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Tehran, Iran

Email: Alireza.soroudi@gmail.com 2-Khazar

Abstract

This paper proposes a dynamic multi-objective model for integration of distributed generations

in distribution networks. The proposed model optimizes three objectives, namely technical constraint

dissatisfaction, costs and environmental emissions and simultaneously determines the optimal location,

size and timing of investment for both DG units and network components. The uncertainties of electric

load, electricity price and wind power generations are taken into account using scenario modeling.

A scenario reduction technique is used to reduce the computational burden of the model. The Pareto

optimal solutions of the problem are found using a binary PSOalgorithm and finally a fuzzy satisfying

method is applied to select the optimal solution considering the desires of the planner. The effectiveness

of the proposed model is demonstrated by applying it to a realistic 201-node distribution network.

Index Terms

Distributed generation, PSO, Dynamic planning, scenario reduction, Pareto optimal front.

NOMENCLATURE

Constants

Cℓ Cost of reinforcement of feederℓ

Ctr Cost of investment in transformer

d Discount rate

Egrid/dg Emission factor of the grid/dg
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ICdg, OCdg Investment and operating cost of adg

T Planning horizon

α Rate of demand growth

Variables

PD
i,t,dl,s Active power demand in busi, in yeart, demand leveldl and states

P
grid
t,dl,s Active power purchased from grid in yeart, demand leveldl and states

P
dg
i,t,dl,s Active power injected by adg in bus i, in yeart, demand leveldl and states

S
grid
t,dl,s Apparent power imported from grid in yeart, demand leveldl and states

S
dg
i,t,dl,s Apparent power ofdg installed in busi, in yeart, demand leveldl and states

Iℓ,t,dl,s Current magnitude ofℓth feeder in yeart, demand leveldl and states

vcutin Cut-in speed of wind turbine

vcutout Cut-out speed of wind turbine

µV
i,t,dl,s Degree of voltage constraint satisfaction for busi, in year t, demand leveldl

and states

µV
i,t Degree of voltage constraint satisfaction for busi, in yeart

µV
t Degree of voltage constraint satisfaction for whole systemin year t

µI
ℓ,t,dl,s Degree of thermal constraint satisfaction for feederℓ in year t, demand level

dl and states

µI
ℓ,t Degree of thermal constraint satisfaction for feederℓ in year t

µI
t Degree of thermal constraint satisfaction for whole systemin year t

µSgrid

t,dl,s Degree of thermal constraint satisfaction for substation in yeart and states

µSgrid

t Degree of overall thermal constraint satisfaction for substation in yeart

µfk(Xn) Degree of minimization satisfaction ofkth objective function by solutionXn

SD
i,t,dl,s Demand in busi, yeart, demand leveldl and states

EP λ
s Electricity price in states

FNn Front number to whichnth solution belongs

GDn Global Diversity ofnthsolution

γℓt Investment decision in feederℓ, in the yeart

ξ
dg
i,t Investment decision for DG technologydg in bus i, in the yeart

ψtr
t Investment decision in transformer, in the yeart
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dℓ Length of feederℓ in km

LDk
n Local diversity ofnthsolution inkth objective function

MDk Maximum difference between the values ofkth objective function, regarding

all solutions

S
dg

lim Maximum operating limit of adg

P net
i,t,dl,s Net active power injected to busi, in yeart, demand leveldl and states

Qnet
i,t,dl,s Net reactive power injected to busi, in yeart, demand leveldl and states

Nb Number of buses in the network

Np Number of population

Nℓ Number of feeders in the network

No Number of objective functions

NJ Number of combined states

Ns Number of reduced states

ρ Peak price of energy purchased from the grid

SD
i,peak Peak demand in busi, in states

λdl,s Percent of peak electricity price in states and demand leveldl

Ddl,s Percent of peak electricity demand in states and demand leveldl

wps Percent of rated capacity of installed wind turbine in states

Pw
i,r Rated power of installed wind turbine

Q
dg
i,t,dl,s Reactive power injected by adg in bus i, yeart, demand leveldl and states

QD
i,t,dl,s Reactive power demand in busi, yeart, demand leveldl and states

SFn Pseudo fitness ofnth particle

probls Probability of load states

probλs Probability of electricity price states

probws Probability of wind speed states

probcs Probability of combined states

vrated Rated speed of wind turbine

c Scale factor of Rayleigh PDF of wind speed

TDt Technical dissatisfaction in yeart

GC Total cost paid to grid

DGIC Total Investment cost of DG units
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DGOC Total operation cost of DG units

FC Total cost of feeder reinforcement

SC Total cost of transformer investment

S
tr

safe,t, S
tr

crit,t Upper safe and critical values of operation thermal limits of substation feeding

the network

I
safe,t

ℓ , I
crit,t

ℓ Upper safe and critical values of operation thermal limits of feeders

V max
safe , V

min
safe Upper and lower safe operation limits of voltage

V max
crit , V

min
crit Upper and lower critical operation limits of voltage

Vi,t,dl,s Voltage magnitude in busi, yeart, demand leveldl and states

δi,t,dl,s Voltage angle in busi, yeart, demand leveldl and states

vs Wind speed in states

I. I NTRODUCTION

A. Motivation and problem description

Distributed generation (DG) is an electric power source connected directly to the distribution

network [1]. There are five major factors that motivate increasing the share of DG units in elec-

tricity generation: electricity market liberalization, development in DG technology, constraints

on the construction of new transmission lines, reliabilityenhancement [2] and concerns about the

environment [3]. DG may also offer distribution network operators (DNOs) more diverse, flexible,

and secure options for managing their electricity systems to benefit customers [4]. A powerful

tool for planners is needed to model the uncertainties of intermittent power generations of wind

turbines and also electric load and price values. It should not only reduce the computational

burden but also maintain the accuracy of computation. The motivation of this study is to provide

such a tool.

B. Literature review

In recent years, many approaches have been proposed to solvethe DG planning problem.

The literature suggests a wide range of objectives, such as voltage stability improvement [5],

risk aversion in load procurement [6], active loss reduction [7], [8], reactive loss reduction

[9], reliability improvement, reducing the cost of energy required for serving the customers,

increasing the incentives received by distribution network owners for using DGs, reducing the
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cost of energy not supplied, injecting power into the grid atpeak load and emission reduction

[10]. These studies have considered a variety of technical issues including voltage profile [11],

[12], thermal limits of conductors [13], substation capacity [14], three phase and single phase to

ground short circuit [13], [15], and load modeling [9]. The reported models for DG planning can

be divided into two major categories: static and dynamic models. In static models, investment

decisions are implemented in the first year of the planning horizon [5], [9], [16]. In this category,

the models are single or multi-objectives. The single-objective models are either originally single-

objective [5], or multi-objective which are converted intoa single-objective (using a benefit to

cost ratio index or an additive utility function [9]); multi-objective models of this category are

solved using Pareto optimality concept [17].The dynamic models of the literature are those

which determine the optimal investment decisions to be madeat each year (or time segment)

during the planning horizon [18]. These models consider thetime value of money and are more

efficient than static models.The planing models are summarized in Table I.

C. Contributions

In this paper, a dynamic multi-objective DG-planning problem is formulated and a two-stage

algorithm is proposed to solve the problem. In the first stage, the set of Pareto optimal solutions

is found using a novel binary PSO method, and in the second stage, the best solution is chosen

using fuzzy satisfying techniques. The model aims to cover all three aspects of DG planning

problem, i.e., siting, sizing and timing of investment simultaneously, in order to increase the

technical, economical and environmental benefits accrued by a DNO. The contributions of this

paper are three fold:

1) Multi-objective dynamic modeling of DG planning problemfor simultaneous determination

of timing, sizing and sitting, when costs, emissions and technical attributes of the proposed

plans, and a variety of DG technologies are considered.

2) The uncertainties of input variables are taken into account.

3) Proposing a BPSO method for solving the aforementioned problem.

D. Paper organization

This paper is set out as follows: section II presents problemformulation, section III sets out

the principles of multi-objective optimization and the proposed solution algorithm for solving
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the problem. Simulation results are presented in section IVand finally, section V summarizes

the findings of this work.

II. PROBLEM FORMULATION

The multi-objective DG planning problem is formulated in this section. The decision variable

is the number of DG units from a specific technology, to be installed in busi in yeart, i.e., ξdgi,t ;

Investment in feeders, i.e.γℓt , or transformer, i.e.ψtr
t .

A. Assumptions

The following assumptions are employed in problem formulation:

• Connection of a DG unit to a bus is modeled as a negative PQ load with a fix power factor.

• DNO is authorized to invest in DG units.

B. Uncertainty modeling

The electricity price and electric load are both uncertain in deregulated environment but

these parameters are specifically tied together. An increase/decrease in electric load will tend to

increase/decrease in electricity price. Without loss of generality, the correlation between wind

speed and load-price patternare assumed to be independent[19]. If any correlation exists between

load-price and wind pattern this can be easily considered inthe proposed algorithm. The price

and load duration curves are divided intoNdl levels in each year as shown in Fig. 1. The vertical

axis in Fig. 1, shows the demand/price level factors (the ratio of load/price to the peak value

of load/price in this level). The duration of each level is described byτdl. It is assumed that

the demand/price level factors (λdl, Ddl) are normally distributed around their specified expected

values as shown in Fig. 1. Each normal distribution is divided into 7 states and the probability of

each state is specified in Fig. 1. Although the expected priceand demand values are dependent

but ,in each demand level, the variation of price and electric load around its expected value

can be assumed to be independent.The electricity price, electric load and wind generation are

modeled as follows:
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1) Electricity price: The price of energy purchased from the grid is competitivelydetermined

in a liberalized market environment. Assuming a peak electricity price of ρ, the electricity price

in demand leveldl, and states can be calculated as:

EP λ
dl,s = ρ . λdl,s (1)

2) Electric load: Assuming a peak load ofSD
i,peak and a demand growth rate ofα, the demand

in bus i, in yeart, demand leveldl and states can be calculated as:

SD
i,t,dl,s = SD

i,peak . Ddl,s . (1 + α)t (2)

3) Wind speed and wind turbine power generation:The generation schedule of a wind turbine

highly depends on the wind speed in the site. There are various methods to model wind behavior.

In this paper, the variation of wind speed, i.e.v, is modeled using a Rayleigh PDF and its

characteristic function which relates the wind speed and the output of a wind turbine.

PDF (v) = (
2v

c2
) exp[−(

v

c
)2] (3)

wherec is the scale factor of the Rayleigh PDF of wind speed in the zoneunder study.

The generated power of the wind turbine is determined using its characteristics as follows:

Pw
i,t(v) =

t
∑

t́=1

ξ
dg
i,t .























0 if v ≤ vcin or v ≥ vcout

v−vcin
vrated−vcin

Pw
i,r if vcin ≤ v ≤ vrated

Pw
i,r else

(4)

Where,Pw
i,r is the rated power of wind turbine installed in bus i,Pw

i is the generated power of

wind turbine in bus i,vcout is the cut out speed,vcin is the cut in speed andvrated is the rated

speed of the wind turbine. The speed-power curve of a typicalwind turbine is depicted in Fig.

2. Using the technique described in [19], the PDF of wind speed is divided into several states.

In each state, the probability of falling into this state is calculated as follows:

probws =

∫ V2,s

V1,s

(
2v

c2
) exp[−(

v

c
)2]dv (5)

vs =
V2,s + V1,s

2

The generated power of wind turbine is calculated using thevs, as obtained in (5), and (4).
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4) Combined states model:As it is already mentioned, the states of each demand level are

independent (the correlation between load and price is already considered in their mean value of

Ddl andλdl. In each demand level, the states are combined to construct the whole set of states

as follows:

C(s) = load(s) . price(s) . wind(s) (6)

Probcs = probls . probλs . probws (7)

whereProbcs is the probability of each combined state.

C. Constraints

1) Power flow constraints:The flow equations that shall be satisfied for each configuration

and states are:

P net
i,t,dl,s = −PD

i,t,dl,s + P
dg
i,t,dl,s (8)

Qnet
i,t,dl,s = −QD

i,t,dl,s +Q
dg
i,t,dl,s

P net
i,t,dl,s = Vi,t,dl,s

∑

Y t
ijVj,t,dl,scos(δi,t,dl,s − δj,t,dl,s − θij)

Qnet
i,t,dl,s = Vi,t,dl,s

∑

Y t
ijVj,t,dl,ssin(δi,t,dl,s − δj,t,dl,s − θij)

2) Operating limits of DG units:Each DG should be operated considering its capacity limits,

i.e.:

S
dg
i,t,dl,s ≤

t
∑

t́=1

ξ
dg
i,t . S

dg

lim (9)

3) Fuzzy technical satisfaction:The satisfaction of soft constraints can be modeled by fuzzy

sets. The idea of fuzzifying the technical constraints was used by [20]. In the present work, this

idea is extended to model the problem with different states for a dynamic planning problem.

Fuzzy modeling is used to quantify the value of satisfactionof technical constraints of voltages

and thermal limits of feeders and substation, as follow:

a) Voltage profile: The voltage magnitude of each bus should be kept between the safe

operation limits. However, the DNO may ignore violation of these limits to some degree, in

hope of achieving a better solution regarding other necessities [20]. The membership function

of the voltage constraint satisfaction is represented by a trapezoidal fuzzy number [17].
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Observe that a voltage magnitude between the up and low safe operation limits, i.e.,V min
safe , V

max
safe

has a satisfactory value of 1. As the voltage exceeds these limits, the value of satisfaction

decreases until it becomes zero after the critical voltage values, i.e.,V min
crit , V

max
crit . This function

can be mathematically represented as:

µV
i,t,dl,s =







































Vi,t,dl,s−V min
crit

V min
safe

−V min
crit

V min
crit ≤ Vi,t,dl,s ≤ V min

safe

1 V min
safe ≤ Vi,t,dl,s ≤ V max

safe

Vi,t,dl,s−V max
crit

V max
safe

−V max
crit

V max
safe ≤ Vi,t,dl,s ≤ V max

crit

0 else

(10)

The values obtained from (10) show the condition of voltage constraint satisfaction for busi in

states in year t. Since there are more than one state in a real system, the planner will have

different satisfaction levels of voltage constraint for a given bus. To obtain an index which shows

the condition of a given busi in year t, it is proposed in this work to calculate the weighted

average of satisfaction of voltage over the states, as follows:

µV
i,t =

1

8760

Ndl
∑

dl=1

Ns
∑

s=1

probcs . τdl . µV
i,t,dl,s (11)

In (11), if the voltage of busi does not fully satisfy the constraints in states but the probability

of this dissatisfaction is short, the satisfaction of this bus is not very degraded in the whole year

t. The average value ofµV
i,t over all buses of the network, can provide information aboutthe

overall voltage condition in year t as follows:

µV
t =

∑Nb

i=1 µ
V
i,t

Nb

(12)

b) Thermal limit of feeders and Substation:To maintain the security of the feeders and

the substation, the flow of current/energy passing throw them should be kept below the feed-

ers/substation capacity limit. This is incorporated here,in the form of a fuzzy membership

function [17]. A strictly monotonically decreasing and continuous function is considered for this
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limit, as follows:

µI
ℓ,t,dl,s = (13)























1 Iℓ,t,dl,s ≤ I
safe,t

ℓ

Iℓ,t,dl,s−I
crit,t
ℓ

I
safe,t
ℓ −I

crit,t
ℓ

I
safe,t

ℓ ≤ Iℓ,t,s ≤ I
crit,t

ℓ

0 Iℓ,t,s ≥ I
crit,t

ℓ

I
safe,t

ℓ = Iℓ + Capℓ .
t

∑

t́=1

γℓ
t́

Similar to the voltage limit, an overall satisfaction valueis considered for each feeder, as follows:

µI
ℓ,t =

1

8760

Ndl
∑

dl=1

Ns
∑

s=1

probcs . τdl . µI
ℓ,t,dl,s (14)

An index is needed to provide information about the overall performance of the system regarding

the thermal limits. The average value ofµI
ℓ,t over all feeders of the network can provide such

information as follows:

µI
t =

∑Nℓ

ℓ=1 µ
I
ℓ,t

Nℓ

(15)

For substation capacity constraint, also, the same philosophy holds, as follows:

µSgrid

t,dl,s = (16)


























1 S
grid
t,dl,s ≤ S

tr

safe,t

Sgrid
t,dl,s

−S
tr
crit,t

S
tr
safe,t−S

tr
crit,t

S
tr

safe,t ≤ S
grid
t,dl,s ≤ S

tr

crit,t

0 S
grid
t,dl,s ≥ S

tr

crit,t

µSgrid

t =
1

8760

Ndl
∑

dl=1

Ns
∑

s=1

probcs . τdl . µSgrid

t,dl,s

D. Objective functions

The proposed model minimizes three objective functions, namely, technical dissatisfaction,

total costs and total emissions of the planning problem(see Appendix-I), as follows:

min {OF1, OF2, OF3}

subject to:

(2) → (16)
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The objective functions are formulated next.

1) Technical dissatisfaction:The first objective function to be minimized is dissatisfaction of

technical constraints. The technical dissatisfaction, denoted byTDt, is defined as the maximum

dissatisfaction of all technical constraints as follows:

TDt = 1−min
{

µV
t , µ

I
t , µ

Sgrid

t

}

(17)

The objective function to be minimized is proposed here as the multiplication of maximum and

average value of yearly technical dissatisfaction over planning horizon as:

OF1 = wavg .
∑T

t=1
TDt

T
+ (18)

wsev . (1−mint,dl,s,ℓ[µ
Sgrid

t,dl,s , µ
V
i,t,dl,s, µ

I
ℓ,t,dl,s])

By minimizing theOF1, the algorithm tries to simultaneously improve the overallsatisfaction

of the network, represented by
∑T

t=1
TDt

T
, and the severity of technical dissatisfaction over the

planning horizon, represented by the second term.In (18) the values ofwsev and wavg are

the weighting factor representing the importance of severity of technical dissatisfaction and the

average dissatisfaction of technical constraints. Ifwsev is chosen much more bigger thanwavg,

then the algorithm tries to find solutions which fully satisfy the technical constraints. On the

other hand, ifwavg is bigger thanwsev, then the technical satisfactions of the solutions are more

relaxed.

2) Total costs:The second objective function, i.e.,OF2, to be minimized is the total costs

which includes the cost of electricity purchased from the grid, the investment/operating costs of

the DG units. The cost of energy procurement from the grid is calculated as:

TGC =
T
∑

t=1

Ndl
∑

dl=1

Ns
∑

s=1

probcs . EP λ
t,s . P grid

t,s . τdl.
1

(1 + d)t
(19)

Investment costs of the DG units can be calculated as:

DGIC =
T
∑

t=1

Nb
∑

i=1

∑

dg

ξ
dg
i,t . ICdg .

1

(1 + d)t
(20)

The operating costs of the DG units can be calculated as:

DGOC =
T
∑

t=1

Nb
∑

i=1

Ndl
∑

dl=1

∑

dg

Ns
∑

s=1

probcs . τdl . OCdg (21)

. P dg
i,t,s .

1

(1 + d)t
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The reinforcement cost of the distribution network is the sum of all costs paid for investment

and operation of new feeders and transformers. The total feeder reinforcement cost, i.e. FC, and

substation reinforcement cost, i.e. SC, are calculated as follows:

FC =
T
∑

t́=1

Nℓ
∑

ℓ=1

Cℓ.dℓ . γℓ
t́
.

1

(1 + d)t
(22)

SC =
T
∑

t́=1

Ctr . ψtr
t́ .

1

(1 + d)t

Where, FC and SC are the total feeder and substation reinforcement cost, respectively.Cℓ, Ctr

are the cost of each feeder and transformer, respectively.

Thus,OF2 is defined as:

OF2 = DGIC +DGOC + TGC + FC + SC (23)

3) Total emission:The third objective function, i.e.,OF3, is the totalCO2 produced by the

DG units and the main grid.OF3 can be formulated as:

OF3 =
T
∑

t=1

Ndl
∑

dl=1

Ns
∑

s=1

probcs . τdl.[Egrid . P grid
t,s + (24)

∑Nb

i=1

∑

dg Edg . P dg
i,t,s]

III. PROPOSED SOLUTION ALGORITHM

To solve the dynamic multi-objective DG planning problem formulated in section II, a two-

stage algorithm is proposed in this section.

A. Proposed Binary PSO

The PSO algorithm is a population-based search technique proposed first by Kennedy and

Eberhart in 1995 [21]. The basic idea of PSO is that each particle uses the swarm’s best

experience as well as its own best experience in finding food.The PSO algorithm starts with a

population of particles with random positions in the searchspace. Each particle is a solution of

the problem and has a fitness value. The fitness is evaluated and is to be optimized. A velocity

is defined which directs each particle’s position and gets updated in each iteration. Particles

gradually move toward the optima due to their best position they have ever experienced and the

best solution which group has experienced. The velocity of aparticle is updated due to three

October 10, 2011 DRAFT



13

factors: the past velocity of the particle, the best position particle has experienced so far and the

best position the entire swarm has experienced so far. In each iteration, every particle modifies its

direction by its updated velocity affected by the three factors mentioned above. Mathematically

the modification process may be expressed as follows:

X iter+1
p = X iter

p + V iter
p (25)

V iter+1
p = V iter

p +Rand1 . (X iter
p,Best −X iter

p )

+Rand2 . (X iter
g,Best −X iter

p )

p = 1, 2, · · · , Np

X iter
p is a particle which represents a potential solution to the optimization problem. In multi-

dimensional problems like DG planning problem, each particle, X iter
p is a vector containing

the decision variables andV iter
p is the velocity of particlep, respectively.X iter

p,Best is the best

personal position of particlep has had up to now. SimilarlyX iter
g,Best is the best global position

which the entire particles have had up to now. The concept of direction modification in PSO

implies that the direction of particlep is influenced by its present velocity, its best position up

to nowX iter
p,Best, and the best position of the whole particles up to nowX iter

g,Best. In the context of

multi-objective optimization (see Appendix-I for more details), it is needed that the population

be directed toward the Pareto optimal front considering twoimportant aspects: getting closer to

Pareto optimal front and maintaining the diversity among the solutions [22]. To do so, a pseudo

fitness value is assigned to each solution, referred to as affinity factor SFn, as follows:

SFn = w1 . FN−1
n + w2 . GDn (26)

The first term in (26) guides the population toward the Paretooptimal front since the solutions

which belong to lower fronts get higher affinity (fitness). The second term insures the diversity

among the solutions. In order to calculate the global diversity of the nth solution, i.e.GDn, a

local diversity factor, i.e.LDk
n, is defined for each objective function [22]. For every objective

function k, the solutions are sorted and the difference between the maximum and minimum

values is calculated as:

MDk = max
n

(fk(Xn))−min
n

(fk(Xn)) (27)

n = 1, · · · , NP
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Since the solutions are sorted, the first and the last ones arethe maximum and minimum,

respectively. The local diversity of each of the other solutions is its average distance to its

neighbors, as follows:

LDk
n = (28)

|fk (Xn)− fk (Xn+1)|+ |fk (Xn)− fk (Xn−1)|

2MDk

For the first and the last solutions, local diversity can be calculated as:

LDk
Np

= LDk
1 = max(LDk

n) (29)

The global diversity factor for each solution is then calculated as the average of its local diversities

as follows:

GDn =
No
∑

k=1

LDk
n

No

(30)

In initial iterations, a small number of solutions belong tothe first Pareto front, so getting

closer to Pareto optimal front is more important than maintaining the diversity among them. It

is necessary to enable the algorithm in distinguishing between the solutions in different Pareto

fronts,w1 andw2 in (26) are adaptively selected which guarantees that the solution belonging

to a lower Pareto front has a bigger affinity factor than a solution belonging to an upper front

level (w1 is bigger thanw2 in the initial iterations) and when most of the solutions arein the

pareo optimal front,w2 is chosen bigger thanw2 to maintain the diversify among the solutions.

B. The Proposed two-stage solution algorithm

The solution algorithm proposed here consists of two stages. In the first stage, the solutions

which form the Pareto optimal front are found and in the second stage, the best solution is

selected considering the planner’s preferences. Both stages are described as follows:

1) Stage I (finding the Pareto optimal front):The PSO algorithm proposed in section III-A is

used to find the Pareto optimal front. To do so, each particle is a vector containing the decision

variables coded in binary format (to show the investment decisions) investment decision of DG

units, the bus on which a DG units is to be installed, the year of investment and their generated

power and for all available DG technologies. Steps of the first stage of the solution algorithm

are as follows:
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step. 1. Generate an initial random particles.

step. 2. If the stopping criterion is met, go to step (k), else, continue.

step. 3. CalculateOF1, OF2, OF3 for each particle.

step. 4. Calculate the fitness using (26) for each particle.

step. 5. Calculate theV iter
p

step. 6. Calculate theX iter
g,Best, X

iter
p,Best

step. 7. Construct a new population by moving the particles.

step. 8. Return to step (2).

step. 9. End.

The flowchart of the first stage of the proposed method is depicted in Fig.3.

2) Stage II (Selecting ‘the best’ solution):The decision maker (planner) needs a tool to select

the final solution among the existing solutions of Pareto front. In this paper a fuzzy satisfying

method is used for this purpose. The concept of this method isas follows: for each solution in the

Pareto optimal front,Xn, a membership function is defined asµfk(Xn). This value, which varies

between 0 to 1, shows the level of whichXn belongs to the set that minimizes the objective

function fk. A linear membership function is used here for all objectivefunctions as follows:

µfk(X) =























0 fk (X) > fmax
k

fmax
k

−fk(X)

fmax
k

−fmin
k

fmin
k ≤ fk(X) ≤ fmax

k

1 fk (X) < fmin
k

(31)

A conservative decision maker tries to maximize minimum satisfaction among all objectives or

minimize the maximum dissatisfaction [23]. The final solution can then be found as:

Np

max
n=1

(
No

min
k=1

(µfk(Xn)) (32)

IV. SIMULATION RESULTS

The proposed methodology is applied to a realistic 201-node10 kV distribution system which

is shown in Fig.4. The technical data of this network can be found in [24]. Three DG technology

options, namely, Micro Turbine (MT), Wind Turbine (WT), Gas Turbine (GT) are considered

here. It is also assumed that all buses are candidate for DG investment and more than one DG

can be installed in a specific bus. The stopping criterion is reaching to a predefined maximum

number of iterations. The Rayleigh parameter of the wind speed in each wind farm has been
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assumed to bec = 8.78 and the other characteristics of wind turbine are given in Table II.

Using the technique described in [19], the PDF of wind speed is divided into twelve states as

given in Table III. The forecasted values of demand and pricelevel factors are given in Table

IV [25]. The σ value of each demand level is assumed to be 1% of its forecasted value. Other

simulation assumptions and characteristics of the DG units[26], [27] are presented in Table

V and Table VI respectively. The presented solution algorithm was implemented in MATLAB.

The number of demand levels,i.e.Ndl is assumed to be 24 and the duration of each demand

level is 365hr. In (18) the values ofwavg andwsev are assumed to be 0.8 and 0.2, respectivley.

Solving the (6) gives7× 7× 12 = 588 states for each demand level. It is clear that solving the

evaluation process for all of these states (for all demand levels) imposes a heavy computational

burden. In order to resolve this problem, a scenario reduction technique proposed in [28] has

been used to reduce the number of states (see Appendix-II formore details). The scenario set is

reduced into 110 states (this is chosen based on trial and error) using the described technique.

The formulated problem is solved using the proposed two-stage algorithm and 80 non-inferior

solutions are found. The planner can choose the best solution based on the planning criteria, as

further discussed next. The Pareto optimal front of the search space, found in the first stage, is

depicted in Fig.5. The variation ranges of all objective functions are given in Table VII. In the

second stage, the planner can choose the most preferred solution using the fuzzy satisfaction

method introduced in section III-B. The final solution is solution #68. The various costs related to

the selected solution are given in Table VIII. The investment plan of this solution is described in

Table IX. It would be interesting to know how much accuracy islost if the scenarios are reduced.

The final solution (which was already found using theNs = 110) is reevaluated using various

values ofNs. The exact values of this solution is obtained if all scenarios are considered. This

value is taken as a reference for comparing the results obtained by various number of reduced

scenarios. The computation error due to scenario reductionis depicted versus the number of

reduced scenarios,i.eNs, Fig.6. This figure shows that if the number of scenarios is chosen to

be greater than 93, then the accuracy is acceptable and the fluctuation is highly reduced and the

error will be less than 0.005%.

In order to analyze the performance of the proposed binary PSO methodology, it is compared

with an standard real coded PSO as described in [29]. For thispurpose, the problem is solved

just for two objectives namely, technical satisfaction andcost (this is done just because the
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comparison is much more easier). The initial solution (random solution) and the Pareto optimal

fronts found by each PSO method are depicted in Fig. 7. Both algorithms are run for 100

iterations. It is obvious that the Pareto front obtained by binary PSO dominates the solutions of

the read coded algorithm. This means for each solution in Pareto front of real coded PSO there

exists at least one solution in the BPSO front that gives lowercost and technical dissatisfaction

simultaneously.

The model can be directly used in power market model in which the DNO is authorized

for DG investment. However, in power market models where the DG investment is done by

independent investors instead of DNO, It can be easily modified to be used in such regulatory

frameworks. The decisions related to investment and operating of DG units are made by private

entities. In this case, the values ofξdgi,t are determined by DG owners. The decision variables

of DNO areγℓt andψtr
t (network investment options). The provided information would also be

useful as a technical, economical and environmental signalfor regulators. It can be used for

regulating the incentives to encourage the private sectionto invest in what DG technology and

where to be more beneficial.

V. CONCLUSION

This paper presents a dynamic multi-objective model for DG planning problem and a binary

PSO based method to solve the formulated problem. The proposed two-step algorithm finds

the non-dominated solutions by simultaneous minimizationof technical dissatisfaction, costs

and emissions in the first stage and uses a fuzzy satisfying method to select the best solution

from the candidate set in the second stage. The new planning model is applied to a realistic

distribution network and its flexibility is demonstrated through different case studies. The solution

set provides the planner with an insight into the problem andenables him to choose the best

solution according to planning preferences.
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APPENDIX-I: PARETO OPTIMALITY CONCEPT

In general, in a multi-objective optimization problem, more than one objective function needs

to be simultaneously optimized as follows:

min F (X) = [f1 (X) , ..., fNo
(X)] (33)

Subject to:

{G (X) = 0̄, H (X) ≤ 0̄}

X = [x1, · · · , xm]

SupposeX1 andX2 belong to the solution space.X1 dominatesX2 if:

∀k ∈ {1...NO} fk (X1) ≤ fk (X2) (34)

∃k′ ∈ {1...NO} fk′ (X1) < fk′ (X2)

Any solution which is not dominated by any other is called to belong to a Pareto front which

is referred to as the first Pareto front or optimal front or non-dominated front.

APPENDIX-II:SCENARIO REDUCTION TECHNIQUE

The purpose of scenario reduction is selection of a set, i.e.ΩS, with the cardinality ofNΩS
,

from the original set, i.e.ΩJ [30]. This procedure should be done in a way that makes a tradeoff

between the loss of the information and decreasing the computational burden [31]. The scenario

reduction technique used in this paper is described as the following steps [28]:

step. 1 Construct the matrix containing the distance betweeneach pair of scenariosc(w, ẃ)

step. 2 Select the fist scenariow1 as follows:

w1 = arg

{

min
w′∈ΩJ

∑

w∈ΩJ

πwc(w,w
′)

}

(35)

ΩS = {w1} ,ΩJ = ΩJ − ΩS

step. 3 Select the next scenario to be added toΩS as follows:

wn = (36)

arg







min
w′∈ΩJ

∑

w∈ΩJ−{w′}

πw min
w′′∈ΩS∪{w}

c(w,w′′)







ΩS = ΩS ∪ {wn} ,ΩJ = ΩJ − ΩS
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step. 4 If the number of selected set is sufficient then end andgo to step 2 ; else continue.

step. 5 The probabilities of each non-selected scenario will be added to its closest scenario in

the selected set.

step. 6 End.
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TABLE I

DG PLANNING METHODS

Reference Single/Multi Static/ Uncertainty Network Method

objective Dynamic handling reinforcement

El-Khattam et al. [32] S S N Y Classic MINLP

Jabr et al. [33] S S N Y(not exact) Ordinal optimization

El-Khattam et al. [34] S S N N Classic MINLP

Wang et al. [35] S D N Y Greedy heuristic

Kumar et al. [36] S S N N Classic MINLP

Wong et al. [37] S D N Y Classic MINLP

Zangeneh et al. [38] M S N N Normal boundary intersection

Haghifam et al. [17] M S Y N Heuristic NSGA-II

Atwa et al. [19] S S Y N Classic MINLP

Khalesi et al. [39] S S N N Dynamic programming

Atwa et al. [40] S S Y N Classic MINLP

Harrison et al. [41] M S N Y(not exact) ǫ-constrained technique

Soroudi et al. [18] M D N Y(exact) Immune algorithm

proposed M D Y Y(exact) Heuristic BPSO

TABLE II

THE TECHNICAL CHARACTERISTICS OF WIND TURBINES

vcutin vrated vcutout Pw
i,r

(m/s) (m/s) (m/s) (MW)

3 13 25 0.5

October 10, 2011 DRAFT



24

TABLE III

WIND TURBINE STATES

State wps (%) Probws

1 0 0.1105

2 5 0.0772

3 15 0.0895

4 25 0.0961

5 35 0.0973

6 45 0.0936

7 55 0.0863

8 65 0.0764

9 75 0.0652

10 85 0.0537

11 95 0.0428

12 100 0.1115
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TABLE IV

THE FORECASTED VALUES OF DEMAND AND PRICE LEVEL FACTORS IN EACH DEMAND LEVEL

dl Ddl λdl

1 0.8363 0.9128

2 0.7883 0.6372

3 0.7522 0.4841

4 0.7352 0.4849

5 0.7278 0.4808

6 0.7324 0.4849

7 0.7899 0.6449

8 0.8741 0.9655

9 0.8804 0.9391

10 0.9184 0.9662

11 0.9586 0.9690

12 1.0000 0.9798

13 0.9972 0.9742

14 0.9880 0.9683

15 0.9464 0.9582

16 0.9496 0.9582

17 0.9687 0.9798

18 0.9807 0.9856

19 0.9676 0.9798

20 0.9367 0.9587

21 0.9587 0.9813

22 0.9803 1.0000

23 0.9045 0.9511

24 0.8364 0.9152
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TABLE V

DATA USED IN THE STUDY

Parameter Unit Value

T year 8

S
tr

safe,t=0 MVA 32

S
tr

crit,t=0 MVA 40

Egrid kgCO2/MWh 632

ρ $/MWh. 60

α % 1

d % 12

V max
safe Pu 1.05

V max
crit Pu (1+5%) . V max

safe

V min
safe Pu 0.95

V min
crit Pu (1-5%) . V min

safe

I
ℓ

s,t A 0.9 ×I
ℓ

crit,t

Np 80

Maximum iteration 1000

TABLE VI

CHARACTERISTICS OF THEDG UNITS

DG Size Emission IC OC cosϕ

Technology MVA kgCO2

MWh
k$

MV A
$

MWh

Micro Turbine 0.5 502 1485 75 0.9

Gas Turbine 1 365 1030 67 0.9

Wind turbine 1 0 1225 45 1

TABLE VII

VARIATION RANGE OF OBJECTIVE FUNCTION FOR ALL SOLUTION INPARETO OPTIMAL FRONT

OF1 OF2 ($) OF3 (Ton CO2)

fmin
k 0.0026 9.7208× 107 4.323× 105

fmax
k 0.0689 2.4936× 109 6.6973× 105
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TABLE VIII

THE INVESTMENT PLAN OBTAINED FOR THE FINAL SOLUTION

DGtech ξdgi,t Year Bus

Micro Turbine

4 1 201

1 1 39,114,26

1 2 164,201

1 3 39

Gas Turbine

1 1 152,102

1 2 14,177

1 3 177,102

1 4 76

1 5 201

1 7 14

1 8 201

Wind Turbine
1 1 26,39,64,89,114,139

3 1 201

TABLE IX

INVESTMENT/OPERATING COST IN FINAL SOLUTION(M$)

Year GC IC sub feeder

1 9.624959 18.4675 0 0

2 9.670223 2.485 0 34.5

3 9.662216 1.7425 0 89.25

4 9.680735 0.5 0 0

5 9.705028 0.5 0 73.5

6 9.813719 0 0 25.2

7 9.835628 0.5 0 90

8 9.861077 0.5 0.2 78
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dl=1

dl=2

dl=Ndl-1

dl=Ndl

dl
τ

σ 2σ2σ−3σ−4σ− 3σ 4σσ−

0.682

0.136

0.021
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0.01

,
dl dl
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Fig. 1. Demand and price level factor uncertainty modeling
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Fig. 2. The idealized power curve of a wind turbine
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Fig. 3. Flowchart of the first stage of the proposed method
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Fig. 4. Single-Line Diagram of the real system under study
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Fig. 6. Sensitivity analysis of the computation accuracy versus the number of scenarios

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 10
9

Technical dissatisfaction

T
ot

al
 C

os
t 

($
)

 

 

Initial Solution
Classic real coded PSO
Binary PSO

Fig. 7. Comparison between Binary PSO and real coded classic PSO

October 10, 2011 DRAFT


