
Title Efficient Large Scale Clustering based on Data Partitioning

Authors(s) Bendechache, Malika, Le-Khac, Nhien-An, Kechadi, Tahar

Publication date 2016-10-19

Publication information Bendechache, Malika, Nhien-An Le-Khac, and Tahar Kechadi. “Efficient Large Scale Clustering 

Based on Data Partitioning.” IEEE, 2016.

Conference details 3rd IEEE International Conference on Data Science and Advanced Analytics (DSAA 2016), 

Montreal, Canada, 17-19 October, 2016

Publisher IEEE

Item record/more 

information

http://hdl.handle.net/10197/8103

Publisher's statement © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained 

for all other uses, in any current or future media, including reprinting/republishing this material for 

advertising or promotional purposes, creating new collective works, for resale or redistribution to 

servers or lists, or reuse of any copyrighted component of this work in other works.

Downloaded 2024-03-28T04:02:09Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=Efficient+Large+Scale+Clustering+base...&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F8103


Efficient Large Scale Clustering based on Data
Partitioning

Malika Bendechache
Insight Centre for Data Analytics

School of Computer Science
University College Dublin

Dublin, Ireland
Email: malika.bendechache@ucdconnect.ie

Nhien-An Le-Khac
School of Computer Science

University College Dublin
Dublin, Ireland

Email: an.lekhac@ucd.ie

M-Tahar Kechadi
Insight Centre for Data Analytics

School of Computer Science
University College Dublin

Dublin, Ireland
Email: tahar.kechadi@ucd.ie

Abstract—Clustering techniques are very attractive for ex-
tracting and identifying patterns in datasets. However, their appli-
cation to very large spatial datasets presents numerous challenges
such as high-dimensionality data, heterogeneity, and high com-
plexity of some algorithms. For instance, some algorithms may
have linear complexity but they require the domain knowledge in
order to determine their input parameters. Distributed clustering
techniques constitute a very good alternative to the big data
challenges (e.g.,Volume, Variety, Veracity, and Velocity). Usually
these techniques consist of two phases. The first phase generates
local models or patterns and the second one tends to aggregate
the local results to obtain global models. While the first phase can
be executed in parallel on each site and, therefore, efficient, the
aggregation phase is complex, time consuming and may produce
incorrect and ambiguous global clusters and therefore incorrect
models. In this paper we propose a new distributed clustering
approach to deal efficiently with both phases; generation of local
results and generation of global models by aggregation. For the
first phase, our approach is capable of analysing the datasets
located in each site using different clustering techniques. The
aggregation phase is designed in such a way that the final clusters
are compact and accurate while the overall process is efficient
in time and memory allocation. For the evaluation, we use two
well-known clustering algorithms; K-Means and DBSCAN. One
of the key outputs of this distributed clustering technique is that
the number of global clusters is dynamic; no need to be fixed in
advance. Experimental results show that the approach is scalable
and produces high quality results.

Keywords—Big Data, spatial data, clustering, distributed min-
ing, data analysis, k-means, DBSCAN.

I. INTRODUCTION

Currently, one of the most critical data challenges which
has a massive economic need is how to efficiently mine and
manage all the data we have collected. This is even more
critical when the collected data is located on different sites,
and are owned by different organisations [1]. This led to the
development of distributed data mining (DDM) techniques to
deal with huge, multi-dimensional and heterogeneous datasets,
which are distributed over a large number of nodes. Existing
DDM techniques are based on performing partial analysis on
local data at individual sites followed by the generation of
global models by aggregating these local results. These two
steps are not independent since naive approaches to local
analysis may produce incorrect and ambiguous global data
models. In order to take advantage of the mined knowledge at

different locations, DDM should have a view of the knowledge
that not only facilitates their integration, but also minimises
the effect of the local results on the global models. Briefly,
an efficient management of distributed knowledge is one of
the key factors affecting the outputs of these techniques [2],
[3], [4], [5]. Moreover, the data that is collected and stored
in different locations using different instruments may have
different formats and features. Traditional, centralised data
mining techniques have not considered all the issues of data-
driven applications, such as scalability in both response time
and accuracy of solutions, distribution, and heterogeneity [6].
Some DDM approaches are based on ensemble learning, which
uses various techniques to aggregate the results [7], among the
most cited in the literature: majority voting, weighted voting,
and stacking [8], [9].

DDM is more appropriate for large scale distributed plat-
forms, where datasets are often geographically distributed and
owned by different organisations. Many DDM methods such as
distributed association rules and distributed classification [10],
[11], [12], [3], [13], [14] have been proposed and developed
in the last few years. However, only a few researches concern
distributed clustering for analysing large, heterogeneous and
distributed datasets. Recent researches [15], [16], [17] have
proposed distributed clustering approaches based on the same
2-step process: perform partial analysis on local data at indi-
vidual sites and then aggregate them to obtain global results. In
this paper, we propose a distributed clustering approach based
on the same 2-step process, however, it reduces significantly
the amount of information exchanged during the aggregation
phase, and generates automatically the correct number of
clusters. A case study of an efficient aggregation phase has
been developed on spatial datasets and proven to be very
efficient; the data exchanged is reduced by more than 98%
of the original datasets [18].

The approach can use any clustering algorithm to per-
form the analysis on local datasets. As can be seen in the
following sections, we tested the approach with two well-
known centroid-based and density-based clustering algorithms
(K-Means and DBSCAN, respectively), and the results are of
very high quality. More importantly, this study shows how
importance of the local mining algorithms, as the local clusters
accuracy affects heavily the quality of the final models.

The rest of the paper is organised as follows: In the

1



next section we will give an overview of the state-of-the-
art for distributed data mining and discuss the limitations of
traditional techniques. Then we will present the proposed dis-
tributed framework and its concepts in Section III. In Section
IV, we evaluated the distributed approach using two well-
known algorithms; K-Means and DBSCAN. We discuss more
experimental results showing the quality of our algorithm’s
results in Section V. Finally, we conclude in Section VI.

II. RELATED WORK

Distributed Data Mining (DDM) is a line of research that
has attracted much interest in recent years [19]. DDM was
developed because of the need to process data that can be
very large or geographically distributed across multiple sites.
This has two advantages: first, a distributed system has enough
power to analyse the data within a reasonable time frame.
Second, it would be very advantageous to process data on
their respective sites to avoid the transfer of large volumes of
data to a central site to avoid heavy communications, network
bottlenecks, etc.

DDM techniques can be divided into two categories based
on the targeted architectures of computing platforms [20].
The first, based on parallelism, uses traditional dedicated and
parallel machines with tools for communications between pro-
cessors. These machines are generally called super-computers
and are very expensive. The second category targets a network
of autonomous machines. These are called distributed systems,
and are characterised by a distributed communication network
connecting low-speed machines that can be of different archi-
tectures, but they are very abundant [21]. The main goal of the
second category of techniques is to distribute the work among
the system nodes and try to minimise the response time of
the whole application. Some of these techniques have already
been developed and implemented in [22], [23].

However, the traditional DDM methods are not always
effective, as they suffer from the problem of scaling. This has
led to the development of techniques that rely on ensemble
learning [24], [25]. These new techniques are very promising.
Integrating ensemble learning methods in DDM, will allow to
deal with the scalability problem. One solution to deal with
large scale data is to use parallelism, but this is very expensive
in terms of communications and processing power. Another
solution is to reduce the size of training sets (sampling).
Each system node generates a separate sample. These samples
will be analysed using a single global algorithm [26], [27].
However, this technique has a disadvantage that the sampling
depends on the transfer time which may impact on the quality
of the samples.

Clustering algorithms can be divided into two main cate-
gories, namely partitioning and hierarchical. Different elabo-
rated taxonomies of existing clustering algorithms are given
in the literature. Many parallel clustering versions based on
these algorithms have been proposed in the literature [17],
[28], [29], [30], [31], [32], [33]. These algorithms are further
classified into two sub-categories. The first consists of methods
requiring multiple rounds of message passing. They require
a significant amount of synchronisations. The second sub-
category consists of methods that build local clustering models
and send them to a central site to build global models [18]. In

[28] and [32], message-passing versions of the widely used
K-Means algorithm were proposed. In [29] and [33], the
authors dealt with the parallelisation of the DBSCAN density-
based clustering algorithm. In [30] a parallel message passing
version of the BIRCH algorithm was presented. A parallel
version of a hierarchical clustering algorithm, called MPC for
Message Passing Clustering, which is especially dedicated to
Microarray data was introduced in [31]. Most of the parallel
approaches need either multiple synchronisation constraints
between processes or a global view of the dataset, or both
[17].

Another approach presented in [17] also applied a merg-
ing of local models to create the global models. Current
approaches only focus on either merging local models or
mining a set of local models to build global ones. If the local
models cannot effectively represent local datasets then global
models accuracy will be very poor [18]. Both partitioning
and hierarchical categories suffer from some drawbacks. For
the partitioning class, K-Means algorithm needs the number
of clusters fixed in advance, while in the majority of cases K
is not known. Furthermore, hierarchical clustering algorithms
have overcome this limit: they do not need to provide the
number of clusters as an input parameter, but they must define
the stopping conditions for clustering decomposition, which is
not an easy task.

III. DYNAMIC DISTRIBUTED CLUSTERING

We first describe the proposed Dynamic Distributed Clus-
tering (DDC) model, where the local models are based on the
boundaries of clusters. We also present an evaluation of the
approach with different local clustering techniques including
centroid-based (K-Means) and density-based (DBSCAN) tech-
niques.

Fig. 1: An overview of the DDC Approach.

2



The DDC approach includes two main steps. In the first
step, as usual, we cluster the datasets located on each node of
the system and select good local representatives. This phase
is executed in parallel without communications between the
nodes. In this phase we can reach a super speed-up. The next
phase, however, collects the local models from each node and
affects them to some special nodes in the system called leaders.
The leaders are elected according to some characteristics such
as their capacity, processing power, connectivity, etc. The
leaders are responsible for merging and regenerating the data
objects based on the local cluster representatives. The purpose
of this step is to improve the quality of the global clusters,
as usually the local clusters do not contain enough important
information.

A. Local Models

The local clusters are highly dependent on the clustering
techniques used by their corresponding nodes. For instance,
for spatial datasets, the shape of a cluster is usually dictated
by the technique used to obtain them. Moreover, this is not an
issue for the first phase, as the accuracy of a cluster affects
only the local results of a given node. However, the second
phase requires sending and receiving all local clusters to the
leaders. As the whole data is very large, this operation will
saturate very quickly the network. So, we must avoid sending
all the original data through the network. The key idea behind
the DDC approach is to send only the cluster’s representatives,
which constitute between 1% and 2% of the total size of the
data. The cluster representatives consist of the internal data
representatives plus the boundary points of the cluster.

There are many existing data reduction techniques in the
literature. Many of them are focusing only on the dataset size
i.e., they try to reduce the storage capacity without paying
attention to the knowledge contained in the data. In [34], an
efficient reduction technique has been proposed; it is based on
density-based clustering algorithms. Each cluster is represented
by a set of carefully selected data-points, called representatives.
However, selecting representatives is still a challenge in terms
of quality and size [15], [18].

The best way to represent a spatial cluster is by its
shape and density. The shape of a cluster is represented by
its boundary points (called contour) (see Figure 1). Many
algorithms for extracting the boundaries from a cluster can be
found in the literature [35], [36], [37], [38], [39]. We used the
algorithm proposed in [40], which is based on triangulation to
generate the cluster boundaries. It is an efficient algorithm for
constructing non-convex boundaries. The algorithm is able to
accurately characterise the shape of a wide range of different
point distributions and densities with a reasonable complexity
of O(n log n).

B. Global Models

The global models (patterns) are generated during the
second phase of the DDC. This phase is also executed in a
distributed fashion but, unlike the first phase, it has commu-
nications overheads. This phase consists of two main steps,
which can be repeated until all the global clusters were
generated. First, each leader collects the local clusters of its
neighbours. Second, the leaders will merge the local clusters

using the overlay technique. The process of merging clusters
will continue until we reach the root node. The root node will
contain the global clusters (see Figure 1).

Note that, this phase can be executed by a clustering
algorithm, which can be the same as in the first phase or com-
pletely different one. This approach belongs to the category of
hierarchical clustering.

As mentioned above, during the second phase, communi-
cating the local clusters to the leaders may generate a huge
overhead. Therefore, the objective is to minimise the data
communication and computational time, while getting accurate
global results. In DDC we only exchange the boundaries of the
clusters, instead of exchanging the whole clusters between the
system nodes.

In the following, we summarise the steps of the DDC ap-
proach for spatial data. The nodes of the distributed computing
system are organised following a tree topology.

1) Each node is allocated a dataset representing a portion
of the scene or of the overall dataset.

2) Each leaf node executes a local clustering algorithm
with its own input parameters.

3) Each node shares its clusters with its neighbours
in order to form larger clusters using the overlay
technique.

4) The leader nodes contain the results of their groups.
5) Repeat 3 and 4 until all global clusters were gener-

ated.

Note that the DDC approach suits very well the MapRe-
duce framework, which is widely used in cloud computing
systems.

IV. DDC EVALUATION AND VALIDATION

In order to evaluate the performance of the DDC approach,
we use different local clustering algorithms. In this paper we
use a centroid-based algorithm (K-Means) and a density-based
Algorithm (DBSCAN).

A. DDC-K-Means

Following the general structure of the approach described
above, the DDC with K-Means (DDC-K-Means) is charac-
terised by the fact that in the first phase, called the parallel
phase, each node Ni of the system executes the K-Means
algorithm on its local dataset to produce Li local clusters
and calculate their contours. The rest of the process is the
same as described above. In other words, the second phase
consists of exchanging the contours located in each node
with its neighbourhood nodes. Each leader attempts to merge
overlapping contours of its group. Therefore, each leader
generates new contours (new clusters). The merge procedure
will continue until there is no overlapping contours.

It has been shown in [41] that DDC-K-Means dynamically
determines the number of the clusters without a priori knowl-
edge about the data or an estimation process of the number of
the clusters. DDC-K-Means was also compared to two well-
known clustering algorithms: BIRCH and CURE. The results
showed that the quality of the DDC-K-Means’ clusters is much
better that the ones generated by both BIRCH and CURE. As

3



expected, this approach runs much faster than the two other
algorithms; BIRCH and CURE.

To summarise, DDC-K-Means does not need the number
of global clusters to be given as an input. It is calculated
dynamically. Moreover, each local clustering Li with K-Means
needs Ki as a parameter, which is not necessarily the exact
K for that local clustering. Let K̃i be the exact number of
local clusters in the node Ni, all it is required is to set Ki

such that Ki > K̃i. This is much simpler than giving Ki,
especially when we do not have enough knowledge about the
local dataset characteristics. Nevertheless, it is indeed better
to set Ki as close as possible to K̃i in order to reduce the
processing time in calculating the contours and also merging
procedure.

Figure 2 shows a comparative study between DDC-K-
Means and two well-known algorithms; BIRCH and CURE.
The experiments use five datasets (T1, T2, T3, T4, T5) described
in Table I. Note that T5 is the same dataset as T4 for which we
removed the noise. Each color represents a separate cluster.

As we can see, DDC-K-Means successfully generates the
final clusters for the first three datasets (T1, T2 and T3),
whereas BIRCH and CURE fail to generate the expected
clusters for all the datasets (T1, T2, T3, T4 and T5). However,
DDC-K-Means fails to find good clusters for the two last
datasets (T4 and T5), this is due to the fact that the K-Means
algorithm tends to work with convex shape only, because it is
based on the centroid principle to generate clusters. Moreover,
we can also notice that the results of DDC-K-Means are even
worse with dataset which contains noise (T5). In fact it returns
the whole dataset with the noise as one final cluster for each
dataset (see Figure 2). This is because K-Means does not deal
with noise.

B. DDC with DBSCAN

While, the DDC-K-Means performs much better than some
well-known clustering algorithms on spatial datasets, it still can
not deal with all kinds of datasets; mainly with non-convex
shapes. In addition, DDC-K-Means is very sensitive to noise.
Therefore, instead of K-Means, we use another clustering
algorithm for spatial datasets, which is DBSCAN. DBSCAN
is summarised below.

1) DBSCAN: DBSCAN (Density-Based spatial Cluster-
ing of Applications with Noise) is a well-known density
based clustering algorithm capable of discovering clusters with
arbitrary shapes and eliminating noisy data [42]. Briefly,
DBSCAN clustering algorithm has two main parameters: the
radius Eps and minimum points MinPts. For a given point
p, the Eps neighbourhood of p is the set of all the points
around p within distance Eps. If the number of points in the
Eps neighbourhood of p is smaller than MinPts, then all the
points in this set, together with p, belong to the same cluster.
More details can be found in [42].

Compared with other popular clustering methods such as
K-Means [43], BIRCH [44], and STING [45], DBSCAN
has several key features. First, it groups data into clusters with
arbitrary shapes. Second, it does not require the number of
the clusters to be given as an input. The number of clusters is
determined by the nature of the data and the values of Eps and

MinPts. Third, it is insensitive to the input order of points
in the dataset. All these features are very important to any
clustering algorithm.

2) DBSCAN Complexity: DBSCAN visits each point of
the dataset, possibly multiple times (e.g., as candidates to
different clusters). For practical considerations, however, the
time complexity is mostly governed by the number of re-
gionQuery invocations. DBSCAN executes exactly one such
query for each point, and if an indexing structure is used
that executes a neighbourhood query in O(log n), an overall
average complexity of O(n log n) is obtained if the parameter
Eps is chosen in a meaningful way, (i.e., such that on average
only O(log n) points are returned). Without the use of an
accelerating index structure, or on degenerated data (e.g., all
points within a distance less than Eps), the worst case run
time complexity remains O(n2). The distance matrix of size
O((n2 − n/2)) can be materialised to avoid distance re-
computations, but this needsO(n2) of memory, whereas a non-
matrix based implementation of DBSCAN only needs O(n) of
memory space.

3) DDC-DBSCAN Algorithm: The approach remains the
same (as explained in Section III), the only difference is
at local level (See Figure 1). Where, instead of using K-
Means for processing local clusters, we use DBSCAN. Each
node (ni) executes DBSCAN on its local dataset to produce
Ki local clusters. Once all the local clusters are determined,
we calculate their contours. These contours will be used as
representatives of their corresponding clusters.

The second phase consists of exchanging the contours
located in each node with its neighbourhood nodes. This
will allow us to identify overlapping contours (clusters). Each
leader attempts to merge overlapping contours of its group.
Therefore, each leader generates new contours (new clusters).
We repeat the second and third steps till we reach the root
node. The sub-clusters aggregation is done following a tree
structure and the global results are located in the top level of
the tree (root node). The algorithm pseudo code is given in
Algorithm 1.

Figure 3 illustrates an example of DDC-DBSCAN. Assume
that the distributed computing platform contains five Nodes
(N = 5). Each Node executes DBSCAN algorithm with its
local parameters (Epsi, MinPtsi) on its local dataset. As it
can be seen in Figure 3 the new approach returned exactly
the right number of clusters and their shapes. The approach is
insensitive to the way the original data was distributed among
the nodes. It is also insensitive to noise and outliers. As we
can see, although each node executed DBSCAN locally with
different parameters. The global final clusters were correct
even on the noisy dataset (T5) (See Figure 3).

4



Original Dataset BIRCH CURE DDC-K-Means

T1

T2

T3

T4

T5 (T4 with noise )

Fig. 2: Comparing the clusters generated across different datasets

5



Algorithm 1: DDC with DBSCAN.
input : Xi: Dataset Fragment, Epsi: Distance Epsi for

Nodei, MinPtsi: minimum points contain
clusters generated by Nodei, D: tree degree,
Li: Local clusters generated by Nodei

output: Kg: Global Clusters (global results)

level = treeheight;
1) DBSCAN(Xi. Epsi, MinPtsi);

// Nodei executes DBSCAN locally.
2) Contour(Li);

// Nodei executes the Contour
algorithm to generate the boundary
of each local cluster.

3) Nodei joins a group G of D elements;
// Nodei joins its neighbourhood

4) Compare cluster of Nodei to other node’s clusters
in the same group;
// look for overlapping between
clusters.

5) j = ElectLeaderNode();
// Elect a node which will merge
the overlapping clusters.

if i <> j then
Send (contour i, j);

else
if level > 0 then

level - - ;
Repeat 3, 4, and 5 until level=0;

else
return (Kg: Nodei’ clusters);

Fig. 3: Example of DDC-DBSCAN execution.

V. EXPERIMENTAL RESULTS

In this section, we study the performance of the DDC-
DBSCAN approach and demonstrate its effectiveness com-
pared to BIRCH, CURE and DDC-K-Means. We choose these
algorithms because either they are in the same category as the
proposed technique, such as BIRCH which belongs to hier-
archical clustering category, or have an efficient optimisation
approach, such as CURE.

BIRCH: We used the BIRCH implementation provided in
[44]. It performs a pre- clustering and then uses a centroid-
based hierarchical clustering algorithm. Note that the time and
space complexity of this approach is quadratic to the number of
points after pre-clustering. We set its parameters to the default
values suggested in [44].

CURE: We used the implementation of CURE provided in
[46]. The algorithm uses representative points with shrinking
towards the mean. As described in [46], when two clusters
are merged in each step of the algorithm, representative points
for the new merged cluster are selected from the ones of the
two original clusters rather than all the points in the merged
clusters.

A. Experiments

We run experiments with different datasets. We used six
types of datasets with different shapes and sizes. The first
three datasets (T1, T2, and T3) are the same datasets used to
evaluate DDC-K-Means. The last three datasets (T4, T5, and
T6) are very well-known benchmarks to evaluate density-based
clustering algorithms. All the six datasets are summarised in
Table I. The number of points and clusters in each dataset is
also given. These six datasets contain a set of shapes or patterns
which are not easy to extract with traditional techniques.

TABLE I: The datasets used to test the algorithms.

Type Dataset Description #Points #Clusters

Convex
T1 Big oval

(egg shape) 14,000 5

T2 4 small circles
and 2 small circles linked 17,080 5

T3
2 small circles,

1 big circle
and 2 linked ovals

30,350 4

Non-Convex
with Noise

T4 Different shapes
including noise 8,000 6

T5
Different shapes, with

some clusters surrounded
by others

10,000 9

T6 Letters with noise 8,000 6

B. Quality of Clustering

We run the four algorithms on the six datasets in order
to evaluate the quality of their final clusters. In the case of
the DDC approach we took a system that contains five nodes,
therefore, the results shown are the aggregation of the five local
clustering. Figure 4 shows the returned clusters by each of
the four algorithms for convex shapes of the clusters (T1, T2,
and T3) and Figure 5 shows the clusters returned for non-
convex shapes of the clusters with noise (T4, T5, and T6). We
use different colours to show the clusters returned by each
algorithm.

6



BIRCH CURE DDC-K-Means DDC-DBSCAN

T1

T2

T3

Fig. 4: Clusters generated for datasets (T1, T2, T3).

From the results shown in Figure 4, as expected, since
BIRCH cannot find all the clusters correctly. It splits the
larger cluster while merging the others. In contrast, CURE
generates correctly the majority of the final clusters but it still
fails to discover all the clusters. Whereas both DDC-K-Means
and DDC-DBSCAN algorithms successfully generate all the
clusters with the default parameter settings.

Figure 5 shows the clusters generated for the datasets
(T4, T5, and T6). As expected, again BIRCH could not find
correct clusters; it tends to work better with convex shapes of
the clusters. In addition, BIRCH does not deal with noise. The
results of CURE are worse and it is not able to extract clusters
with non-convex shapes. We can also see that CURE does not
deal with noise. DDC-K-Means fails to find the correct final
results. In fact it returns the whole original dataset as one final
cluster for each dataset (T4, T5, and T6) (including the noise).
This confirms that the DDC technique is sensitive to the type

of the algorithm chosen for the first phase. Because the second
phase deals only with the merging of the local clusters whether
they are correct or not. This issue is corrected by the DDC-
DBSCAN, as it is well suited for non-convex shapes of the
clusters and also for eliminating the noise and outliers. In fact,
it generates good final clusters in datasets that have significant
amount of noise.

As a final observation, these results prove that the DDC
framework is very efficient with regard to the accuracy of its
results. The only issue is to choose a good clustering algorithm
for the first phase. This can be done by exploring the initial
datasets along with the question to be answered and choose a
clustering algorithm accordingly.

Moreover, as for the DDC-K-Means, DDC-DBSCAN is
dynamic (the correct number of clusters is returned automati-
cally) and efficient (the approach is distributed and minimises
the communications).

7



BIRCH CURE DDC-K-Means DDC-DBSCAN

T4

T5

T6

Fig. 5: Clusters generated form non-convex shapes and noisy datasets.

C. Speed-up

The goal here is to study the execution time of the four
algorithms and demonstrate the impact of using a parallel and
distributed architecture to deal with the limited capacity of a
centralised system.

As mentioned in Section IV-B2, the execution time for
the DDC-DBSCAN algorithm can be generated in two cases.
The first case is to include the time required to generate the
distance matrix calculation. The second case is to suppose that
the distance matrix has already been generated. The reason for
this is that the distance matrix is calculated only once.

TABLE II: The execution times (ms) of BIRCH, CURE,
DDC-K-Means and DDC-DBSCAN with (w) and without

(w/o) distance matrix computation.

Execution Time (ms)
DDC-DBSCANSIZE BIRCH CURE DDC-K-Means W W/O

T1 14000 328 145672 290 1049 632
T2 17080 312 405495 337 1283 814
T3 30350 347 1228063 501 1903 1220
T4 8000 249 72098 250 642 346
T5 10000 250 141864 270 836 470
T6 8000 218 92440 234 602 374

Table II illustrates the execution times of the four tech-

niques on different datasets. Note that the execution times do
not include the time for post-processing since these are the
same for the four algorithms.

As mentioned in Section IV-B2, Table II confirmed the fact
that the distance matrix calculation in DBSCAN is very sig-
nificant. Moreover, DDC-DBSCAN’s execution time is much
lower than CUREs execution times across the six datasets.
Table II shows also that the DDC-K-Means is very quick
which is in line with its polynomial computational complexity.
BIRCH is also very fast, however, the quality of its results are
not good, it failed in finding the correct clusters across all the
six datasets.

The DDC-DBSCAN is a bit slower that DDC-K-Means,
but it returns high quality results for all the tested benchmarks,
much better that DDC-K-Means, which has reasonably good
results for convex cluster shapes and very bad results for
non-convex cluster shapes. The overall results confirm that
the DDC-DBSCAN clustering techniques compares favourably
to all the tested algorithms for the combined performance
measures (quality of the results and response time or time
complexity).

D. Scalability

The goal here is to determine the effects of the number
of nodes in the system on the execution times. The dataset

8



contains 50, 000 data points. Figure 6 shows the execution
time against the number of nodes (x axis is in log2) in
the system. As one can see, DDC-DBSCAN took only few
seconds (including the matrix computation’s time) to cluster
50, 000 data points in a distributed system that contains up
to 100 nodes, the algorithm took even less time when we
exclude the matrix computation’s time. Thus, the algorithm
can comfortably handle high-dimensional data because of its
low complexity.

Fig. 6: Scalability Experiments.

VI. CONCLUSION

In this paper, we proposed an efficient and flexible dis-
tributed clustering framework that can work with existing data
mining algorithms. The framework has been tested on spatial
datsests using the K-Means and DBSCAN algorithms. The dis-
tributed clustering approach is moreover dynamic, for spatial
datasets, as it does not need to give the number of correct clus-
ters in advance (as an input parameter). This basically solves
one of major shortcomings of K-Means or DBSCAN. The
proposed Distributed Dynamic Clustering (DDC) approach has
two main phases: the fully parallel phase where each node of
the system calculates its own local clusters based on its portion
of the entire dataset. There is no communications during this
phase, it takes full advantage of task parallelism paradigm.
The second phase is also distributed, but it generates some
communications between the nodes. However, the overhead
due these communications has minimised by using a new
concept of cluster representatives. Each cluster is represented
by its contour and its density, which count for about 1% of
cluster size in general. This DDC framework can easily be
implemented using MapReduce mechanism.

Note that, as the first phase is fully parallel, each node can
use its own clustering algorithm that suits well its local dataset.
However, the quality of the DDC final results depends heavily
on the local clustering used during the first phase. Therefore,
the issue of exploring the original dataset before choosing local
clustering algorithms remains the key hurdle of all the data
mining techniques.

The DDC approach was tested using various benchmarks.
The benchmarks were chosen in such a way to reflect all the
difficulties of clusters extraction. These difficulties include the
shapes of the clusters (convex and non-convex), the data vol-
ume, and the computational complexity. Experimental results
showed that the approach is very efficient and can deal with
various situations (various shapes, densities, size, etc.).

As future work, we will study in more details the approach
scalability on very large datasets, and we will explore other
models for combining neighbouring clusters such as dynamic
tree-based searching and merging topology on large scale
platforms [47], [48], [49]. We will extend the framework
to non-spatial datasets by using Knowledge Map [50] for
example. We will also look at the problem of the data and
communications reduction during phase two.

ACKNOWLEDGMENT

The research work is conducted in the Insight Centre for
Data Analytics, which is supported by Science Foundation
Ireland under Grant Number SFI/12/RC/2289.

REFERENCES

[1] J. Han and M. Kamber, Data Mining: Concepts and Techniques, 2nd ed.
Morgan Kaufmann Publisher, 2006.

[2] L. Aouad, N.-A. Le-Khac, and M.-T. Kechadi, “weight clustering
technique for distributed data mining applications,” LNCS on advances
in data mining – theoretical aspects and applications, vol. 4597, pp.
120–134, 2007.

[3] L.Aouad, N.-A. Le-Khac, and M.-T. Kechadi, “Grid-based approaches
for distributed data mining applications,” Journal of Algorithms &
Computational Technology, vol. 3, no. 4, pp. 517–534, 2009.

[4] L. Aouad, N.-A. Le-Khac, and M.-T. Kechadi, “Performance study
of distributed apriori-like frequent itemsets mining,” Knowledge and
Information Systems, vol. 23, no. 1, pp. 55–72, 2010.

[5] M. Whelan, N.-A. L. Khac, and M.-T. Kechadi, “Performance eval-
uation of a density-based clustering method for reducing very large
spatio-temporal dataset,” in in Proc. of International Conference on
Information and Knowledge Engineering, July 18-21 2011.

[6] M. Bertolotto, S. Di Martino, F. Ferrucci, and M.-T. Kechadi, “Towards
a framework for mining and analysing spatio-temporal datasets,” Inter-
national Journal of Geographical Information Science, vol. 21, no. 8,
pp. 895–906, 2007.

[7] N.-A. Le-Khac, L. Aouad, and M.-T. Kechadi, “Knowledge map layer
for distributed data mining,” Journal of ISAST Transactions on Intelli-
gent Systems, vol. 1, no. 1, 2008.

[8] P. Chan and S. Stolfo, “A comparative evaluation of voting and meta-
learning on partitioned data,” in 12th International Conference on
Machine Learning, 1995, pp. 90–98.

[9] C. Reeves, Modern heuristic techniques for combinatorial problems.
John Wiley & Sons, Inc. New York, NY, USA, 1993.

[10] T. G. Dietterich, “An experimental comparison of three methods for
constructing ensembles of decision trees: Bagging, boosting, and ran-
domization,” Machine Learning, vol. 40, no. 2, pp. 139–157, 2000.

[11] H. Kargupta and P. Chan, Advances in distributed and Parallel Knowl-
edge Discovery. MIT Press Cambridge, MA, USA, Oct. 2000, vol. 5.

[12] J.-M. Adamo, Data mining for association rules and sequential pat-
terns: sequential and parallel algorithms. Springer Science & Business
Media, 2012.

[13] N.-A. Le-Khac, L. Aouad, and M.-T. Kechadi, “Performance study
of distributed apriori-like frequent itemsets mining,” Knowledge and
Information Systems, vol. 23, no. 1, pp. 55–72, 2010.

[14] N. A. Le Khac, L. M. Aouad, and M.-T. Kechadi, Emergent Web
Intelligence: Advanced Semantic Technologies. London: Springer
London, 2010, ch. Toward Distributed Knowledge Discovery onGrid
Systems, pp. 213–243.

9



[15] E. Januzaj, H.-P. Kriegel, and M. Pfeifle, Advances in Database
Technology - EDBT 2004: 9th International Conference on Extending
Database Technology, Heraklion, Crete, Greece, March 14-18, 2004.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, ch. DBDC:
Density Based Distributed Clustering, pp. 88–105.

[16] N. Le-Khac, L.Aouad., and M.-T. Kechadi, Data Management. Data,
Data Everywhere: 24th British National Conference on Databases,
BNCOD 24, Glasgow, UK, July 3-5, 2007. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, ch. A New Approach for Distributed Density
Based Clustering on Grid Platform, pp. 247–258.

[17] L. Aouad, N.-A. L. Khac, and M.-T. Kechadi, Advances in Data Mining.
Theoretical Aspects and Applications: 7th Industrial Conference (ICDM
2007), Leipzig, Germany, July 14-18, 2007. Proceedings. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2007, ch. Lightweight Clustering
Technique for Distributed Data Mining Applications, pp. 120–134.

[18] J.-F. Laloux, N.-A. Le-Khac, and M.-T. Kechadi, “Efficient distributed
approach for density-based clustering,” Enabling Technologies: Infras-
tructure for Collaborative Enterprises (WETICE), 20th IEEE Interna-
tional Workshops, pp. 145–150, 27-29 June 2011.

[19] M. K. Jiawei Han, Data Mining: Concepts and Techniques, 2nd ed.
Elsevier, Diane Cerra, San Francisco, CA 94111, 2006, ch. Introduction.

[20] M. J. Zaki, Large-Scale Parallel Data Mining. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2000, ch. Parallel and Distributed Data
Mining: An Introduction, pp. 1–23.

[21] S. Ghosh, Distributed systems: an algorithmic approach. CRC press,
2014.

[22] L. Aouad, N.-A. Le-Khac, and M.-T. Kechadi., “Image analysis plat-
form for data management in the meteorological domain,” in 7th
Industrial Conference, ICDM 2007, Leipzig, Germany, July 14-18,
2007. Proceedings, vol. 4597. Springer Berlin Heidelberg, 2007, pp.
120–134.

[23] X. Wu, X. Zhu, G. Q. Wu, and W. Ding, “Data mining with big data,”
IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 1,
pp. 97–107, 2014.

[24] L. Rokach, A. Schclar, and E. Itach, “Ensemble methods for multi-label
classification,” Expert Systems with Applications, vol. 41, no. 16, pp.
7507 – 7523, 2014.

[25] R. K. Eric Bauer, “An empirical comparison of voting classification
algorithms: Bagging, boosting, and variants,” springer Link:Machine
Learning, vol. 36, pp. 105–139, 1999.

[26] M. L. Tian Zhang, Raghu Ramakrishnan, “Birch: An efficient data clus-
tering method for very large databases,” in SIGMOD ’96 Proceedings
of the 1996 ACM SIGMOD international conference on Management
of data, vol. 25, 1996, pp. 103–114.

[27] P. J. F. A. K. Jain, M. N. Murty, “Data clustering: a review,” ACM
Computing Surveys (CSUR), vol. 31, pp. 264–323, 1999.

[28] I. Dhillon and D. Modha, “A data-clustering algorithm on distributed
memory multiprocessor,” in large-Scale Parallel Data Mining, Work-
shop on Large-Scale Parallel KDD Systems, SIGKDD. Springer-Verlag
London, UK, 1999, pp. 245–260.

[29] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
in Kdd, vol. 96, no. 34, 1996, pp. 226–231.

[30] A. Garg, A. Mangla, V. Bhatnagar, and N. Gupta, “Pbirch: A scalable
parallel clustering algorithm for incremental data,” 10th Int’l. Sympo-
sium on Database Engineering and Applications (IDEAS-06), pp. 315–
316, 2006.

[31] H.Geng, Omaha, and X. Deng, “A new clustering algorithm using
message passing and its applications in analyzing microarray data,” in
ICMLA ’05 Proc. of the 4th Int’l. Conf. on Machine Learning and
Applications. IEEE, 15-17 December 2005, p. 145150.

[32] I. D. Dhillon and D. S. Modha, “A data-clustering algorithm on
distributed memory multiprocessors,” in Large-Scale Parallel Data
Mining. Springer Berlin Heidelberg, 2000, pp. 245–260.

[33] X. Xu, J. Jger, and H.-P. Kriegel, “A fast parallel clustering algorithm
for large spatial databases,” Data Mining and Knowledge Discovery
archive, vol. 3, pp. 263–290, September 1999.

[34] N.-A. Le-Khac, M. Bue, M. Whelan, and M-T.Kechadi, “A knowl-
edgebased data reduction for very large spatio-temporal datasets,”

International Conference on Advanced Data Mining and Applications,
(ADMA2010), 19-21 November 2010.

[35] M. Fadilia, M. Melkemib, and A. ElMoataza, Pattern Recognition
Letters:Non-convex onion-peeling using a shape hull algorithm. EL-
SEVIER, 15 October 2004, vol. 24.

[36] A. Chaudhuri, B. Chaudhuri, and S. Parui, “A novel approach to
computation of the shape of a dot pattern and extraction of its perceptual
border,” Computer vision and Image Understranding, vol. 68, pp. 257–
275, 03 December 1997.

[37] M. Melkemi and M. Djebali, “Computing the shape of a planar points
set,” Elsevier Science, vol. 33, p. 14231436, 9 September 2000.

[38] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel, “On the shape of a
set of points in the plane,” Information Theory, IEEE Transactions on,
vol. 29, no. 4, pp. 551–559, 1983.

[39] A. Moreira and M. Y. Santos, “Concave hull: A k-nearest neighbours
approach for the computation of the region occupied by a set of points,”
in Int’l. Conf. on Computer Graphics Theory and Applications (GRAPP-
2007), Barcelona, Spain, 8-11 March 2007, pp. 61–68.

[40] M. Duckhama, L. Kulikb, M. Worboysc, and A. Galtond, “Efficient
generation of simple polygons for characterizing the shape of a set of
points in the plane,” Elsevier Science Inc. New York, NY, USA, vol. 41,
pp. 3224–3236, 15 March 2008.

[41] M. Bendechache and M.-T. Kechadi, “Distributed clustering algorithm
for spatial data mining,” in In Proc of the 2nd IEEE Int’l. Conf. on
Spatial Data Mining and Geographical Knowledge Services (ICSDM-
2015), Fuzhou, China, 2015, pp. 60–65.

[42] M.Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” In 2nd
Int. Conf., Knowledge Discovery and Data Mining (KDD 96), 1996.

[43] T. Kanungo, S. Jose, D. M. Mount, N. S. Netanyahu, and C. D. Piatko,
“An efficient k-means clustering algorithm: Analysis and implementa-
tion,” IEEE Transactions on pattern analysis and machine intelligence,
vol. 24, July 2002.

[44] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: An efficient data
clustering method for very large databases,” in SIGMOD-96 Proceed-
ings of the 1996 ACM SIGMOD international conference on Manage-
ment of data, vol. 25. ACM New York, USA, 1996, pp. 103–114.

[45] W. Wang, J. Yang, and R. R. Muntz, “Sting: A statistical information
grid approach to spatial data mining,” in In Proc. of the 23rd Int’l. Conf.
on Very Large Data Bases, ser. VLDB ’97. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1997, pp. 186–195.

[46] S. Guha, R. Rastogi, and K. Shim, “Cure: An efficient clustering
algorithm for large databases,” in Information Systems, vol. 26. Elsevier
Science Ltd. Oxford, UK, 17 November 2001, pp. 35–58.

[47] B. Hudzia, M.-T. Kechadi, and A. Ottewill, “Treep: A tree-based
p2p network architecture,” in 2005 IEEE International Conference on
Cluster Computing. IEEE, 2005, pp. 1–15.

[48] I. K. Savvas and M.-T. Kechadi, “Dynamic task scheduling in com-
puting cluster environments,” in Parallel and Distributed Computing,
2004. Third International Symposium on/Algorithms, Models and Tools
for Parallel Computing on Heterogeneous Networks, 2004. Third Inter-
national Workshop on. IEEE, 2004, pp. 372–379.

[49] N.-A. Le-Khac, S. Markos, M. O’Neill, A. Brabazon, and M.-T.
Kechadi, “An efficient search tool for an anti-money laundering appli-
cation of an multi-national bank’s dataset.” in IKE, 2009, pp. 151–157.

[50] N.-A. Le-Khac, L. Aouad, and M.-T. Kechadi, “Knowledge map:
Toward a new approach supporting the knowledge management in
distributed data mining,” in Autonomic and Autonomous Systems, 2007.
ICAS07. Third International Conference on. IEEE, 2007, pp. 67–67.

10


