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Abstract

Grammatical evolution (GE) is a form of grammar-based genetic programming.
A particular feature of GE is that it adopts a distinction between the genotype
and phenotype similar to that which exists in nature by using a grammar to map
between the genotype and phenotype. Two variants of genotype representation are
found in the literature, namely, binary and integer forms. For the first time we anal-
yse and compare these two representations to determine if one has a performance
advantage over the other. As such this study seeks to extend our understanding
of GE by examining the impact of different genotypic representations in order to
determine whether certain representations, and associated diversity-generation op-
erators, improve GE’s efficiency and effectiveness. Four mutation operators using
two different representations, binary and gray code representation respectively, are
investigated. The differing combinations of representation and mutation operator
are tested on three benchmark problems. The results provide support for the use of
an integer-based genotypic representation as the alternative representations do not
exhibit better performance, and the integer reprensentation provides a statistically
significant advantage on one of the three benchmarks. In addition, a novel wrapping
operator for the binary and gray code representations is examined, and it is found
that across the three problems examined there is no general trend to recommend
the adoption of an alternative wrapping operator. The results also back up earlier
findings which support the adoption of wrapping.
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1 Introduction

Grammatical evolution (GE) [20,19,25] is a form of grammar-based genetic
programming. A special feature of GE is that, unlike genetic programming, it
has a clear distinction between the genotype and phenotype. The mapping of
the genotype and phenotype is governed by a grammar and this grammar can
contain domain knowledge to bias the form a phenotypic solution can take.
By separating the search and solution spaces, GE allows the implementation
of generic search algorithms without a requirement to tailor the diversity-
generating operators to the nature of the phenotype. A substantial literature
has emerged on GE and its applications [20,2,24,22,4]. Some of the more re-
cent developments of GE are focused on the various components of the GE
approach including the use of alternative search engines [15,14,18], the use of
alternative grammar constructs [16,5,12,21], and the examination of different
mapping processes [17]. One aspect of GE which has seen less research is the
examination of the impact of the choice of genotypic representation, and asso-
ciated diversity-generation operators, on GE’s efficiency and effectiveness. A
recent paper by Oetzel and Rothlauf [24] examined the locality properties of
a binary representation in GE and found that a genotypic bit-mutation oper-
ator produced non-local changes in the phenotype. The authors of this study
proposed that further research be undertaken in order to find other representa-
tions and associated mutation operators which would produce higher locality,
suggesting that this would increase the performance and effectiveness of GE.
This study addresses this research issue by investigating the impact of four
mutation operators using two different representations, binary and Gray code
representation respectively, on the performance of GE. In addition, for the first
time, a direct comparison is made between the two forms of genotypic represen-
tation adopted in the GE literature, namely integer versus binary codons. The
combinations are tested using three standard benchmark problems, symbolic
regression, the Santa Fe ant trail and the even-5-parity problem. In addition,
a novel wrapping operator is proposed for the binary and gray representations
and its performance compared to the standard wrapping operator.

The remainder of the paper is structured as follows. Section 2 describes GE
and provides background on earlier work on representations. Section 3 details
the experimental approach adopted and results, and finally section 5 details
conclusions and future work.

2 Background

This section provides an introduction to GE and to some prior work on the
importance of representation in evolutionary algorithms. GE is a grammar
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based form of genetic programming (GP) [9]. Rather than representing the
programs as parse trees, as in GP, a linear genome representation is used. A
genotype-phenotype mapping is employed such that each individual’s variable
length binary string, contains in its codons (groups of 8 bits) the information to
select production rules from a Backus Naur Form (BNF) grammar, see Fig. 1.
Consequently, the genetic operators such as crossover and mutation are applied
to the linear genotype in a typical genetic algorithm (GA) [7] manner, unlike
in a tree-based GP approach where they are applied directly to the phenotypic
parse trees. The grammar allows the generation of programs in an arbitrary
language that are guaranteed to be syntactically correct. The user can tailor
the grammar to produce solutions that are purely syntactically constrained,
or they may incorporate domain knowledge by biasing the grammar. The
mapping process creates a clear distinction between the search and solution
space.

Genotype 14    8    27    254    5    17    12

Derivation Sequence

<o> <e> <e> −−> + <e> <e>

<e>  −−−>  <o> <e> <e>

+ <e> <e> −−> + <v> <e>

+ <v> <e> −−> + x <e>

+ x <e> −−> + x <v>

+ x <v> −−> + x y

(14 mod 2 = 0)

(8 mod 2 = 0)

(27 mod 2 = 1)

(254 mod 2 = 0)

(5 mod 2 = 1)

(17 mod 2 = 1)

Grammar

<e> ::= <o> <e> <e>
           | <v>

<o> ::= +
           | −

<v> ::= x
           | y

<e>

<e> <e><o>

<v> <v>+

x y

Derivation
Tree

x y

+

Parse Tree
(Phenotype)

Fig. 1. An example GE genotype-phenotype mapping, where the genotype is used
to select production rules from a grammar to produce a derivation sequence. The
derivation sequence represents the development of a program from the embryonic
non-terminal start symbol (<e>). The derivation sequence can be represented as a
derivation tree, which can then be simplified to correspond to the parse tree adopted
in standard tree-based GP.

An important element in a successful application of evolutionary method-
ologies is a careful co-selection of a representation and associated diversity-
generating operators which are well-suited for a specific problem landscape.
These choices can radically change the performance of an algorithm. Easy
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problems in one representation can be hard in another. A substantial litera-
ture exists on the importance of representation choice and readers are referred
to [23] for a detailed discussion of this issue. The study focuses on redundancy,
scaling of building blocks and the modification of distance between individuals
when mapping the genotype to the corresponding phenotype. It suggests that
redundancy in a representation typically has a neutral or negative effect on
algorithmic performance.

In contrast, GE always maps via the BNF grammar to the solution space,
producing a much more complex genotype-phenotype mapping than typically
exists in a GA. The locality of a genotype-phenotype mapping describes how
well genotypic neighbors correspond to phenotypic neighbors. Rothlauf and
Oetzel [24] investigate the locality of this mapping in GE and suggest that
it has low locality as neighboring genotypes do not necessarily correspond to
neighboring phenotypes. Based on this finding, they suggest that further work
is needed in order to develop representations with higher locality in order to
maximise the efficiency of GE.

In prior investigations on GAs, Hollstien [8] claimed that gray code works
slightly better than the binary representation. Gray code has some advan-
tages compared to binary code [23] as it is not affected by scaling and it has
perfect locality concerning small changes. Therefore the difficulty of a problem
remains unchanged when using mutation-based search. However gray coding
may not produce the same effect in GE since GE uses a complex many to one
mapping (arising from the BNF grammar) causing neutral mutations whose
effects also must be considered. The neutral mutations are believed to cause
higher diversity and thus higher fitness [3,28,6,24]. If neutral mutations are
important mutation operators with high neutrality should be advantageous.
Yu and Miller, [27], state a hypothesis about the importance of the ratio be-
tween adaptive/neutral mutations. The mapping in GE gives it a non uniform
representation and thus may take longer to converge. GE is also subject to
a ripple effect when a standard GA is applied. As the function of a gene de-
pends on the genes that proceeds it, a small genotypic change can lead to a
big phenotypic change. Evidence suggests that this effect can promote a useful
exchange of derivation sub-sequences during crossover [12].

This study seeks to extend our understanding of GE by examining the impact
of different genotypic representations in order to determine whether certain
representations, and associated diversity-generation operators, improve GE’s
efficiency and effectiveness. Four mutation operators using two different repre-
sentations, binary and gray code representation respectively, are investigated.
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3 Experimental Setup & Results

This section outlines the experimental setup used in this study, details the
results of these experiments, and provides a discussion of the key findings.

3.1 Hypothesis and Setup

Given the best fitness value after 50 generations for each mutation opera-
tor: µ0, best fitness using normal integer mutation. µ1, plus minus mutation.
µ2, binary mutation and µ3, gray code mutation. The following hypothesis is
stated:

H0: None of the representations and mutations proposed gains significant per-
formance to GE in any of the experiments, i.e. µ0 = µ1, µ2, µ3.

H1: At least one of the mutations gains significant performance for at least
one experiment, i.e. µ0 > µ1 or µ0 > µ2 or µ0 > µ3.

α: The significance level of the test is 0.05. 1

Since the mutation operator is believed to be very problem dependent all
three experiments are run with the four different mutation operators over 30
runs. Ramped Half-and-half initialization with a maximum tree depth of 8 is
used. The mutation probability was 0.01, crossover probability 0.9 and the
number of wraps was 30. To raise the diversity within the population, unique
children regarding phenotypic difference from its parents are more likely to be
produced. Two parents are picked using tournament selection with tournament
size ten (population size 500). Steady state replacement is used. The solution
quality is measured by cumulative frequency (rate of success) and best fitness
value for the last generation (50th generation). To analyze GE’s performance a
t-test is performed on the best fitness after 50 generations. The data is assumed
to come from normal distribution with unknown, but equal, variance. Three
problems are examined, namely the Even-5-Parity, Symbolic Regression, and
Santa Fe Ant Trail, and a brief description of each problem follows along with
the corresponding grammars adopted in Fig. 2.

3.2 Santa Fe Ant Trail

The Santa Fe ant trail problem is a standard problem in GP and can be con-
sidered a deceptive planning problem with many local optima. The objective

1
α is the probability of making a type 1 error, i.e. The probability of rejecting H0

given that H0 is in fact true.
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EVEN-5-PARITY

<prog> ::= <expr>

<expr> ::= <expr> <op> <expr> | ( <expr> <op> <expr> ) | <var>

<op> ::= "|" | & | ^

<var> ::= d0 | d1 | d2 | d3 | d4

SYMBOLIC REGRESSION

<prog> ::= <expr>

<expr> ::= <expr> <op> <expr> | ( <expr> <op> <expr> ) | <pre-op> ( <expr> ) | <var>

<op> ::= + | * | -

<pre-op> ::= sin | cos | exp | log | inv

<var> ::= X | 1.0

SANTA FE ANT TRAIL

<prog> ::=<code>

<code> ::=<line>|<code><line>

<line> ::=<condition>|<op>

<condition> ::= if (food_ahead()==1) { <line>} else {<line> }

<op> ::= left(): | right(): | move():

Fig. 2. BNF grammars used in the experiments.

is to find a computer program sequence to control an artificial ant so that it
can find all the 89 food pieces on a irregular trail in a 32 by 32 toroidal grid.
The ant can turn left, right and move one square forward. The ant can also
look one square ahead in the direction it is facing.

The Santa Fe problem has the features often suggested in real program spaces,
it is full of local optima and many plateaus. The fitness landscape is riddled
with neutral networks linking programs with the same fitness in a dense and
suffocating labyrinth [10].

A limited GP schema analysis shows that it is deceptive at all levels. Longer
programs are on average fitter but contain a lower density of solutions. There
are low and middle order schemata which are required to build solutions but
which are below average fitness. This means practical sized samples give noisy
estimates of their fitness. Furthermore there are no beneficial building blocks,
leading GAs to choose between them randomly.

3.3 Even-5-Parity, Boolean Functions

Boolean functions are functions whose arguments only can take two values,
low or high, true or false etc. In the even-5-parity problem the goal is to find
a boolean expression that returns true if an even number of the boolean input
is true. The fitness value will be any of the natural numbers [0, 1, ..., 31, 32],
when the input is five boolean variables, d0...d4.

There are 22n

boolean logic functions of n inputs. This gives the even-5-parity
problem around 4e10 boolean functions, however since there are only 32 dif-
ferent fitness values many of them will have the same fitness. The fitness space
is dominated by a central spike indicating almost all programs score exactly
half marks. A small fraction, 21−n, of large programs solve the problem. So
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in general either the solution is found or else you score half, implying that
the problem is similar to seek for a needle in a haystack. There are not many
beneficial building blocks.

3.4 Symbolic Regression

The symbolic regression problem involve finding a mathematical expression in
symbolic form. The fitness function is the absolute error for 20 points in the
interval [−1, 1]. The target function used is:

f(x) = x4 + x3 + x2 + x (1)

3.5 Description of different mutations

Mutations that change the genotype but not the phenotype are called neutral
and can arise due to functional redundancy, implicit neutrality, or mutation
on inactive genes [28,20]. Adaptive mutations are mutations that change the
phenotype. Neutral mutations cause diversity within equally fit individuals in
the search space, while adaptive mutations explore the solution space.

In canonical GE setup adopted in this study, a 32 bit integer representation
is used (see Fig. 3), where each codon is defined by an integer. In a integer

mutation, the current integer value in a codon is replaced by a new randomly-
generated integer. This means that if this codon is mapped modulo 2: around
half of the mutations will be neutral, and if it is mapped modulo 3: one third
are neutral. In other words the real probability for mutation in the phenotype
is in fact P (mut)∗1/n, where n is the number of grammar instructions to chose
among for this codon (modulo n). If the algorithm is stuck at a local optima
all points in the search space can be reached with the mutation operator in
order to escape the local optima. To summarize, random integer mutation
is believed to have good search space exploration, low locality and neutral
mutations.

A plus minus mutation adds or subtract one from the current integer value of
the codon in question. This type of mutation extinguishes the neutral muta-
tions, and narrows the search space given some local optimum. The positive
feature could be that given a smooth grammar, i.e. a grammar that changes
smoothly (gradually) between the properties of each production rules, this
mutation could explore the search space more smoothly. For example if the
arithmetic expression sin(·) is mutated, with a smooth grammar, it could
change to cos(·), or X2 to X3. To summarize: plus minus mutation is believed
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551 13 ... 87349 12387

Fig. 3. Example of a genotype in an integer representation

1010...1010 0010...0111 ... 0100...0001 1000...0101

Fig. 4. Example of a genotype in a binary representation

Integer Binary Gray code

0 000 000

1 001 001

2 010 011

3 011 010

4 100 110

5 101 111

6 110 101

7 111 100

Fig. 5. Binary representation for Gray code and binary code

to have very poor global search space exploration, quite high locality and no
neutral mutations.

The binary mutation used here flips one bit in the codon. Using the Gray
code representation (see Figs. 4and 5) of the bitstring a gray code mutation

will change the codons in a different pattern compared to the binary rep-
resentation, notice that the gray code changes one bit every time adding or
subtracting one. The choice of grammar affects the result of the different oper-
ators, for example a smooth grammar (where the semantics of the alternative
rules for a non-terminal are similar) might be advantageous for the gray code
and plus minus mutation while a grammar with an equal number of production
rules for each non-terminal would make the neutral mutations vanish.

3.6 Mutation With Crossover

The amount of statistical analysis for these experiments is quite large, the
tables for statistical analysis are omitted, instead significant difference is men-
tioned in the caption of the figures. Results for mutation with crossover can
be seen in Fig. 6.

The only experiments that has a significant difference in the GE performance
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Symbolic regression f(x) = x4 + x3 + x2 + x

Mutation operator Mean best fit. Cum. frequency Standard deviation

Integer mutation 1.1 9 1.4

Binary mutation 1.3 2 0.8

Gray code mutation 1.5 4 1.2

Plus Minus mutation 1.6 1 1.4

Even-five-parity

Mutation operator Mean best fit. Cum. frequency Standard deviation

Integer mutation 3.2 0 1.9

Binary mutation 4.0 0 2.1

Gray code mutation 2.8 0 2.8

Plus Minus mutation 3.7 0 1.7

Santa Fe ant trail

Mutation operator Mean best fit. Cum. frequency Standard deviation

Integer mutation 15.6 14 17.4

Binary mutation 13.2 15 15.7

Gray code mutation 12.5 15 15.1

Plus Minus mutation 8.9 19 13.8

Fig. 6. Results for experiments using mutation and crossover for 30 runs. The mean
best fitness (minimizing), cummulative frequency of success and the standard devi-
ation.

(best fitness) is the even-five-parity experiment, see Fig. 7. In this experiment
integer mutation outperforms binary mutation while no other significant dif-
ferences exist. Thus the hypothesis H0, that none of the proposed operators
produces any significant performance advantage, cannot be rejected.

Regarding the mean fitness value, see Fig. 7 and 8, we can draw the conclu-
sion that in all the experiments except even-five-parity, the mutation operator
causing the most neutral mutations also has the lowest mean fitness value.
Neutral mutations cause phenotypic diversity to decrease and thus produce
reduced exploration. The adaptive mutation operators in all experiments have
the highest cumulative frequency. Adaptive mutations therefore seems to be
advantageous for finding the optimal solution, however maybe neutral muta-
tion with higher mutation rate would perform as well or better using both
good exploration and neutral features.
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Fig. 7. Left : Even-five-parity GE performance, best fitness after 50 generations, for
the four mutation operators. There is a significant difference between the binary
mutation and the integer mutation. Right : Even-five-parity mean of the best fitness
after 50 generations for the four mutation operators. There are significant differences
between the Plus minus mutation and the three others.
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Fig. 8. Left : Santa Fe ant trail mean of the best fitness after 50 generations for
the four mutation operators. There is a significant difference between the Gray
code and binary mutation. Right : Symbolic regression mean of the best fitness after
50 generations for the four mutation operators. There are significant differences
between the binary and Gray code and plus minus mutation respectively.

For each experiment no wrapping and no mutation is also tested. Since wrap-
ping is turned off the length of the genotypes are increased to an average of 400
codons. As can be seen in Fig. 6 the canonical GE settings of using mutation
and wrapping do produce higher performance than when these mechanisms
are ‘turned-off’.
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Symbolic regression f(x) = x4 + x3 + x2 + x

Mutation operator Mean best fit. Cum. frequency Standard deviation

Integer mutation 8.4 0 3.7

Binary mutation 7.9 0 3.8

Gray code mutation 7.4 0 3.8

Plus Minus mutation 7.2 0 3.5

Even-five-parity

Mutation operator Mean best fit. Cum. frequency Standard deviation

Integer mutation 5.0 0 2.5

Binary mutation 5.5 0 2.5

Gray code mutation 5.0 0 2.3

Plus Minus mutation 5.8 0 2.4

Santa Fe ant trail

Mutation operator Mean best fit. Cum. frequency Standard deviation

Integer mutation 33.2 2 15.7

Binary mutation 38.3 1 9.1

Gray code mutation 29.8 1 13.7

Plus Minus mutation 26.2 6 16.4

Fig. 9. Results for experiments using only mutation for 30 runs. The mean best
fitness (minimizing), cumulative frequency of success and the standard deviation.

3.7 Mutation Without Crossover

In these experiments the crossover probability is set to zero, other settings are
as in the previous experiments. The results are shown in Fig. 9.

No conclusions about GE performance and the mutation operators should
be drawn since the only factor that seems to matter is the actual rate of
exploration. This can be altered by increasing the mutation probability. In
the Santa Fe ant trail experiment, it can clearly be seen that the binary and
integer mutation are outperformed by plus minus and gray code mutation.
Without crossover, neutral mutations produce less exploration and thus lower
variance, diversity, and performance. Since the algorithm has a phenotypic di-
versity mechanism implemented this does not properly justify the way neutral
mutations have been shown to work, see [27,28]. The best fitness for the plus
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Fig. 10. Santa Fe ant trail GE performance for the four mutation operators without
the crossover operator. The Binary mutation is significantly different from the plus
minus and the Gray code mutation.

minus operator is not significantly better than that produced by any other
operator. There is no bias induced by the grammar since the Santa Fe ant
trail experiment always chooses among three or fewer production rules. The
plus minus operator can reach all the points of the search space, but unlike the
integer mutation no mutations are neutral and thus the plus minus mutation
has a higher rate of exploration. The results do not indicate that any firm
conclusions can be drawn regarding locality and mutation. None of the pro-
posed operators appear to produce higher locality, the only factor that seems
to be of importance is the exploration rate caused by fewer neutral mutations.
It is likely that these results emerge because the GE grammar mapping is so
complex that no matter what representation is used, the effect caused by a
mutation causes a substantial change in the phenotypic structure.

3.8 Crossover with No mutation and No wrapping

For each experiment 30 runs are made using no wrapping and no mutations
in the presence of crossover. Since wrapping is turned off the length of the
genotype are increased to an average of 400 codons. Results are presented in
Fig. 11.

As can be seen the standard GE settings of using mutation and wrapping do
produce higher performance than when these mechanisms are ’turned-off’.

3.9 Wrapping

The standard wrapping operator adopted in GE is adopted on the integer
representation. That is, when the end of the chromosome is reached, we wrap
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Symbolic regression f(x) = x4 + x3 + x2 + x

Mean Cum. frequency Standard deviation

Standard 1.1 9 1.4

No mutation, No wrapping 4.1 4 3.4

Even-five-parity

Mean Cum. frequency Standard deviation

Standard 3.2 0 1.9

No mutation, No wrapping 6.5 0 2.2

Santa Fe ant trail

Mean Cum. frequency Standard deviation

Standard 15.6 14 17.4

No mutation, No wrapping 33 2 12

Fig. 11. Results for experiments using only crossover for 30 runs. Both mutation
and wrapping are not used in this case.

Codon n
︷ ︸︸ ︷

|0, 1, 2, ..., 29, 30, X|
︸ ︷︷ ︸

Reading frame 1

Codon n+1
︷ ︸︸ ︷

|0′, 1′, 2′, ..., 29′, 30′, X ′|

Wrapping Operator ⇒

|0, 1, ..., 11, 12... 13, .., 30, X|, |0′, 1′, ..., 12′
︸ ︷︷ ︸

Reading frame 2

...13′, 14′, ..., 29′, 30′, X ′|

Fig. 12. When the new wrapping operator acts on the genotype, the reading frame
jumps 13 bits forward.

and begin reading integers from the start of the chromosome. In earlier studies
with GE this is also the manner in which wrapping is conducted on binary
chromosomes. In this study we also examined a novel wrapping operator for
the binary representations (i.e., for both gray and binary) which allowed the
reading frame to be changed upon wrapping (see Fig. 12). That is, the reading
frame does not always start reading from the first bit on the chromosome. In
this case the reading frame is offset by 13 bits after each wrap event. Fig. 13
summarises the features of the wrapping operators adopted for the integer,
gray and binary representations.

Given the best fitness value after 50 generations for each mutation operator:
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Integer Binary Gray code

Conserving of Building Blocks Yes No No

Generating of new sequences Sometimes Yes Yes

Fig. 13. Table of the wrapping operators properties

GE performance 30 runs Santa Fe ant trail

Wrapping operator Mean Cum. frequency Standard deviation

Standard Integer Wrapping 10.5 17 13.3

Binary wrapping 16.2 12 16.4

Gray code wrapping 15.5 19 15.5

GE performance 30 runs Symbolic regression

Wrapping operator Mean Cum. frequency Standard deviation

Standard Integer Wrapping 0.9 5 0.6

Binary wrapping 1.6 1 1.3

Gray code wrapping 3.7 0 5.0

GE performance 30 runs Even five parity

Wrapping operator Mean Cum. frequency Standard deviation

Standard Integer Wrapping 4.0 0 1.8

Binary wrapping 3.2 0 1.4

Gray code wrapping 3.8 0 1.1

Fig. 14. A comparison of results for the three problems for wrapping on the three
different representations.

(1) µ0: Best fitness using normal integer wrapping, (2) µ1: Binary wrapping
and (3) µ2: Gray code wrapping. The following hypothesis is stated for the
performance of the wrapping operators:

H0: None of the wrapping operators proposed gains significant performance
to GE in any of the experiments, i.e. µ0 = µ1, µ2.

H2: At least one of the wrapping operators gains significant performance for
at least one experiment, i.e. µ0 > µ1 or µ0 > µ2.

α: The significance level of the test is 0.05 2 .

2
α is the probability of making a type 1 error, i.e. The probability of rejecting H0

14



For all experiments it is assumed that the mean best fitness is normally dis-
tributed and that the mean best fitness variance is equal but unknown for all
mutations.

Fig 14 details the results obtained for the three representations and their
corresponding performance with the different wrapping operators. A t-test re-
veals that there is no significant difference between the wrapping operators on
the Santa Fe Ant trail, the standard integer wrapping outperforms the others
in the case of Symbolic Regression, while the binary wrapping outperforms
integer wrapping on the even-5-parity problem.

4 Discussion

A number of experiments on different genotypic representations and operators
have been presented, and are conducted on three diverse and well understood
standard benchmark problems from the Genetic Programming literature. One
of the primary motivations for this study was the fact that at least two vari-
ants of Grammatical Evolution exist within the literature, which adopt dif-
ferent genotypic representations (i.e., binary and integer). For the first time,
in this study we compare the performance of these two underlying genotypic
representations to determine if one presents an advantage over the other. Inter-
estingly, in the standard algorithm setup which combines mutation, crossover
and wrapping operators there is no observed statistically significant differ-
ence between these encodings on two of the three bencmarks. On the boolean
even-five-parity problem the integer representation has a significant advantage
over its binary counterpart. As such, we would recommend the adoption of an
integer based representation.

On the experiments with the wrapping operator, earlier research [13] indicated
that the presence of wrapping can be advantageous on some problems, while
not having a negative contribution on performance on the other benchmarks
examined. In this study alternative wrapping operators are explored, and again
the main conclusion is that wrapping can present an advantage on certain
problem instances. The main issue with adopting a wrapping operator as in
Grammatical Evolution, is that the complexity of the genotype-phenotype
mapping process can be compounded by the fact that different codons can
be used in multiple contexts. Intuitively, this might make it more difficult to
modify/mutate the values at these codons which have overlapping function.
What is surprising is that despite this, wrapping can be a productive operator
at enhancing performance of the algorithm on some problems. Some comfort
can also be taken from the natural system which inspired the adoption of

given that H0 is in fact true.
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wrapping (plasmids), in that overlapping genes, such as those that might occur
with wrapping, are quite common in the natural world [11].

By virtue of the fact we are adopting a genotype-phenotype mapping we end
up with an algorithm that is more complex than without such a map, and
the correlation between genotype and phenotype is not as clean cut as one
might design intuitively. However, the claimed benefits of this separation are
well documented (e.g., see [1,26]) and research in this domain is an active
one. With respect to GE specifically, it has been claimed that benefits in-
clude, a generalised encoding that can represent a variety of structures (such
a grammar-based approach inherently allows multiple-types to be included
unlike traditional GP which is limited to a single type), efficiency gains for
evolutionary search by taking advantage of neutral networks and neutral evo-
lution, and facilitating genetic diversity and preservation of functionality due
to the many-to-one mapping and degenerate encoding [13]. The numerous ap-
plications of GE in the literature are a clear statement of the success of this
particular approach to representation in Genetic Programming. This paper
does however, highlight the need for a better understanding of these kinds
of genotype-phenotype representations and where the real performance ben-
efits can be achieved. As such future research will be directed towards the
genotype-phenotype map itself and also the impact of the grammar on this
process.

5 Conclusions & Future Work

The object of this study was to examine the impact of different genotypic rep-
resentations in GE in order to determine whether certain representations, and
associated diversity-generation operators, improve GE’s efficiency and effec-
tiveness. Two main variants of genotype representation exist in the literature
to date, namely, binary and integer encodings. This is the first time these two
representations have been formally compared and analysed.

Four mutation operators using two different representations, binary and Gray
code representation respectively, are investigated. The different combinations
of representation and mutation operator were tested on three benchmark prob-
lems. The results provide support for the continued use of the integer variant
of genotypic representation as none of the alternative gains a significant per-
formance advantage, while the integer form produced statistically significant
improvements on one of the benchmark problems.

Even though no clear improvements can be seen through new mutation op-
erators by virtue of different underlying genetic representations, there is no
doubt that the presence of mutation increases GE’s performance (see Fig. 6).
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Since GE has a complex mapping from genotype to fitness value, the results
do not suggest that changing the representation of the genotype has a signifi-
cant impact on GE performance. This does not imply that the representation
is irrelevant, rather it suggests that the examination of the utility of a spe-
cific representation cannot be isolated from an examination of the mapping
process embedded in the grammar. One way of investigating locality further
would be to create a grammar that changes gradually between the properties
of each production rules, this mutation could explore the search space more
smoothly. Furthermore investigation of different mapping methods and how
to create operators that perform a more local search, e.g. context sensitive
mutations might improve the understanding of GE.

A comparison of a novel wrapping operator for the binary and gray code
representations reveals that across the three problems there is no general trend
that suggests one wrapping operator has a superior performance.

Overall the experiments reported here are conducted on three standard and
well understood benchmark problems commonly found in the Genetic Pro-
gramming literature, and as such we are limited in our ability to generalise
our findings beyond these problems. The nature of the three problems are
quite different however, ranging from finding a boolean expression, uncover-
ing a symbolic expression from input-output pairs, to a simple robot control
type problem. It will be useful to extend this study to harder benchmarks,
and to real-world problem instances to determine if some of the differences
(albeit small) may be amplified in more complex domains. One particular in-
terest of our research is to determine how these representations will perform
in dynamic environments and research to this end is underway.
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