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Abstract

This paper proposes a dynamic multi-objective model foegrdtion of distributed generations
in distribution networks. The proposed model optimizeg¢hobjectives, namely technical constraint
dissatisfaction, costs and environmental emissions andlineously determines the optimal location,
size and timing of investment for both DG units and networkiponents. The uncertainties of electric
load, electricity price and wind power generations are iak#o account using scenario modeling.
A scenario reduction technique is used to reduce the cortigodh burden of the model. The Pareto
optimal solutions of the problem are found using a binary R&forithm and finally a fuzzy satisfying
method is applied to select the optimal solution considgtite desires of the planner. The effectiveness

of the proposed model is demonstrated by applying it to ast&aP01-node distribution network.

Index Terms

Distributed generation, PSO, Dynamic planning, scenarduction, Pareto optimal front.

NOMENCLATURE
Constants
Cy Cost of reinforcement of feedér
Cyr Cost of investment in transformer
d Discount rate
Egriajag Emission factor of the grid/dg
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Investment and operating cost ofla
Planning horizon

Rate of demand growth

Active power demand in bug in yeart, demand levelil and states

Active power purchased from grid in yeardemand levelil and states
Active power injected by &g in busi, in yeart, demand levelll and states
Apparent power imported from grid in yeardemand levelil and states
Apparent power oflg installed in busg, in yeart, demand levelll and states
Current magnitude of'” feeder in year, demand levelll and states

Cut-in speed of wind turbine

Cut-out speed of wind turbine

Degree of voltage constraint satisfaction for busn yeart, demand levelil
and states

Degree of voltage constraint satisfaction for bug yeart

Degree of voltage constraint satisfaction for whole systeryeart

Degree of thermal constraint satisfaction for feedén yeart¢, demand level
dl and states

Degree of thermal constraint satisfaction for feetién yeart

Degree of thermal constraint satisfaction for whole systemear ¢

Degree of thermal constraint satisfaction for substatioggart and states
Degree of overall thermal constraint satisfaction for safosn in yeart
Degree of minimization satisfaction @f” objective function by solutiony,,
Demand in bug, yeart, demand levelll and states

Electricity price in states

Front number to whiclh'* solution belongs

Global Diversity ofn'"solution

Investment decision in feedér in the yeart

Investment decision for DG technologly in busi, in the yeart

Investment decision in transformer, in the year
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Length of feeder in km

Local diversity ofn!*solution in k! objective function
Maximum difference between the values /df objective function, regarding
all solutions

Maximum operating limit of aig

Net active power injected to busin yeart, demand levelll and states
Net reactive power injected to busin yeart, demand levelil and states
Number of buses in the network

Number of population

Number of feeders in the network

Number of objective functions

Number of combined states

Number of reduced states

Peak price of energy purchased from the grid

Peak demand in bus in states

Percent of peak electricity price in stateand demand levell

Percent of peak electricity demand in statand demand levell

Percent of rated capacity of installed wind turbine in state

Rated power of installed wind turbine

Reactive power injected by & in busi, yeart, demand levelil and states
Reactive power demand in busyeart, demand levelll and states
Pseudo fitness aft" particle

Probability of load state

Probability of electricity price state

Probability of wind speed state

Probability of combined state

Rated speed of wind turbine

Scale factor of Rayleigh PDF of wind speed

Technical dissatisfaction in year

Total cost paid to grid

Total Investment cost of DG units
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DGOC Total operation cost of DG units

FC Total cost of feeder reinforcement
SC Total cost of transformer investment
Ei’;fe,tﬁgm Upper safe and critical values of operation thermal limitsubstation feeding

the network
—=safe,t —crit,t

I, 7,1, Upper safe and critical values of operation thermal limitsemders

ymaz ymin - pper and lower safe operation limits of voltage

safe’ Vsafe

ymaz jmin Jpper and lower critical operation limits of voltage

crit v Verit

Vitds \Voltage magnitude in bug yeart, demand levelil and states
Oit.dls \Voltage angle in bug, yeart, demand levelll and states
Vs Wind speed in state

|. INTRODUCTION
A. Motivation and problem description

Distributed generation (DG) is an electric power sourceneated directly to the distribution
network [1]. There are five major factors that motivate iasiag the share of DG units in elec-
tricity generation: electricity market liberalizationewklopment in DG technology, constraints
on the construction of new transmission lines, reliab#ibhancement [2] and concerns about the
environment [3]. DG may also offer distribution network ogi@rs (DNOs) more diverse, flexible,
and secure options for managing their electricity systemiseinefit customers [4]. A powerful
tool for planners is needed to model the uncertainties efrmittent power generations of wind
turbines and also electric load and price values. It shoolidomly reduce the computational
burden but also maintain the accuracy of computation. Thivatamn of this study is to provide

such a tool.

B. Literature review

In recent years, many approaches have been proposed totkelN@G planning problem.
The literature suggests a wide range of objectives, suclholiage stability improvement [5],
risk aversion in load procurement [6], active loss reduct|@], [8], reactive loss reduction
[9], reliability improvement, reducing the cost of energgquired for serving the customers,

increasing the incentives received by distribution nelwowners for using DGs, reducing the
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cost of energy not supplied, injecting power into the grigpaék load and emission reduction
[10]. These studies have considered a variety of technssalels including voltage profile [11],
[12], thermal limits of conductors [13], substation capa¢i4], three phase and single phase to
ground short circuit [13], [15], and load modeling [9]. Treported models for DG planning can
be divided into two major categories: static and dynamic emdn static models, investment
decisions are implemented in the first year of the plannimgzbo [5], [9], [16]. In this category,
the models are single or multi-objectives. The single-cioje models are either originally single-
objective [5], or multi-objective which are converted irdosingle-objective (using a benefit to
cost ratio index or an additive utility function [9]); muitibjective models of this category are
solved using Pareto optimality concept [1]he dynamic models of the literature are those
which determine the optimal investment decisions to be nedeach year (or time segment)
during the planning horizon [18]. These models considettithe value of money and are more

efficient than static model§he planing models are summarized in Table I.

C. Contributions

In this paper, a dynamic multi-objective DG-planning peahlis formulated and a two-stage
algorithm is proposed to solve the problem. In the first stége set of Pareto optimal solutions
is found using a novel binary PSO method, and in the secomg sthe best solution is chosen
using fuzzy satisfying techniques. The model aims to colletheee aspects of DG planning
problem, i.e., siting, sizing and timing of investment sitaoeously, in order to increase the
technical, economical and environmental benefits accryea DNO. The contributions of this
paper are three fold:

1) Multi-objective dynamic modeling of DG planning probldor simultaneous determination
of timing, sizing and sitting, when costs, emissions antiexal attributes of the proposed
plans, and a variety of DG technologies are considered.

2) The uncertainties of input variables are taken into aotou

3) Proposing a BPSO method for solving the aforementionet|@no.

D. Paper organization

This paper is set out as follows: section Il presents prolfiemmulation, section Il sets out

the principles of multi-objective optimization and the posed solution algorithm for solving
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the problem. Simulation results are presented in sectiomn¥ finally, section V summarizes

the findings of this work.

I[I. PROBLEM FORMULATION

The multi-objective DG planning problem is formulated imstBection. The decision variable
is the number of DG units from a specific technology, to beaihest in busi in yeart, i.e.,ggfi’;

Investment in feeders, i, or transformer, i.ey!".

A. Assumptions

The following assumptions are employed in problem formarat

« Connection of a DG unit to a bus is modeled as a negative PQ |athdawix power factor.

« DNO is authorized to invest in DG units.

B. Uncertainty modeling

The electricity price and electric load are both uncertainderegulated environment but
these parameters are specifically tied together. An inefdasrease in electric load will tend to
increase/decrease in electricity price. Without loss afegality, the correlation between wind
speed and load-price patteare assumed to be independgd]. If any correlation exists between
load-price and wind pattern this can be easily considereatienproposed algorithm. The price
and load duration curves are divided intg, levels in each year as shown in Fig. 1. The vertical
axis in Fig. 1, shows the demand/price level factors (the rat load/price to the peak value
of load/price in this level). The duration of each level issd@ed byr,. It is assumed that
the demand/price level factora f, D4) are normally distributed around their specified expected
values as shown in Fig. 1. Each normal distribution is digideo 7 states and the probability of
each state is specified in Fig. 1. Although the expected @immkdemand values are dependent
but ,in each demand level, the variation of price and eledtrad around its expected value
can be assumed to be independ@ite electricity price, electric load and wind generatioa ar

modeled as follows:
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1) Electricity price: The price of energy purchased from the grid is competitiadtermined
in a liberalized market environment. Assuming a peak algttrprice of p, the electricity price

in demand levelil, and states can be calculated as:
EP,=p . Aais 1)

2) Electric load: Assuming a peak load &f! . and a demand growth rate af the demand

in busi, in yeart, demand levelil and states can be calculated as:

Sg,dl,s - SD . Ddl7s . (1 + O{)t (2)

i i,peak

3) Wind speed and wind turbine power generatiditne generation schedule of a wind turbine
highly depends on the wind speed in the site. There are \@n@ihods to model wind behavior.
In this paper, the variation of wind speed, i%.is modeled using a Rayleigh PDF and its
characteristic function which relates the wind speed aedoiliiput of a wind turbine.

2v v
PDF(v) = () eap[~(=)’] 3)
wherec is the scale factor of the Rayleigh PDF of wind speed in the zorder study.

The generated power of the wind turbine is determined ugsgharacteristics as follows:

0 if v <of, orv> oS

out

t
} : d —¢ .
Rl,lz)‘, (U) = gz,g &Rﬁ |f UZ'Cn S v S Urated (4)
i=1

Urated—V,
Py, else
Where, P, is the rated power of wind turbine installed in bus?y is the generated power of
wind turbine in bus iv¢,, is the cut out speed;, is the cut in speed and..., is the rated
speed of the wind turbine. The speed-power curve of a typuwadl turbine is depicted in Fig.
2. Using the technique described in [19], the PDF of wind dpealivided into several states.

In each state, the probability of falling into this state @éctlated as follows:

Vas 9y v
probt = [ %5 eapl—( P ©)
Vi C C
Vet Vi
o 2

The generated power of wind turbine is calculated usinguthes obtained in (5), and (4).
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4) Combined states modeAs it is already mentioned, the states of each demand leeel ar
independent (the correlation between load and price is@yreonsidered in their mean value of
Dy and )\y. In each demand level, the states are combined to consh&avtole set of states

as follows:
C(s) = load(s) . price(s) . wind(s) (6)
Prob = prob. . prob) . prob? (7

where Prob¢ is the probability of each combined state.

C. Constraints

1) Power flow constraintsThe flow equations that shall be satisfied for each configurati

and states are:

net o D dg

F)i,t,dl,s - _‘Pi,t,dl,s + ‘P7, Jtdlys (8)
net .
it,dl,s T Qz Jtdl,s + Qz ,tdl,s
net t

Py = Visais Y :%Vj,t,dl,scos(@,t,dl,s — 0 t.ars — 0ij)
net
itdls — Vitdls E Vita, e Oitdl,s — Ojt.dls — eij)

2) Operating limits of DG unitsEach DG should be operated considering its capacity limits,
ie.

t
d d —dg
Sl <Y &S, (9)

3) Fuzzy technical satisfactionfhe satisfaction of soft constraints can be modeled by fuzzy
sets. The idea of fuzzifying the technical constraints weexduby [20]. In the present work, this
idea is extended to model the problem with different statesaf dynamic planning problem.
Fuzzy modeling is used to quantify the value of satisfactbtechnical constraints of voltages
and thermal limits of feeders and substation, as follow:

a) Voltage profile: The voltage magnitude of each bus should be kept betweenafiee s
operation limits. However, the DNO may ignore violation bkse limits to some degree, in
hope of achieving a better solution regarding other netesq20]. The membership function

of the voltage constraint satisfaction is represented knapetoidal fuzzy number [17].
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Observe that a voltage magnitude between the up and low pafatmn limits, i.e.}//n, |/ mae

safer Vsafe

has a satisfactory value of 1. As the voltage exceeds thesés,lithe value of satisfaction

decreases until it becomes zero after the critical voltaajaes, i.e.V ™" V4 This function

crit v Verit

can be mathematically represented as:

(v _ymin . )
RS VI < Viea S VIR
v 1 Vo < Viars < Varis
/’Li,t,dl,s B Vit,di,s—VIa" max max (10)
W safe < ‘/;,t,dl,s < chrit
0 else

\

The values obtained from (10) show the condition of voltagestraint satisfaction for busin
states in yeart. Since there are more than one state in a real system, thaeplavill have
different satisfaction levels of voltage constraint forigeg bus. To obtain an index which shows
the condition of a given bus in yeart, it is proposed in this work to calculate the weighted

average of satisfaction of voltage over the states, asvisllo

Nai Ns

1
Vo _ c 14
Mig = gres SN probt . Ta - (11)

dl=1 s=1
In (11), if the voltage of bus does not fully satisfy the constraints in statbut the probability

of this dissatisfaction is short, the satisfaction of this Iis not very degraded in the whole year
t. The average value qiz‘.ft over all buses of the network, can provide information alibet

overall voltage condition in year t as follows:

Ny 1%
Vv Zi:l /j’i,t
lut Nb ( )

b) Thermal limit of feeders and Substatiofio maintain the security of the feeders and
the substation, the flow of current/energy passing throvntiséould be kept below the feed-
ers/substation capacity limit. This is incorporated herethe form of a fuzzy membership

function [17]. A strictly monotonically decreasing and @anous function is considered for this
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limit, as follows:

1
Hotdl,s = (13)
—=safe,t
1 Lpyais <1,
I g_[cr“ o —safept —crit,t
% I, <Iys<1I,
4 4
0 Ipps > T,
; t
—=safe,t -
I, =1,4+ Cap, . va
i=1
Similar to the voltage limit, an overall satisfaction vaiseconsidered for each feeder, as follows:
Ng; Ns
e,t 8760 Z ZPTC’bC :ué,t,dl s (14)
dl=1 s=1

An index is needed to provide information about the overatfgrmance of the system regarding
the thermal limits. The average value @f, over all feeders of the network can provide such

information as follows:

I Zz 1 Mu
Hi = Ne (15)
For substation capacity constraint, also, the same plplosholds, as follows:
T (16)
(
1 Stgylds S Ssafet
ngd St'f‘

t,dl,s crit,t grzd =t
=t <t Ssafe t S St Jdl,s S

crit,t
Ssafe,t Sc'rit,t ’

grid atr
L 0 St dl,s Z Scrit,t
Nar Ns
Sg'rzd c Sg'rzd
M = E E probg - M di,s
" 8760 4= £

D. Objective functions

The proposed model minimizes three objective functionsnelg technical dissatisfaction,

total costs and total emissions of the planning prob(see Appendix-l)as follows:
min {OF,,OF,, OF3}
subject to:
(2) = (16)

October 10, 2011 DRAFT



11

The objective functions are formulated next.
1) Technical dissatisfactionThe first objective function to be minimized is dissatisiactof
technical constraints. The technical dissatisfactiomotied byT D;, is defined as the maximum

dissatisfaction of all technical constraints as follows:

TD,=1-min {ut ,Mt,ufg”d} (17)
The objective function to be minimized is proposed here asmiltiplication of maximum and

average value of yearly technical dissatisfaction ovenmiltag horizon as:

OF, = Wang + I opg LR + (18)

id
Wiey - (1 _mlntdlSf[:utdzlsuuztdls?:uﬁtdl s])

By minimizing the OF}, the algorithm tries to simultaneously improve the ovesallisfaction

of the network, represented By, Z2:

, and the severity of technical dissatisfaction over the
planning horizon, represented by the second tdmm(18) the values ofw,., and w,,, are
the weighting factor representing the importance of sgvef technical dissatisfaction and the
average dissatisfaction of technical constraintsuvdf, is chosen much more bigger than,,,
then the algorithm tries to find solutions which fully sagighe technical constraints. On the
other hand, ifw,,, is bigger thanwu,.,, then the technical satisfactions of the solutions are more
relaxed.

2) Total costs: The second objective function, i.&)F;, to be minimized is the total costs
which includes the cost of electricity purchased from thie,ghe investment/operating costs of

the DG units. The cost of energy procurement from the gricalsutated as:
T Na Ns

) 1
_ c A rid
TGC =YY" prob . ER), . P 1. T ay (19)
t=1 di=1 s=1
Investment costs of the DG units can be calculated as:
T N 1
DGIC = LIC, . —m— 20
VYN 1 g (20)

The operating costs of the DG units can be calculated as:
T N, Ng

DGOC =) ">"3">" Z prob . 7y . OCy, (21)

t=1 i=1 dl=1 dg s=1

. PY .
PR (1 4 d)
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The reinforcement cost of the distribution network is thensaf all costs paid for investment
and operation of new feeders and transformers. The totdefeeinforcement cost, i.e. FC, and

substation reinforcement cost, i.e. SC, are calculated lbsvi®
T Ny

1
-y ¢
FC = L Cg.dg . "}/t(l T d)t (22)

T
1
— 1§T
SC_;JQP A

Where, FC and SC are the total feeder and substation reimfi@recost, respectively.,, C,,

are the cost of each feeder and transformer, respectively.
Thus, OF, is defined as:

OF, = DGIC + DGOC + TGC + FC + SC (23)

3) Total emission:The third objective function, i.e()F3, is the totalCO, produced by the

DG units and the main grid) F; can be formulated as:

T Na Ns

OF; = Z Z Z probs . Ta[Egid - P;{;’“ + (24)

t=1 di=1 s=1

N, d,
Zz‘:b1 ng Edg : Pziqs]

[1l. PROPOSED SOLUTION ALGORITHM

To solve the dynamic multi-objective DG planning problenmnfiollated in section I, a two-

stage algorithm is proposed in this section.

A. Proposed Binary PSO

The PSO algorithm is a population-based search technigogoped first by Kennedy and
Eberhart in 1995 [21]. The basic idea of PSO is that each ghartises the swarm’s best
experience as well as its own best experience in finding fdbé. PSO algorithm starts with a
population of particles with random positions in the seaphce. Each patrticle is a solution of
the problem and has a fitness value. The fitness is evaluatet @0 be optimized. A velocity
is defined which directs each particle’s position and getdatgdl in each iteration. Particles
gradually move toward the optima due to their best positimy thave ever experienced and the

best solution which group has experienced. The velocity paadicle is updated due to three
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factors: the past velocity of the particle, the best posiparticle has experienced so far and the
best position the entire swarm has experienced so far. Imigaration, every particle modifies its
direction by its updated velocity affected by the three desimentioned above. Mathematically

the modification process may be expressed as follows:
iter+1 iter iter
X, =X, "+ V (25)

‘/;)iter—i-l — V;'ter + Rcmd1 . (Xiter . X]i)ter)

p,Best
iter iter
+Rand, . (ngBest - X )

p:1727"'7Np

X;'fe’" is a particle which represents a potential solution to th&nopation problem. In multi-
dimensional problems like DG planning problem, each pIar,tiK;}” is a vector containing
the decision variables antd;**" is the velocity of particlep, respectively. X% ., is the best

personal position of particle has had up to now. Similarl ;fg,”est is the best global position
which the entire particles have had up to now. The conceptirettion modification in PSO
implies that the direction of particlg is influenced by its present velocity, its best position up
to now X}'%.,,, and the best position of the whole particles up to n&{if;.,. In the context of
multi-objective optimization (see Appendix-I for more dis), it is needed that the population
be directed toward the Pareto optimal front considering itwportant aspects: getting closer to
Pareto optimal front and maintaining the diversity amonrg $blutions [22]. To do so, a pseudo

fitness value is assigned to each solution, referred to astaffactor SF,,, as follows:
SF,=w, . FN;' +w, . GD, (26)

The first term in (26) guides the population toward the Paogitimal front since the solutions
which belong to lower fronts get higher affinity (fithess).eT®econd term insures the diversity
among the solutions. In order to calculate the global ditexsf the n'* solution, i.e.GD,, a
local diversity factor, i.eL D¥, is defined for each objective function [22]. For every ohjec
function k, the solutions are sorted and the difference between thenmax and minimum

values is calculated as:

MDy = mgX(fk(Xn)) - mr}n(fk(Xn)) (27)

n=1,---,Np
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Since the solutions are sorted, the first and the last onegharenaximum and minimum,
respectively. The local diversity of each of the other doha is its average distance to its

neighbors, as follows:

LDF = (28)

| fi (Xa) = fr (X)) + [ i (Xn) = i (Xom1)
2M D,

For the first and the last solutions, local diversity can bewated as:
LDy, = LD} = maz(LDY) (29)

The global diversity factor for each solution is then cadted as the average of its local diversities
as follows: N
“ LD¥
N,

k=1
In initial iterations, a small number of solutions belong ttee first Pareto front, so getting

GD, =

(30)

closer to Pareto optimal front is more important than manmag the diversity among them. It
is necessary to enable the algorithm in distinguishing betwthe solutions in different Pareto
fronts, w; andw, in (26) are adaptively selected which guarantees that thei@o belonging
to a lower Pareto front has a bigger affinity factor than a tsmhubelonging to an upper front
level (w; is bigger thanmw, in the initial iterations) and when most of the solutions ere¢he

pareo optimal frontyw, is chosen bigger tham, to maintain the diversify among the solutions.

B. The Proposed two-stage solution algorithm

The solution algorithm proposed here consists of two stalgethe first stage, the solutions
which form the Pareto optimal front are found and in the sdcstage, the best solution is
selected considering the planner’s preferences. Both stagedescribed as follows:

1) Stage | (finding the Pareto optimal frontf:he PSO algorithm proposed in section IlI-A is
used to find the Pareto optimal front. To do so, each partscke vector containing the decision
variables coded in binary format (to show the investmenisimas) investment decision of DG
units, the bus on which a DG units is to be installed, the yéamwestment and their generated
power and for all available DG technologies. Steps of the §tage of the solution algorithm

are as follows:
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step. 1. Generate an initial random patrticles.

step. 2. If the stopping criterion is met, go to stép, lse, continue.
step. 3. Calculat® Fy, OF;, OF;5 for each particle.

step. 4. Calculate the fitness using (26) for each patrticle.

step. 5. Calculate the)*"

step. 6. Calculate the's. X'

step. 7. Construct a new population by moving the particles.
step. 8. Return to steg)

step. 9. End.

The flowchart of the first stage of the proposed method is degim Fig.3.

2) Stage Il (Selecting ‘the best’ solution]the decision maker (planner) needs a tool to select
the final solution among the existing solutions of Paretatirén this paper a fuzzy satisfying
method is used for this purpose. The concept of this methad fsllows: for each solution in the
Pareto optimal frontX,,, a membership function is defined a&~). This value, which varies
between 0 to 1, shows the level of which, belongs to the set that minimizes the objective

function f;. A linear membership function is used here for all objecfections as follows:

0 fi (X) > firee
X) max __ X min max
R %f%g frin < (X)) < f7 (31)
1 fr (X)) < fim

A conservative decision maker tries to maximize minimuns&attion among all objectives or

minimize the maximum dissatisfaction [23]. The final saatican then be found as:

Ny No
méix(min (/) (32)

IV. SIMULATION RESULTS

The proposed methodology is applied to a realistic 201-rdddkV distribution system which
is shown in Fig.4. The technical data of this network can hatbin [24]. Three DG technology
options, namely, Micro Turbine (MT), Wind Turbine (WT), Gasirbine (GT) are considered
here. It is also assumed that all buses are candidate for &3tment and more than one DG
can be installed in a specific bus. The stopping criteriore&hing to a predefined maximum

number of iterations. The Rayleigh parameter of the wind dpresach wind farm has been
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assumed to be = 8.78 and the other characteristics of wind turbine are given ibldadl.
Using the technique described in [19], the PDF of wind speedivided into twelve states as
given in Table Ill. The forecasted values of demand and pegel factors are given in Table
IV [25]. The ¢ value of each demand level is assumed to be 1% of its foretasiae. Other
simulation assumptions and characteristics of the DG J86$, [27] are presented in Table
V and Table VI respectively. The presented solution alparitwas implemented in MATLAB.
The number of demand levels,i.8/; is assumed to be 24 and the duration of each demand
level is 365hr. In (18) the values af,,, andw,., are assumed to be 0.8 and 0.2, respectiviey.
Solving the (6) giveg x 7 x 12 = 588 states for each demand level. It is clear that solving the
evaluation process for all of these states (for all demaweldg imposes a heavy computational
burden. In order to resolve this problem, a scenario redndchnique proposed in [28] has
been used to reduce the number of states (see Appendix+hdoe details). The scenario set is
reduced into 110 states (this is chosen based on trial and) ersing the described technique.
The formulated problem is solved using the proposed twgestdgorithm and 80 non-inferior
solutions are found. The planner can choose the best solbéieed on the planning criteria, as
further discussed next. The Pareto optimal front of theckeapace, found in the first stage, is
depicted in Fig.5. The variation ranges of all objectivediimns are given in Table VII. In the
second stage, the planner can choose the most preferreibsahsing the fuzzy satisfaction
method introduced in section IlI-B. The final solution isigan #68. The various costs related to
the selected solution are given in Table VIII. The investtr@an of this solution is described in
Table IX. It would be interesting to know how much accuraclpt if the scenarios are reduced.
The final solution (which was already found using tNe = 110) is reevaluated using various
values of N,. The exact values of this solution is obtained if all scevmare considered. This
value is taken as a reference for comparing the resultsraatdy various number of reduced
scenarios. The computation error due to scenario reduciatepicted versus the number of
reduced scenarios,i.®,, Fig.6. This figure shows that if the number of scenarios i3seh to
be greater than 93, then the accuracy is acceptable and theafiion is highly reduced and the
error will be less than 0.005%.

In order to analyze the performance of the proposed binay P8thodology, it is compared
with an standard real coded PSO as described in [29]. Fomptmgose, the problem is solved

just for two objectives namely, technical satisfaction amdt (this is done just because the
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comparison is much more easier). The initial solution (candsolution) and the Pareto optimal
fronts found by each PSO method are depicted in Fig. 7. Botbri#thgns are run for 100
iterations. It is obvious that the Pareto front obtained maty PSO dominates the solutions of
the read coded algorithm. This means for each solution ietBdront of real coded PSO there
exists at least one solution in the BPSO front that gives lovest and technical dissatisfaction
simultaneously.

The model can be directly used in power market model in whigh DNO is authorized
for DG investment However, in power market models where the DG investment rseday
independent investors instead of DNO, It can be easily nedlifo be used in such regulatory
frameworks. The decisions related to investment and dpgrat DG units are made by private
entities. In this case, the values gﬁ are determined by DG owners. The decision variables
of DNO are~! and!" (network investment optionsYhe provided information would also be
useful as a technical, economical and environmental sitprategulators. It can be used for
regulating the incentives to encourage the private se¢tianvest in what DG technology and

where to be more beneficial.

V. CONCLUSION

This paper presents a dynamic multi-objective model for D& ping problem and a binary
PSO based method to solve the formulated problem. The pedptgo-step algorithm finds
the non-dominated solutions by simultaneous minimizatértechnical dissatisfaction, costs
and emissions in the first stage and uses a fuzzy satisfyirigothéo select the best solution
from the candidate set in the second stage. The new plannotginis applied to a realistic
distribution network and its flexibility is demonstrateddhbgh different case studies. The solution
set provides the planner with an insight into the problem andbles him to choose the best

solution according to planning preferences.
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APPENDIX-I: PARETO OPTIMALITY CONCEPT

In general, in a multi-objective optimization problem, radhan one objective function needs

to be simultaneously optimized as follows:

min  F(X) = [fi(X),.... fx, (X)] (33)

Subject to:

{G(X)=0,H(X) <0}

X =[z1, T
SupposeX; and X, belong to the solution spac&’; dominatesX, if:

Vk € {1..No} fi (X1) < fi (X2) (34)

k" € {1..No} fir (X1) < frr (X2)

Any solution which is not dominated by any other is called &olng to a Pareto front which

is referred to as the first Pareto front or optimal front or qslmminated front.

APPENDIX-II:SCENARIO REDUCTION TECHNIQUE
The purpose of scenario reduction is selection of a set{lse.with the cardinality ofNq,,
from the original set, i.eQ2; [30]. This procedure should be done in a way that makes a tfide
between the loss of the information and decreasing the ctatipnal burden [31]. The scenario
reduction technique used in this paper is described as tloeving steps [28]:
step. 1 Construct the matrix containing the distance betveaeh pair of scenariogw, )
step. 2 Select the fist scenarig as follows:

w' €Ny
wed g

wy = arg { min Twc(w, w/)} (35)
Qs = {wi},Q =0, - Qs
step. 3 Select the next scenario to be addef@4aas follows:

w, = (36)

arg {4 min E Tw min  c(w,w")
w' €Yy w”eQgU{w}
weQ;—{w'}

QSIQSU{’wn},QJ:QJ—QS
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step. 4 If the number of selected set is sufficient then endgantb step 2 ; else continue.

step. 5 The probabilities of each non-selected scenariobeiladded to its closest scenario in
the selected set.

step. 6 End.
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TABLE |

DG PLANNING METHODS

Reference Single/Multi Static/ | Uncertainty Network Method
objective | Dynamic | handling | reinforcement
El-Khattam et al. [32] S S N Y Classic MINLP
Jabr et al. [33] S Y(not exact) Ordinal optimization
El-Khattam et al. [34] S S N N Classic MINLP
Wang et al. [35] S D N Y Greedy heuristic
Kumar et al. [36] S S N N Classic MINLP
Wong et al. [37] S D N Y Classic MINLP
Zangeneh et al. [38] M S N N Normal boundary intersectior
Haghifam et al. [17] M S Y N Heuristic NSGA-II
Atwa et al. [19] S S Y N Classic MINLP
Khalesi et al. [39] S S N N Dynamic programming
Atwa et al. [40] S S Y N Classic MINLP
Harrison et al. [41] M S N Y(not exact) e-constrained technique
Soroudi et al. [18] M D N Y(exact) Immune algorithm
proposed M D Y Y(exact) Heuristic BPSO
TABLE I

THE TECHNICAL CHARACTERISTICS OF WIND TURBINES

icrlft Urated USZ’E P,
(m/s) | (m/s) | (m/s) | (MW)
3 13 25 0.5
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TABLE 11l

WIND TURBINE STATES

State | wps (%) | Proby
1 0 0.1105
2 5 0.0772
3 15 0.0895
4 25 0.0961
5 35 0.0973
6 45 0.0936
7 55 0.0863
8 65 0.0764
9 75 0.0652
10 85 0.0537
11 95 0.0428
12 100 0.1115
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TABLE IV

<9
=

Dy

Adl

© 0o N o o b~ W N PP

N N N NDNRPR B B B B B B R P
E W NP O © © N O 0 W DN F O

0.8363
0.7883
0.7522
0.7352
0.7278
0.7324
0.7899
0.8741
0.8804
0.9184
0.9586
1.0000
0.9972
0.9880
0.9464
0.9496
0.9687
0.9807
0.9676
0.9367
0.9587
0.9803
0.9045
0.8364

0.9128
0.6372
0.4841
0.4849
0.4808
0.4849
0.6449
0.9655
0.9391
0.9662
0.9690
0.9798
0.9742
0.9683
0.9582
0.9582
0.9798
0.9856
0.9798
0.9587
0.9813
1.0000
0.9511
0.9152
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DATA USED IN THE STUDY

TABLE V

Parameter Unit Value
T year 8
S pet=o0 MVA 32
- MVA 40
Eyrid kgCO2/MWh 632
p $/MWh. 60
@ % 1
d % 12
wate Pu 1.05
piig Pu (1+5%) . Vg
- Pu 0.95
pivie Pu (1-5%) . Vi
T., A 0.9 xTopirs
Ny, 80
Maximum iteration 1000
TABLE VI

CHARACTERISTICS OF THEDG UNITS

DG Size | Emission| IC OC | cosp
Technology | MVA | 2e€02 | kS | 8§
Micro Turbine | 0.5 502 1485 75 0.9
Gas Turbine 1 365 1030 67 0.9
Wind turbine 1 0 1225 45 1
TABLE VII

VARIATION RANGE OF OBJECTIVE FUNCTION FOR ALL SOLUTION INPARETO OPTIMAL FRONT

October 10, 2011

O OF; ($) OF3s (TOI'] COQ)
frm | 0.0026 | 9.7208 x 107 4.323 x 10°
maew | 0,0689 | 2.4936 x 10° 6.6973 x 10°
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TABLE VI

THE INVESTMENT PLAN OBTAINED FOR THE FINAL SOLUTION

DGtech &9 | Year Bus
201
39,114,26
164,201
39
152,102
14,177
177,102
76
201
14
201
26,39,64,89,114,139
201

N
[EnY

Micro Turbine

Gas Turbine

Wind Turbine

W Rk P R R P P R[R R PR
R RPr|O N O A WN RPN PR

TABLE IX

INVESTMENT/OPERATING COST IN FINAL SOLUTION(M$)

Year GC IC sub | feeder
1 9.624959| 18.4675| O 0
2 9.670223| 2.485 0 34.5
3 9.662216| 1.7425 | 0 | 89.25
4 9.680735 0.5 0 0
5 9.705028| 0.5 0 73.5
6 9.813719 0 0 25.2
7 9.835628 0.5 0 90
8 9.861077 0.5 0.2 78
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Fig. 1. Demand and price level factor uncertainty modeling
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Fig. 2. The idealized power curve of a wind turbine
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Fig. 3. Flowchart of the first stage of the proposed method
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Fig. 4. Single-Line Diagram of the real system under study
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Fig. 5. Pareto optimal front found by the algorithm
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Fig. 6. Sensitivity analysis of the computation accuracy versus the nuoflseenarios
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Fig. 7. Comparison between Binary PSO and real coded classic PSO
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