
Title Derivation of a national fuzzy phosporous export model using 84 Irish catchments

Authors(s) Nasr, Ahmed Elssidig, Bruen, Michael

Publication date 2013-01-15

Publication information Nasr, Ahmed Elssidig, and Michael Bruen. “Derivation of a National Fuzzy Phosporous Export 

Model Using 84 Irish Catchments” 443 (January 15, 2013).

Publisher Elsevier

Item record/more 

information

http://hdl.handle.net/10197/4201

Publisher's statement This is the author’s version of a work that was accepted for publication in Science of The Total 

Environment. Changes resulting from the publishing process, such as peer review, editing, 

corrections, structural formatting, and other quality control mechanisms may not be reflected in 

this document. Changes may have been made to this work since it was submitted for publication. 

A definitive version was subsequently published in Science of The Total Environment (Volume 

443, 15 January 2013) DOI:/10.1016/j.scitotenv.2012.10.063 Elsevier B.V.

Publisher's version (DOI) 10.1016/j.scitotenv.2012.10.063

Downloaded 2024-04-17 13:30:33

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=Derivation+of+a+national+fuzzy+phospo...&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F4201


Science of the Total Environment 443 (2013) 539–548

Contents lists available at SciVerse ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
Derivation of a fuzzy national phosphorus export model using 84 Irish catchments

Ahmed Nasr a, Michael Bruen b,⁎
a School of Civil & Building Services Engineering, College Of Engineering & Built Environment, Dublin Institute of Technology, Bolton Street, Dublin 1, Ireland
b Centre for Water Resources Research, University College Dublin, Newstead Building, Richview, Belfield, Dublin 4, Ireland

H I G H L I G H T S

► Develops a new national phosphorus export model for agricultural catchments in Ireland
► Improves on earlier empirical phosphorus export models by using k-means clustering method for partitioning data
► Uses ANFIS model to predict annual average ortho-phosphorus concentrations using catchment characteristics
► Phosphorus desorption index (PDI) and runoff risk index (RRI) are essential predictors in the model.
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Implementation of appropriate management strategies to mitigate diffuse phosphorus (P) pollution at the
catchment scale is vitally important for the sustainable development of water resources in Ireland. An impor-
tant element in the process of implementing such strategies is the prediction of their impacts on P concentrations
in a catchment using a reliable mathematical model. In this study, a state-of-the-art adaptive neuro-fuzzy infer-
ence system (ANFIS) has been used to develop a new national P model capable of estimating average annual
ortho-P concentrations at un-gauged catchments. Data from 84 catchments dominated by diffuse P pollution
were used in developing and testing the model. Six different split-sample scenarios were used to partition the
total number of the catchments into two sets, one to calibrate and the other to validate the model. The
k-means clustering algorithm was used to partition the sets into clusters of catchments with similar features.
Then for each scenario and for each cluster case, 11 differentmodels, each ofwhich consists of a linear regression
sub-model for each cluster, were formulated by using different input variables selected from among six spatially
distributed variables including phosphorus desorption index (PDI), runoff risk index (RRI), geology (GEO),
groundwater (GW), land use (LU), and soil (SO). The success of the new approach over the conventional lumped,
empirical, modelling approachwas evident from the improved results obtained formost of the cases. In addition
the results highlighted the importance of using information on PDI and RRI as explanatory input variables to
simulate the average annual ortho-P concentrations.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Likemany countries, Ireland has continually improved its agricultural
output to meet local demand for food as well as for exports. Using the
land in any intensive agricultural activity can cause adverse impacts on
the environment unless appropriate measures to reduce these impacts
are put in place such as water storage facilitates (e.g. De Martino et al.,
2012; De Paola and Ranucci, 2012). Most of the reviews of water quality
in Ireland revealed that diffuse transport of phosphorus (P) by surface
and sub-surface flows from agriculture soil to the receiving waters is
one of the major environmental problems (e.g. Lehane and O'Leary,
2012; McGarrigle et al., 2002; Toner et al., 2005). Soluble P in a form of
ortho-P is readily available for plants and always leads to eutrophication
in Irish Rivers and as a result there is a need for a catchment based
353 17163297.

rights reserved.
management strategy that encapsulates all elements contributing to
the loss of this form of P (Hutton et al., 2008). The EUWater Framework
Directive (WFD) (EEC, 2000) provides the legal grounds required to de-
velop and enforce such a management strategy. It mandates a thorough
investigation to predict the impacts which will be produced by each
possible management alternative.

The Three Rivers Project (MCOS, 2002) was one of the early and de-
tailed studies conducted in Irelandwith the aimof developing catchment
based monitoring and management systems for the Boyne, Liffey and
Suir catchments. A related project was the LoughDerg/Lough Ree Project
(KMMP, 2001) which addressed the same objectives in the Three Rivers
Project. In addition to the valuable management plans developed by
these two projects, an important database required for modelling diffuse
P loadswas generated. Daly andMills (2006) utilised some of this data to
develop an empirical model described in Appendix I to estimate the an-
nual average ortho-P concentrations from diffuse sources at the outlet of
a catchment. Using a number of spatial variables derived from land use,

http://dx.doi.org/10.1016/j.scitotenv.2012.10.063
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soil type, stocking densities, fertiliser P use and soil P levels Daly and
Mills (2006) developed a series of linear regression models relating the
different combinations of these variables with the average annual
ortho-P concentration. From these models they chose the best empirical
model as the one which provided the best calibration. In the analysis
Daly and Mills (2006) used data from 84 different catchments in Ireland
which have been selected on the basis of the following criteria: (i) nested
catchments were avoided; and (ii) diffuse pollution represented the
main contributor of phosphorus to the stream. Starting with all variables
and using a backward-step regression procedure they eliminated the
variables that had no significant effect on the linear regression model.
In their final model only two variables were deemed significant and
retained in the linear regression equation. These two variables were
phosphorus desorption index (PDI) and runoff risk Index (RRI). Due to
its simplicity and parsimony this type of empirical export coefficient
modelling approach to predicting diffuse contaminant loads has been
used widely (e.g. Daly and Coulter, 2000; Davies and Neal, 2007; Johnes,
1996; Lek et al., 1999; Meynendonckx et al., 2006; Su et al., 2006).
Usually models of this type do not incorporate in their structure
any representation of the actual physical processes involved in the
mobilisation and transport of P but instead they seek to establish a
numerical link between the contaminant load and the catchment
characteristics which influence it.

Most of the simple empirical annual average P export coefficient
models are multiple linear regression models that linearly relate the
predictors, which are in most cases land use types, with the predictand
representing thewater quality parameter under consideration such as P
soluble reactive concentration (e.g. McGuckin et al., 1999). However,
the diffuse P transport process is in fact highly non-linear and the driver
variables are in general not limited to land use types but they rather ex-
tend to include other predictors (e.g. soil P sorption capacity, residual
soil P amounts, density of livestock, and climate). Therefore non-linear
models are extremely needed in order to accurately express the non-
linearity in the process. Furthermore the available observed P concen-
tration data only covers a small number of years and this necessities
the use of Monte Carlo simulation techniques to generate syn-
thetic long time series that can be used in uncertainty analysis
(e.g. McFarland and Hauck, 2001). Thus it will be useful if the candi-
datemodel can intrinsically account for the uncertainty in the data using
the available actual data through an embedded modelling mechanism
without the need for an external procedure to generate synthetic data
used in uncertainty analysis. The non-linearity and the self-uncertainty
modelling features can jointly be found in the fuzzy inference modelling
systems (Jang, 1993). Thesemodels have been successfully implemented
in a number of diffuse pollution modelling studies. For instance Schärer
et al. (2006) used a fuzzy decision tree to estimate P export at a catch-
ment scale and also Shrestha et al. (2007) modelled nitrate dynamics
in a catchment using a hybrid deterministic–fuzzy rule based model.

The aim in this study is to broaden and strengthen the empirical
modelling approach by employing an adaptive neuro-fuzzy inference
system (Jang, 1993) to develop a new empirical P export model. In de-
veloping thismodel the available catchment data isfirst partitioned into
a number of clusters based on similarities in their characteristics. A hy-
pothesis ismade here that there is a physical basis for the clustering and
that if a separate P export model is calibrated for each cluster, a better
prediction of diffuse P loads in a catchment would be obtained by com-
bining the outputs of all the cluster models in proportion to the
catchment's membership weighting for each cluster. This means that
the models developed for each cluster contribute to the diffuse P loads
prediction in a catchment depending on the degree bywhich this catch-
ment belongs to the cluster. The newly developed model is intended to
be used as a predictive tool at a catchment level across all the River
Basin Districts in Ireland and also with the view that an analogous
approach can be used in other countries. For direct comparison with
previous models, the new model has been developed and tested with
the same data used by Daly and Mills (2006) in their model.
2. Estimation of nutrients loads using catchment characteristics

The level of nutrients, including phosphorus (P) and nitrogen (N), in
a stream is usually an indicator of the situation in its upland catchment.
Therefore in situations where diffuse pollution is significant it is always
possible to obtain some estimate of nutrient levels from empirical
models conditioned on catchment characteristics. The particular catch-
ment characteristics which result in a robust model may not be known
in advance and hence a trial and error procedure is usually followed to
determine the best catchment characteristics. The relationship between
the nutrient loads and the catchment characteristics in the export coef-
ficient models (e.g. McGuckin et al., 1999) is always described by a first
order multiple linear regression model as follows:

L ¼ b0 þ
Xnvar
k¼1

bkxk ð1Þ

where

L nutrient load;
xk the value of the kth catchment characteristic;
nvar total number of the catchment characteristics;
b0 constant term of the linear regression model;
bk coefficient of the kth catchment characteristic of the linear

regression model.

The total number of terms in the linear regression model is equal
to the total number of catchment characteristics which have been in-
cluded in the model plus one. The constant term and the coefficients,
(i.e. the model parameters) are estimated using the least squares pa-
rameter estimation method. To obtain reliable estimates for the param-
eters it is always recommended to use data from as many sites as
possible. However it is also recommended to select sites from a homog-
enous region where similar catchment characteristics (e.g. phosphorus
desorption index (PDI), runoff risk index (RRI) (see Appendix II for fur-
ther explanation of PDI and RRI), soil types, land use types, geology,
aquifer types) prevail so that the resultingmodel would be a better rep-
resentation, but only of that region. Hence it is not advisable to use such
a model in regions outside the one used in estimating its parameters.

Here a newapproach has been developed to produce a class ofmodel
that can be more readily applied in heterogeneous regions. The ap-
proach is based on fuzzy inference systems already used extensively in
hydrological and water quality modelling (e.g. Chen et al., 2006;
Dixon, 2005; Haberlandt et al., 2002; Jacquin and Shamseldin, 2006;
Marce et al., 2004; Nayak et al., 2004). These modelling systems inte-
grate the outputs from a number of sub-models to estimate a single
overall output. Each sub-model can be considered as representative of
a specific region typewhere the catchment behaviour is assumed homo-
geneous. The data used in developing the model are for the same 84
catchments used by Daly and Mills (2006) to develop their national
Pmodel. Such a nationalmodel is a tool of extreme importance inmanag-
ing diffuse P pollution at a catchment level in each River Basin District in
Ireland. The newly developed model is aimed at providing an improved,
albeit more complex, alternative national P model. The model is tested
by using part of the data set to calibrate the model parameters and the
remaining part to validate the performance of the resulting model.

3. New neuro-fuzzy national P export model

Using a single general equation to estimate diffuse P loads from
catchment characteristics may work well for a single homogeneous re-
gion but may not give good predictions outside of this region. Thus its
use for the whole of Ireland is questionable. The reason for this is the
wide variability in the behaviour of the catchments used to derive the
equation. If among those catchments there is a dominant cluster of
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catchmentswith a homogenous condition then this clusterwould influ-
ence strongly the parameter estimation process. The estimated param-
eters would fit well for catchments in this cluster while its performance
for other catchments may not be as good. It is possible to improve the
model performance if a separate model is defined for each cluster of
distinct homogenous catchments. However, when grouping the catch-
ments into a number of clusters there will always be overlaps between
these clusters because some catchments may have features in common
with more than one cluster and may be difficult to assign to a single
cluster. In our proposed neuro-fuzzy approach, a catchment does not
have to be a member of only one cluster, but is assigned a membership
weighting relating to all clusters. Higher weighting implies stronger as-
sociation between the catchment and that cluster. Our hypothesis is
that “if a separate P export model is calibrated for each cluster then a
better diffuse P loads prediction in a catchment can be obtained by com-
bining the outputs of all the cluster models in proportion to the
catchment's membership weighting for each cluster”. This means that
the models developed for each cluster contribute to the diffuse P loads
prediction in a catchment depending on the degree bywhich this catch-
ment belongs to the cluster. The newly developed neuro-fuzzy national P
model uses an annual time step in simulation and its structure is illus-
trated in Fig. 1. The mathematical form of this model, which here de-
scribes the relationship between the average annual concentrations of
ortho-P (resulting from diffuse P loads) and physical characteristics for
catchment i, is as follows:

orthoPi ¼

Xnc
j¼1

wj
�Oj

Xnc
j¼1

wj

0
BBBBB@

1
CCCCCA

i

¼

Xnc
j¼1

wj
� b0j þ

Xnvar
k¼1

bkj�xk
 !

Xnc
j¼1

wj

0
BBBBB@

1
CCCCCA

i

ð2Þ

where

ortho-Pi average annual ortho-P concentration at the outlet of catch-
ment i;
Cluster1

Data of C
{x1,x2,

MF1 Sub-model1

w1 O1

Ortho-Pi = (w1*O1+.....+wnc*O
where Oi= b0 + (b1*x1+.....+bnv

Ortho-Pi: estimated value of average annual orthoP con
MF: fuzzy membership function;
nc: total number of clusters;
Oj: output of the jth sub-model;
w: weight given to the output of each sub-model;
b0: constant term in the linear regression sub-model;
bk: coefficient of the kth catchment characteristic in the l
x: catchment characteristic value;
nvar: total number of  catchment characteristics used in 

Fig. 1. Neuro-fuzzy natio
nc total number of catchment clusters;
wj weight given to the linear regression sub-model of the jth

cluster;
Oj output of the linear regression sub-model of the jth cluster

which represents the average annual ortho-P load contrib-
uted by this cluster;

nvar total number of independent variables defining the catch-
ment characteristics used in the linear regression sub-model
of each cluster;

xk value of the kth catchment characteristic;
b0j constant term in the liner regression sub-model of the jth

cluster;
bkj coefficient of the kth catchment characteristic in the linear

regression sub-model of the jth cluster.

Based on the above-mentioned hypothesis the model is a
weighted average of a number of linear regression sub-models.
The number of linear regression sub-models is equal to the number
of clusters (nc) sufficient to represent homogeneous groupings of
the catchments, i.e. each cluster consists of a number of catchments
with similar characteristics. In addition, each cluster is represented
by a centre point with properties which are assumed to be repre-
sentative of all catchments in the cluster. The k-means clustering
algorithm (Hartigan and Wong, 1979) described in the next section
is used to assign the catchments into nc clusters and also to calcu-
late a centre vector of the spatial variables for each cluster. In addi-
tion, a standard deviation vector for each cluster can be calculated
using the resulting centre vector and the vectors of the spatial data
for all catchments in the cluster.

By assuming that each cluster is a fuzzy set then it is possible to es-
timate the degree by which a catchment belongs to a cluster with a
membership function. In the current model the most widely used
Gaussian function was employed for this purpose (e.g. Jacquin and
Shamseldin, 2006; Nasr and Bruen, 2008). It has two parameters,
the location or the centre vector of the cluster (c) and the scale or
the standard deviation of the cluster (σ), while the spatial data vector
Clusternc

atchment i
 ....,xnvar}

MFnc Sub-modelnc

wnc Onc

nc)/(w1+.....+wnc) 
ar*xnvar))

centration for catchment i; 

inear regression sub-model 

the linear regression sub-model.

nal P export model.



Fig. 2. Distribution of the 84 catchments used in the neuro-fuzzy national P export model.
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(x) is the input variable. The form of the Gaussian function is as
follows:

w ¼ f xð Þ ¼ e−‖ x−cð Þ2
σ2 ‖ ð3Þ

This function gives the weights (w) for Eq. (2) which determine the
contribution of a sub-model to the overall estimation of the ortho-P
concentration. Once the weights (w) for each cluster are fixed, Eq. (2)
becomes a linear regression model relating the spatial variables with
the ortho-P concentration. The parameters of the linear model (b0, b1,
b2,…, bnvar) for all clusters can then be found using the least square
method.

4. k-means clustering algorithm

Clustering is the partitioning of a data set into sub-sets (clusters),
so that the data in each sub-set (ideally) share some common charac-
teristics. Some defined distance measure such as the Euclidean distance
is often used to determine proximity of the data in a cluster. The k-means
clustering algorithm (Hartigan and Wong, 1979) is one of the simplest
unsupervised learning algorithms for this partitioningwhen the number
of clusters (k) is known a priori. The number of clusters is normally de-
termined based on the amount and characteristics of the data which is
used in calibrating the model. Using many clusters will result on a com-
plexmodelwithmanyparameters and this requires large amount of data
to obtain these parameters with any confidence. As will be described
later the current model was tested with two and three clusters only
due to the limited amount of data which does not allow the testing of
models with more than three clusters.

Generally the steps in implementing the k-means clustering algo-
rithm can be summarised as follows:

(1) The main idea is to start with some initial choice of positions
for the k centroids, one for each cluster. These initial centroids
should be chosen carefully because different starting locations
generate different results. They should be as far away from each
other as possible, given the data set. In the current model the
available catchments were randomly divided into k clusters
and then the centroid of each clusters was initially defined as
themean values of the catchment characteristics for these catch-
ments.

(2) The next step is to take each catchment and associate its catch-
ment characteristics with the nearest centroid.

(3) At this point k new centroids are calculated as the points which
represent the centres of gravity of the new clusters resulting
from the previous step.

(4) Steps (2) and (3) are repeated until the change in the k centroids
is insignificant.

In essence the algorithm aims at minimising an objective function,
in this case a squared error function (J) in the following form:

J ¼
Xk
l¼1

Xn
i¼1

‖x jð Þ
i −cl‖

2

ð4Þ

where

‖x jð Þ
i −cl‖

2
is a distance measure between a data point xi(j) and the clus-
ter centre cl;

N total number of the data points.

5. Application of the neuro-fuzzy national P model

Data from 84 different catchments in Ireland (Fig. 2) were used to
develop the neuro-fuzzy national P model. These were split into two
sets, the first of which was used for model calibration and the second
for validation. In the calibration phase, the centre vector, the standard
deviation vector, and the linear model parameters were calculated for
each cluster using the calibration data set. Then, the second data set
was used to verify the performance of the neuro-fuzzy national P
model. The strategy of splitting the data set (84 catchments) into
two parts for calibration and validation is important for the credibility
of the resulting model. Here we have divided the available data in cal-
ibration and validation sets in six different ways and taken the mean
of the results. Two of these cases have an equal number of catchments
(42) in both calibration and validation sets and four cases have 63
catchments in the calibration and 21 in the validation set. Taking the
mean of the results is more robust than taking the results from any
single case.

6. Variables in the neuro-fuzzy national P export model

In the neuro-fuzzy national P export model the dependant variable,
the annual average ortho-P concentration for a particular catchment,
can be estimated from values of two ormore indices representing phos-
phorus desorption index (PDI), runoff risk Index (RRI), Geology (GEO),
Groundwater (GW), Land use (LU), and Soil (SO). The PDI and RRI de-
scribed in Appendix II were introduced by Daly and Mills (2006) in
their national P model to quantify the potential risk of P loss from soil
by the desorption process and the transport of P by surface runoff re-
spectively. They found a strong correlation between both indices and
ortho-P concentrations and hence they have been included in the cur-
rent neuro-fuzzy national P model. Each index was obtained by calcu-
lating an area weighted average of risk categories defined subjectively
for each soil type in a catchment (see Appendix II). The calculated



Table 1
Spatial independent variables tested in the neuro-fuzzy national P model.

Variable Categories Source of data

P desorption index
(PDI)

(1) Low
(2) moderate
(3) high

Daly and Mills (2006)

Runoff index
(RRI)

(1) Low
(2) moderate
(3) high
(4) very high

Daly and Mills (2006)

Geology
(GEO)

(1) Sand and gravels
(2) carboniferous limestone
(3) ordovician
(4) rhyolite

Geology map

Groundwater bodies
(GW)

(1) Gravel
(2) karstic
(3) poorly productive bedrock
(4) productive fissured bedrock

Aquifer map

Land use
(LU)

(1) Agricultural areas
(2) forest and semi-natural areas
(3) wetlands
(4) artificial surfaces

Derived from land use
map (CORINE, 1989)

Soil (SO) (1) Deep well drained mineral
(2) shallow well drained mineral
(3) Deep poorly drained mineral
(4) Poorly drained mineral soils
with peaty topsoil
(5) peats
(6) miscellaneous

Soil map
(Gardiner, and Radford,
1980)
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values of the two indices were considered to be one of four risk degrees.
These include (i) low (ii) moderate (iii) high; and (iv) very high. The
range of values in each degree was arbitrarily defined by Daly and
Mills (2006). The maps of the other spatial variables in each catchment
show different categories for each variable distributed over the catch-
ment area. Any category which occupies less than 10% of the area in
any of the 84 catchments was ignored. Table 1 summaries the catego-
ries of the spatial variables included in the model.

The frequency distribution of the observed average annual ortho-P
concentrations in the 84 catchments is shown in Fig. 3. Some statistics
calculated from the data are also presented in the same figure. The aver-
age annual ortho-P concentrations in the 84 catchments are found to be
varying froma lowof 0.004mgP/l to a peak of 0.12mgP/l; i.e. the range is
0.116 mgP/l. Most of the catchments have average annual ortho-P con-
centration between 0.012 mgP/l and 0.024 mg/l (Fig. 3).
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7. Formulation of different neuro-fuzzy national P export models

Because of the limited number of catchments with sufficient data
available to calibrate the linear model parameters for all cluster sub-
models in the neuro-fuzzy national P model described above, only 2
and 3 clusters per catchment have been investigated to date. The amount
of data available places an upper limit on the number of parameters
which can be calibrated. This in turn places an upper limit on the number
of catchment characteristics (independent variables) and the number of
clusters that can be used. Using many catchment characteristics each
with a number of categories is not practicable if the resulting total num-
ber of parameters for the linear regression sub-models (for the case of 2
and 3 clusters) is larger than the number of data points in each of the six
calibration-validation scenarios. Here we limit the investigation to a
maximum of 3 clusters and also investigate a range of combinations
from2 to 4 independent variables (Table 2).When sufficient information
from more than the 84 catchments used in the current study becomes
available, a wider range of model structures can be tested. Running the
k-means algorithmon the calibration data for the 2 cluster cases has pro-
duced21 catchments in each cluster. Then for the 3 cluster cases it placed
12 catchments in cluster 1, 17 catchments in cluster 2 and 13 catchments
in cluster 3. A scatter plot between the PDI versus the RRI was used to
show the relative location of the centroid of each cluster with respect
to the other catchment members of this cluster. Figs. 4 and 5 show this
scatter plot for the 2 and the 3 clusters cases respectively. No attempt
was made in this study to analyse for geographic relationships between
the catchments in each cluster.
8. Analysis of results

The 11 candidate neuro-fuzzy national P export models listed in
Table 2 were assessed for the 2 clusters and 3 cluster cases on the
basis of the coefficient of correlation (R2) between modelled and
measured average annual ortho-P concentrations for both calibration
and validation data sets. The results are shown in Table 3. For each
model, the no-clustering case with a structure similar to the one of
Daly and Mills (2006) was also tested and presented as a base case
against which the performance of the models with clustering is com-
pared. Thus both the differences in performances achieved by adding
additional explanatory variables and/or model complexity can be
determined.
tration (mgP/l)
.06 0.072 0.084 0.096 0.108 0.12

a (84 points); 

hich data was collected (1998-2001)

2 mg/l); Minimum  (0.004 mg/l)

4 mg/l); Standard deviation (0.024 mg/l)

 mg/l); 90%ile (0.064 mg/l); 10%ile (0.01 mg/l)

in the 84 catchments used in the neuro-fuzzy national P export model.



Table 2
Potential neuro-fuzzy national P export models tested.

Model Variables of the model Number of
parameters
for each
sub-model

Total no. of
parameters —
case of 2
clusters

Total no. of
parameters —
case of 3
clusters

Model_1 PDI+RRI 3 6 9
Model_2 PDI+RRI+GEO 7 14 21
Model_3 PDI+RRI+GW 7 14 21
Model_4 PDI+RRI+LU 7 14 21
Model_5 PDI+RRI+SO 9 18 27
Model_6 PDI+RRI+GEO+GW 11 22 33
Model_7 PDI+RRI+GEO+LU 11 22 33
Model_8 PDI+RRI+GEO+SO 13 26 39
Model_9 PDI+RRI+GW+LU 11 22 33
Model_10 PDI+RRI+GW+SO 13 26 39
Model_11 PDI+RRI+LU+SO 13 26 39
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8.1. Calibration

The calibration R2 values range from 0.43 for the no-cluster model
to 0.86 for one of the 3-clusters cases (Table 3). Note the use of 2
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clusters always gave R2 values better than the no-cluster case and
that 3-clusters were better than 2 clusters for all models. Compared
to model_1 the performance of all other models showed an improve-
ment in both the 2 and 3 clusters cases. The R2 value for model_11
with 3 clusters is the best. Although in many modelling cases, it might
be expected that the more complex model should do better than the
simpler model in calibration, for the type of model considered here, the
more complex model does not necessarily contain the simpler model
as a special case, because the clustering may be different. Hence it is
possible for the simpler model to perform better in calibration than a
more complex one.
8.2. Validation

As shown in Table 3 the validation results are not as good as the cal-
ibration results, with 0.56 being the best value. In general the results for
the 2 clusterswere better than the 3 clusters case in 6 cases, wereworse
in 2 and equal in one case. However the 2 cluster cases were better than
the no-cluster case for 9 of the 11 cases, supporting the use of clustering.
As for which are the best combinations of independent variables,
2 2.5 3 3.5
n index (PDI)

Cluster 2 centroid Cluster 2 members

or the 2 cluster cases.

2 2.5 3 3.5
n index (PDI)

r 1 members Cluster 2 centroid

r 3 centroid Cluster 3 members

or the 3 clusters case.



Table 3
R2 values for 11 candidate neuro-fuzzy models.

Model Calibration Validation

No cluster 2 clusters 3 clusters No cluster 2 clusters 3 clusters

model_1 0.43 0.48 0.58 0.48 0.43 0.45
model_2 0.45 0.66 0.70 0.47 0.56 0.52
model_3 0.54 0.64 0.73 0.50 0.56 0.55
model_4 0.61 0.71 0.79 0.21 0.28 0.32
model_5 0.54 0.69 0.75 0.33 0.45 0.42
model_6 0.56 0.76 0.79 0.46 0.53 0.45
model_7 0.64 0.74 0.81 0.23 0.28 0.28
model_8 0.56 0.78 0.85 0.37 0.28 0.30
model_9 0.68 0.78 0.83 0.25 0.41 0.24
model_10 0.62 0.75 0.83 0.38 0.45 0.25
model_11 0.63 0.77 0.86 0.22 0.28 0.54

545A. Nasr, M. Bruen / Science of the Total Environment 443 (2013) 539–548
model_3, which has a Groundwater index (GI) in addition to the RRI
and PDI variables of model_1 was the best for the no cluster, 2 clusters
and 3 clusters cases.
9. Discussion

The neuro-fuzzy national P export model is expected to provide
a powerful tool which can facilitate the prediction of the annual
amounts of diffuse source P from a catchment using only the catchment
characteristics as inputs. Such predication is required during the design
of any management plan to reduce the amount of P loss from land to
water. The model has been calibrated using data from 84 catchments
from different regions in Ireland. A split sample technique has been
used, in which some data is used in calibrating the model and the
remaining data used to validate the calibratedmodel. This independent
validation result is important to judge the possibility of generalising the
use of themodel for predictions in other catchments not included in the
calibration.

Calibration of the models has been performed for six different ran-
dom divisions of the available data into calibration and validation sets.
For each of the six calibration–validation scenarios 11 different models
have been formulated to determine from among the six spatial variables
(PDI, RRI, GEO, GW, LU, and SO) the appropriate ones which can be used
as predictors to the average annual Ortho-P concentrations. All models
have been run for the cases of 2 and 3 clusters or sub-models. Then per-
formance of eachmodel was assessed based on themean of R2 values for
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Fig. 6. Observed vs. estimated average annual ortho-P concen
the six scenarios. Generally the results of R2 during calibration indicated
that for all models the use of 3 clusters is better than 2 clusters. This find-
ing is expected since the use of 3 clusters or sub-models increases the
number of parameters in themodel and this in turn increases the degree
of freedom in the model and hence better calibration results can gener-
ally be expected. Nevertheless the use of many parameters may not
result in a good performance during validation if the model has been
over-parameterised.

Using spatial variables other than the PDI and RRI as predictors has
been examinedby comparing the value ofR2 formodel_1with the values
of the other models for the 2 and 3 cluster cases. The calibration results
suggested that there is a benefit for the model in additional spatial vari-
ables as well as PDI and RRI. However, the validation results do not al-
ways show the same trend except for few models and this suggests
that adding more variables to the PDI and RRI in a model may result
only in a slight improvement. The variety in performance in the valida-
tion results emphasises the variability in the degree by which the spatial
variables influence the processes which affect the mobilisation and
transportation of P from land to water.

Figs. 6 and 7 compare the observed average annual ortho-P con-
centration with the estimated values for the models which resulted
in the best R2 values during validation for the cases of 2 and 3 clusters
respectively. In the two figures the points which represent the actual
and the estimated values are closely scattered around the 1:1 line and
this indicates a reasonable matching between the observed and the
estimated values. However, an underestimation of all values larger
than 0.05 mg P/l by the models is noticeable.

To investigate the usefulness of the neuro-fuzzy national phospho-
rous model, the best model for each scenario was compared with a
model that used same input variables and had a structure similar to
the Daly and Mills (2006) model. The comparison of the models was
based on the R2 values (shown in Table 4). It is obvious from the table
that, in all scenarios, the neuro-fuzzy national phosphorus model was
better than the original Daly and Mills (2006) model. However, Table 4
also shows that in all scenarios, except for Scenario 4, no single neuro-
fuzzy model order was found to be the best for both calibration and
validation.

10. Conclusions

The concept of fuzzy modelling was applied to develop a national
model of annual average ortho-P concentrations using catchment
.06 0.08 0.1 0.12

rthoP (mg/l)

= 0.56

trations for validation — model_3 of the 2 clusters case.
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Table 4
Summary of the neuro-fuzzy national phosphorus models which achieved the best R2 values vs. the Daly and Mills (2006) model.

Scenario Calibration Validation

Neuro-fuzzy national P model Daly and Mills model Neuro-fuzzy national P model Daly and Mills model

Cluster case Best model R2 R2 Cluster case Best Model R2 R2

1 3 Model_8 0.90 0.73 3 Model_4 0.38 0.32
2 3 Model_11 0.97 0.63 2 Model_3 0.65 0.5
3 3 Model_10 0.84 0.72 3 Model_9 0.60 0.38
4 3 Model_10 0.79 0.63 3 Model_8, Model_10 0.68 0.52, 0.49
5 3 Model_8, Model_10 0.87 0.41, 0.45 2 Model_3 0.76 0.66
6 3 Model_9 0.87 0.70 3 Model_1 0.65 0.56
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characteristics as independent variables. Data from 84 catchments from
Ireland were used in developing and testing the new model. The
k-means clustering algorithmhas beenused to determine 2 and 3 clusters
of similar catchments. For each cluster case 11 differentmodels have been
formulated by using different input variables selected from among 6
candidate spatial variables (PDI, RRI, GEO, GW, LU, and SO). The following
conclusions can be drawn from the results of the model application:

(1) The new fuzzy clustering model performs better than the no
cluster case at predicting the annual average ortho-P concentra-
tions at a catchment level. Such a model is quite general and can
be used in a wide range of applications related to the implemen-
tation of the WFD in Ireland. For instance in assessing any pro-
posed land use management option to minimise the P loss in a
catchment the model can be used to estimate the P load in the
catchment under current land use conditions and thereafter to
predict the change in P load post the implementation of the
proposed land use management option in the catchment. This
could inform economic analyses on the effectiveness of land
use change measures. The model can also assist in identifying
the most critical combinations of land use and soil type from
the point of view of P export.

(2) The best calibration results were obtained for the more complex
models (i.e. many spatial variables) and those using 3 clusters.
However the validation results indicated that the best models
mostly have 2 clusters and fewer (2 or 3) spatial variables.

(3) PDI and RRI are the essential variables but not the limited vari-
ables in predicting annual average ortho-P concentrations. The
use of other spatial variables, particularly groundwater (GW),
can improve the prediction and also their use is recommended
if the resulting model is to be used for studying the effect of dif-
ferent catchment management options. In fact the model with
only PDI, RRI and GW performs best in validation, regardless of
the number of clusters used.
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Appendix I. Summary of Daly and Mills (2006) model

• A dataset of 84 sub-catchments was used to build a linear regression
model that relates the flow weighted average ortho-P (fwOrtho-P)
with a number of catchment characteristics.

• Each sub-catchment representswater qualitymonitoring stationwith
daily mean flow and phosphorus data covering the period between
1998 and 2001. Also in all sub-catchment point source pollution was
not known to cause an influence on water quality.

• Sources of data for the catchment characteristics include: Digital Ele-
vation Model (DEM), Soil Map, General Soil Map, Land Use/Cover
Map, GIS layer of National Soil Test P (STP), District Electoral Divi-
sions (DED) Map, Central Statistics Office (CSO) data, Habitat Indica-
tor Map
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• Correlations was firstly performed between fwOrtho-P number of
variables and the results of coefficient of correlation (R2) are given
in the table below:
Runoff risk class % gley in soil Risk weights

RR1 5–10 1
RR2 15–25 2
RR3 50 3
RR4 >75 4

Variable R2 Source of data

% of sub-catchment mapped as acidic soil 0.36 Soil Map
% of sub-catchment mapped as peat soil −0.31 Soil Map
Phosphorus desorption index (PDI) 0.42 Soil Map and STP GIS layer
Runoff risk index (RRI) 0.41 General Soil Map
Un-improved pasture 0.53 Land Use/Cover Map
Improved pasture 0 Land Use/Cover Map
Soil Phosphorus Test Category 1 (SP1)
representing Morgan's P 0–6 mg/l

−0.38 STP GIS layer

Soil Phosphorus Test Category 2 (SP2)
representing Morgan's P 6–10 mg/l

0.32 STP GIS layer

Soil Phosphorus Test Category 3 (SP3)
representing Morgan's P above
agronomic values

0 STP GIS layer

Soil Phosphorus Test Index (SPI) 0.29 STP GIS layer
Livestock Unit Density (LUD) 0 DED Map and CSO Data
Fertiliser P input and central statistics data; 0 DED Map
% of sub-catchment areas with Topographic
Wetness Index (TWI) >12

0 DEM

% of sub-catchment areas with dry grass 0.43 Habitat Indicator Map
% of sub-catchment areas with wet grass 0 Habitat Indicator Map
% of sub-catchment areas with grass peat 0 Habitat Indicator Map
• A backward-stepwise regression model was computed for fwOrtho-P
concentrations using all of the available catchment data, namely, the
land-cover classes, PDI, RRI, soil P, livestock density and fertiliser P in-
dices. The final step in the regression model retained unimproved
pasture, arable, SPI and PDI that accounted for 41.4% of the variation
in the fwOrtho-P data.

• Full report describing the model can be accessed in the following
web-link: http://www.epa.ie/downloads/pubs/research/water/epa_
eutrophication_from_agricultural_sources_ertdi42_final.pdf
Appendix IIPhosphorus desorption index (PDI)

Daly and Styles (2005) conducted a study to derive desorption
weightings for the peat and mineral Irish soils based on phosphorus
sorption isotherms analysis carried out on a number of soil samples.
The samples ranged in properties such as %OM and pH over a range
of Morgan's Soil P Test values. The result of this study was used by
Daly and Mills (2006) in order to define risk rank for the peat and
the mineral soils based on desorption rates over similar ranges of Soil
P Test and sorption capabilities. Thus, mineral soils with high sorption
capacities and desorption rates were ranked as highest risk while peat
soilswere ranked as lowest risk. Further analysis on themineral soils in-
dicated that non-calcareous soils displayed the highest sorption ca-
pacities and the highest desorption rates compared to calcareous
mineral soils. Following this analysis desorption in non-calcareous
and calcareous soils was expressed relative to lowest desorption
values in peat soils and calculated as a ratio to generate a phospho-
rus desorption index (PDI) that could be used to weight each soil
group in terms of risk of P loss by desorption. The risk weights
are defined arbitrary as follows;
Soil categories Risk weights

Non-calcareous mineral 3.2
Calcareous mineral 1.9
Peat 1
Runoff Risk Index (RRI)

The percentage of gley in a soil has been used as a detrimental fac-
tor to the potential runoff risk. Therefore threshold levels for the per-
centage of gley in a soil were decided upon and soils were divided
into runoff risk categories and weighted against each other in terms
of potential runoff risk based on values shown in the table below.
The weightings were derived subjectively and are not based on mea-
sured data. For each sub-catchment an area-weighted runoff risk index
(RRI) was generated by multiplying the area of each category by its
assigned weight.
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