chattering region. Therefore an event location routine has to
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Figure 5.17: Response of the time derivative of integrator state variable (ẋim) with
respect to time.

solve the roots of the zero-crossing equations for fewer discontinuous points and

is thus less computationally demanding along the chattering region.

For completeness, Figure 5.16 illustrates the output of the AVR, i.e. the field

voltage (vf ) and the response is identical for all the methods.

� Contingency II: The SMIB system is simulated by increasing the voltage ref-

erence set-point (vref = 1.03 pu) and the load (pl0 = 0.8 pu, ql0 = 0.02 pu) at

t = 5 s. Figure 5.17 shows the time derivative of integrator state variable (ẋim)

with respect to time. Following the disturbance, the integrator state variable

xim enters into the deadlock region for the DB and TD models. Then, xim into

the MAX state, comes back to the deadlock region and chatters again. While

chattering, another step increase in the load (pl0 = 0.82 pu, ql0 = 0.025 pu) is

applied at t = 5.4 s which drives xim to the MAX state exactly at 5.4 s. Except

for the chattering, the FT model shows same trajectory for xim as the DB and

TD models between the SLIDING and MAX states while the solution is at the

SLIDING state for a step increase in the reference set-point. Thus the FT based
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Figure 5.18: Response of the output (vim) with respect to the integrator state variable
(xim).

method provides accurate dynamic response considering all kinds of disturbance.

This proves that the proposed model is consistent with existing implementation

and captures accurate hybrid system dynamics without any chattering.

Figure 5.18 shows the output (vim) of the AW PI controller included in the AVR

with respect to the integrator state variable (xim). The trajectory obtained with

the DB and TD models continues through switching during the deadlock period.

It is already mentioned that the number of switches depends on the deadband

width/delay magnitude as well as the time step of the simulation. On the other

hand, the FT-based implementation is independent from the time step, as long as

the time step is compatible with the numerical stability of the integration method

and adequate for the DAE stiffness.

5.7.2 VSC-Based STATCOM

The WSCC 9-bus test system with a VSC-based STATCOM, connected at bus

8 is used described in Section 4.5 used for time domain simulation in dome. A
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three phase fault occurring at t = 1 s is applied for 60 ms and cleared through

disconnecting the line in between buses 6 and 9. The line is reconnected at t = 6

s. The dynamic response of the q-axis current reference (iref
ac,q) is shown in Figure

5.19 for DB and FT models. The TD model is not compared in this case study as

it shows similar results as the DB one.

Following the fault, the iref
ac,q reaches its maximum limit in the attempt to regulate
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the voltage and comes back within the limit when the fault is cleared. Then the

controller shows an oscillatory response to reach a steady state solution. From

t = 25 to t = 30 s a step decrease in the reactive power load at bus 8 is applied.

Due to this contingency the iref
ac,q moves to its minimum limit. The AW PI controller

enters into a deadlock region in several occasions (zoomed in Figure 5.19) during

the time frame of simulation. In the deadlock region the controller based on the DB

model shows numerous chattering whereas the FT-based controller shows a smooth

response. The trajectories of the time derivative of the integrator state variable of

the AW PI controller of the AC voltage controller based on DB and FT models

are shown in Figure 5.20, confirming the ability of the FT implementation to avoid

chattering for both upper and lower limit region.

5.8 Conclusions

This Chapter studies the trajectory deadlock issue of the IEEE Standard 421.5-

2016 AW PI controller model. To solve this deadlock problem Filippov theory is

proposed. First this concept is proved using two illustrative examples. Then A

general-purpose state transition diagram is proposed based on the FT to model and

implement Filippov system models to remove trajectory deadlock and chattering.

The conditions to automatically switch to different discontinuous vector fields are

also duly derived. This case studies confirms the versatility of the proposed FT

approach, which proves to be suitable for both event-driven (Dymola) and time-

stepping (Dome) software tools. Other alternative solution techniques were also

compared with the FT. Finally, the case studies show that the proposed design

provide accurate dynamic response and is suitable for implementation in a power
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system software tool.
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6 Variable Limiters of VSCs

6.1 Introduction

The high-level controllers of VSCs include the most important control func-

tions, e.g., active/reactive power control, AC/DC voltage control, fault ride-through

functionality, current limitation. The response of these high-level controllers has a

significant impact on power system dynamics [67,89]. If such controllers of the VSCs

are PI and are coupled with a current limiter, several configurations are possible,

illustrated in Figure 6.1. This Chapter mainly focuses on configurations [II] and

[III] of Figure 6.1. For each of these two configurations, a windup or an anti-windup

PI can be used with variable limits. Thus far, the interaction between the current

limiter and the PIs with various variable limiting structure has not been studied.

This Chapter fills this gap.

The working principle of the current limiting of VSCs depends on the priority of a

quantity of interest. The choice of this priority depends on the VSC applications, for

example: HVDC [22], FACTS [11], Type-3 and Type-4 Wind-Generator [13,45] and

Energy Storage [35,36]. For instance, if the converter is connected to a heavily loaded

area with possible voltage issues, the priority is given to the reactive power. This

ensures reactive power support when the current limit is exceeded, and the remaining

current is available for active power production. This priority-based method has

been briefly discussed in Section 4.4.3. The model of the current limit block is
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discussed in Section 6.2.1 for the configurations of upper level control considered in

this Chapter.

Even though the mathematical model of the current limiter block is well-established,

some open questions remain unanswered in the available literature. These are: (i)

does any of the possible configurations (see Figure 6.1) have an impact on the

numerical simulation?; (ii) how does the choice of the PI implementation impact

the dynamic and numerical performance?; (iv) how does the limit values of current

limit logic impact the overall system’s dynamic response?; (iv) does the IEEE Std.

AW PI model show numerical issues with variable limits? This Chapter addresses

these questions using relevant case studies in Section 6.4.
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Figure 6.1: Outer control configurations: [I] constant limits; [II] variable limits with
wind-up PIs and [III] variable limits with AW PIs.

The fourth question regarding the IEEE Std. AW model with variable limits,

this Chapter shows that it has similar numerical issues similar to those discussed

in Chapters 4-5. Therefore, the Filippov theory based AW model is extended to

impose variable limits. Moreover, it has been discussed in previous Chapters that

the deadband based AW PI model shows artificial chattering both in the output
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and state variables. Observe that for the outer control configurations [II] and [III]

in Figure 6.1, any chattering on the output will result in chattering in the maximum

and minimum values of the other controller. In this Chapter, a modified DB based

IEEE Std. AW is proposed to remove the chattering on the controller outputs.

The remainder of the Chapter is organized as follows. Section 6.2 discusses the

current limiter and fault ride-through functionalities of VSCs. Section 6.3 presents

the IEEE Std. PI model with variable limits and extends the FT based design

discussed in the previous Chapter to impose variable limits. Section 6.3 also validates

the IEEE Std. models through an illustrative example. Section 6.4 illustrates the

dynamic behavior of VSCs through two case studies: (i) a VSC-HVDC link in the

WSCC 9-bus network; (ii) the Nordic system with a VSC based STATCOM. Finally,

Section 6.5 provides a brief discussion on simulation results and draws conclusions.

6.2 Current Limiters with Variable Limit

The current limit block limits the converter current references in the upper-level

control of the VSCs is shown in Figure 6.1. The outputs of the current limit block

determine the limits of the d- and q-axis PI controller (see configurations [II] and [III]

in Figure 6.1) used in the outer level of VSCs. Fault ride-through (FRT) capabilities

are also coupled into this block. This Section discusses the working principle of this

block.
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6.2.1 Current Limit Logic

Let us define the parameters of the current limit logic block: imax: maximum

current capacity of the converter; ilmd : d-axis current limit and ilmq : q-axis current

limit.

� Active Power or DC voltage Priority: If the priority is given to the active

power or DC voltage, iref
ac,d is limited to the d-axis current limit whereas iref

ac,q is

limited in such a way that the total current does not exceed the maximum current

rating of the converters, as follows:

imax
ac,d = ilmd ,

imin
ac,d = −imax

ac,d ,

imax
ac,q = min(

√
i2max − i2ac,d, i

lm
q ) ,

imin
ac,q = −imax

ac,q .

(6.1)

where, imax
ac,d , imin

ac,d, i
max
ac,q and imin

ac,q are the time varying limits of the PIs in the outer

level control (see Figure 6.1). Note that, ilmd and ilmq can be set as equal or less

than imax [66]. In addition imin
ac,q can be different than the opposite sign of imax

ac,q ,

which is not considered in this work.

� Reactive Power or AC voltage Priority: If the priority is given to the

reactive power or AC voltage, iref
ac,q is limited by the q-axis current limit whereas

iref
ac,d is limited in such a way that the total current does not exceed the maximum
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current rating of the converters, as follows:

imax
ac,q = ilmq ,

imin
ac,q = −imax

ac,q ,

imax
ac,d = min(

√
i2max − i2ac,q, i

lm
d ) ,

imin
ac,d = −imax

ac,d .

(6.2)

Similar to the active power priority, ilmq and ilmd can be set as equal or less than

imax. A graphical representation of the current limit logic is shown in Figure 6.2.

In this figure, i
′

d and i
′
q are the currents with active and reactive power priority

respectively; i
′

is the total current without any bound.

� Fault Ride Through: To comply with the grid code, VSC-based applications

consider an FRT specification. Usually, FRT is activated if the ac voltage deviates

from a pre-defined deadband/bound subjected to a disturbance. When FRT is

activated, the controller switches its priority to reactive power for ac voltage
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support [117]. In addition, during FRT, the q-axis controller can be replaced with

a proportional control [66] to comply with the grid code. The FRT specification

can define the gain of the proportional controller. In this work, if the ac voltage

at the bus where the VSC is connected falls below 0.9 pu the FRT is activated,

and priority is switched to reactive power support. And only if the voltage level

returns within 0.92 pu the current limit logic switches off the FRT according to

the grid code requirements.

6.3 PI Control with Variable Limits

The PI controller schemes presented in Section 4.2 (see Figure 4.2) depending

on the applications can impose variable limits. The conditional AW limiter (PI2 in

Figure 4.2) with an FT-based generalized design proposed in the previous Chapter

considers only constant limits. However, if the limits become variable, the conditions

to move from one state to another (for example, MAX to SLIDING, see Figure 5.9)

need to observe the changes in the limits. In this Section, those conditions and the

sliding vector field are deduced. In addition, a new DB-based implementation for

IEEE Std. PI is proposed. All models are validated using an illustrative example.
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6.3.1 FT based IEEE Std. AW PI Controller with Variable

Limits

Let us consider the PI controller in Figure 6.3. This system is represented by

(4.3) and

u̇ = (v1 − u)/T ,

v1 = v − vref ,

ẇmax = (u1 − wmax)/T1 ,

(6.3)

where v1 is the controlled signal, vref is the reference signal, u1 is time varying input

signal.
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Figure 6.3: IEEE Std. anti-windup PI controller with variable limits.

The same procedure as that described in Section 6.3.1 (considering the upper

limit only) is considered below to apply the FT, as follows:

ẋ = f(x) =


f1(x) if h(x) < 0 ,

f2(x) if h(x) > 0 ,
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with

f1(x) =



(v1 − u)/T

kiu

(u1 − wmax)/T1


, f2(x) =



(v1 − u)/T

0

(u1 − wmax)/T1


,

and the surface Σ is defined by zero of h(x) = y − wmax = kpu + x − wmax and

hx(x) = [∂h(x)
∂u

∂h(x)
∂x

∂h(x)
∂wmax

]T = [kp 1 − 1]T ; nT (x) = [kp 1 − 1] . Hence

r1 = (kp 1 − 1)



(v1 − u)/T

kiu

(u1 − wmax)/T1


= kp

(
(v1 − u)/T

)
+ kiu− (u1 − wmax)/T1 ,

r2 = (kp 1 − 1)



(v1 − u)/T

0

(u1 − wmax)/T1


= kp

(
(v1 − u)/T

)
− (u1 − wmax)/T1 .

(6.4)

The sliding vector filed becomes:

α(x) =
kp((v1 − u)/T ) + kiu− (u1 − wmax)/T1

kiu
,

fF (x) =


(v1 − u)/T

−kp((v1 − u)/T ) + (u1 − wmax)/T1

 .

(6.5)

Therefore, for the computer implementation of the FT-based AW PI model with
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variable limits the integrator differential equations, as follows:

ẋ = kiu z1 +
(
− kp(v1 − u)/T + (u1 − wmax)/T1

)
z2 .

The lower limit can be implemented following a similar procedure.

6.3.2 DB based IEEE Std. AW PI Controller with Variable

Limits

The state transition diagram of the deadband-based implementation presented

in Section 4.3.2 is the same when the limits are variable. As opposed to the

previous implementation, in this case, a modification of the conditions to switch the

right-hand side of the time derivative of the integrator state variable is proposed.

This modification leads the chattering of the unbounded variable (y) during a

deadlock situation, and the bounded variable (w) remains smooth. It is further

explained using an illustrative example in the following and through the case studies

in Section 6.4. The state transitions of the previous and the modified methods are

shown in Figure 6.4.

6.3.3 Illustrative Example

The two PI controllers shown in Figure 6.5 with arbitrary inputs are considered

as an illustrative example to validate the DB and FT based implementations of the

IEEE Std. PI model. The current limiter controls the limits of both PI controllers.

The priority is given to the d-axis current. The parameters are given in Table 6.1.
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y ≥ (wmax + db)b

y < wb

max

Figure 6.4: State transitions of the anti-windup PI controller for existing solutions:
superscripts a and b indicate the deadband- techniques DB1 and DB2, respectively.
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Figure 6.5: PI controllers with arbitrary inputs and current limiter.

This example is implemented in dome and Modelica based tool Dymola. In both

software, simulation is carried out using DB based (DB1 and DB2) and FT based

implementations. The time-varying inputs to the PI controllers (PId and PIq) are

shown in Figure 6.6. For this input, the output of PId hits the limit several occasions,

and as the priority is given to this controller, the maximum and minimum values

of this controller do not change during the simulation. However, the limit values of

PIq are updated following the current limit logic (6.1) during the simulation. Those

time-varying limits are shown are in Figures 6.7-6.9 for DB1, DB2 and Filippov

based implementations respectively. For all these three implementations, only DB1
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Table 6.1: Parameters of the illustrative example

Name Values

PId kp = 1, ki = 10

PIq kp = 1, ki = 30

Cur. Limiter imax = 1.02, ilmd = 1.02

Time [s]

ud [M]
ud [D]
uq [M]
uq [D]

0

0 1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

−0.1

−0.2

−0.3

−0.4

Figure 6.6: Inputs to the PId and PIq in dome ([D]) and Modelica ([M]).
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Figure 6.7: Maximum and minimum limits of PIq controller in dome ([D]) and Modelica
([M]) using DB1 based implementation.
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Figure 6.8: Maximum and minimum limits of PIq controller in dome ([D]) and Modelica
([M]) using DB2 based implementation.
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Figure 6.9: Maximum and minimum limits of PIq controller in dome ([D]) and Modelica
([M]) using Filippov based implementation.

based method shows chattering in the limit values. This is because of the chattering

of the output of the PId controller during a deadlock region.

The response of the outputs of the PId and PIq are shown in Figure 6.10. The

outputs do not exceed the maximum limit (see Table 6.1) and follow the current

limit logic. Moreover, they show similar responses, and only DB1 based method
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Figure 6.10: Response of the outputs of the PId and PIq controllers in dome ([D]) and
Modelica ([M]) using DB1, DB2 and Filippov based implementation.
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Figure 6.11: Time derivative of the integrator state variable with the state variable of
the PIq controller in Modelica ([M]) using DB1, DB2 and Filippov based implementation.

shows chattering on the output. DB2 and Filippov methods do not show chattering

on the output. However, the DB2 method shows chattering on the state variable.

This has been illustrated in Figures 6.11-6.12. Therefore, the Filippov based model

overcomes possible numerical issues and provides an accurate dynamic response.
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Figure 6.12: Time derivative of the integrator state variable with the state variable of
the PIq controller in dome ([D]) using DB1, DB2 and Filippov based implementation.

6.4 Case Studies

This Section illustrates the impact of three different PI controller configurations

utilized in VSC-based devices with current limit logic on the dynamic response of

power systems. The three PI controller configurations are: windup (PI1 in Figure

4.2), anti-windup with back calculation (PI4 in Figure 4.2) and the IEEE Std. PI

model (PI2 in Figure 4.2). For PI2, the deadband-based methods (DB1 and DB2)

and the Filippov solution methods are considered. Two applications of VSC-based

devices are discussed: (i) a point-to-point VSC-HVDC link (Section 6.4.1); and (ii)

a STATCOM device (Section 6.4.2). The case study of VSC-HVDC link considers

the WSCC 9-bus system, whereas the case study on the STATCOM considers the

Nordic-32 system.
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VSC1 VSC2r = 1.012 Ω
Bus 7 Bus 8

S = 100 MVAS = 100 MVA

vdc = 320 kVvdc = 320 kV

Figure 6.13: VSC-HVDC link between bus 7 and bus 8.

6.4.1 VSC-HVDC Link

The WSCC 9-bus system presented in Section 4.5 is used in this case study. The

transmission line that connects buses 7 and 8 is replaced with a VSC-HVDC Link.

The original operating condition is assumed, i.e. 76 MW active power is transferred

through the HVDC lines. The converter at bus 7 (VSC1) transfers power from AC

to DC side and the one at bus 8 (VSC2) vice versa. This is illustrated in Figure

6.13. VSC1 controls the DC voltage and AC voltage of bus 7 and VSC2 controls

the active power and AC voltage of bus 8. The priority for the current limiters of

VSC1 and VSC2 is DC voltage and active power, respectively, i.e., d-axis current.

FRT is included in both VSCs. Two scenarios are studied with different current

limit values, as shown in Table 6.2. For both scenarios, the contingency is a three-

phase fault at bus 5 that occurs at 0.1 s and cleared after 150 ms by opening the

line that connects the buses 4 and 5. The magnitude of the deadband is 0.001 for

the deadband based PI implementations in the VSCs. Simulation results of both

scenarios are discussed below.

� Scenario I:

Figure 6.14 shows the voltage response at bus 7 following the contingency. In

this case, the PI2 model does not show any deadlock or chattering issues. The

implementations based on the deadband and on the Filippov approach show a similar
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Table 6.2: Parameters of current limit logic of VSCs

Parameters
Scenario I Scenario II

VSC1 VSC2 VSC1 VSC2

Priority vdc p vdc p

ilmd 1.1 pu 1.1 pu 1.1 pu 1.1 pu

ilmq 1.1 pu 1.1 pu 0.5 pu 0.5 pu

imax 1.1 pu 1.1 pu 1.1 pu 1.1 pu
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Figure 6.14: Scenario I: Response of the bus voltage (vBus 7) considering PI1, PI2 (DB1)
and PI4.

transient response. For this reason only results for the PI2 model with DB1-based

implementation are shown. Anti-windup models show a very similar response with

only minimal difference. However, the windup method (PI1) shows significantly

different transient response with numerous chattering. For further explanation of

this chattering Figures 6.15-6.16 show the variation of the maximum limits and

reference current outputs of PIo,d and PIo,q (see Figure 6.1) of the outer level of

VSC1.

Immediately after the fault occurs, the bus voltage falls under 0.9 pu and the

FRT is activated. It causes the priority to switch to reactive power or q-axis current.

As the d-axis current limit (ilmd ) and the q-axis current limit (ilmq ) are equal to the
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Figure 6.15: Scenario I: Response of the maximum limit and the output current reference
of PIo,d considering PI1, PI2 (DB1) and PI4 in VSC1.
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Figure 6.16: Scenario I: Response of the maximum limit and the output current reference
of PIo,q considering PI1, PI2 (DB1) and PI4 in VSC1.

maximum current capacity (imax) after the switching of priority the maximum limit

of the PIo,d falls to zero (see Figure 6.15). The current reference follows this variable

limit. At the same moment, the limiter of the PIo,q reaches the maximum current,

as shown in Figure 6.16. This enables maximum reactive power support from the

VSC1. Note that while all PI controllers are at their limits, the state variables of

PI1, PI2 and PI4 do not stay at the same level. That is why they show significantly

different results for some moment during the transient response. Using PI1, after
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Figure 6.17: Scenario II: Response of the output current reference of PIo,d considering
PI1, PI2 (DB1, DB2 and F) and PI4 in VSC1.

clearing the fault once the bus voltage returns in the safe operating margin (> 0.92

pu) the priority switches back to the d-axis current. However, due to windup effect,

the d-axis reference current moves to the maximum current (see Figure 6.15). This

immediately results in the zero current reference for the q-axis controller and the

reactive power support is ceased. This in turn lowers the voltage from 0.9 pu and

the priority again switches backs to the q-axis current. This switching of priorities

continues for a while and leads to chattering (see zoom in Figures 6.15-6.16). This

chattering significantly impacts on the performance of the numerical simulation can

give raise to deadlocks.

� Scenario II:

In this scenario, the ilmq is lower than the maximum current capacity in both

VSCs. Following the contingency the reference currents of PIo,d and PIo,q in VSC1

are shown in Figures 6.17 and 6.18 respectively for all the considered PI models.

These figures also include DB1, DB2 and Filippov methods for PI2. After the

contingency, the priority is switched to the reactive power and the q-axis current
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Figure 6.18: Scenario II: Response of maximum limit and output current reference of
PIo,q considering PI1, PI2 (DB1, DB2 and F) and PI4.
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Figure 6.19: Scenario II: time derivative of the integrator state variable with respect to
the state variable of PIo,q in VSC1, considering PI4 and PI2 with DB1, DB2 and Filippov
method.

reference reaches its limit (see Figure 6.18). While it stays at its limit, the rest

of the current is available for d-axis current reference and this is why this current

reference does not reach to zero. Comparing with Scenario I and II, it is evident that

the current limits’ choice plays a significant role in the dynamic response during a

severe disturbance.

While using the PI2 model, numerical chattering is observed. Comparing DB1,
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Table 6.3: Parameters of current limit logic of the STATCOM

Parameters Scenario I Scenario II

Priority vac vac

ilmd 0.05 0.05

ilmq 1.1 1.099

imax 1.1 1.1

DB2 and Filippov based techniques, only DB1 based method results in chattering

both in the output and the state variable (see zoom in Figure 6.18 and Figure 6.19).

And the DB2 method does not show chattering on the output. Finally, Filippov-

based approach does not lead any chattering illustrated in Figure 6.19.

6.4.2 Case Study II: STATCOM

This Section considers the Nordic system with a VSC-based STATCOM as

discussed in Section 4.7. The d- and q-axis controllers of the outer level are set to

control DC and AC voltage respectively. The STATCOM provides reactive power

support, so the priority is set to q-axis current. Therefore, no switching of priority

is needed. The contingency is a three-phase fault at bus 4044 occurring at t = 1 s

and cleared by opening the line between bus 4044-4032 after 100 ms. The line is put

back in service at t = 6.1 s. A deadband value 0.003 is used for DB1 and DB2 based

PIs. Similar to the previous case study, two scenarios are studied and parameters

of current limit logic are given in Table 6.3. Both scenarios are discussed below.

� Scenario I:

The trajectories of the q-axis current reference, maximum and minimum limits

of the d-axis controller (PIo,d) i.e., the DC voltage controller and the DC voltage are
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Figure 6.20: Scenario I: Response of the AC voltage controller, using model PI1, PI4
and PI2 with deadbands (DB1, DB2) and Filippov method (F).
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Figure 6.21: Scenario I: Response of the maximum and minimum limits of DC voltage
controller, using model PI1, PI4 and PI2 with deadbands (DB1, DB2) and Filippov method
(F).

shown in Figures 6.20, 6.21 and 6.22 respectively for the considered PIs. Following

the contingency, the q-axis current reference reaches its maximum limit and the

current limiter imposes zero on the limits of the d-axis controller (see Figure 6.21).

Using the PI2 model, the q-axis current reference limit stays longer at its limit due

to windup and during this time, the d-axis current reference is zero. It causes an

increasing trend in the DC voltage response. Such a deviation of the vdc from its

pre-disturbance equilibrium results in the collapse of the system.
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Figure 6.22: Scenario I: Response of the DC voltage, using model PI1, PI4 and PI2 with
deadbands (DB1, DB2) and Filippov method (F).

For the AW methods, while iref
ac,q stays at its limit, the PI2 model with DB1 and

DB2 shows chattering, the PI4 and PI2 model with Filippov method show a smooth

response. However, in this system chattering on the output (iref
ac,q) for the PI2 with

DB1 causes a significant difference on the limits (see zoom in 6.21) of the d-axis

controller compared to the other AW PIs. That is why a notable difference in the

vdc is observed with DB1. Scenario I shows that the same AW method depending

on the implementations, can have a remarkable impact on the dynamic response.

Finally, the advantage of Filippov-based method over DB1 and DB2 is shown in

Figure 6.23.

� Scenario II:

This scenario considers a lower value for ilmq than the maximum current (see

Table 6.3). The dynamic response of the q-axis current reference, maximum and

minimum limits of the d-axis controller (PIo,d) i.e., the DC voltage controller and the

DC voltage are shown in Figures 6.24, 6.25 and 6.26 respectively for the considered

PIs. In this scenario, the limits of the d-axis controller do not reach to zero and
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Figure 6.23: Scenario I: Time derivative of the integrator state variable with respect to
the state variable of the AC voltage controller.
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Figure 6.24: Scenario II: Response of the AC voltage controller, using model PI1, PI4
and PI2 with deadbands (DB1, DB2) and Filippov method (F).

that is why the vdc response shows a drastically different response compare to the

Scenario I. In addition, the delayed response of the PI1 models does not significantly

impact the vdc voltage trajectory (see Figure 6.26).

Comparing AW methods, PI4 and PI2 models show a little difference in the

dynamic response. However, the PI2 model with DB1 chattering is observed in the

output and thus in the limits. Filippov-based model results in a smoother response.
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Figure 6.25: Scenario II: Response of the maximum and minimum limits of DC voltage
controller, using model PI1, PI4 and PI2 with deadbands (DB1, DB2) and Filippov method
(F).
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Figure 6.26: Scenario II: Response of the DC voltage, using model PI1, PI4 and PI2
with deadbands (DB1, DB2) and Filippov method (F).

6.5 Conclusions

This Chapter extends the IEEE Std. 421.5-2016 AW PI model, based on Filippov

theory, to avoid the numerical issues intrinsic of these models and proposes a new

deadband based implementation of the same AW configuration. Both models are

validated, considering an illustrative example. Furthermore, this Chapter studies

two different deployments of outer level configurations coupled with the current
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limit block of VSCs. Those outer level schemes are studied considering three other

PI implementations (windup, AW with back calculation and Std. techniques) with

variable limits. For the Std. AW method deadband and Filippov based methods are

discussed. It is shown that each configuration of upper level and limiting technique

of PIs have a significant impact on numerical simulation and overall systems dynamic

response through numerical simulations. Among the available implementation tech-

niques for the IEEE Std. AW PI limiter, the proposed theoretical approach achieves

the most accurate results.
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7 Fractional Order PI Control Limiters

7.1 Introduction

In recent years, fractional calculus-based controllers have gained increasing atten-

tion in the power system community, mostly because of their robust performance for

a wide range of operating conditions and parameter variations. Among other types

of those controllers, the Fractional Order PI (FOPI) controller is an extension of the

classical PI which stems from the theory of fractional calculus. Fractional calculus

studies the differentiation and integration operations for non-integer (fractional)

orders.

The potential of employing fractional calculus for the purpose of control was first

shown in the definition of Bode’s ideal transfer function [25], while the frequency

domain properties of FO controllers were systematically exploited first in [84]. To

date, the FO version of the PID (FOPID) [95], has been the most popular FO

controller. The utilization of FO controllers in power systems has been recently

proposed for different applications, including voltage [100,120], frequency [38,87,110]

and damping [9, 29] control schemes. The implementation of these controllers is

done by means of approximating the fractional dynamics with rational order transfer

functions [115]. In this Chapter, fractional dynamics are approximated by the widely

used Oustaloup’s Recursive Approximation (ORA) method [85]. However, the effect

of control saturation on the dynamic behavior of Fractional Order (FO) controllers
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for power system applications has not been considered at all. This Chapter discusses

modeling and simulation of windup and anti-windup limiters of the FO version of

the classical PI controller (FOPI) for power systems.

Previous Chapters showed how control limits play a crucial role when large

disturbances are of interest, as it happens, e.g. in dynamic security assessment.

Regarding PI controllers, the integrator windup phenomenon is known to severely

limit the control performance and classical AW methods on PI and their impact on

dynamic systems response is addressed in previous Chapters. Similar techniques are

also proposed for FOPIs [86, 88]. However, a systematic study of the impact and

numerical issues of those classical methods on FOPIs for power system applications

has not been given thus far. A discussion on the modeling of windup and AW limiters

of FOPI controllers for power system applications is given in this Chapter. Then

the impact of FOPI limiter models on power system dynamic response is shown

considering a VSC-based STATCOM.

The remainder of the Chapter is organized as follows. Section 7.2 provides a

background on the theory of fractional calculus for control applications. Section 7.3

presents the considered FOPI control models. The case study is discussed in Section

Section 7.4, based on the ieee 14-bus system. Conclusions are drawn in Section 7.5.

7.2 Theory of Fractional Order Control

Fractional calculus provides the extension of differentials and integrals for non-

integer number orders. There exist different formulations of fractional calculus.

The most important ones are arguably the Riemann–Liouville (R-L); the Grünwald
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Letnikov (G-L); and the Caputo definition. Each definition may be more or less

suitable depending on the application.

For the purpose of the design of fractional controllers, the Caputo definition is

the most appropriate. Consider a function φ : [0,∞) → R. In its derivative form,

Caputo definition for the fractional derivative φ of order γ ∈ R+ reads [79]:

φ(γ)(t) =
1

Γ(µ− γ)

∫ t

0

φ(µ)(τ)

(t− τ)γ−µ+1
dτ , (7.1)

where γ, µ − 1 < γ < µ, µ ∈ N, denotes the fractional order; Γ(·) is the Gamma

function; and φ(γ)(t) = dγφ/dtγ. Unlike the R-L and G-L definitions, the initial

conditions of (7.1) are of integer order. This property is of great importance, since

for physical variables, only integer order initial conditions are known.

7.2.1 Fractional Order PID Control Strategy

The most popular FO control strategy is the FOPID [94]. The FOPID controller

is an extension of the classical PID, and is characterized by five parameters: three

gains, namely proportional, integral, and derivative; and two fractional orders,

namely integral and derivative.

Employing a FOPID extends the four control points of the PID strategy to the

plane defined by the orders α and β [79]. This is illustrated in Figure 7.1.
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Figure 7.1: PID vs FOPID: From point to plane.

7.2.2 Approximation of Fractional Dynamics

Modeling of fractional dynamics is typically done by employing rational transfer

functions that approximate the fractional derivatives and integrals. In this Chapter

fractional dynamics are approximated by the commonly employed ORA technique.

Let [ωb, ωh] be the frequency range for which the approximation is designed and

N the dynamic order of the approximation. Then, the ORA of sγ is defined as

follows [79]:

sγ ≈ ωγh

N∏
k=1

s+ ω′k
s+ ωk

, (7.2)

where

ω′k = ωbω
(2k−1−γ)/N
v ,

ωk = ωbω
(2k−1+γ)/N
v ,

ωv =
√
ωh/ωb .

(7.3)

The parameters in (7.3) are derived from a set of recursive equations [85]. The block

diagram of the ORA is shown in Figure 7.2.
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Figure 7.2: Oustaloup’s Recursive Approximation (ORA).

The accuracy of (7.2) deteriorates if high fractional orders, i.e. |γ| > 1 are to be

used. In this case, the implementation consists in the product of an integer order

block and a fractional order block, as follows:

sγ = snsγ−n, n ∈ Z, (γ − n) ∈ [0, 1] . (7.4)

Figure 7.2 shows that each block of the ORA is a lead-lag filter. In time domain,

the ORA dynamic model can be described by a set of differential-algebraic equations,

as follows [18]:

χ′1 = a1χ1 + b1ω
γ
huin ,

0 = y1 − χ1 − ωγhuin ,

χ′2 = a2χ2 + b2(χ1 + ωγhuin) ,

0 = y2 − χ2 − χ1 − ωγhuin ,

...

χ′N = aNχN + bN(
N−1∑
k=1

χk + ωγhuin) ,

0 = yN −
N∑
k=1

χk − ωγhuin .
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where ak = −ωk, bk = ω′k − ωk. Using matrix notation, one finally has:

χ′ = Aχ+Buin ,

0 = yN −Cχ− ωγhuin ,

(7.5)

where χ = [χ1 χ2 · · · χN ]T ; and

A =



a1 0 0 · · · 0

b2 a2 0 · · · 0

b3 b3 a3 · · · 0

...
...

...
. . .

...

bN bN · · · bN aN



, B =



ωγhb1

ωγhb2

ωγhb3

...

ωγhbN



,

C =

[
1 1 · · · 1 1

]
.

A, B, C, have dimensions N ×N , N × 1 and 1×N , respectively.

7.3 Fractional Order PI Schemes

This Section presents the FOPI schemes considered in this study. These include

an unconstrained FOPI (FOPI0); a FOPI with windup limiter (FOPI1); a FOPI

with a back calculation AW limiter (FOPI2); a FOPI with an automatic reset AW

limiter (FOPI3); and a FOPI with a conditional AW model (FOPI4). The block

diagrams of all five FOPI control schemes are shown in Figure 7.3.
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Figure 7.3: Examined FOPI controller models: (FOPI0) without limits; (FOPI1) with
windup limiter; (FOPI2) with back calculation AW limiter; (FOPI3) with automatic reset
AW limiter; (FOPI4) with conditional AW limiter.

It is relevant to note here is that there exist several other AW schemes that

one may consider [16]. However, the considered models cover the most common

configurations proposed for FOPI [86]. Observe that except for FOPI3 all other

configurations are discussed in Chapter 4. That is why in following only FOPI3 is

discussed.

� Automatic reset (FOPI3): This model considers a saturated input to the

forward signal of the controller. Therefore, if the output exceeds its limit, a

constrained input reduces the integral action which in turn prevents the windup.
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The integral state variable is given:

x(γ) =
1

Ti
(w − x) , (7.6)

where Ti =
kp
ki

.

7.3.1 Numerical Issues of the Conditional AW model

The conditional AW technique is recommended by the IEEE Standard 421.5-

2016 for power system dynamic studies [8]. Implementation difficulties as well as

numerical issues that may occur during time domain simulations with inclusion

of this model for the integer-order PI controller have been addressed in previous

Chapters. However, the structure of an ORA-based FOPI controller is different

from that of the integer-order PI, and thus, the two implementations do not show the

same numerical issues. This Section discusses the numerical issue of the conditional

AW model that occurs for ORA-based FOPI controllers.

Let us consider a time domain simulation with inclusion of a FOPI with condi-

tional AW limiter. The FOPI input is arbitrary and no limit is binding until t = t1,

i.e. the controller is in its integrating region. At t = t1, the control output reaches

its maximum for a positive input value u(t1) > 0. Then:

x(t1) + kpu(t1) = wmax . (7.7)

For simplicity but without loss of generality, let us consider that the ORA order is
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N = 1. Combining (7.5) and (7.7) yields:

wmax =
(
Cχ1(t1) + ωγhu(t1)

)
ki + kpu(t1) ,

χ′1(t1) = Aχ1(t1) +Bu(t1) .

(7.8)

Let us consider the backward Euler integration method with step size h. Then,

χ1(t1) is obtained as:

χ1(t1)− χ1(t1 − h) = hχ′1(t1) = h
(
Aχ1(t1) +Bu(t1)

)
,

⇒ χ1(t1) =
hBu(t1) + χ1(t1 − h)

1− hA .
(7.9)

The value of the output variable is y(t1) = wmax > 0, and thus y(t1)u(t1) > 0.

Correspondingly, the control input switches to 0, according to conditional integration

definition. Re-calculating χ1(t1) for the zero input u(t1) = 0, one obtains:

χ1(t1)− χ1(t1 − h) = hχ′1(t1) = hAχ1(t1) ,

⇒ χ1(t1) =
χ1(t1 − h)

1− hA .
(7.10)

Observe that χ1(t1−h) is constant in (7.9) and (7.10), and that A,B, h are positive.

Hence the value of the integrator state variable decreases. This results in a decrease

of the output below its maximum value so that (7.7) is not satisfied anymore.

However, at the same time step, the controller starts integrating and the condition

for switching back to maximum becomes true again. Finally, a chattering between

the maximum and integrating region occurs at t1 and the solver fails to converge.

This chattering problem occurs even if a different implicit integration method is

considered.

Note that the solver can be designed to continue the simulation by changing
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the input only at the next time step. Nevertheless, this strategy also introduces

numerical chattering until there is a sufficient decrease of the input and the solution

reaches back to the integrating range.

7.4 Case Study

The case study considers a VSC-based STATCOM model and discusses the

dynamic response of the examined FOPI control schemes. The converter and its

inner control loop are shown in Figure 4.7. The outer control loop is shown in

Figure 4.8 and configuration [I] is considered. All controllers in the outer and inner

loops are FOPI controllers. The d and q components in the outer control loop

are utilized to control the DC and AC voltages, respectively, while the inner loop

controls the decoupled d and q currents.

7.4.1 Test System

The IEEE 14-bus system is considered to compare the FOPI models within the

VSC control. This system comprises 14 buses, 5 synchronous generators, 11 loads,

12 transmission lines, 4 transformers and 1 shunt capacitor. All the generators are

equipped with automatic voltage regulators, and the generators at buses 1 and 2

include turbine governors. The static and dynamic data of this system are given

in [76].

A STATCOM is connected at bus 9 for AC voltage control. The data of the

STATCOM are given in Table 7.1. Regarding the FOPIs ORA parameters, the

frequency range is set to [10−3, 102] rad/s and the dynamic order is N = 5 for all
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Table 7.1: STATCOM controller parameters

Name Values

Converter rac = 0.001 pu, xac = 0.05 pu

Current Limits ilimac,q = ±0.2 pu, ilimac,d = ±0.01 pu

Outer Control ko,q
p = 1, ko,d

p = 20, ko,q
i = 37.5, ko,d

i = 45,

γo,q = 0.7, γo,d = 0.7, vref
ac = 1.056, vref

dc = 1

Inner Control ki,q
p = 0.16, ki,d

p = 0.16, ki,q
i = 0.2, ki,d

i = 0.2,

γi,q = 0.7, γi,d = 0.7

FOPIs. Interested readers are referred to [110] for a detail discussion on the selection

of these parameters. Unless otherwise stated, the value ks = 50 is used for the back

calculation gain of FOPI2. All simulation results are obtained using DOME.

7.4.2 Contingency I

The performance of the STATCOM voltage regulation is evaluated by increasing

the active and reactive power consumption at buses 3 and 9 by 20% at t = 1 s. The

voltage response of bus 9 with and without the STATCOM is shown in Figure 7.4.

The STATCOM provides a fast voltage control without any steady state error. Note

that for this disturbance the limits are not binding for any controller in the outer

and inner level. Therefore, all FOPIs (FOPI0-FOPI4) provide exactly the same

dynamic response.

7.4.3 Contingency II

For the purpose of comparing the impact of all FOPIs on the system transient

response, a severe contingency is considered here. The contingency is a three phase
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Figure 7.4: Response of the voltage at bus 9.

fault that occurs at bus 4 at t = 1 s. The fault is cleared after 100 ms through

the tripping of the lines that connect buses 4-5 and 4-2. Both lines are back in

service at t = 4 s. For this disturbance the limits of FOPI1-FOPI4 are activated in

the AC voltage controller. Following the contingency, the response of the voltage

at bus 9 for the controllers FOPI0-FOPI3 is shown in Figure 7.5. Observe that

different FOPIs show significantly different transient response. Regarding FOPI4,

the simulation with this model cannot be completed due to the numerical issues

explained in Section 7.3.1. To further explain the differences in the voltage response,

the fractional integrator state is shown in Figure 7.6 for FOPI0-FOPI3.

FOPI0 does not consider any limit and can provide the amount of reactive power

that is needed to achieve the reference AC voltage setting. Therefore, the voltage

sag during the fault is lower and after clearing the fault the voltage reaches to the

pre-disturbance equilibrium. The unconstrained model, however, is not realistic for

large disturbance analysis.

The models FOPI1-FOPI3 provide a similar response of the voltage until t = 4

s (see Figure 7.5), since the FOPIs output is always limited at the same value. In
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Figure 7.5: Response of the voltage at bus 9 considering FOPI0-FOPI3 for the distubance
discussed in Section 7.4.3.
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Figure 7.6: Response of the integrator state variable of AC voltage controller at outer
level.

addition, for FOPI1-FOPI3, there exists a steady state error until t = 4 s and,

hence, despite the similar voltage response during the first few seconds, FOPI1 does

wind-up (see Figure 7.6). Therefore, this model shows a delayed response with a

large overshoot when the system finally restores to the pre-disturbance condition at

t = 4 s. On the other hand, the anti-windup techniques FOPI2-FOPI3 reduce the

integrator’s input when a limit is binding and thus do not allow the wind-up. This,

in turn, provides an overall better transient response.
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7.4.4 Effect of Back Calculation Gain

The back calculation gain (ks) in FOPI2 determines the speed and value at which

the integrator state variable settles when a limit is binding. To show the impact of

ks, the 14-bus system is simulated by applying the same disturbance as in Section

7.4.3 for different values of ks. In Figure 7.7, the trajectories of the FOPI2 integrator

state variable as ks varies are compared with the one of FOPI3. In order to obtain a

faster wind-down of the integrator (see zoom in Figure 7.7), a relatively high value

of ks is required. On the other hand, FOPI3 always limits the integrator input at the

saturation level and therefore does not provide any flexibility for a faster wind-down.

7.4.5 Contingency III

To show the dynamic response of FOPI4 when the solver continues through

numerical chattering (see Section 7.3.1), the generator at bus 8 and the shunt device

at bus 9 are disconnected at t = 1 s and re-connected at t = 3 s. Following the
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Figure 7.8: Response of the voltage at bus 9 considering FOPI0-FOPI3 for the distubance
discussed in Section 7.4.5.

contingency the response of bus 9 voltage is shown in Figure 7.8 for all the FOPIs.

For this disturbance the limits of the AC voltage controller binds in between 1− 3

s for FOPI1-FOPI4. Observe that, in the same time interval, using FOPI4 causes

the voltage response to chatter (zoom in Figure 7.8) due to the numerical issues

discussed in Section 7.3.1.

7.5 Conclusions

This Chapter presents the windup and anti-windup models of fractional-order

PI controllers for a VSC-based STATCOM. The dynamic behaviors of these models

are duly compared and discussed.

Simulation results indicate that, if a FOPI controller-based application is used

in a power system software tool for dynamic analysis, the model should consider an

appropriate AW method. Among the three most common AW methods, the back

calculation (FOPI2) and the automatic reset method (FOPI3) are to be preferred

compared to the conditional integrator method (FOPI4). Moreover, whenever the
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FOPI2 is employed the back calculation gain has to be properly tuned for better

dynamic response.
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8 Conclusions and Future Works

8.1 Concluding Remarks

This thesis studies the electromechanical dynamics of power systems described

by a set of DRHS DAEs. This set of DRHS DAEs is based on hybrid automata.

In particular, ULTC and PI limiter type discontinuous models are discussed. The

concluding remarks of this thesis are given below.

� Among several hybrid modeling frameworks, hybrid automata are the most effec-

tive implementations. Hybrid automata captures most types of continuous and

discrete dynamics, which is the model used throughout this work.

� The dead-band and delay settings of ULTCs play a crucial role in the voltage

restoration or collapse and number of tap operation.

� When considering stochastic processes, the time-domain analysis is necessary to

account for ULTC tap variations as these cannot be rightly captured considering

steady-state analysis.

� Implementation of the correct control logic of ULTCs requires special care to

avoid unnecessary tap operation.

� Different implementations of PI control limiters result in significantly different

transient responses of interconnected power systems. In large disturbance analy-

sis, simulation results show that the anti-windup limiters are to be preferred, but
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their implementation and design requires particular care, especially the IEEE

Std. 421.5-2016 model, which shows numerical issues. A distinguish between

modeling and solver issues of PI control limiters is given.

� Filippov theory is proposed to solve the deadlock problem of the IEEE Std.

421.5-2016 AW PI controller.

� This thesis proposes a generalized design of Filippov system models that identifies

the conditions to automatically switch to different discontinuous vector fields.

� The case studies in Chapter 5 confirm the versatility of the proposed FT approach,

which proves to be suitable for both event-driven (Dymola) and time-stepping

(Dome) software tools.

� Dead-band and time delay based solution techniques are compared with the

proposed Filippov based design. The proposed design provides the best and

most accurate dynamic response of all the tested methods and is suitable for

implementing in a power system software tool.

� The FT based AW PI model is extended to consider variable limits for VSC-based

applications.

� A new dead-band based implementation of the Std. AW configuration is proposed

to remove the chattering in the output.

� Different implementations (windup, AW with back-calculation and Std. tech-

niques) with variable limits used in current limiters of VSCs are compared.

Simulation results show that a combination of current limit along with the PIs

in VSCs has a significant impact on numerical simulation and overall systems

dynamic response. When the IEEE Std. 421.5-2016 model is considered the

proposed FT based method provides the most accurate dynamic response.
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� Finally, this thesis presents the windup and anti-windup models of fractional-

order PI controllers. Simulation results indicate that, among the three most

common AW methods, the back calculation and the automatic reset method are

to be preferred compared to the conditional integrator method for fractional PI

with AW limiters.

8.2 Future Work Directions

Possible future work directions of the work presented in this thesis are given

below.

� The impact of PI controller limiters are studied in Chapter 4 considering two VSC-

based applications, STATCOM and HVDC-link. This analysis can be further

extended to study other applications for example, storage, wind generators, smart

transformers and micro-grids.

� Filippov theory-based conditional anti-windup PI is rigorously studied and ad-

vantages of this method are shown by comparing the results with available so-

lution techniques in Chapters 5 and 6. The comparison is performed based on

a qualitative method. In future work, this comparison can be extended using a

quantitative approach. The quantitative approach should provide a comparison

from computational point of view for both event-driven and time-stepping based

event handling methods.

� PI controllers are studied rigorously in this work as an example of a discontinuous

model with discontinuity in state variable as well as in algebraic variable. Other

types of application for example, lag, lead-lag models are relevant and can be
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studied in future. This study can be further extended to consider variable limits

on these models.

� The numerical issues of the conditional integration anti-windup method for FOPI

controller with ORA approximation presented in Chapter 7 can be further inves-

tigated and a suitable solution can be proposed using Filippov theory.

� This thesis studies the numerical issues of discontinuous models, for example,

the deadlock or chattering from a modeling point of view. It is also shown that

these issues can be solved using a heuristic method (dead-band) or a theoretical

approach (Filippov theory) by reimplementing the model. However, suppose

similar issues are observed in a different model, for example, the conditional

anti-windup on fractional-order PI controller discussed in chapter 7, one needs

to go through the model again to propose a suitable solution. However, it can

be possible to study the numerical issues from a solver point of view instead of

a modeling point of view. In that case, the solver can be generalized in a way

so that if the mathematical model has a specific issue, the solver will handle

that accurately during the time-domain simulation. This future work direction is

challenging due to the different nature of discontinuity in power systems models.
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dynamical systems. Journal of Computational and Applied Mathematics, 254:132–

143, 2013.
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[67] Rick Wallace Kenyon, Matthew Bossart, Marija Marković, Kate Doubleday, Reiko
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