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In 2015, gravitational waves (GWs) were observed by direct detection for the very �rst time, over one-

hundred years since the publication of Einstein's theory of general relativity (GR). Since then, GWs

produced by a variety of systems have been detected. The laser interferometer space antenna (LISA),

due to be launched in 2037 by the European Space Agency, will be sensitive to a new frequency of

the GW spectrum than we are currently capable of detecting with ground based interferometry. One

of the most highly anticipated sources of GWs detectable to LISA, that we have so far been blind

to, are extreme mass ratio inspirals (EMRIs). These are binary systems comprised of a black hole

that is at least ten-thousand times more massive than its satellite. Provided our models are accurate

enough, matched �ltering between detected and theoretical GW signals can provide a measure of

precisely how well GR describes our Universe. To achieve this scienti�c goal, we must calculate the

phase of GWs sourced by EMRIs to post-adiabatic order, which in turn requires knowledge of the

gravitational self-force (GSF) and metric perturbation through second-order in the small mass ratio.

This thesis aims to further our understanding of the evolution of EMRI spacetimes, by determining

the phase and amplitude of the GWs they emit.

Within the framework of GR, black hole perturbation theory (BHPT), GSF theory, and the two-

timescale approximation, this work presents a number of novel calculations as tools for modelling

EMRI waveforms. In particular, the MST package was developed for the Black Hole Perturbation

Toolkit (BHPToolkit), which solves the Regge-Wheeler (RW) and Teukolsky equations via the Mano-

Suzuki-Takasugi method. Another major result in this thesis is the Lorenz gauge calculation of the

slowly-evolving �rst-order metric perturbation for quasicircular, equatorial orbits on a Schwarzschild

background during inspiral. This provides a key ingredient to the source of the second-order metric

perturbation, and is already being used to generate post adiabatic EMRI waveforms via the GSF

approach. Post-adiabatic waveforms presented in this thesis are also found to describe intermediate

mass ratio inspirals (IMRIs) to a high degree of accuracy. One IMRI, GW191219_163120 with

a mass ratio of approximately 1:26 has already been detected by interferometers on the ground

[7]. Thus work presented here is deemed applicable for GW science now and in the future. The

transition to plunge is also examined in detail, and waveforms are computed during the transition

regime to adiabatic order, again for quasicircular, equatorial orbits around a Schwarzschild black

hole. Perturbations to a Kerr black hole will also be explored, and a �nal output of this work is a

`pure gauge' contribution to the �rst-order Lorenz gauge metric perturbation, generated by a gauge

vector.
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Chapter 1

Introduction

This aim of this chapter is to motivate the research presented in this work. An overview of the

problems this thesis endeavours to solve will be outlined, with a brief description of the methodology

required of the calculations involved. This will be followed by a summary of the structure of this

work, including any conventions that may be used.

1.1 Motivation

Gravitational wave (GW) astronomy has seen huge progress since the �rst discovery by the Laser

Interferometer Gravitational-Wave Observatory (LIGO)/ Virgo Collaboration in 2015 [6]. To date,

GWs have been detected from numerous sources including compact binaries with mass ratios from

1:1 to ∼ 1:26, the latter of which being GW191219_163120. [7], binary neutron stars [8] and black

hole-neutron star mergers [9]. The next generation of space-based GW detectors such as the Laser

Interferometer Space Antenna (LISA) [10], with access to millihertz frequencies, will expand the

current parameter space of compact binaries available to detection. This drives the need to develop

GW models for millihertz sources: extreme-mass-ratio inspirals (EMRIs), one of the key anticipated

sources detectable by LISA. EMRIs are binary systems of compact objects in which the larger body,

which shall be referred to as the primary, has a massM that is at least 104 times that of the smaller

body, which shall be referred to as the secondary, with mass µ, giving rise to the quantity referred

to as the small mass ratio, given by ε = µ/M ≤ 10−4. Astrophysical observations establish the

primary as a supermassive black hole (SMBH) with a mass of ∼ 104 − 107M� residing in galactic

centres, and the secondary as a stellar-mass compact object, either a black hole (BH), neutron star,

or some exotic compact object [11]. Most galaxies are expected to host a central SMBH with many

smaller compact satellites, furnishing the hearts of galaxies as natural EMRI laboratories.

GWs produced by EMRIs are expected to have a frequency range between ∼ 10−3 − 10−2 Hz

[10], placing them comfortably within the LISA band, detectable so long as their signal is su�ciently

loud [12]. Astrophysical population studies estimate that LISA will observe between a few and a

few thousand EMRIs over its lifetime [12]. Furthermore, owing to their extreme mass ratio, EMRIs

inspiral slowly when su�ciently far from merger, giving rise to two di�erent timescales: the orbital
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timescale, torb and the radiation-reaction timescale, trr. The orbital timescale is the time taken to

complete an orbit, which in the weak �eld is given by torb ∼ M [13, 14]. The radiation-reaction

timescale is then the time over which the orbit shrinks in size due to the back reaction from the

emission of GWs, and is given by: trr ∼ M/ε [13, 14]. By a simple scaling argument, taking the

quotient of the two timescales, we can expect to see O(ε−1) [13, 14], or ≥ 104 orbits over an EMRIs

lifetime. Due to the large number of orbits and long radiation-reaction timescale, EMRI signals

could last many years [10], making them detectable out to red-shifts of z ∼ 3 − 4 [11, 10], though

this number varies throughout the literature. These estimates provide substantial motivation to

develop models of EMRIs with which to perform matched �ltering of LISA's future data stream.

Searching for and parameterizing EMRI waveforms in the LISA data stream relies crucially on

theoretical waveform templates. Therefore, we must compute the phase and amplitude of EMRI

waveforms so that the error accumulated over the thousands of orbits during the EMRIs lifetime

remains small. In fact, the total accumulated phase error, δΦ, of the template with respect to the

true signal must be � 1 radian [10, 13, 14]. While this level of precision may not be needed in

order to detect EMRIs, an accuracy of δΦ � 1 is required in order to perform precision tests of

GR using parameter estimation [10]. Adiabatic templates are expected to enable an estimation

of parameters such as the mass and angular momentum of the primary to within 10% accuracy

[13, 14, 15]. While detecting EMRIs alone would be a phenomenal scienti�c achievement, accurate

parameter estimation and precision tests of GR are two of LISAs main scienti�c goals [10], and will

serve as the primary motivation of this thesis.

1.2 Overview

EMRIs detectable by LISA are estimated to have a mass ratio of 10−4 to 10−7 [11]. Modelling

EMRIs is therefore a task for black hole perturbation theory (BHPT), where the primary dictates

the background spacetime, usually described by either the Schwarzschild or Kerr metric, and the

secondary introduces a perturbation to the background spacetime. The metric and physical quan-

tities are perturbed about their background values and can be written in terms of an expansion in

powers of the small mass ratio [16, 17, 14]. To leading order, the secondary can be modelled as

a point-like particle [16]. In order to reach the accuracy of δΦ � 1, required for precision tests

of GR and parameter estimation, the metric perturbation must be calculated up to and including

second-order in the small mass ratio expansion [13], corresponding to a calculation of the GW phase

through to O(ε0), such that δΦ ∼ O(ε). It is expected that the amplitude of a given GW, which

is related to the amplitude of the metric perturbation, need only be determined to �rst-order in

ε for detection by space-bourne interferometers. However, to calculate the phase to the degree of

accuracy desired, the second-order piece of the metric perturbation is required as input. Therefore,

the metric-perturbation will be calculated through to O(ε2), to meet the phase accuracy goal.

Not only do we need to calculate the phase and amplitudes of EMRI produced GWs accurately

enough, but also quickly enough, to cover the large parameter space that EMRIs encompass. Without
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complete theoretical models, the LISA mission will fall short of its scienti�c goals. Our models must

be able to generate GWs e�ciently for every possible morphology, that is for every detectable mass

ratio, orientation in space and spin con�guration. The ultimate goal for EMRI science therefore,

is to model GWs sourced by a Kerr primary, with a spinning secondary, following generic orbits.

These are the systems expected to be found in nature and the most generic models will recover the

most science from the many possible EMRI signals LISA may detect [10, 11, 18]. With LISA due to

launch in 2037 (at the time of writing), our models must be able to generate a waveform template

for a given set of parameters in milliseconds if we are to cover the parameter space by LISA's launch

date. There are a number of ways to tackle waveform generation. Numerical relativity (NR) has

had great success in modelling compact binary systems with mass ratios of 1:1 up to ∼ 1 : 10

[19]. EMRIs cannot be modelled using NR however, as resolving the smaller secondary is extremely

computationally expensive for the number of orbital cycles until merger that must be simulated,

which scales as ε−1. Post Newtonian (PN) theory has also been very successful for modelling GWs

in the weak �eld [19]. E�ective-one-body (EOB) theory goes further, covering the entire parameter

space [19, 20, 21, 22], though relies on calibration with results from other approaches. The work

in this thesis will model EMRIs following the gravitational self-force (GSF) approach, a branch

of BHPT that has been over 25 years in the making, beginning with the MiSaTaQuWa equation

in 1997 [23, 24]. The �rst waveforms to include post adiabatic corrections to the phase using the

GSF approach were produced in late 2021, for quasicircular, equatorial orbits, on a Schwarzschild

background [3]. These waveforms make use of work presented in Chapter 6 of this thesis. These

results include the contribution of the second-order metric perturbation, which takes input from

calculations in this thesis [3, 2]. This is the �rst step of many in developing a huge database of more

generic waveforms. The GSF program has many moving parts. This thesis aims to summarise GSF

theory, providing new tools for generating EMRI waveforms using the GSF approach. In particularly,

this thesis will focus on calculating the �rst-order metric perturbation and related quantities that

feed into the solution of the second-order metric perturbation, which are needed to determine the

amplitude and phase of the GWs we are trying to model, and to ensure that δΦ ∼ O(ε).

The challenge of answering the question `how does a gravitating body's trajectory evolve in space-

time?' has a long history, complicated by the fact that that same body is perturbing the background

spacetime, hence in�uencing its own motion. When modelling EMRIs via the GSF approach, this

is truly the question we must answer. Einstein's theory of GR dictates that a point-like particle,

with no mass or size, necessarily follows a geodesic path [25, 26, 27]. It wasn't shown until the

1970s by Dixon that test-bodies (i.e. those that do not have their own gravitational �eld) of �nite

size introduce corrections beyond geodesic motion, due to coupling between the body's multipole

moment with the curvature of the external spacetime in which it travels [28, 29, 30, 16]. Hartle

and Thorne later progressed further [31, 32, 33], using perturbation theory to show that in the limit

of small mass and size, neglecting �nite size e�ects, such an object follows a geodesic path in the

external spacetime, that is the full spacetime including the perturbing body. The external spacetime

is of course in�uenced by the object itself, and was not fully determined at the time. Finally, as GW
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detectors were becoming a reality, Mino, Saskai and Tanaka [23], in addition to Quinn and Wald

[24], took a huge leap forward by deriving the so called MiSaTaQuWa equation of motion, which

included the e�ect of the object's own gravitational �eld on its trajectory. It was then Detweiler and

Whiting who realised the equivalence between the MiSaTaQuWa equation and the geodesic equation

of a particular spacetime, that of a perturbed vacuum metric [34, 35], recovering the earlier results

of Hartle and Thorne to �rst-order in the perturbation. Rather than paraphrasing the e�ect this self

interaction has on a body's motion through a vacuum spacetime, a quote from Barack and Pound's

2018 review [16] could not have put it more succinctly:

�At leading order one has a pointlike particle moving in a geodesic orbit around the large black

hole. At subsequent orders, interaction of the particle with its own gravitational perturbation gives

rise to an e�ective �self-force�, which drives the radiative evolution of the orbit, and whose e�ects

can be accounted for order by order in the mass ratio." [16]

More recently, the problem of a gravitating body travelling through a vacuum spacetime, that

is the problem of modelling EMRIs, is tackled using the GSF approach via the self-consistent and

two-timescale approximations [16, 14, 17], which will be explained in more technical detail in the

chapters that proceed. There is a preference for using the two-timescale approximation as calcula-

tions using the self-consistent approach alone must be done in the time domain for each point in

time. This is much slower and more di�cult to implement than the two-timescale approximation

[14], and for these reasons the self-consistent approach has not been implemented even at �rst-order.

As explained by Barack and Pound [16], the self-force (SF) is what drives the secondary beyond

geodesic motion, causing the compact objects in the binary to spiral in towards each-other, until

they eventually collide and merge into a single body. The binary goes through a number of stages

before this happens: between the time the binary forms and when the secondary nears the inner-

most stable circular orbit (ISCO) is referred to as the inspiral. This is followed by a transition to

plunge [36, 16], as the black holes begin to fall into one another. This is quickly followed by the

plunge itself, just before the merger stage, after which the ring-down occurs [6, 16, 37, 38]. The

resulting black hole will have a mass greater thanM but less thanM+µ by conservation arguments,

and the area of its event horizon will not be less than the sum of the areas of the event horizons of

the individual black holes, by the third law of black hole thermodynamics. Each of these di�erent

stages of the binary's lifecycle are re�ected in the features of the GWs produced. Each stage has its

own distinct dynamical behaviour and must be modelled separately. This thesis will focus on the

treatment of both the inspiral and of the transition to plunge.

In the GSF approach, the secondary can be treated as a point-like particle at leading order in

the perturbation [16]. The approximation of the secondary as a point-like particle simpli�es certain

calculations, as distributional sources are easier to deal with mathematically than those that are

non-compact, as will be shown in Chapter 5 and Chapter 6. However, there is no such thing as a

free lunch, and this treatment introduces singular behaviour requiring regularisation, analogous to
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re-normalisation in quantum �eld theory. It was Detweiler and Whiting who �rst showed that the

MiSaTaQuWa SF could be split into regular and singular contributions [35, 34]. Detweiler postulated

that the same should be true of the second-order GSF, which was proven by Pound in 2017 [39]. The

regularisation procedure of the metric perturbation will not be detailed here other than to say that

it is best understood in the Lorenz gauge for a Schwarzschild background [16, 37, 17, 40]. It is worth

noting that regularisation has been done to �rst-order in the radiation [41] and Regge-Wheeler (RW)

gauges [42], with progress towards more regular second-order SF calculations using the Teukolsky

formalism [43]. Regularisation parameters have also been calculated for a Kerr background in the

Lorenz gauge to �rst-order, though we are currently lacking the metric perturbation to regularise

[44, 45]. Furthermore, while the Teukolsky formalism requires solving for less �elds than the 10

coupled �elds of the Lorenz gauge, current algorithms have already been set up in the Lorenz gauge.

The Teukolsky formalism will still require metric reconstruction. It is for these reasons that the

majority of work in this thesis will be presented in the Lorenz gauge.

Returning to the problem at hand, the two-timescale approximation exploits the disparate

timescales torb and trr introduced earlier, allowing us to de�ne the quantity of `slow-time', t̃, over

which physical quantities such as the orbital radius, orbital frequency, orbital energy, angular mo-

mentum and metric perturbation evolve, while the phase evolves on a faster timescale over a single

orbit. In the two timescale approximation, the slowly evolving �rst-order metric perturbation con-

tributes to second-order source, and must be calculated if we wish to perform precision tests of GR

or conduct parameter estimation from EMRI signals as discussed in Section 1.1. In this thesis, the

�rst-order Lorenz gauge metric perturbation and its derivative with respect to t̃ will be calculated

for quasicircular, equatorial orbits on a Schwarzschild background in the frequency domain during

the inspiral. These calculations are based on the work from [2]. These Lorenz gauge quantities are

calculated by making use of Berndtson's gauge transformation [46], which transforms RW gauge

solutions into the Lorenz gauge. Rather than directly solving the 10 coupled linearised Einstein

�eld equations in the Lorenz gauge to obtain the �rst-order metric perturbation, Berndtson allows

us to construct the metric perturbation from 7 decoupled �elds that obey very similar equations,

simplifying the problem greatly. These are the RW and Zerilli (RWZ) master functions, in addition

to two gauge �elds. The slow-time derivative of the �rst-order metric perturbation in the Lorenz

gauge can then be solved by taking the slow-time derivative of RW gauge quantities and the gauge

transformation. This proves much simpler than directly solving for yet another coupled set of 10

partial di�erential equations which would be obtained by di�erentiating the Einstein �eld equations

with respect to slow-time, as is shown in more detail later by Eq. (6.2). In Chapter 5 and Chapter 6,

the slowly evolving RWZ �elds, in addition to the gauge contributions are solved using the method

of partial annihilators and variation of parameters. These novel results act as inputs to generating

never before seen GSF waveforms, through second-order in the small mass ratio, in Ref. [3].

Another important quantity is the total energy �ux, which is particularly important for EMRIs

due to their long signal lengths, allowing us to take account of the accumulated orbital phase over

tens or hundreds of thousands of orbits. The �ux and the binding energy are used to determine
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the evolution of the frequency of GWs, which dictates the motion of the secondary. While the

energy �ux radiated to in�nity is something we can measure directly, the energy �ux radiated

through the horizon determines how the parameters of the primary evolve, such as its mass and

angular momentum [47]. Results from this thesis have contributed the �rst calculation of the total

energy �ux via the GSF approach through second-order in the small mass ratio [4], a calculation

which is presented again in Chapter 8. Both the second-order GSF (2GSF) inspiral waveforms and

�ux calculations have been found to agree very well with NR simulations for intermediate mass

ratio inspirals (IMRIs), at least up until the secondary approaches the inner-most stable circular

orbit (ISCO), where current inspiral models break down, which will be discussed at multiple stages

throughout this thesis. Reasonably good agreement between GSF and NR results have even been

found for near equal mass ratio inspirals, despite initially being intended for modelling EMRIs. These

results are not completely surprising, as modelling IMRIs via the GSF approach is still expected to

work well by virtue of the fact that ε ∼ 1/10 can be considered numerically small, and δΦ = 0.1

remains � 1 radian. Comparing with shorter NR GW signals also leaves less time for error to

accumulate in the phase.

However, as mentioned earlier, the inspiral is not the full story. The radiation-reaction time

hastens as the secondary begins its transition to plunge, and t̃ is no longer so slow. Physical

quantities that evolve with respect to slow-time, such as the orbital radius, frequency, energy, angular

momentum and GW amplitude will evolve more quickly [48]. The equations of motion, the �eld

equations, and hence solutions to the metric perturbation and GW phase will evolve di�erently

during the transitional period compared to the inspiral, and a new timescale must be chosen to

correctly evolve GWs through the transition regime [48, 14]. The transition is more important

for modelling IMRIs than EMRIs [49, 50], due to their shorter signal lengths, recalling earlier

scaling arguments. Shorter signals rely on accurate waveform templates particularly during times

surrounding the merger where the signal is loudest. On the other hand, detecting EMRIs relies much

more on the accumulated signal-to-noise ratio (SNR) over long periods of time, as one tiny black hole

falls quietly into another, much larger black hole. The LIGO, Virgo, KAGRA Collaboration recently

detected a compact binary with a mass ratio of 26:1, comfortably labelling the binary in question as

an IMRI [7]. Now that we are seeing IMRIs being detected by ground-based interferometry, models

are needed with which to perform matched �ltering for improved parameter estimation, as current

EOB [51, 52, 53, 54] and Phenom [38] models, which have been calibrated to NR simulations, in

addition to NR surrogate models [55, 56, 1], are not currently calibrated for higher IMRI mass ratios.

Work from this thesis on the transition to plunge should therefore prove useful for both ground-based

and space-based GW astronomy alike. It is rather encouraging to know that we may not have to

wait until 2037 to see observational con�rmation of the results presented here.

The transition to plunge will be treated in Chapter 7, which explores the structure of the phase

and metric perturbation through to second-order during the transition regime. In collaboration

with Kücheler, Compère and Pound, the phase and amplitude are calculated to adiabatic order in

the transition for quasicircular, equatorial orbits on a Schwarzschild background. Adiabatic GSF
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waveforms for the transition regime are then presented in Chapter 8, which include leading order

dissipative SF e�ects. Research on the transition to plunge began in the year 2000 by Ori and Thorne

(OT), who propose a scheme for generating GW templates in the transition regime for circular,

equatorial orbits around a Kerr black hole [48]. A similar calculation was done independently at

the same time by Buonanno and Damour [57]. The work by OT has since remained the basis of

the vast majority of calculations in the transition regime. It was not until 2019 that the work of

OT was extended to arbitrarily inclined orbits by Lim, Khana, Anuj and Hughes [58, 59]. Burke,

Gair and Simón further extend the OT procedure for any spin, in particular for near extremal Kerr

black holes [60]. They note one limitation of OT is the assumption that the energy and angular

momentum evolve linearly in proper time, which is relaxed in Ref. [60]. Compère, Fansen and

Jonas then include non-quasicircular e�ects [61]. Compère and Küchler then deviate from the OT

prescription and present a self-consistent approach to the transition motion at leading order in the

transition timescale, taking account of SF e�ects [62]. The key di�erence in the treatment of the

transition regime in this thesis is that it easily allows for the extension to post-adiabatic corrections,

which the OT prescription does not, and any restricting assumptions of the OT procedure are no

longer required. Post-adiabatic contributions to the transition are left to be determined, in addition

to attaching the plunge dynamics, which is currently undergoing research by collaborators.

While the majority of results in this thesis are specialised for a Schwarzschild background, per-

turbations to a Kerr black hole will be derived in Chapter 9. Introducing rotation deeply complicates

perturbation calculations. To solve the perturbed Einstein �eld equations in Kerr, one employs the

Newman-Penrose (NP) formalism to obtain the fully separable Teukolsky equation, whose solution

is related to the perturbed Weyl scalars, which describe the perturbations to the curvature of the

spacetime. The �rst metric perturbations to rotating black holes were constructed in the radiation

gauge using a Hertz potential by Chrzanowski [63] in addition to Cohen and Kegeles [64, 65], which

together will be referred to as the CCK reconstruction. It was Lousto and Whiting who later related

the Hertz potential, from which the metric is constructed, to the perturbed Weyl scalars in the

time-domain in the Schwarzschild limit [66]. The CCK method is applicable only in the absence of

sources, but extensions of their work allow for sourced perturbations [67]. However, metric pertur-

bations in the radiation gauge have an in�nite string-like singularity [36] and are incomplete besides

[68, 69]. By carrying out the CCK reconstruction in two di�erent regions, either side of the secondary

particle, a `no-string' radiation gauge solution is obtained [70, 41, 71], though a singularity remains

on the surface de�ned by the radial distance of the particle from the primary black hole. This is

the most prominent approach to modelling EMRIs and performing GSF calculations in Kerr. In

particular, work by Van de Meent has used the no-string reconstruction to implement the �rst-order

SF calculation for a fully generic, inclined and eccentric bound orbits in the frequency domain [72].

There is ongoing work to implement metric reconstruction for GSF applications in the time domain

[73, 74]. The singular surface at the particle however remains a large stumbling block for 2GSF

calculations. There are a number of possible directions currently being explored to overcome this.

For example, Green, Hollands and Zimmerman (GHZ) show how to construct the sourced metric
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perturbation solution using a Hertz potential, a gauge transformation from the radiation gauge and

a `corrector tensor' [75]. The work of Toomani et al. [43] go further, combing the work of GHZ with

the no-string radiation gauge, and a more regular Teukolsky puncture scheme is proposed.

As the regularisation of the SF is currently best understood in the Lorenz gauge, another desirable

avenue therefore is to construct the Kerr metric perturbation in the Lorenz gauge. For example,

Dolan calculates the �rst-order Lorenz gauge metric perturbation to a Kerr black hole in the time

domain for circular, equatorial orbits. While this work remains unpublished, it is used in Refs.

[76, 77, 78, 79]. More recent work by Osburn and Nishimura, who calculate the scalar SF in the

Lorenz gauge on a Kerr background for circular orbits by using elliptical PDEs, thus circumventing

numerical instabilities of hyperbolic PDEs [80], provide another promising method to obtain Lorenz

gauge perturbations of rotating black holes. There has also been signi�cant progress by Dolan,

Kavanagh and Wardell, who have determined source-free perturbations in both the electromagnetic

and gravitational case to a Kerr black hole in the Lorenz gauge [5, 81, 82], by construction from a

Hertz potential and transforming from the radiation to the Lorenz gauge. This is the method we

shall follow in Chapter 9.

The full metric perturbation is made up of a number of di�erent contributions. Gravitational

radiation is described fully by the perturbed Weyl scalars and is determined by spin-weight s = 2

perturbations [69]. Perturbations to the overall mass and angular momentum of the spacetime,

i.e. perturbations to the mass and angular momentum of either a Schwarzschild or Kerr black

hole, are then described by monopole and dipole contributions (for spherical l modes) to the metric

perturbation respectively [69]. In some cases there exists contributions that are `pure gauge', but they

hold no physical information [69]. Detweiler and Poisson show that the low multipole modes, l = 0

and l = 1 of the metric perturbation have a signi�cant contribution to the self-force [83]. The s = 1

contribution to the homogeneous, �rst-order metric perturbation of a Kerr black hole in the Lorenz

gauge are not provided in [5], and will be derived in Chapter 9 for the �rst time, in collaboration with

Dolan. While the gauge contributions to the metric are unphysical, they are required to determine

a Lorenz gauge solution, for which the regularisation parameters for the SF have already been

calculated [44, 45]. A pure gauge s = 1 metric perturbation is derived by construction from an s = 1

gauge vector, and the solution is written in terms of s = 1 Teukolsky �elds. In the Schwarzschild

limit, using the Chandrasekhar transformation, Berndtson's gauge transformation for the s = ±1

case can be recovered, where the Lorenz gauge metric perturbation is written in terms of s = 1 RW

�elds. However, there is currently no available analytic solution that relates the �rst-order Lorenz

gauge metric perturbation of rotating black holes to the perturbed Weyl scalars in the presence

of sources. As Berndtson's gauge transformation contains sources, research in Chapter 9 aims to

provide insight as to how to introduce source terms to the Kerr case in the future, hence extending

the work of Dolan et al [5].

A �nal tool derived in this thesis is the implementation of the Mano-Suzuki-Takasugi (MST)

method [84, 85, 86], used for calculating semi-analytic solutions to the Teukolsky and RW equations

in the low-frequency regime. MST solutions are written in terms of a convergent series of hypergeo-
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metric and Coulomb functions, describing GWs radiated into the primary's horizon and to in�nity,

respectively [84, 85, 86, 87]. The coe�cients of the MST series are written in terms of powers of

small frequency ε = 2Mω, which corresponds directly to a post-Minkowskian (PM) expansion [85].

For bound orbits, the PM assumption that GM
c2
� r coincides exactly to the PN assumption that

v2 � c2 [85, 84]. For circular orbits, low frequencies correspond to large distances, and the MST

method can be used to compute GWs radiated to in�nity to arbitrarily high orders in a PN series

[84, 87] as well as providing a means to write down PN series solutions of GWs absorbed into either

a Schwarzschild or Kerr black hole, something that is di�cult to do using other methods [84, 87].

In Chapter 3, the MST method was implemented for the Teukolsky case, while the RW case had

already been implemented by Wardell et al. The MST package was implemented in Mathematica

and published in the black hole perturbation toolkit (BHPToolkit) [1], an open source resource for

computing useful quantities commonly needed to do BHPT. While the MST method was initially

derived for low-frequencies, its implementation in the BHPToolkit allows for numerical valued solu-

tions to be determined for any frequency, providing a useful tool for the scienti�c community. The

MST method allows for extremely high precision calculations, though at the cost of speed. However,

depending on one's goal, using the BHPToolkit one has the option to use either the MST method or

standard numerical integration to solve the Teukolsky and RW equations. Given that the radiative

piece of the metric perturbation is captured by the solutions to the Teukolsky equation [69], one

could write the radiative contribution to the �rst-order metric perturbation in any gauge, entirely

as a semi-analytic MST series for low frequencies, corresponding to a PN type solution. If one

was able to determine a low-frequency expansion solution to the gauge contributions of Berndtson's

gauge transformation, one could then obtain a PN series solution to the full Lorenz gauge metric

perturbation to �rst-order in the small mass ratio for a Schwarzschild background. While there is

currently no known semi-analytic solution to the gauge contributions of Berndtson's transformation,

there is progress being made in recent research [88].

1.3 Structure

This thesis will be structured in the following way. A review of BHPT will �rst be provided in

Chapter 2 to set up the machinery used throughout this work. Chapter 3 will then introduce the

MST method for calculating semi-analytic solutions to the RW and Teukolsky equations in the low-

frequency regime. This chapter will also discuss in detail the implementation of the MST package,

which had been made available as part of the BHPToolkit [1], and is one of the main outputs of this

thesis.

A review of GSF theory will then be provided in Chapter 4, which follows Ref. [14] and sets up

in detail the motivation and methodology for the remaining chapters. Following Ref. [2], Chapter 5

will describe how to calculate the retarded �rst-order Lorenz gauge metric perturbation in the

frequency domain for quasicircular, equatorial orbits on a Schwarzschild background. While this

quantity has been calculated throughout the literature in both the frequency and time domain
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[89, 90, 91, 46, 92, 83], this will serve as input to the algorithm in Chapter 6, which also follows

Ref. [2]. Chapter 6 will detail the novel calculation of the retarded slowly evolving �rst-order

Lorenz gauge metric perturbation, also in the frequency domain for quasicircular, equatorial orbits

on a Schwarzschild background. Both Chapter 5 and Chapter 6 make use of Berndtson's gauge

transformation, from RW gauge solutions to the Lorenz gauge. The calculation of the slowly evolving

metric perturbation plays a vital role in the GSF program. The slowly evolving �rst-order metric

perturbation contributes to the source of the second-order metric perturbation, which in turn goes

into calculating the GW phase to post-adiabatic order, required to perform precision tests of GR

and obtain accurate parameter estimations from EMRI signals. The data for the slowly evolving

�rst-order Lorenz gauge metric perturbation is one of the major results produced in this thesis and

has already been used to calculate waveforms and the energy �ux via the GSF approach, and to

compare them with NR simulations [4, 3]. These results have also been used to make comparisons

with EOB theory [93, 94] and will be used in a number of forthcoming papers, for example, in

the calculation of the second-order Teukolsky source, which is undergoing research by collaborators

[43, 95].

The calculations from Chapter 5 and Chapter 6 are relevant only during the inspiral part of the

waveform however, and break down as the secondary approaches the ISCO. The dynamics of the

binary changes, and the orbital radius of the EMRI evolves on a faster timescale than during the

inspiral as the binary begins its transition to plunge. Chapter 7 covers the transition to plunge regime

in detail. The main results are the calculation of the adiabatic GW phase and amplitude during

the transition, obtained in collaboration with Küchler, Compère and Pound. Results from previous

chapters are then combined in Chapter 8, where the energy �ux and waveforms generated by the

GSF approach are presented, based on the work of Refs. [3, 4]. This chapter includes comparisons

between the 2GSF calculations of the energy �ux and waveforms with NR simulations during the

inspiral, and for adiabatic waveforms during the transition regime. Results show that the GSF

approach to second-order in the small mass ratio agrees extremely well with NR simulations for

IMRIs and even reasonably well for equal mass ratios [3, 4].

For the majority of this thesis only a Schwarzschild background has been considered. The

ultimate goal however is of course to solve for the GW phase and amplitudes, and hence the �rst

and second-order metric perturbations for generic orbits on a Kerr background spacetime. Chapter 9

covers perturbations to rotating black holes, following the method of [5]. The primary outputs of this

chapter are analytic solutions to gauge contributions of the homogeneous, �rst-order Lorenz gauge

metric perturbation for a Kerr background, which are constructed for the �rst time using an s = 1

vector, in collaboration with Dolan. The results are shown to recover those of Berndtson [46] in

the Schwarzschild limit. Finally, Chapter 10 concludes this work by summarising the main outputs

and provides a discussion on future directions of this research. The conventions used in this thesis

are outlined as follows. Geometric units will be used from the outset such that G = c = 1, with

Lorentzian metric signature (− + ++). A spacetime foliation of hypersurfaces de�ned by constant

t is assumed and hereafter, orbits are specialised to quasicircular and equatorial inspirals.
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Chapter 2

Black Hole Perturbation Theory

This chapter provides a review of BHPT, introducing tools required to obtain the results in later

chapters.

2.1 The metric perturbation and linearised Einstein �eld equations

The Einstein �eld equations, relating curvature of the spacetime to matter present in the spacetime,

are given by

Gµν = 8πTµν , (2.1)

where Tµν is the stress-energy tensor (SET) and Gµν is the Einstein tensor, de�ned by

Gµν = Rµν −
1

2
gµνR, (2.2)

where R and Rµν are the Ricci scalar and tensor respectively, and are de�ned by

Rµν = gαβRαµβν , (2.3)

R = gµνRµν , (2.4)

and the Riemann tensor is de�ned as

Rµνρσ = ∇ρΓµνσ −∇σΓµνρ + ΓτνσΓµτρ − ΓτνρΓ
µ
τσ, (2.5)

with the Christo�el connection

Γµσρ =
1

2
gµν (gσρ,ν + gνσ,ρ − gνρ,σ) . (2.6)

In the absence of sources, where Tµν = 0, the solution to the vacuum Einstein �eld equations

describes either a black hole spacetime, or the most trivial solution, �at Minkowski space. By

Birkho�'s theorem, in the static, spherically symmetric case, the solution to the vacuum Einstein

�eld equations is that of the Schwarzschild metric, and in the stationary, axisymmetric case, the �eld

11



equations admit the Kerr solution. The line-element in the Schwarzschild spacetime is described by

ds2 = −dτ2 = −f(r)dt2 +
1

f(r)
dr2 + r2dθ2 + r2 sin2 θdφ2, (2.7)

where

f(r) = 1− 2M

r
, (2.8)

and the Schwarzschild metric is given by

gµν = diag
(
−f(r), f(r)−1, r2, r2 sin2 θ

)
. (2.9)

The Kerr metric will be given later in Section 2.7. Adding a perturbation to the spacetime, hµν
that describes some small compact object, the full spacetime is de�ned by the metric gµν , with

coordinates xµ, where

gµν(xα; zα) = gµν(xα) + hµν(xα; zα). (2.10)

The background metric gµν depends on the background coordinates xµ and the retarded perturbation

hµν depends on both the background coordinates and the position on world-line of the object it

describes, zµ(τ). In the case of EMRIs, the background metric gµν describes a supermassive black

hole, which shall be referred to as the primary with mass M , and hµν describes the perturbation to

the spacetime introduced by some small compact object, either a black hole, neutron star, or some

other exotic compact object, and shall be referred to as the secondary with mass µ. BHPT is a

natural choice for modelling EMRIs, where the small quantity in the perturbation is the small mass

ratio ε, de�ned by

ε =
µ

M
� 1. (2.11)

The metric perturbation is then expanded in powers of ε [14]

hµν(xα; zα) =
∞∑
n=1

εnhnµν (xα; zα) , (2.12)

where hnµν is the nth-order metric perturbation. This is what is referred to as the self-consistent

approach. The Einstein �eld equations then become

Gµν = 8πTµν (2.13)

where Gµν is the Einstein operator acting on the full spacetime and Tµν is the SET of the full

spacetime, which for a vacuum background is just the SET describing the source of the perturbation,

which can also be expanded in powers of the small mass ratio

Tµν(xα; zα) =
∞∑
n=1

εnTnµν(xα; zα). (2.14)
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By setting gµν → gµν in the de�nition of the Riemann tensor, in addition to the Ricci scalar and

Ricci tensor, whose background quantities are zero in vacuum, the full Einstein tensor can be written

as

Gµν = Gµν +
∞∑
n=1

εnδnGµν , (2.15)

such that

Gµν = 0, (2.16)

δnGµν = 8πTnµν , (2.17)

where, at leading order in ε

δ1Gµν =
1

2

(
−�hµν+2Rανµβh

αβ+∇ν∇αh α
µ +∇µ∇αh α

ν −∇ν∇µh−gµν∇α∇βhαβ+gµν�h

)
, (2.18)

and the trace hn for a given order in the perturbation is de�ned as

hn = Tr[hnµν ] = gµνhnµν . (2.19)

The leading order linearised Einstein �eld equations can be expressed more simply as

δ1G[h1
µν ] = 8πT 1

µν . (2.20)

where δ1G is now the operator acting on h1
µν in δ1Gµν . The remainder of this work will specialise

to Boyer-Lindquist coordinates

xµ = {t, r, θ, φ} (2.21)

zµ = {tp(τ), rp(τ), θp(τ), φp(τ)}, (2.22)

where subscript p denotes quantities describing the position of the secondary particle. The spacetime

will also be considered as a foliation of hyperbolic slices de�ned by constant t throughout this work,

unless speci�ed otherwise. Raising and lowering indices and di�erential operations are performed

with respect to gµν .

2.2 The tensor spherical harmonic basis

Solving the linearised Einstein �eld equations is often tackled using a tensor spherical harmonic basis,

which exploits the spherical symmetry in Schwarzschild, or axis-symmetry in Kerr. Beginning with

the explicit de�nitions of the tensor spherical harmonic basis from chapter 12 of Maggiore's textbook:

�Gravitational Waves� [96], a tensor of type (0, 2) can be written as a mode-sum decomposition in
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the following way

hµν(xα) =
∑
i

∞∑
l=0

l∑
m=−l

hilm(t, r)(tilm)µν(θ, φ), (2.23)

where the explicit dependence on zα has been dropped for now, and the tensor spherical harmonic

basis elements, ti are given explicitly by [96]

tttlm =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Ylm, tRtlm =


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

Ylm, tL0
lm =


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

Ylm,

tT0
lm =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 sin2(θ)

Ylm, tEtlm =


0 0 ∂θ ∂φ

0 0 0 0

? 0 0 0

? 0 0 0

Ylm, tE1
lm =


0 0 0 0

0 0 ∂θ ∂φ

0 ? 0 0

0 ? 0 0

Ylm,

tBtlm =


0 0 (1/ sin θ)∂φ − sin θ ∂θ

0 0 0 0

? 0 0 0

? 0 0 0

Ylm, tB1
lm =


0 0 0 0

0 0 (1/ sin θ)∂φ − sin θ ∂θ

0 ? 0 0

0 ? 0 0

Ylm,

tE2
lm =


0 0 0 0

0 0 0 0

0 0 W X

0 0 ? − sin2 θ W

Ylm, tB2
lm =


0 0 0 0

0 0 0 0

0 0 −(1/ sin θ)X sin θ W

0 0 ? sin θ X

Ylm,

and Ylm are the standard spherical harmonics, whose explicit dependence on θ and φ has been

suppressed and will only be reintroduced where it is instructive to do so. In this work, the spherical

harmonics are normalized such that∫ ∫
dθdφ Y ∗lm(θ, φ)Yl′m′(θ, φ) = δll′δmm′ , (2.24)

where ∗ on the spherical harmonics denotes complex conjugation. The operators X and W are then

given by [46, 96]

X = 2∂θ∂φ − 2 cot θ ∂φ (2.25)

W = ∂2
θ − cot θ ∂θ −

1

sin2 θ
∂2
φ. (2.26)
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The spherical harmonics transform under parity in the following way [97]

Ylm(π − θ, φ+ π)→(−1)l Ylm(θ, φ), (2.27)

so that [96]

ti →

(−1)lti if i = {L0, T0, E1, E2, tt, Rt, Et},
(−1)l+1ti if i = {B1, B2, Bt}.

(2.28)

The basis elements ti that pick up a factor of (−1)l under parity are said to have electric-like parity,

or to be polar or even. Similarly, the basis elements ti that pick up a factor of (−1)l+1 under parity

are said to have magnetic-like parity, or to be axial or odd. For this reason the metric perturbation,

in the frequency domain, on constant t slices, is often written in terms of its even and odd sector

basis elements as follows [96, 46]

hµν(t, r, θ, φ) =
∞∑
l=0

l∑
m=−l

∫ ∞
−∞

e−iωt
(
ho,lmµν (ω, r, θ, φ) + he,lmµν (ω, r, θ, φ)

)
dω. (2.29)

Following Berndtson's notation [46], the odd-sector metric perturbation contains 3 degrees of freedom

given by hlm0 (r), hlm1 (r) and hlm2 (r). For convenience the explicit dependence on r of the odd-sector

�elds will be suppressed henceforth. The odd-sector metric perturbation in Berndtson's notation is

then given by [46]

ho,lmµν (ω, r, θ, φ) =


0 0 hlm0 csc θ ∂Ylm∂φ −hlm0 sin θ ∂Ylm∂θ
∗ 0 hlm1 csc θ ∂Ylm∂φ −hlm1 sin θ ∂Ylm∂θ
∗ ∗ −hlm2 Xlm hlm2 sin θWlm

∗ ∗ ∗ hlm2 sin2 θXlm(θ, φ)

 , (2.30)

where Xlm and Wlm are de�ned by

Wlm(θ, φ) =
∂2Ylm
∂θ2

− cot θ
∂Ylm
∂θ
− 1

sin2 θ

∂2Ylm
∂φ2

, (2.31)

Xlm(θ, φ) =
2

sin θ

∂

∂φ

(
∂Ylm
∂θ
− cot θYlm

)
. (2.32)

The operators Xlm and Wlm take on slightly di�erent de�nitions in Berndtson thesis [46] compared

to those in Maggiore's textbook [96]. The de�nitions from Eq. (2.31) and Eq. (2.32) shall be used

for the remainder of this thesis, and the explicit dependence on θ and φ of Xlm and Wlm will be

suppressed henceforth.
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The even-sector metric perturbation then contains 7 degrees of freedom, given by hlm0 (r), hlm1 (r),

H lm
0 (r), H lm

1 (r), H lm
2 (r), K lm(r) and Glm(r), where hlm0 (r) and hlm1 (r) in the even-sector are distinct

to those in the odd-sector. As in the odd-sector, the explicit dependence on r of these �elds will be

suppressed henceforth, and the full even-sector perturbation can be written as [46]

he,lmµν (ω, r, θ, φ) =

(
1− 2M

r

)
H lm

0 Ylm H lm
1 Ylm hlm0

∂Ylm
∂θ hlm0

∂Ylm
∂φ

∗ Hm
2 Ylm

(1− 2M
r )

hlm1
∂Ylm
∂θ hlm1 Xlm

∗ ∗ r2
(
K lmYlm r2 sin θGlmXlm

+GlmWlm

)
∗ ∗ ∗ r2 sin2 θ

(
K lmYlm

−GlmWlm

)


. (2.33)

Note that the radial �elds hlm0 and hlm1 from the odd-sector should not be confused with those from

the even-sector.

2.3 The stress-energy tensor

The source of the perturbation to the spacetime is described by the SET, Tµν . At leading order in

ε, the secondary can be modelled as a point-like particle with mass µ at some position zµ(τ) in the

spacetime [14, 98, 99, 40, 100]. This is also the reason why the SF is singular at the location of the

source. For the remainder of this chapter only the leading order SET shall be discussed. As such,

the superscript in T 1
µν will be dropped. Assuming no internal structure, the leading order SET is

therefore given by

Tµν = µ

∫ ∞
−∞

δ4(xα − zα(τ))√−g
dzµ

dτ

dzν

dτ
dτ, (2.34)

where g is the determinant of gµν . Similarly to the metric perturbation, the SET can be decomposed

into a tensor spherical harmonic basis in the frequency domain, for constant t-slicing, in the following

way [46]

Tµν(t, r, θ, φ) = µ

∞∑
l=0

l∑
m=−l

∫ ∞
−∞

e−iωt
(
T o,lmµν (ω, r, θ, φ) + T e,lmµν (ω, r, θ, φ)

)
dω, (2.35)

where the explicit dependence on zα has been dropped for now. The odd- and even-sector SETs can

then be written as

T o,lmµν =


0 0 Solm02 (r) csc θ ∂Ylm∂φ −Solm02 (r) sin θ ∂Ylm∂θ
∗ 0 Solm12 (r) csc θ ∂Ylm∂φ −Solm12 (r) sin θ ∂Ylm∂θ
∗ ∗ −Solm22 (r)Xlm Solm22 (r) sin θWlm

∗ ∗ ∗ Solm22 (r) sin2 θXlm

 (2.36)
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and

T e,lmµν =
Selm00 (r)Ylm Selm01 (r)Ylm Selm02 (r)∂Ylm∂θ Selm02 (r)∂Ylm∂φ

∗ Selm11 (r)Ylm Selm12 (r)∂Ylm∂θ Selm12 (r)∂Ylm∂φ
∗ ∗ Uelm22 (r)Ylm + Selm22 (r)Wlm Selm22 (r) sin θXlm

∗ ∗ ∗ sin2 θ
(
Uelm22 (r)Ylm −Selm22 (r)Wlm

)

 .

(2.37)

The radial components can be derived in the following way. De�ning the four-velocity uµ

uµ =
dzµ

dτ
, (2.38)

the SET can be rewritten as

Tµν = µ

∫ ∞
−∞

δ4(xα − zα(τ))√−g uµuνdτ, (2.39)

= µ

∫ ∞
−∞

δ4(xα − zα(τ))√−g
uµuν

ut
dt (2.40)

= µ
1√−g

uµuν

ut
δ3 (xa − za(t)) , (2.41)

where

δ3(xa − za(t)) = δ(r − rp(t))δ(θ − θp(t))δ(φ− φp(t)). (2.42)

For circular, equatorial orbits

rp = r0, θp = 0,
dφp

dt
= Ω, (2.43)

where

Ω =

√
M

r3
0

, (2.44)

so that

uµ = {ut, 0, 0,Ωut}. (2.45)

Assuming the secondary's world-line is time-like, the four-velocity obeys the normalisation condition

gµνu
µuν
∣∣
xα=zα

= −1. (2.46)

For a Schwarzschild background, the time-like normalisation condition amounts to

ut =
1√

−gtt − gφφΩ2

∣∣∣∣∣
xα=zα

=

√
r0

r0 − 3M
. (2.47)
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Therefore, components of the leading order SET for a particle travelling on circular, equatorial orbits

are given in the frequency domain by [46]

Solm02 (r) = µut
f(r)Ω

l(l + 1)
δ(r − r0)∂θY

∗
lm

(π
2
, 0
)
, (2.48a)

Solm12 (r) = 0, (2.48b)

Solm22 (r) = −2imµut
r2Ω2

2l(l + 1)(l − 1)(l + 2)
δ(r − r0)∂θY

∗
lm

(π
2
, 0
)
, (2.48c)

Selm00 (r) = µut
f(r)2

r2
δ(r − r0)Y ∗lm

(π
2
, 0
)
, (2.48d)

Selm01 (r) = 0, (2.48e)

Selm11 (r) = 0, (2.48f)

Uelm22 (r) =
1

2
µutr2Ω2δ(r − r0)Y ∗lm

(π
2
, 0
)
, (2.48g)

Selm02 (r) = imµut
f(r)Ω

l(l + 1)
δ(r − r0)Y ∗lm

(π
2
, 0
)
, (2.48h)

Selm12 (r) = 0, (2.48i)

Selm22 (r) = µut
r2Ω2(l(l + 1)− 2m2)

2l( + 1)(l − 1)(l + 2)
δ(r − r0)Y ∗lm

(π
2
, 0
)
. (2.48j)

All sources are compactly supported on the particle's world-line and are provided by reference [46].

For the remainder of this work, orbits will be specialised to circular and equatorial. The distinction

to quasicircular orbits will be discussed later in Chapter 4.

2.4 The Regge-Wheeler gauge

The RW gauge is de�ned by setting the �eld hlm2 from the odd-sector and the �elds hlm0 , hlm1 and Glm

from the even-sector for all l and m to zero [46, 101, 96]. The RW and Zerilli (RWZ) equations for

spin-weight s = 2 are derived by applying the RW gauge to the odd and even-sectors of the generic

�rst-order linearised Einstein �eld equations with a Schwarzschild background respectively. The odd-

and even-sector solutions for the s = 0, 1 RW equations are derived similarly from electromagnetic

and scalar perturbations [96]. For generic spin-weight s and a given l, m mode, the RWZ master

equations are given in the frequency domain on constant t slicing by [101, 96]

Lsψs(r) = Ss(r), (2.49)

where

Ls ≡
(
d2

dr2∗
− V (r) + ω2

)
, (2.50)

with

ω = mΩ, (2.51)
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having specialised to circular orbits. The tortoise coordinate r∗ for a Schwarzschild background is

de�ned such that

dr∗/dr = f(r)−1. (2.52)

Integrating this and choosing an integration constant yields

r∗(r) = r + 2 log[r/(2M)− 1]. (2.53)

The RW equation for some spin weight s is obtained by setting the potential V (r) to

V (r) = f(r)

(
l(l + 1)

r2
+

2M(1− s2)

r3

)
. (2.54)

Similarly, the Zerilli equation, de�ned only for s = 2, is obtained by setting the potential to

V (r) =
f(r)

r2Λ2

[
2λ2

(
λ+ 1 +

3M

r

)
+

18M2

r2

(
λ+

M

r

)]
, (2.55)

with

Λ = λ+ 3M/r, (2.56)

and

λ = (l + 2)(l − 1)/2. (2.57)

The RWZ master functions, ψs(r) are then sourced by Ss(r), which are given explicitly in Ap-

pendix A. The inhomogeneous Regge-Wheeler gauge metric perturbation, hRW
µν can then be recon-

structed from the RWZ master functions as shown by Regge and Wheeler [101, 46]. Dropping the

l,m labels for convenience, the leading order odd-sector metric perturbations components in the RW

gauge, and in the absence of sources for a given l,m mode are [46]:

hRW
0 =

(2M − r)
iω

ψ′2 −
(

1− 2M

r

)
ψ2

iω
, (2.58)

hRW
1 =

r

f
ψ2, (2.59)

where ψ2 in this case obeys the RW equation, and in the even-sector, the leading order metric

perturbation components for a given l,m mode in the absence of sources are [46]

HRW
0 = HRW

2 =

(
−3M2 − 3λMr + λr2

)
ψ′2

r(3M + λr)
− 1

(2M − r)r2(3M + λr)2

[
−18M4 + 9(1− 2λ)M3r

+ λ2r4
(
1 + λ+ (iω)2r2

)
+ 3M2r2

(
3λ− 2λ2 + 3(iω)2r2

)
+ λMr3

(
λ− 2λ2

+6(iω)2r2
)]
ψ2, (2.60)
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HRW
1 = − iωrψ′2 +

iω
(
−3M2 − 3λMr + λr2

)
ψ2

(2M − r)(3M + λr)
, (2.61)

KRW =

(
1− 2M

r

)
ψ′2 +

(
6M2 + 3λMr + λ(1 + λ)r2

)
ψ2

r2(3M + λr)
, (2.62)

where ψ2 now obeys the Zerilli potential. Returning to the RWZ equations, as a second-order

ordinary di�erential equation (ODE), there are two independent solutions corresponding to ingoing

and outgoing radiation respectively: ψin
s and ψup

s . These independent homogeneous solutions to

Eq. (2.49) display the following asymptotic behaviour [86, 63]

ψin
s (r) ∼

{
ψin,tra
s e−iωr∗ , r∗ → −∞,
ψin,inc
s e−iωr∗ + ψin,ref

s eiωr∗ , r∗ → +∞,
(2.63)

and

ψup
s (r) ∼

{
ψup,inc
s eiωr∗ + ψup,ref

s e−iωr∗ , r∗ → −∞,
ψup,tra
s eiωr∗ , r∗ → +∞,

(2.64)

where ψ
in/up,inc/ref/tra
s are the incidence/re�ection/transmission coe�cients respectively. In the

BHPToolkit [1], the radial RWZ functions are normalised such that the transmission coe�cient,

ψin,transs = 1 by default.

2.5 The Lorenz gauge

The Lorenz gauge is a desirable choice for a number of reasons. In the Lorenz gauge, the Einstein

�eld equations are manifestly hyperbolic and the solutions to the metric perturbation components

are C0 di�erentiable at leading order in the small mass ratio. The regularization of the SF is also

best understood in the Lorenz gauge, as discussed earlier in the introduction. As such, most of the

calculations relating to the SF, including those in this thesis, are done in the Lorenz gauge [36].

The calculation of h1L
µν can been found throughout the literature [89, 90, 91, 46, 92, 83]. The Lorenz

gauge is de�ned by the gauge condition

h̄ ;ν
µν = 0 (2.65)

where the trace-reversed metric is de�ned for a given order n in the perturbation

h̄nµν ≡ hnµν −
1

2
gµνg

αβhnαβ. (2.66)

It shall be assumed that the trace-reversed metric refers to Lorenz gauge perturbations throughout.

The �rst-order linearised Einstein �eld equations from 2.20 can then be written in the Lorenz gauge

as

�h̄1
µν + 2Rα β

µ ν h̄
1
αβ = 16πT 1

µν , (2.67)

where � ≡ ∇α∇α. Then the Lorenz gauge metric perturbation h1L
µν can be determined either by

solving Eq. (2.67) directly, as has been done numerically in both the time and frequency domains
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[89, 90, 91, 46, 92, 83] or via a gauge transformation [46, 5, 102, 83, 2]. Similarly to Eq. (2.23), the

�rst-order Lorenz gauge �eld equations can be tackled by using a mode-sum decomposition in the

Barack-Sago-Lousto (BSL) basis [89, 90]

h̄µν(xα) =
∞∑
l=0

l∑
m=−l

h̄lmµν (xα) =
∞∑
l=0

l∑
m=−l

10∑
i=1

a
(i)
l

r
h̄

(i)
lm(r, t)Y (i),lm

µν (r, θ, φ). (2.68)

The explicit dependence on zα(τ) of the metric perturbation can be replaced by zα(t) due to

Eq. (2.41). The dependence on zα of the metric perturbation can be written more simply as a

dependence on the variable t, which will remain in place for the remainder of this section. The

constant α(i) are de�ned by [90, 89]

a
(i)
l =

1√
2
×


1 for i = 1, 2, 3, 6

1/
√
l(l + 1) for i = 4, 5, 8, 9,

1/
√

(l + 2)(l + 1)l(l − 1) for i = 7, 10,

(2.69)

and the BSL tensor spherical harmonics are de�ned so that [90]∫
dΩηαµηβν

[
Y (i)lm
µν

]∗
Y

(j)l′m′

αβ = δijδll′δmm′ , (2.70)

where dΩ is the solid angle and ηµν is given by

ηµν ≡ diag
(
1, f(r), r−2, r−2 sin−2 θ

)
, (2.71)

and the components Y (i)lm
µν are given explicitly in Ref. [90], though are not required for the results

presented in this thesis and shall not be given here. The metric perturbation in the BSL basis takes

on the following expansion

h̄lmµν (xα) =
∞∑
n=1

εnh̄n,lmµν (xα), (2.72)

h̄
(i)
lm(t, r) =

∞∑
n=1

εnh̄
n,(i)
lm (t, r). (2.73)

In the BSL basis, the SET becomes

Tµν = µ
∞∑
l=0

l∑
m=−l

T lmµν = −µ
∞∑
l=0

l∑
m=−l

10∑
i=1

T
(i)
lm (t, r)Y (i),lm

µν (r, θ, φ), (2.74)

such that

T
(i)
lm = − 1

µκ(i)

∫
dΩ ηαµηβν T lmαβ

(
Y (i),lm
µν

)∗
, (2.75)
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where κ(i) is given by

κ(i) :=

f(r)2 if i = 3,

1 otherwise.
(2.76)

The sources S(i)
lm are de�ned such that

S
(i)
lm =

πrf

4a
(i)
l

T
(i)
lm . (2.77)

Both S(i)
lm and T (i)

lm take on the following expansions

T
(i)
lm (t, r) =

∞∑
n=1

εnT
n,(i)
lm (t, r), (2.78)

S
(i)
lm(t, r) =

∞∑
n=1

εnS
n,(i)
lm (t, r) (2.79)

The linearised Einstein �eld equations can then be written simply as [90, 89, 103, 14]

�(i)
(j)h̄

(j)
lm +M(i)

l(j)h̄
(j)
lm = S

(i)
lm, i ∈ {1, . . . , 10}, (2.80)

where

�(i)
(j) ≡ δ

(i)
(j)

(
1

4
(∂2
t − ∂2

r∗) + Vl(r)

)
, Vl(r) =

f(r)

4r2

(
l(l + 1) +

2M

r

)
. (2.81)

De�ning the operator

δG
(i)
(j) := �(i)

(j) +M(i)
l(j), (2.82)

with

M(i)
l(j) =M(i)

Ω,l(j)∂t +M(i)
r,l(j), (2.83)

the �eld equations can be further simpli�ed in the BSL basis as

δG
(i)
(j)[h̄

(j)
lm] = S

(i)
lm. (2.84)

The matricesM(i)
Ω,l(j) andM

(i)
r,l(j) are given in Appendix B explicitly for constant t slicing [90, 89, 104].
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The radial Lorenz gauge metric perturbation components in the BSL basis can be written in

terms of Berndtson's variables, introduced earlier for the even-sector as follows [2]

h̄
(1)
lm = rf(H lm

0 +H lm
2 ), (2.85a)

h̄
(2)
lm = 2rfH lm

1 , (2.85b)

h̄
(3)
lm = 2rK lm, (2.85c)

h̄
(4)
lm = 2l(l + 1)hlm0 , (2.85d)

h̄
(5)
lm = 2l(l + 1)fhlm1 , (2.85e)

h̄
(6)
lm = r(H lm

0 −H lm
2 ), (2.85f)

h̄
(7)
lm = 2r(l − 1)l(l + 1)(l + 2)Glm, (2.85g)

and for the odd-sector

h̄
(8)
lm = 2l(l + 1)hlm0 , (2.85h)

h̄
(9)
lm = 2l(l + 1)fhlm1 , (2.85i)

h̄
(10)
lm = −2(l − 1)l(l + 1)(l + 2)

r
hlm2 . (2.85j)

The above expressions are derived by comparing the components of h1L
µν in each of [46] and [89].

2.6 Transformation from the Regge-Wheeler to the Lorenz gauge

For a gauge vector ξµ ∼ O(ε), the in�nitesimal coordinate transformation

xµ → x′µ = xµ + ξµ (2.86)

allows the gauge transformation of the metric perturbation to be written as

hµν → h′µν = hµν + £ξ, (2.87)

where £ is the Lie derivative such that

£ξ, gµν = −2ξ(µ;ν). (2.88)

One can then transform to Lorenz gauge solutions from RW solutions in the following way

hLµν = hRWµν + £ξgµν , (2.89)

where superscripts L and RW denote the Lorenz and RW gauges respectively.
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To preserve the Lorenz gauge, the gauge vector must satisfy

�ξµ = 0, (2.90)

and can be written in terms of a mode-sum decomposition as

ξµ(t, r, θ, φ) =

∞∑
l=0

l∑
m=−l

{[∫ ∞
−∞

e−iωt
(
ξo,lmµ (ω, r, θ, φ) (2.91)

+ξe,lmµ (ω, r, θ, φ)
)
dω
]

+ δl0δµtC0

(
1− 2M

r

)
tY00(θ, φ) (2.92)

+δl1C1tr
2

[
δµθ csc θ

∂Y1m(θ, φ)

∂φ
− δµφ sin θ

∂Y1m(θ, φ)

∂θ

]}
, (2.93)

where δαβ is the Kronecker delta and

ξo,lmµ (ω, r, θ, φ) =

(
0, 0, Z lm(ω, r) csc θ

∂Ylm
∂φ

,−Z lm(ω, r) sin θ
∂Ylm
∂θ

)
(2.94)

ξe,lmµ (ω, r, θ, φ) =

(
M lm

0 (ω, r)Ylm,M
lm
1 (ω, r)Ylm,M

lm
2 (ω, r)

∂Ylm
∂θ

,M lm
2 (ω, r)

∂Ylm
∂φ

)
. (2.95)

The gauge transformation for a given l,m mode in the odd-sector then looks like

hL0 = hRW0 + iωZ, (2.96)

hL1 = hRW1 +
2

r
Z − Z ′, (2.97)

hL2 = hRW2 + Z, (2.98)

where a prime on Z denotes di�erentiation with respect to r, and in the even-sector

HL
0 = HRW

0 +
2iω(

1− 2M
r

)M0 +
2M

r2
M1, (2.99)

HL
1 = HRW

1 − 2M

(2M − r)rM0 + iωM1 −M ′0, (2.100)

HL
2 = HRW

2 − 2M

r2
M1 − 2

(
1− 2M

r

)
M ′1, (2.101)

KL = KRW +
2(2M − r)

r2
M1 +

2(1 + λ)

r2
M2, (2.102)

hL0 = hRW0 −M0 + iωM2, (2.103)

hL1 = hRW1 −M1 +
2

r
M2 −M ′2, (2.104)

GL = GRW − M2

r2
. (2.105)

The de�nitions for the RW gauge quantities are given explicitly in Section 2.4 All previous calcu-

lations of h1L
µν are numerical and done in either time or frequency domain [89, 90, 91, 46, 92, 83].
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Using the decomposition of h1
µν in Eq. (2.30) and Eq. (2.33) and following Berndtson's prescription

[46] where h1L
µν satis�es the gauge condition Eq. (2.65) to leading order, the homogeneous odd-sector

components of h1L
µν for ω 6= 0 and l ≥ 2 are given by the radial �elds [2]

h0(r) =
1

iω

(
ψ1 +

2λ

3
ψ2

)
, (2.106a)

h1(r) =
1

(iω)2

(
− 2λ

3
ψ′2 +

2

r
ψ1 −

2λ

3r
ψ2 − ψ′1

)
, (2.106b)

h2(r) =
1

(iω)2

(
rf ψ′2 + ψ1 +

(3 + 2λ)r − 6M

3r
ψ2

)
, (2.106c)

where

λ =
1

2
(l − 1)(l + 2), (2.107)

and the l,m labels on radial �elds from Eq. (2.30) and Eq. (2.33) will be dropped henceforth for

convenience. The �elds ψ1 and ψ2 refer to solutions to Eq. (2.49), with a RW potential. Valid

odd-sector solutions to h0, h1 and h2 are constructed by solutions to ψ1 and ψ2 for which l + m is

an odd number. For ω 6= 0 and l ≥ 2, the even-sector components of h1L
µν , given by the radial �elds

h0, h1, H0, H1, H2, K and G can be written in terms of the �elds ψ2, ψ1, ψ0, ψ0b and their radial

derivatives, in addition to the gauge �eld M2af and its radial derivative. Here ψ1, ψ0, ψ0b refer to

solutions of Eq. (2.49) with a RW potential. The �elds ψ0 and ψ0b di�er only by their sources, given

in Appendix A. An explanation of the origin of ψ0b can be found in Section (3.1.1) of Ref. [46]. The

�eld ψ2 is also a solution to Eq. (2.49) with a Zerilli potential. The additional gauge �eld M2af will

be discussed further in Chapters 5, 6 and 9. The explicit, source-free expressions are given below

[46, 2]

H0(r) = − λ(1 + λ)M(−3M + (3 + λ)r)ψ′2
3(iω)2r3(3M + λr)

+
(−M + r)ψ0

(2M − r)r +
4iω(1 + λ)ψ1

2M − r + ψ′0 (2.108a)

− λ(1 + λ)

3(iω)2(2M − r)r4(3M + λr)2

[
18M4 + 3(−3 + 4λ)M3r + (iω)2λ2r6

−3λMr3
(
1 + λ− 2(iω)2r2

)
+M2

(
6λ2r2 + 9(iω)2r4

)]
ψ2 +

4(1 + λ)Mψ′1
iωr3

+
2M

(
ψ′0b +M ′2af

)
r3

+
2
(
−2M2 +Mr + (iω)2r4

)
(ψ0b +M2af )

(2M − r)r4
,

H1(r) = − λ(1 + λ)ψ′2
3iωr

−
(
6M + 4λM − 3r − 2λr − 2(iω)2r3

)
ψ0

4iωMr2 − 2iωr3
+

(2 + 2λ)ψ1

2Mr − r2
+

ψ′0
2iωr

(2.108b)

+
2iω(−M + r)(ψ0b +M2af )

(2M − r)r2
− λ(1 + λ)

(
3M2 + 3λMr − λr2

)
ψ2

3iω(2M − r)r2(3M + λr)

+
2iω(ψ′0b +M ′2af )

r
+

4(1 + λ)ψ′1
r

,
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H2(r) =
λ(1 + λ)

(
−9M2 + (3− 5λ)Mr + 2λr2

)
ψ′2

3(iω)2r3(3M + λr)
+

(−3M + 2r)ψ0

(2M − r)r + ψ′0 (2.108c)

− 4(1 + λ)(M − r)ψ′1
iωr3

+
2
(
6M2 − (11 + 4λ)Mr + r2

(
4 + 2λ+ (iω)2r2

))
(ψ0b +M2af )

(2M − r)r4

+
(−6M + 4r)(ψ′0b +M ′2af )

r3
+

4(1 + λ)
(
−4(1 + λ)M + r

(
2 + 2λ+ (iω)2r2

))
ψ1

iω(2M − r)r3

− λ(1 + λ)

3(iω)2(2M − r)r4(3M + λr)2
[−54M4 + 3(9− 16λ)M3r + λ2r4(2 + 2λ+ (iω)2r2)

+ 9M2r2(2λ− 2λ2 + (iω)2r2) + λMr3(3 + 5λ− 4λ2 + 6(iω)2r2)]ψ2,

K(r) =
λ(1 + λ)(2M − r)ψ′2

3(iω)2r3
+
ψ0

r
+

(−4M + 2(2 + λ)r)(ψ0b +M2af )

r4
+

4(1 + λ)2ψ1

iωr3
(2.108d)

+
2(1 + λ)(2M − r)ψ′1

iωr3
− λ(1 + λ)

(
6M2 + 3λMr + λ(1 + λ)r2

)
ψ2

3(iω)2r4(3M + λr)
(2.108e)

+
(4M − 2r)(ψ′0b +M ′2af )

r3
,

G(r) = − λ(3 + 2λ)(2M − r)ψ′2
6(iω)2r2(3M + λr)

− ψ0b +M2af

r3
− 2(1 + λ)ψ1

iωr3
+

(2M − r)ψ′1
iωr3

(2.108f)

+
1

6(iω)2r3(3M + λr)2

[
4λ3r2 + λ4r2 + 27(iω)2M2r2 + 9λM

(
M + 2(iω)2r3

)
(2.108g)

+ 3λ2
(
M2 +Mr + r2 + (iω)2r4

) ]
ψ2,

h0(r) =
λ(2M − r)ψ′2

3iωr
+

(−2M + r)ψ0

2iωr2
+

2iω(ψ0b +M2af )

r
+

4(1 + λ)ψ1

r
+

(
1− 2M

r

)
ψ′1

(2.108h)

− (−2M + r)ψ′0
2iωr

− λ
(
6M2 + 3λMr + λ(1 + λ)r2

)
ψ2

3iωr2(3M + λr)
,

h1(r) =
λ((3 + λ)M + λ(2 + λ)r)ψ′2

3(iω)2r(3M + λr)
− rψ0

4M − 2r
+

4ψ0b +M2af

r2
−

2(ψ′0b +M ′2af )

r
(2.108i)

− λ

3(iω)2(2M−r)r2(3M+λr)2

[
9(iω)2M2r3 + 2λ3r2(−2M+r)

+λ2r
(
−12M2+2Mr+2r2+(iω)2r4

)
+ 3λM

(
−4M2 + r2 + 2(iω)2r4

)]
ψ2

+

(
8M+8λM−4r−4λr+(iω)2r3

)
ψ1

2iωMr2 − iωr3
− 2(2M + r + 2λr)ψ′1

iωr2
.

Valid even-sector solutions are then constructed by solutions to ψ0, ψ0b, ψ1, ψ2 and M2af for

which l + m is an even number. The even-sector �elds h0, h1, ψ1 and ψ2 should not be confused

with those from the odd-sector. The reader is referred to Ref. [46] for sourced expressions and for
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expressions where l = 0, 1 and ω = 0. Berndtson's gauge transformation from RW to Lorenz gauge

metric perturbations is equivalent to that of Hopper and Evans [102], who provide the same gauge

transformation for the s = 2 sector.

2.6.1 Di�erentiability of inhomogeneous expressions

For the sourced expressions of Berndtson's gauge transformation, the reader is referred to the ap-

pendices of Ref. [46]. The retarded ψ2, ψ1 and ψ0b in both the odd- and even-sectors contain jump

discontinuities, while ψ0 and M2af of the even-sector are continuous, and are C0 di�erentiable. Any

jump discontinuities exactly cancel when transforming to the Lorenz gauge expressions of Eq. (2.106)

and Eq. (2.108). Additionally, the source for ψ0, given in Eq. (A.5) contains Dirac-delta functions,

but no derivatives, whereas all other RWZ sources, given in appendix A contain Dirac-delta func-

tions and a radial derivative of a Dirac-delta function. This means that the radial derivative of the

retarded �elds ψ2, ψ1, ψ0b in either the odd- or even-sectors will contain a distributional term in-

volving a Dirac-delta function. Without compensating, this distributional term introduced by radial

derivatives of RWZ functions in transformation to the Lorenz gauge would spoil the C0 di�erentia-

bility. Berndtson's expressions for the inhomogeneous Lorenz gauge metric components therefore

contain additional distributional terms, related to the components of the stress-energy tensor, which

cancel any introduced by such radial derivatives of the �elds [46, 102]. For a point-like particle on

circular orbits, we may use the homogeneous expressions of Eq. (2.106) and Eq. (2.108) to obtain

the retarded Lorenz gauge metric perturbation components everywhere except for at the particle, as

any terms involving the Dirac-delta function will go to zero away from the particle. For this reason,

in Chapter 5 and Chapter 6, only the homogeneous gauge transformation is considered.

2.6.2 Satisfying the Lorenz gauge condition and �eld equations

In the absence of sources, substituting the odd-sector �elds h0, h1 and h2 back into the odd-sector

�eld equations Eq. (2.67) and Lorenz gauge condition in Eq. (2.65), and similarly substituting the

even-sector �elds h0, h1, H0, H1, H2, K and G back into the even-sector �eld equations and Lorenz

gauge conditions results in fourteen equations (ten from the linearised Einstein �eld equations and

four from the Lorenz gauge conditions) which include combinations of the RW master equations,

Zerilli equation, the equation for M2af given by Eq. (5.17), and their radial derivatives. In the

even-sector for example, the Lorenz gauge conditions and linearised Einstein �eld equations take the

following form

Alm(r)L0ψ0 +Blω(r)L1ψ1 + Clm(r)L2ψ2 +Dlm(r)(L0M2af − f(r)ψ0) + Elm(r)∂r (L0ψ0) (2.109)

+Flω(r)∂r (L1ψ1) +Glm(r)∂r (L2ψ2) +Hlω(r)∂r(L0M2af − f(r)ψ0) = 0

The factors Alm(r), Blm(r), . . . are factors that depend on r, l and m, at least in the case of

circular orbits. Note that in the homogeneous case, ψ0b = ψ0. It is easily seen that the individual

contribution of each of the homogeneous RW master functions, homogeneous Zerilli master function
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and M2af to the Lorenz gauge condition and linearised Einstein �eld equations are identically zero.

This suggests that any of the RWZ �elds or M2af can be `turned o�' (i.e. set to zero), while

still preserving the Lorenz gauge condition and satisfying the �rst-order linearised Einstein �eld

equations. Indeed this shows that the RWZ master functions, in addition to the gauge �eld M2af

form a basis of homogeneous solutions to the �rst-order linearised Einstein �eld equations in the

Lorenz gauge, in the absence of sources.

2.7 Perturbations to rotating black holes

The metric describing a rotating, axisymmetric black holes with mass M and angular momentum a

is given by the Kerr solution

ds2 = − dτ2 (2.110)

= −
(

1− 2Mr

Σ

)
dt2 +

Σ

∆
dr2 + Σdθ2 +

(
r2 + a2 +

2Mra2

Σ
sin2 θ

)
sin2 θdφ2 (2.111)

− 4Mra sin2 θ

Σ
dtdφ,

where

Σ = r2 + a2 cos2 θ, (2.112)

∆ = r2 − 2Mr + a2 or ∆ = (r − r+)(r − r−). (2.113)

The radii r± are the radius of the outer and inner horizons of a Kerr black hole respectively. In the

Schwarzschild limit, r− → 0 and r+ → 2M .

2.7.1 The Teukolsky formalism

There is no known separable solution to the linearised Einstein �eld in Kerr. However, in type D

spacetimes such as Schwarzschild or Kerr 1, there exists a set of null tetrads, onto which equations

describing perturbations to the curvature can be projected, and for which the resulting equations

are separable [105, 68]. The separable equations in question are precisely the Teukolsky equations,

whose solutions are related to the perturbed Weyl scalars. Often the Newman Penrose (NP) [106] or

Geroch-Held-Penrose (GHP) [68, 37] formalisms are used to achieve this. The formalism used in this

work follows that of Ref. [107] and is very similar to the NP and GHP formalisms, with some slight

di�erences. Examples of tetrads that attain this separability are the Carter and Kinnersley tetrads,

the latter of which shall be used throughout, for reasons discussed in Chapter 9. The Kinnersley

1While Schwarzschild and Kerr black holes are vacuum type D spacetimes, the statement applies to all type D
spacetimes, including the Kerr-Newman metric [68].
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tetrad is then de�ned as follows [107, 5, 68, 37, 107]

lµ = lµ+, (2.114a)

nµ = − ∆

2Σ
lµ−, (2.114b)

mµ =
1√
2ρ
mµ

+, (2.114c)

m̄µ =
1√
2ρ̄
mµ
−, (2.114d)

where [5],

lµ± =
{
±∆−1

(
r2 + a2

)
, 1, 0,±∆−1a

}
, (2.115a)

mµ
± = {±ia sin θ, 0, 1,±i csc θ} , (2.115b)

with

ρ ≡ (∇ν lµ)mµm̄ν = r + ia cos θ (2.116)

ρ̄ ≡ (∇ν lµ) m̄µmν = r − ia cos θ, (2.117)

such that

=⇒ ρρ̄ = Σ. (2.118)

The background metric can then be written as [46, 68, 37, 5]:

gµν = −lµnν − nµlν +mµm̄ν + m̄µmν . (2.119)

The tetrad basis vectors have the normalisation conditions such that

gµνm
µm̄ν =1, (2.120)

gµν l
µn̄ν =− 1, (2.121)

gµν l
µ
+l
ν
− =

2Σ

∆
, (2.122)

gµνm
µ
+m

ν
− =2Σ, (2.123)

with all other inner products equal to zero.
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The directional derivatives along the tetrad {lµ+, lµ−,mµ
+,m

µ
−} are de�ned as follows [5]

D ≡ lµ+∂µ = ∂r −
iK

∆
, (2.124a)

D† ≡ lµ−∂µ = ∂r +
iK

∆
, (2.124b)

L† ≡ mµ
+∂µ = ∂θ −Q, (2.124c)

L ≡ mµ
−∂µ = ∂θ +Q, (2.124d)

where Q is given by [5]

Q = m csc θ − aω sin θ, (2.125)

K is given by

K = ω(r2 + a2)− am, (2.126)

and m is the azimuthal mode number. The Weyl tensor, which is a measure of the curvature of the

spacetime is then de�ned by

Cµναβ = Rµναβ +
1

n− 2
(Rµβgνα −Rµαgνβ +Rναgµβ −Rνβgµα)

+
1

(n− 1)(n− 2)
R (gµαgνβ − gµβgνα) ,

(2.127)

where n is the number of dimensions of the spacetime. For the purposes of this work, n = 4. When

projected onto the Kinnersley tetrad, the �ve independent complex components of the Weyl tensor

are given by [68, 37]

Ψ0 := Cαβγδl
αmβlγmδ, (2.128a)

Ψ1 := Cαβγδl
αnβlγmδ, (2.128b)

Ψ2 := Cαβγδl
αmβm̄γnδ, (2.128c)

Ψ3 := Cαβγδl
αnβm̄γnδ, (2.128d)

Ψ4 := Cαβγδn
αm̄βnγm̄δ. (2.128e)

For vacuum background spacetimes, the Weyl curvature is entirely captured by the Riemann tensor,

and the perturbed Weyl tensor is given by

δCµναβ = δ Rµναβ . (2.129)
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The perturbed Weyl scalars are then given by

ΨP
0 = δRαβγδl

αmβlγmδ, (2.130a)

ΨP
1 = δRαβγδl

αnβlγmδ, (2.130b)

ΨP
2 = δRαβγδl

αmβm̄γnδ, (2.130c)

ΨP
3 = δRαβγδl

αnβm̄γnδ, (2.130d)

ΨP
4 = δRαβγδn

αm̄βnγm̄δ. (2.130e)

In type D spacetimes, there exists four null directions. Choosing the tetrad legs such that they

are parallel to these four null directions leaves only ΨP
0 and ΨP

4 non-zero of the perturbed and

unperturbed Weyl scalars. It is this simpli�cations that allows for a separable solution of the metric

perturbation to a Kerr background to be determined. The perturbed Weyl scalars can then be

written in the separable form, using a mode-sum decomposition in the frequency domain

ΨP
0 =

∞∑
l=0

l∑
m=−l

Rlm2 (r)Slm2 (θ, φ)e−imφp(t), (2.131)

ΨP
4 =

∞∑
l=0

l∑
m=−l

∆Rlm−2(r)Slm−2(θ, φ)e−imφp(t), (2.132)

such that, for s = 2, the radial function R±2 satis�es

∆−s
d

dr

(
∆s+1dR

lm
s

dr

)
+

(
K2 − 2is(r −M)K

∆
+ 4isωr − λ

)
Rlms (r) = 0, (2.133)

which is the homogeneous radial Teukolsky equation, for a Kerr black hole. Similarly to the RW

equation, the spin-weights s = ±1, 0 correspond to electromagnetic and scalar perturbations respec-

tively, and s = ±2 correspond to gravitational perturbations. The angular part of the perturbed

Weyl scalars, Slms are the standard spin-weighted spheroidal harmonics, which obey the equation [1][
1

sin θ

d

dθ

(
sin θ

d

dθ

)
− a2ω2 sin2 θ − (m+ s cos θ)2

sin2 θ
− 2aωs cos θ + s+ 2maω + λslm

]
Slms (θ, φ) = 0,

(2.134)

and are normalised as ∫ π

0

∣∣∣Slms ∣∣∣2 sin θdθ = 1. (2.135)
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Any solution to Eq. (2.133) should recover the correct asymptotic behaviour, which for the radial

Teukolsky function is given by [84] [86]

Rin
slm →

{
Rin,trans
slm ∆−se−ikr

∗
for r → r+

r1−2sRin,ref
slm eiωr

∗
+ r−1Rin,inc

slm e−iωr
∗

for r → +∞
(2.136)

Rup
slm →

{
Rup,inc
slm eikr

∗
+ ∆−sRup,ref

slm e−ikr
∗

for r → r+

Rup,trans
slm r1−2seiωr

∗
for r → +∞,

(2.137)

where Rin
slm and Rup

slm are two independent solutions and r∗ is the well known tortoise coordinate

given by

r∗ = r +
2Mr+

r+ − r−
ln
r − r+

2M
− 2Mr−
r+ − r−

ln
r − r−

2M
, (2.138)

and k is de�ned as

k = ω − ma

2Mr+
. (2.139)

How to use the perturbed Weyl scalars to construct the metric perturbation for a Kerr background

will be discussed in the next subsection.

2.7.2 Metric reconstruction via a Hertz potential

In Ref. [108], Wald states and proves Theorem 1, which is true for any perturbation equations coming

from solutions of decoupled equations

Theorem 1 Suppose the identity SE = OT holds for the linear partial di�erential operators S, E,
O and T . Suppose Ψ satis�es O†Ψ = 0. Then S†Ψ satis�es E†

(
S†Ψ

)
= 0. Thus, in particular, if

E is self-adjoint then S†Ψ is a solution of E (f) = 0.

Proof:

SE = OT , (2.140)

E†S† = T †O†, (2.141)

E†S†Ψ = T †O†Ψ, (2.142)

E†S†Ψ = 0, (2.143)

ES†Ψ = 0, (2.144)

where the last equality is true only if E is self-adjoint [108].

Given that the �rst-order linearised Einstein �eld equations can be decoupled for both Schwarzschild

and Kerr backgrounds, Theorem 1 can be applied to constructing the source-free metric perturbation

in the following way. Let E be de�ned as the operator which acts on the metric perturbation to

obtain the linearised Einstein �eld equations and is equivalent to δ1G in eq. (2.20). Let T be the

operator which acts on the metric perturbation to obtain the perturbed Riemann tensor, which in
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vacuum spacetimes are the perturbed Weyl scalars from Eq. (2.133). Let O be the operator that

obtains the Teukolsky equation from the perturbed Weyl scalars, and let S be the operator that

transforms the linearised Einstein �eld equations, if given in terms of the NP operators and scalars,

into the Teukolsky equation. Then, Theorem 1 states that the source-free metric perturbation can

be constructed from the Hertz potential Ψ in the following way[108, 68]

hµν =
(
S†Ψ

)
µν

(2.145)

so long as Ψ is a solution to the homogeneous Teukolsky equation, O†Ψ = 0. The operators S, E ,O
and T will not be given explicitly here as this would require introducing many spin-coe�cients that

are not used anywhere else in this thesis. Instead the reader is pointed to References [37] and [68]

for the explicit de�nitions of these operators.

2.7.3 The radiation gauge

The metric reconstruction method that follows from Theorem 1 was �rst done in the radiation

gauges by Cohen and Kegeles and Chrzanowski [64, 63]. For Petrov type II spacetimes, the ingoing

radiation gauge (IRG) condition is de�ned by [68]

lµhµν = 0 (2.146)

gµνhµν = 0, (2.147)

such that the metric perturbation is trace free and has zero projection along the principal null

direction of the tetrad leg lµ. Similarly, the outgoing radiation gauge (ORG) condition is de�ned by

[68]

nµhµν = 0 (2.148)

gµνhµν = 0. (2.149)

In type D spacetimes, the metric perturbation can also be written in the ORG similarly to Eq. (2.145)

using the method of adjoints and a di�erent choice of Hertz potential, but one that is related to

ΨIRG [68]. All results that hold for the IRG also hold for the ORG [68] and the choice of radiation

gauge will depend on the problem of interest at hand. The explicit form of Eq. (2.145) can be found

in Chapter 3 of Ref. [68]. Neither the NP nor GHP formalisms shall be discussed in this report, as

they are detailed extensively throughout the literature and aren't necessary for the main results of

this chapter. For a comprehensive review the reader is pointed to references [68] and [37]. For either

choice of radiation gauge, obtaining Ψ solves the source-free metric perturbation in that gauge, up

to a caveat that will be discussed in Section 9.1, as it turns out that solving Ψ only solves for the

radiative part of the metric perturbation in the corresponding radiation gauge. [69]

By Wald's result from [69], we can make the observation that the metric perturbation in

Eq. (2.145), constructed using the Hertz potential Ψ is incomplete, missing perturbations to the
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mass and angular momentum of the spacetime, in addition to any gauge contributions. The radia-

tion gauges are also irregular for all orbits, as the metric perturbation due to a point-like particle

diverges to form a one-dimensional sting-like singularity, such that any neighbourhood of the particle

includes the singularity [36]. As mentioned in the introduction there are however `no-string' gauge

solutions [70, 41, 71, 72, 73, 74, 75, 43]. However, due to the fact that the SF is best understood

in the Lorenz gauge, as discussed in Chapter 1, it is still desirable to obtain the Kerr metric per-

turbation in the Lorenz gauge by construction from a Hertz potential and transforming from the

radiation gauge. These arguments provide the motivation for research presented in Chapter 9.
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Chapter 3

Developing the MST Package for the

BHPToolkit

The �rst section of this chapter will provide a review of the MST method, named after Mano, Suzuki

and Takasugi. The remainder of the chapter will discuss the implementation of the MST package for

the BHPToolkit, an open source repository for software and data related to BHPT [1]. The MST

package was developed in collaboration with Wardell, Kavanagh, Casals and Ottewill.

3.1 The MST method

The MST method o�ers semi-analytic series solutions by means of a small frequency expansion to

the radial Teukolsky and RW master equations given by Eq. (2.133) and Eq. (2.49) respectively.

For circular orbits, a low-frequency expansion is equivalent to a solution that is valid in both the

PM and PN regimes [85, 86, 84], recalling that PM expansions are written as a power series in G,

the gravitational constant, corresponding to an expansion around Minkowski �at space, and the PN

series is written in terms of powers of c−1, corresponding to an expansion about Newtonian gravity

[84, 85]. Using the MST series to study EMRIs is justi�ed by the importance of matching strong and

weak �eld regimes, in addition to the series' rapid convergence, allowing for many higher order terms

to be calculated in the PN series. While the derivation in this section uses the underlying assumption

that the frequency, ω, is small, higher frequencies can be used in numerical algorithms. [87] A brief

derivation of the MST method will be detailed here for the radial Teukolsky equation, from which

the MST series for the Regge-Wheeler master functions can be recovered using the Chandrasekhar

transformation.

Throughout the literature, attempts to solve the radial Teukolsky equation begin by analysing

the equation's properties. In its current form, Eq. (2.133) contains regular singularities at the

horizons, r = r+ and r = r−, and an irregular singularity at r =∞. Therefore, to solve Eq. (2.133)

analytically, one might �rst try to eliminate the regular singularities by using a change of variables

and rescaling the Teukolsky radial function, Rlms (r). This was done by Teukolsky and Press in 1974

[109], by Leaver in 1986 [110] and by Mano, Suzuki and Takasugi in 1996 [85]. As Eq. (2.133) is
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a second order ordinary di�erential equation, it will admit two independent solutions from which

physically relevant solutions can be constructed, namely the ingoing and upgoing solution, Rin and

Rup respectively. To obtain the ingoing and upgoing solutions, a sensible choice of rescaling and

change of variables is required to recover the asymptotic behaviour of Eq. (2.136) and Eq. (2.137)

respectively. The proposed change of variables for the ingoing solution and other relevant quantities

de�ned in [85] are given by

x =
z+ − z
εκ

, (3.1a)

z+ = ωr+, (3.1b)

z− = ωr−, (3.1c)

ε = 2Mω, (3.1d)

κ =
√

1− q2, (3.1e)

z = ωr, (3.1f)

r+ = M +
√
M2 − a2, (3.1g)

r− = M −
√
M2 − a2, (3.1h)

q = a/M, (3.1i)

τ = (ε−mq)/κ. (3.1j)

The ingoing Teukolsky radial solution can be rescaled in such a way that eliminates the regular

singularities of Eq. (2.133) and captures them in the solution. This rescaling is given by [85, 84]

Rin
slm(x) = eiεκx(−x)−s−i(ε+τ)/2(1− x)i(ε−τ)/2pin(x), (3.2)

where pin(x) is to be determined, and depends on s, l and m. Rewriting Eq. (3.2) in terms of

the tortoise coordinate r∗ recovers the exact expression for the asymptotic behaviour of Rin
slm in

Eq. (2.136) on the outer horizon and Appendix B of [85] gives a detailed derivation as to why the

choice of rescaling in Eq. (3.2) removes, or rather captures, the singularity on the outer horizon 1.

Substituting Eq. (3.2) into Eq. (2.133), the radial Teukolsky equation becomes [84]

x(1− x)p′′in + [1− s− iε− iτ − (2− 2iτ)x]p′in + [iτ(1− iτ) + λ+ s(s+ 1)]pin =

2iεκ
[
−x(1− x)p′in + (1− s+ iε− iτ)xpin

]
+
[
ε2 − iεκ(1− 2s)

]
pin. (3.3)

Having removed the poles of the radial Teukolsky equation, the resulting form is particularly inter-

esting. The left hand side of Eq. (3.3) is in the form of the hypergeometric di�erential equation

x(1− x)
d2w

dx2
+ (c− (a+ b+ 1)x)

dw

dx
− abw = 0, (3.4)

whose solutions are

w1(x) = 2F1(a, b; c;x), (3.5)

w2(x) = x1−c
2F1(a− c+ 1, b− c+ 1; 2− c;x), (3.6)

1The other poles at r− and ∞ are removed but not captured by the solution Eq. (3.2).
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for the case where there is a singularity at x = 0 2 . This is equivalent to the case where there is a

singularity at r = r+, captured by Eq. (3.2). The solution to pin(x) should be chosen to correspond

to w1 in order to recover the desired asymptotic behaviour of Rin
slm on the outer horizon as w1

contains no additional pre-factors that include the dependent variable. w2 may produce a solution

to the Teukolsky equation in some other basis, though it shall be disregarded here. The fact that the

terms on the right hand side of Eq. (3.3) contain various powers of ε is suggestive of an expansion

solution for pin(x), for which ε � 1. It should be noted that the quantity, λ, the eigenvalue of

the angular Teukolsky equation, which is equivalently the equation for the spin-weighted spheroidal

harmonics, has the small frequency expansion [84]

λ = λ0 + aωλ1 + a2ω2λ2 +O
(
(aω)3

)
, (3.7)

where λ0 = l(l+1)−s(s+1). The higher order terms can be determined by solving the equation for

spin-weighted spheroidal harmonics perturbatively, and are given completely analytically to arbitrary

order by the Spin Weighted Spheroidal Harmonics package in the BHPToolkit [1]. Therefore, the

leading order solution to pin(x) in Eq. (3.3) for when ε→ 0, is given by [84]

lim
ε→0

pin(x) = 2F1(l + 1− iτ,−l − iτ ; 1− s− iτ ;x). (3.8)

To obtain the solution for pin(x) for the case where ε 6= 0, the parameters in eq. (3.8) will change

slightly. However, it is di�cult to determine the parameters of the hypergeometric function for the

case where ε 6= 0 from Eq. (3.3) in its current form 3 . For this reason, the term λ + s(s + 1) is

moved to the right hand side of Eq. (3.3). This introduces an O(1) quantity to the right hand side

of Eq. (3.3), which must be removed if the right hand side is to be treated as an O(ε) perturbation.

The renormalised angular momentum, ν = l + O(ε), is introduced and the term ν(ν + 1) is added

to both sides of Eq. (3.3). Without changing anything, Eq. (3.3) can be rewritten in the following

form [84]

x(1− x)p′′in + [1− s− iε− iτ − (2− 2iτ)x]p′in + [iτ(1− iτ) + ν(ν + 1)]pin =

2iεκ
[
−x(1− x)p′in + (1− s+ iε− iτ)xpin

]
+
[
ν(ν + 1)− λ− s(s+ 1) + ε2 − iεκ(1− 2s)

]
pin.

(3.9)

In this form, it is still easy to read what the hypergeometric parameters in pin(x) should be for

2There are additional solutions to Eq. (3.4) for which there are singularities at x = 1 and x = ∞. Each of these
solutions have various alternate forms, which can be found in the Digital Library of Mathematical Functions (DLMF)
[97]. For the ingoing radial Teukolsky solution, only the asymptotic amplitudes at H+, I+ and I− are of interest,
given by Rin,tra

slm , Rin,ref
slm and Rin,inc respectively. Therefore the solutions to the hypergeometric equation for which

there is a singularity at x = 1 are not relevant to constructing the ingoing radial Teukolsky solution, as this occurs at
r = r−, on the inner horizon H−. The solution required to recover Rin

slm on I+ and I− will be discussed later in this
section.

3To determine the parameters a, b and c in 2F1(a, b, c, x) for the Teukolsky case requires solving a set of simultaneous
equations, obtained by comparing the left hand side of Eq. (3.3) with Eq. (3.4). Solving a + b + 1 = 2 − 2iτ and
−ab = l(l + 1) + iτ(1− iτ) is much easier to solve than a+ b+ 1 = 2− 2iτ and −ab = λ+ s(s+ 1) + iτ(1− iτ). For
this reason, Eq. (3.3) is rearranged to the form in Eq. (3.9).
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the case where ε 6= 0, as well as ensuring that the right hand side of Eq. (3.9) is at least an O(ε)

perturbation, such that a solution to pin(x) that is an expansion in ε makes sense, where ε� 1. For

ε 6= 0, pin(x) then becomes

pin =

∞∑
n=−∞

fn pn+ν(x), (3.10)

pn+ν(x) = 2F1(n+ ν + 1− iτ,−n− ν − iτ ; 1− s− iε− iτ ;x), (3.11)

where fn are the MST coe�cients to be determined. If one was to try to solve Eq. (3.9) without

introducing the renormalised angular momentum, one would eventually face an equivalent procedure

in order for the series to converge to obtain a meaningful low-frequency expansion solution [84, 86].

As ε→ 0, the quantities ν and λ should behave in such a way that ν → l and λ→ λ0. A derivation of

the explicit form of ν can be found in References [84] or [86]. The solution in Eq. (3.11) is written as

a sum over n to exploit the standard recurrence relation identities for the hypergeometric functions

[86]

x 2F1(a, b; c;x) =
a(b− c)

(a− b)(a− b+ 1)
2F1(a+ 1, b− 1; c;x) (3.12)

+
c(a+ b− 1)− 2ab

(a− b− 1)(a− b+ 1)
2F1(a, b; c;x)

+
b(a− c)

(a− b− 1)(a− b) 2F1(a− 1, b+ 1; c;x),

x(1− x)
d

dx
2F1(a, b; c;x) =

ab(c− b)
(a− b)(a− b+ 1)

2F1(a+ 1, b− 1; c;x) (3.13)

+
ab(2c− a− b− 1)

(a− b+ 1)(a− b− 1)
2F1(a, b; c;x)

+
ab(a− c)

(a− b)(a− b− 1)
2F1(a− 1, b+ 1; c;x).

Considering the right hand side of Eq. (3.9) as a perturbation, and applying the recurrence relations

Eq. (3.12) and Eq. (3.13) to the equation

2iεκ
[
−x(1− x)p′in + (1− s+ iε− iτ)xpin

]
(3.14)

+
[
ν(ν + 1)− λ− s(s+ 1) + ε2 − iεκ(1− 2s)

]
pin = 0,

a recurrence relation for the MST series coe�cients fn can be derived [86]

ανnfn+1 + βνnfn + γνnfn−1 = 0, (3.15)
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where

ανn =
iεκ(n+ ν + 1 + s+ iε)(n+ ν + 1 + s− iε)(n+ ν + 1 + iτ)

(n+ ν + 1)(2n+ 2ν + 3)
, (3.16)

βνn = −λ− s(s+ 1) + (n+ ν)(n+ ν + 1) + ε2 + ε(ε−mq) +
ε(ε−mq)

(
s2 + ε2

)
(n+ ν)(n+ ν + 1)

, (3.17)

γνn = − iεκ(n+ ν − s+ iε)(n+ ν − s− iε)(n+ ν − iτ)

(n+ ν)(2n+ 2ν − 1)
. (3.18)

The renormalized angular momentum, ν is de�ned such that the MST series converges. As a small

frequency expansion, ν is given by [84, 86]

ν = l +
1

2l + 1

(
−2− s2

l(l + 1)
+

((l + 1)2 − s2)2

(2l + 1)(2l + 2)(2l + 3)
−

(
l2 − s2

)2
(2l − 1)2l(2l + 1)

)
ε2 +O

(
ε3
)
. (3.19)

In the BHPToolkit, ν is calculated using monodromy in Mathematica [111] and by a root �nding

method for C++ [112]. Using Eqs. (3.15)-(3.18) and initialising the series with f0 = 1, the coe�cients

fn can be determined either numerically or semi-analytically, as a small frequency expansion 4 .

Recall that fn are derived from the underlying assumption that the right hand side of Eq. (3.3) is a

perturbation, and hence analytic expressions for fn are valid only for ε� 1 and should be treated as

such. A detailed analysis is given in [84] to ensure that the recurrence relation Eq. (3.15) converges,

such that the MST series can indeed provide a meaningful low-frequency expansion for the radial

Teukolsky solution. The ingoing radial Teukolsky solution in Eq. (3.2) then becomes

Rin(x) = eiεκx(−x)−s−i(ε+τ)/2(1−x)i(ε−τ)/2
∞∑

n=−∞
fn 2F1(n+ν+1−iτ,−n−ν−iτ ; 1−s−iε−iτ ;x).

(3.20)

One of the key features of the MST series is that for larger values of |n|, the leading order terms of

each coe�cient fn depend on higher powers of ε [86]. This means that for a given order in ε, only a

relatively small number of terms in the MST series is required to obtain an accurate solution [86].

The solution in Eq. (3.20) is valid over the domain −∞ < x ≤ 0 and recovers the desired asymptotic

behaviour at H+, from which the asymptotic amplitude Rin, trans can be calculated [84, 86, 85]. The

solution in Eq. (3.20) is not valid at |x| = ∞ however and cannot therefore recover the asymptotic

amplitudes Rin, inc
slm and Rin, ref

slm , and an alternative solution must be found to complete Rin
slm. Recall

that there are many alternate solutions to the hypergeometric equation, not all of them independent

and each valid for a particular domain. For example, another solution for Rin
slm that is valid at large

4The choice of initialisation to solve for the MST series coe�cients is arbitrary. A di�erent choice for f0 simply
changes the overall normalisation of the series, rescaling the asymptotic amplitudes. It is worth noting that fn has in
fact two linearly independent solutions, however freedom within the choice of ν allows for a unique, consistent solution
to be determined [84]. A number of examples for fn are given in [86] for the Schwarzschild case, for di�erent values
of l and s. It is also worth keeping in mind that while all analytic MST expressions are derived under the assumption
that ω is small, Eq. (3.3) and Eq. (3.15) can in principle be solved numerically for arbitrary frequencies.
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x is given by

Rin
slm = Rν0 +R−ν−1

0 , (3.21)

where

Rν0 =eiεκx(−x)−s−(i/2)(ε+τ)(1− x)(i/2)(ε+τ)+ν (3.22)

×
∞∑

n=−∞
fνn

Γ(1− s− iε− iτ)Γ(2n+ 2ν + 1)

Γ(n+ ν + 1− iτ)Γ(n+ ν + 1− s− iε)

× (1− x)n 2F1

(
−n− ν − iτ,−n− ν − s− iε;−2n− 2ν;

1

1− x

)
,

and the slm label has been dropped for convenience. Rν0 and R−ν−1
0 are linearly independent, and

hence form a basis of solutions to the Teukolsky equation.

So far, only the ingoing solution to the Teukolsky equation Eq. (2.133) has been discussed. To

determine the upgoing radial Teukolsky solution, a di�erent rescaling to that of Eq. (3.2) is used,

given by

RC = ẑ−1−n
(

1− εκ

ẑ

)−s−i(ε+τ)/2
f(ẑ), (3.23)

where

ẑ = z − z− = εκ(1− x), (3.24)

and f(ẑ) is to be determined, similarly to pin(x) for the ingoing case. The slm label has also been

dropped here. A derivation of the prefactor in Eq. (3.23) can be found in Appendix B of [85]. Unlike

Rin
slm however, RC does not correspond to the upgoing solution exactly, which will be given later in

Eq. (3.32). Substituting Eq. (3.23) into Eq. (2.133) transforms the radial Teukolsky equation in to

the form of a perturbed Coulomb equation (hence the suggestive subscript `C') instead of a perturbed

hypergeometric di�erential equation, as happened when substituting Eq. (3.2) into Eq. (2.133) [84].

The leading order Coulomb equation obtained has a regular singularity at ẑ = 0, corresponding

to the inner horizon. The solutions to Coulomb's equation again have many alternate forms that

can be found in the DLMF [97], such as the con�uent hypergeometric function U 5, which is the

usual choice for the upgoing MST series solution as its analytic properties allow for the solution of

RC to be simpli�ed, as well as allowing for the asymptotic behaviour of Rup
slm to be recovered [84].

Similarly to pin(x), a detailed derivation of f(ẑ) can be found in references [84] or [86] but will not

5It serves to list some of the many aliases of U that appear in the literature, in order to avoid confusion when
visiting the references provided throughout this report. U is often written as Ψ, as is the case in Ref. [86], is referred
to in the DLMF [97] as one of the con�uent hypergeometric functions, namely a solution to Kummer's equation and
is also occasionally referred to as Tricomi's function, which is also known as the con�uent hypergeometric function of
the second kind. The label U is chosen here to re�ect the corresponding Mathematica function, HypergeometricU[]
which will be used in Chapter 3.
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be provided here for brevity. RC is then given by [84, 86]

RC = Rν+ +Rν−, (3.25)

where Rν+ and Rν− are linearly independent for a given slm mode, and are given respectively by [84]

Rν+ =2νe−πεeiπ(ν+1−s) Γ(ν + 1− s+ iε)

Γ(ν + 1 + s− iε)e
−iẑ ẑν+iε(ẑ − εκ)−s−iε+ (3.26)

×
∞∑

n=−∞
infνn(2ẑ)nU(n+ ν + 1− s+ iε, 2n+ 2ν + 2; 2iz), (3.27)

Rν− =2νe−πεe−iπ(ν+1+s)eiẑ ẑν+iε+(ẑ − εκ)−s−iε+ (3.28)

×
∞∑

n=−∞
in

(ν + 1 + s− iε)n
(ν + 1− s+ iε)n

fνn(2ẑ)n (3.29)

× U(n+ ν + 1 + s− iε, 2n+ 2ν + 2;−2iz), (3.30)

with

ε+ =
ε+ τ

2
, ε− =

ε− τ
2

. (3.31)

Similarly to the ingoing solution, one solution to the Coulomb type Teukolsky equation is chosen

such that the asymptotic behaviour of the upgoing radial function at |x| = ∞ in Eq. (2.137) is

recovered, and is valid over the region r+ < r. A suitable solution to Rup
slm that satis�es these

conditions is found to be [84]

Rup
slm(ẑ) = Rν−. (3.32)

The solutions Rν0 , R
−ν−1
0 , Rν+ and Rν− cannot all be independent and must therefore satisfy some

relation to each other. Each set of solutions can be thought of as an alternate basis to the Teukolsky

equation, however not every solution will produce a result from which the physics of interest, in this

case the asymptotic behaviour, is readily seen. While Rν0 and R−ν−1
0 are valid in the region r <∞,

Rν+ and Rν− are valid in the region r+ < r, to compare these solutions they must match in the

region r+ < r < ∞. The only way this is possible is if the MST coe�cients and the renormalized

angular momentum ν work out to be the same for both sets of solutions. Thankfully this works out

to be the case, and is the reason why both sets of MST coe�cients can be referred to as fn6 . The

relationship between RC and Rν0 is [84, 86]

Rν0 = KνR
ν
C, (3.33)

where Kν is given by Eq. (165) in [84] or Eq. (3.32) in [86].

6The fact that ν and fn work out to be the same for both ingoing and upgoing solutions is often quoted in the
literature as surprising. However, given that Rν0 , R

−ν−1
0 , Rν+ and Rν− cannot all be independent, perhaps it's no

mystery as there is necessarily a way to relate the hypergeometric and con�uent hypergeometric solutions. Relations
between these functions can also be found in the DLMF [97] for special cases.
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Therefore, Rin
slm can also be written as

Rin
slm = KνR

ν
C +K−ν−1R

−ν−1
C , (3.34)

which is valid in the region r+ < r, including at r = ∞ [84]. Equation (3.34) can then be used

to obtain the asymptotic amplitudes Rin, inc
slm and Rin, ref

slm . Using the Chandrasekhar transformation,

MST expressions can also be found for the ingoing and upgoing solutions to the Regge-Wheeler

equation, Eq. (2.49) [86]. Respectively, these are given by [86]

ψins (x) = (1− x)s+1eiεx(−x)−iε
∞∑

n=−∞

(−ν + s− iε)−n(ν + s− iε+ 1)n(ν + iε+ 1)n
(ν − iε+ 1)n

(−1)nfn

× 2F1(n+ ν + 1 + s− iε,−n− ν + s− iε; 1− 2iε;x),

(3.35)

ψups (z) = 2νe−πεe−iπ(ν+1)eizzν+1+iε(z − εκ)−iε
∞∑

n=−∞

(ν + 1 + s− iε)n
(ν + 1− s+ iε)n

fn(2iz)n

× U(n+ ν + 1− iε, 2n+ 2ν + 2;−2iz).

(3.36)

The asymptotic behaviour of the Regge-Wheeler master functions is also satis�ed by Eq. (3.35) and

Eq. (3.36) as required 7 . Eq. (3.20), Eq. (3.32) Eq. (3.35) and Eq. (3.36) are all valid under the

assumption that ε � 1, and hence naturally lend themselves to a low-frequency expansion, which

can easily be performed by using the Mathematica function, Series[]. As was the goal of the MST

method, we now have semi-analytic solutions to the Teukolsky and Regge-Wheeler equations. While

there are a number of alternate forms for Rin
slm, R

up
slm, ψ

in
s and ψups , which may be more suitable for

analysis near the horizon or near in�nity, the respective de�nitions in Eq. (3.20), Eq. (3.32) Eq. (3.35)

and Eq. (3.36) shall be used whenever the MST series for the radial Teukolsky and Regge-Wheeler

master functions are required throughout this report. These expressions are valid over almost the

entire domain, and for the portions of the domain that they are not, the asymptotic de�nitions may

be used.

3.2 The MST package

The goal of the MST package is to compute the MST series for the radial ingoing and radial

upgoing Teukolsky and Regge-Wheeler master functions (and their derivatives) numerically, us-

ing Eq. (3.20), Eq. (3.32), Eq. (3.35) and Eq. (3.36). The MST package does this by de�ning

7Note that in [86], the functions ψin
s and ψup

s are referred to as X in and Xup respectively. Note also that the MST
coe�cients fn are denoted as aTn in [86]. In this report, the convention of [84] will be adopted and the MST coe�cients
will always be written in terms of fn. The relationship between di�erent de�nitions for the MST coe�cients can be
found in [86]. These relations explain the apparent di�erences between our ψin

s and ψup
s compared to X in and Xup in

[86]. These expressions however are in fact equivalent.

42



the functions MSTRadialIn[s, l, m, q, ε, ν, λ, norm], MSTRadialUp[s, l, m, q, ε, ν, λ,

norm] and their derivatives. The parameters s, l, m, q, ε, ν and λ have their usual meanings,

de�ned earlier in this report. To compute these functions, the variable $MasterFunction must be

set to either Teukolsky or ReggeWheeler according to the user's requirements. ν is calculated using

the function RenormalizedAngularMomentum[s, l, m, a, ω, λ], which is de�ned in another �le

of the MST package in the BHPToolkit [1]. The parameter `norm' refers to the user's choice of

normalisation. The MST package follows the conventions and therefore normalisation of [84], so a

choice of `norm' = 1 corresponds to the exact MST expressions from Eq. (3.20), Eq. (3.32), Eq. (3.35)

and Eq. (3.36). The parameters in MSTRadialIn[] and MSTRadialUp[] will henceforth be dropped

and for the remainder of this section parameters of Mathematica functions from the MST package

will only be speci�ed when initially introduced. It should be kept in mind that MSTRadialIn[] com-

putes either Rin
slm or ψins , depending on the choice of $MasterFunction. Similarly, MSTRadialUp[]

computes either Rup
slm or ψups . These functions also come with options for precision and accuracy

that correspond to Mathematica's standard options. In this section, the MST coe�cients will always

be written in terms of fn using the convention of [84].

In order to compute MSTRadialIn[] and MSTRadialUp[], the MST package must also calculate

fn numerically, which it does by de�ning the function fn[q, ε, κ, τ, ν, λ, s, m, n] and using

a standard numerical algorithm to solve the recurrence relation in Eq. (3.15). The details of this

algorithm can be found in the MST package [1]. For the remainder of this section, the inner workings

of the MST package are described in detail, namely how MSTRadialIn[] and MSTRadialUp[] and

their derivatives are programmed and computed, keeping e�ciency, usability and readability of the

package in mind. The MST package is valid for all values of s, l and m, though not all combinations

will be physically relevant. Note also that M = 1 throughout the MST package.

3.3 Deriving recurrence relations for hypergeometric functions

Previously in Section 3.1 it was shown that the radial ingoing (and radial outgoing) Teukolsky and

Regge-Wheeler master functions heavily depend on the (con�uent) hypergeometric functions, 2F1

(and U). Therefore, an understanding of such functions is required in order to sum the MST series

e�ciently. It is found in many cases that it is more e�cient to calculate 2F1 and U using recurrence

relations than to compute them directly. As such, suitable recurrence relations for 2F1 and U will be

derived here for use in the MST package. The DLMF [97] provides an ample selection of relations

for a given (con�uent) hypergeometric function and its contiguous functions, a resource that shall

be used throughout this section. The recurrence relations derived here should not be confused with

those used in deriving the MST series coe�cients fn in Section 3.1 as they serve a di�erent purpose.
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3.3.1 Ingoing radial MST functions

Recall from Eq. (3.20) and Eq. (3.35) that a given term in the MST series for the radial ingoing

Teukolsky [84] and RW [86] master functions are of the respective forms

Rin ∼ 2F1(n+ ν + 1− iτ,−n− ν − iτ ; 1− s− iε− iτ ;x), (3.37)

ψins ∼ 2F1(n+ ν + s+ 1− iε,−n− ν + s− iε; 1− 2iε;x). (3.38)

Instead of deriving recurrence relations for both the Teukolsky and RW cases separately, a more

general recurrence relation can be derived for 2F1(a+ n, b− n, c, x) where, for the Teukolsky case

a = ν + 1− iτ,
b = −ν − iτ,
c = 1− s− iε− iτ, (3.39)

and for the Regge Wheeler case

a = ν + s+ 1− iε
b = −ν + s− iε
c = 1− 2iε. (3.40)

Deriving a suitable recurrence relation for the general parameters a, b and c facilitates the imple-

mentation of further options beyond Teukolsky and Regge-Wheeler, should they ever be required in

the future. Using a generic recurrence relation in the MST package also makes the derivation more

transparent. A suitable recurrence relation should re�ect the summation in the MST series. As n is

the variable to be summed over, the relevant recurrence relation should take the following form

2F1(n+ a, b− n, c, x) = 2F1(a+ n− 1, b− (n− 1), c, x)A(a, b, c, x) (3.41)

+ 2F1(a+ n− 2, b− (n− 2), c, x)B(a, b, c, x),

= 2F1(a+ n− 1, b− n+ 1, c, x)A(a, b, c, x)

+ 2F1(a+ n− 2, b− n+ 2, c, x)B(a, b, c, x),

where A(a, b, c, x) and B(a, b, c, x) are to be determined. To simplify notation, for a given n, the

variables ã and b̃ are introduced

ã = a+ n, (3.42)

b̃ = b− n, (3.43)
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and the recurrence relation Eq. (3.41) becomes

2F1(ã, b̃, c, x) = 2F1(ã− 1, b̃+ 1, c, x)A(a, b, c, x) + 2F1(ã− 2, b̃+ 2, c, x)B(a, b, c, x). (3.44)

The tildes on ã and b̃ will henceforth be dropped for convenience, to be reinstated later on. To

solve for A(a, b, c, x) and B(a, b, c, x), a good starting point is to determine a recurrence relation for

2F1(a, b, c, x) that is contiguous in the �rst parameter, a. Setting a→ a− 1 in DLMF(15.5.11) [97]

gives

(a− 1)(x− 1)2F1(a, b, c, x) + [c− (a− 1)]2F1(a− 2, b, c, x)

+ [2(a− 1)− c+ (b− (a− 1))x]2F1(a− 1, b, c, x) = 0. (3.45)

The second and third terms of Eq. (3.45) need to be written in terms of 2F1(a, b, c, x), 2F1(a −
1, b+ 1, c, x) and 2F1(a− 2, b+ 2, c, x) in order to obtain a recurrence relation of the desired form,

as in Eq. (3.44). This can be done by replacing the second and third term of Eq. (3.45) using

DLMF(15.5.12) [97] and choosing a→ a− 2 and a→ a− 1 respectively, such that

2F1(a− 2, b, c, x) =
(1− (a− 1))2F1(a− 1, b, c, x) + b2F1(a− 2, b+ 1, c, x)

b− (a− 2)
, (3.46)

2F1(a− 1, b, c, x) =
(1− a)2F1(a, b, c, x) + b2F1(a− 1, b+ 1, c, x)

b− (a− 2)
. (3.47)

The �rst term on the right hand side of Eq. (3.46) can be replaced using Eq. (3.47). In this way,

Eq. (3.45) can be written in terms of 2F1(a, b, c, x), 2F1(a−1, b+1, c, x) and 2F1(a−2, b+2, c, x), with

an additional term including 2F1(a− 2, b+ 1, c, x), which can be replaced by using DLMF(15.5.12)

[97] and choosing a→ a− 2 and b→ b+ 1 such that

2F1(a− 2, b+ 1, c, x) =
(2− a)2F1(a− 1, b+ 1, c, x) + (b+ 1)2F1(a− 2, b+ 2, c, x)

b+ 1− (a− 2)
. (3.48)

Using Eqs. (3.46) - (3.48) and Eq. (3.45) can be rewritten as

(a− 1)(x− 1)2F1(a, b, c, x) + [c− (a− 1)]

{
1− (a− 1)

b− (a− 2)

(
(a− 1)2F1(a, b, c, x) + b2F1(a− 1, b+ 1, c, x)

b− (a− 1)

)

+
b

b− (a− 2)

(
(2− a)2F1(a− 1, b+ 1, c, x) + (b+ 1)2F1(a− 2, b+ 2, c, x)

b+ 1− (a− 2)

) }

+
[2(a− 1)− c+ (b− (a− 1))x]

b− (a− 1)
{(1− a)2F1(a, b, c, x) + b2F1(a− 1, b+ 1, c, x)} = 0. (3.49)

As n is the variable to be summed over in the MST series, n must be reinstated into the recurrence

relation. Reverting back to the original parameters by setting a→ a+n and b→ b−n, and solving
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Eq. (3.49) for 2F1(a, b, c, z), the simpli�ed result is given by

2F1(a+ n, b− n, c, x) =

(
(2− a− n)(1− a+ c− n)

(1 + b− c− n)(−1 + a+ n)
− (2− a− n)(1− a+ c− n)(1− a+ b− 2n)

(3− a+ b− 2n)(1 + b− c− n)(−1 + a+ n)

+
(2− a+ b− 2n)(−c+ 2(−1 + a+ n) + (1− a+ b− 2n)x)

(1 + b− c− n)(−1 + a+ n)

)
× 2F1(a+ n− 1, b− n+ 1, c, x)

+
(1 + b− n)(1− a+ c− n)(1− a+ b− 2n)

(3− a+ b− 2n)(1 + b− c− n)(−1 + a+ n)
2F1(a+ n− 2, b− n+ 2, c, x).

(3.50)

The recursion relation in Eq. (3.50) is now in the desired form as initially proposed in Eq. (3.44) and

is almost ready to be implemented to the MST package. The functions A(a, b, c, x) and B(a, b, c, x)

can be read directly from the coe�cients of 2F1(a+n−1, b−n+1, c, x) and 2F1(a+n−2, b−n+2, c, x)

in Eq. (3.50) respectively. There are however still a few more steps before the recurrence relation is

`package ready', which will be discussed in Section 3.4.

3.3.2 Upgoing radial MST functions

While the MST series for the radial ingoing Teukolsky and RWmaster functions required a recurrence

relation for 2F1, the radial upgoing solutions require a recurrence relation for U . The approach to

deriving this recurrence relation is largely the same as that for its ingoing counterpart, with a few

more intermediate steps. Recall from Section 3.1 that a given term in the MST series for the radial

upgoing Teukolsky [84] and RW [86] solutions are of the respective forms

Rup ∼ U(n+ ν + 1 + s− iε, 2n+ 2ν + 2;−2iẑ), (3.51)

ψups ∼ U(n+ ν + 1− iε, 2n+ 2ν + 2;−2iẑ). (3.52)

Similar to Eq. (3.41) in the ingoing case, a general recurrence relation for U that re�ects the MST

series for the upgoing case should be of the form

U(n+ a, 2n+ b, c) = U(n− 1 + a, 2(n− 1) + b, c)C(a, b, c) + U(n− 2 + a, 2(n− 2) + b, c)D(a, b, c),

U(ã, b̃, c) = U(ã− 1, b̃− 2, c)C(a, b, c) + U(ã− 2, b̃− 4, c)D(a, b, c), (3.53)

where C(a, b, c) and D(a, b, c) are to be determined, ã = a+ n and b̃ = 2n+ b, with

a = ν + 1 + s− iε for the Teukolsky case,

a = ν + 1− iε for the RW case,

b = 2ν + 2 for both the Teukolsky and RW cases,

c = −2iẑ for both the Teukolsky and RW cases. (3.54)
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The tildes will again be dropped for convenience, to be reinstated later on. In order to determine

C(a, b, c) and D(a, b, c), setting a→ a−1 in the relation given by DLMF(13.3.7), which is contiguous

in the �rst parameter a, is again a good starting point

(a− 1)(a− b)U(a, b, c) + (b− 2(a− 1)− c)U(a− 1, b, c) + U(a− 2, b, c) = 0. (3.55)

To obtain a recurrence relation of the form in Eq. (3.53), the second and third terms in Eq. (3.55)

need to be written in terms of U(a, b, c), U(a− 1, b− 2, c) and U(a− 2, b− 4, c). Treating the second

term of Eq. (3.55) �rst, a shall be set to a → a − 1 in DLMF(13.3.9) and a → a − 1, b → b − 1 in

DLMF(13.3.8), yielding the following equations respectively

U(a− 1, b, c)− (a− 1)U(a, b, c)− U(a− 1, b− 1, c) = 0, (3.56)

(b− (a− 1)− 2)U(a− 1, b− 2, c) + (1− (b− 1)− c)U(a− 1, b− 1, c) + cU(a− 1, b, c) = 0. (3.57)

Rearranging Eq. (3.57) for U(a− 1, b− 1, c), substituting the result into Eq. (3.56) and then solving

for U(a− 1, b, c) gives

U(a− 1, b, c) =

(a− 1)U(a, b, c)− (b− (a− 1)− 2)

(1− (b− 1)− c)U(a− 1, b− 2, c)(
1 +

c

1− (b− 1)− c

) , (3.58)

which can be used to replace the second term in Eq. (3.55). Dealing now with the third term in

Eq. (3.55), U(a− 2, b, c) can be rewritten by setting a→ a− 1 in Eq. (3.58) to give

U(a− 2, b, c) =

(a− 2)U(a− 1, b, c)− (b− (a− 2)− 2)

(1− (b− 1)− c)U(a− 2, b− 2, c)(
1 +

c

1− (b− 1)− c

) . (3.59)

The �rst term in Eq. (3.59) is known from Eq. (3.58). All that remains to do is to determine

U(a − 2, b − 2, c) in terms of U(a, b, c), U(a − 1, b − 2, c) and U(a − 2, b − 4, c), which can be done

by using Eq. (3.58) and setting a→ a− 1 and b→ b− 2, recovering the relation

U(a− 2, b− 2, c) =

(a− 2)U(a− 1, b− 2, c)− ((b− 2)− (a− 2)− 2)

(1− (b− 3)− c) U(a− 2, b− 4, c)(
1 +

c

1− (b− 3)− c

) . (3.60)

Replacing U(a − 2, b − 2, c) in Eq. (3.59) with the right hand side of Eq. (3.60) gives U(a − 2, b, c)

completely in terms of U(a, b, c), U(a − 1, b − 2, c) and U(a − 2, b − 4, c) as required. Replacing

U(a−1, b, c) in Eq. (3.55) with the right hand side of Eq. (3.58) and replacing U(a−2, b, c) with the

right hand side of Eq. (3.59), making the necessary substitutions for U(a−1, b, c) and U(a−2, b−2, c)
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using Eq. (3.59) and Eq. (3.60) respectively gives the following relation

(a−1)(a− b)U(a, b, c) + (b− 2(a− 1)− 2)

{(a− 1)U(a, b, c)−
(
b− (a− 1)− 2

1− (b− 1)− c

)
U(a− 1, b− 2, c)(

1 +
c

1− (b− 1)− c

) }

+

{
a− 2

1 +
c

1− (b− 1)− c
×

(a− 1)U(a, b, c)− b− (a− 1)− 2

1− (b− 1)− cU(a− 1, b− 2, c)

1 +
c

1− (b− 1)− c

−

b− (a− 2)− 2

1− (b− 1)− c
1 +

c

1− (b− 1)− c
×

(a− 2)U(a− 1, b− 2, c)− (b− 2)− (a− 2)− 2

1− (b− 3)− c U(a− 2, b− 4, c)

1 +
c

1− (b− 3)− c

}

= 0. (3.61)

Reinstating a → a+ n and b → b+ 2n in Eq. (3.61), as was done for the ingoing case, rearranging

for U(a, b, c) and simplifying the result gives a recursion relation of the form Eq. (3.53), from which

C(a, b, c) and D(a, b, c) can be read o� directly

U(n+ a, 2n+ b, c) = −(2 + a− b− n)(−2 + b+ 2n)

(−1 + a+ n)(−4 + b+ 2n)
U(n+ a− 2, 2n+ b− 4, c) (3.62)

+

(
(−3 + b+ 2n)(8 + (b+ 2n)2 + 2(a+ n)c− (b+ 2n)(6 + c))

(−1 + a+ n)(−4 + b+ 2n)c

)
× U(n+ a− 1, 2n+ b− 2, c).

The recursion relation Eq. (3.62) is now almost ready to be implemented into the MST package.

As for the ingoing case, there are still a few more steps required before the recurrence relation is

`package ready', which will be discussed in Section 3.4.

3.4 Implementing hypergeometric recurrence relations to the MST

package

The recurrence relations Eq. (3.50) and Eq. (3.62) were derived in order to calculate the MST series

e�ciently. There are however a few subtleties that must be taken into account before these recur-

rence relations can be implemented into the MST package. Recall that the goal of the MST package

is to compute solutions to Eqs. (3.20),(3.32), (3.35) and (3.36) via the functions MSTRadialIn[] and

MSTRadialUp[], for either the Teukolsky or Regge-Wheeler case, depending on the user's choice of
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$MasterFunction. MSTRadialIn[] and MSTRadialUp[] will call on 2F1 and U respectively, which

will either be calculated by using the recurrence relations derived in Section 3.3.1 and Section 3.3.2

respectively, or by using Mathematica's inbuilt functions when necessary. For the latter case, the

functions H2F1Exact[n, s, ν, τ, ε, x] and HUExact[n, s, ν, τ, ε, zhat] (where zhat rep-

resents ẑ) are de�ned using the inbuilt Mathematica functions, Hypergeometric2F1[a,b,c,x] and

HypergeometricU[a,b,c] respectively, where a, b and c are replaced by the parameters from either

Eq. (3.39), Eq. (3.40) or Eq. (3.54).

In the MST package, while H2F1Exact[] is de�ned exactly by Hypergeometric2F1[], HUExact[]

is de�ned by HypergeometricU[] with an additional overall factor of (−2iẑ)n, or cn, which serves to

improve the convergence of the upgoing MST series and is divided out later on [1]. The recurrence

relations for U should also include additional factors such that U(n+ a− 1, 2n+ b− 2, c) picks up a

factor of (−2iẑ), U(n+a−2, 2n+b−4, c) a factor of (−2iẑ)2 and so on. These factors are accounted

for throughout the code [1]. It is found that by not including this factor in the recurrence relations

for U , the �nal function MSTRadialUp[] fails, albeit mysteriously, to converge. These factors should

therefore be included in all �nal expressions involving U , that is they should be inserted into the

expressions Eq. (3.62) and Eq. (3.64) etc. before being implemented into the MST package. All �nal

expressions can be found in the BHPToolkit [1].

Recall from Section 3.3 it was mentioned that neither the recurrence relations in Eq. (3.50)

or Eq. (3.62) were in the correct form to implement into the MST package. To implement the

recurrence relations into the package, the following fact should be taken into account. As described

in Section 3.1, the MST coe�cient for n = 0, f0, is set to 1. With this choice, the recurrence relations

given by Eq. (3.50) and Eq. (3.62) su�ce only for the terms in the series where n > 0, as they are

written in such a way that any given term depends on the previous two terms. In other words, the

MST terms are summed `upwards'. By choosing to initialise the series at n = 0, if Eq. (3.50) and

Eq. (3.62) were used in their current form, the n < 0 terms would depend on their previous two

contiguous functions, which have not yet been calculated! To rectify this, another recurrence relation

must be derived for the ingoing and upgoing case such that the terms in the MST series are summed

`downward' . The downward version of the recurrence relations can be readily obtained from their

upward counterparts by rearranging Eq. (3.50) and Eq. (3.62) for 2F1(a+ n− 2, b− n+ 2, c, x) and

U(n+ a− 2, 2n+ b− 4, c) respectively, and setting n→ n+ 2, giving

2F1(a+ n, b− n, c, x) =

(
(2 + a− b+ 2n)(−2− 2a+ 2b+ 2ab+ c− ac− bc− 4n− 2an+ 2bn− 2n2)

(−1 + b− n)(1 + a− c+ n)(3 + a− b+ 2n)

+
(2 + a− b+ 2n)(1 + a− b+ 2n)(3 + a− b+ 2n)x

(−1 + b− n)(1 + a− c+ n)(3 + a− b+ 2n)

)
× 2F1(a+ n+ 1, b− n− 1, c, x)

+
(1 + a+ n)(1− b+ c+ n)(1 + a− b+ 2n)

(−1 + b− n)(1 + a− c+ n)(3 + a− b+ 2n)

× 2F1(a+ n+ 2, b− n− 2, c, x), (3.63)
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and

U(n+ a, 2n+ b, c) = −(1 + b+ 2n)(b2 + 4n(1 + n) + b(2 + 4n− c) + 2ac)

c(−a+ b+ n)(2 + b+ 2n)

× U(n+ a+ 1, 2n+ b+ 2, c)

+
(1 + a+ n)(b+ 2n)

(−a+ b+ n)(2 + b+ 2n)
U(n+ a+ 2, 2n+ b+ 4, c). (3.64)

The recurrence relations Eq. (3.63) and Eq. (3.64) will be used to calculate terms in the MST series

for which n < 0. So far, only the form of H2F1Exact[] and HUExact[] have been discussed. How

the recurrence relations are implemented and used in the MST package will be detailed here. Four

more functions will be de�ned in the package: H2F1Up[] H2F1Down[], HUUp[] and HUDown[] [1],

corresponding to the upwards and downwards sum for each of the hypergeometric and con�uent

hypergeometric functions, which will be used when it is more e�cient to compute the (con�uent)

hypergeometric functions using a recurrence relation than by using inbuilt functions. A note of

caution, the upwards sum should not be confused with the upgoing solutions from Section 3.1 . The

functions H2F1Up[], H2F1Down[], HUUp[] and HUDown[] are then de�ned using Eq. (3.50) Eq. (3.63),

Eq. (3.62) and Eq. (3.64), with the following replacements respectively

2F1(a+ n, b− n, c, x)→ H2F1Up[n,s,ν, τ, ε, x], (3.65)

2F1(a+ n− 1, b− (n− 1), c, x)→ H2F1[n-1],

2F1(a+ n− 2, b− (n− 2), c, x)→ H2F1[n-2],

2F1(a+ n, b− n, c, x)→ H2F1Down[n,s,ν, τ, ε, x], (3.66)

2F1(a+ n+ 1, b− (n+ 1), c, x)→ H2F1[n+1],

2F1(a+ n+ 2, b− (n+ 2), c, x)→ H2F1[n+2],

U(a+ n, b+ 2n, c)→ HUUp[n,s,ν, τ, ε, zhat], (3.67)

U(a+ n− 1, b+ 2(n− 1), c)→ HU[n-1],

U(a+ n− 2, b+ 2(n− 2), c)→ HU[n-2],

U(a+ n, b+ 2n, c)→ HUDown[n,s,ν, τ, ε, zhat], (3.68)

U(a+ n− 1, b+ 2(n+ 1), c)→ HU[n+1],

U(a+ n− 2, b+ 2(n+ 2), c)→ HU[n+2],

where it is understood that a, b and c for the hypergeometric functions are di�erent to those for the

con�uent hypergeometric functions, as detailed in Section 3.3. The placeholders H2F1[] and HU[]

are not explicitly de�ned functions, but are used to store values of the contiguous hypergeomet-
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ric and con�uent hypergeometric functions respectively. When the functions MSTRadialIn[] and

MSTRadialUp[] are called, a check is performed for each term in the MST series as to whether it

is more e�cient to use Mathematica's inbuilt functions or the recurrence relations to calculate that

term. In order to perform this check, the recurrence relations H2F1Up[], H2F1Down[], HUUp[] and

HUDown[] should be written into a list format. Once written in this form, the recurrence relations

are ready to be implemented into the package For the �nal de�nitions of H2F1Up[], H2F1Down[],

HUUp[] and HUDown[] in their listed format, the reader should refer to the MST package in the

BHPToolkit [1].

The MST series for a given set of parameters is then calculated as follows. Take the ingoing case

for example. For the n = 0 and n = 1 terms, Mathematica's inbuilt function is used via H2F1Exact[]

to initialise the series. The e�ciency check is then performed for all other terms in the series. If

the e�ciency check for the nth term determines that it is preferable to use Mathematica's inbuilt

function, H2F1[n] is calculated using the function H2F1Exact[], and its value is stored. However,

if the check determines that it is preferable to use the recurrence relations, the function H2F1Up[]

is called when n > 0, and H2F1Down[] when n < 0. These functions in turn call on the previously

stored values of their contiguous terms that have been calculated either by using Mathematica's

inbuilt functions, or by the recurrence relations. An identical procedure is followed for the upgoing

case. Once the MST series has been calculated, the stored values of H2F1[n] and HU[n] are cleared

to free up memory.

All terms and factors within MSTRadialIn[] and MSTRadialUp[] that depend on n are summed

over using a while loop, which is terminated when the result of the summation di�ers by machine

precision, or by some user speci�ed precision. The asymptotic amplitudes of the MST series are

also de�ned, the expressions for which can be found in the MST package [1], and can be used to

renormalise the result as the user requires.

3.5 Derivatives of recurrence relations and MST radial functions

The derivatives of the MST series for the radial Teukolsky and Regge-Wheeler master functions may

also need to be calculated, particularly to check that the solution satis�es either the Teukolsky or

Regge-Wheeler equation to su�cient accuracy. In order to calculate the derivatives of the MST radial

functions, MSTRadialIn[] and MSTRadialUp[], the �rst derivatives of 2F1, U and the derivatives of

their recurrence relations need to be determined. The derivatives of H2F1Exact[] and HUExact[],

de�ned in the MST package as dH2F1Exact[] and dHUExact[], employ the identities given by

DLMF(15.5.1) and DLMF(13.3.22) respectively. Care should be taken when deriving the derivatives

of the recurrence relations however. For the upgoing case, recall that c = −2iẑ, and the chain

rule should be applied appropriately. By applying the appropriate Leibniz rules, the derivatives of

H2F1Up[], H2F1Down[], HUUp[] and HUDown[] are de�ned in the package as dH2F1Up[], dH2F1Down[]

and dHUUp[] and dHUDown[] respectively in terms of dH2F1[] and dHU[], again in a listed format.

The reader is referred to the MST package for the �nal form of these expressions [1].
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Second (and higher) derivatives of the radial Teukolsky and Regge-Wheeler master functions

may also need to be calculated, again to check that they are solutions to their respective equations.

Rather than de�ning a new recurrence relation for each higher derivative of 2F1 and U , the higher

derivatives of MSTRadialIn[] and MSTRadialUp[] can be calculated by using the Teukolsky and

Regge-Wheeler equations recursively. It is much quicker to calculate the �rst derivative of the MST

series once, as described in Section 3.5, and then to calculate its second derivative in terms of the

original function and its �rst derivative by rearranging either Eq. (2.133) or Eq. (2.49) than it is

to calculate all of the MST coe�cients and derivatives of (con�uent) hypergeometric functions each

time the user needs a higher derivative of the MST radial functions. This recursive procedure works

for all higher derivatives of the radial Teukolsky and Regge-Wheeler master functions. Further

details on how the second and higher derivatives of the radial Teukolsky and Regge-Wheeler master

functions are calculated can be found in the MST package [1]. One can then show using the MST

package that the RW and Teukolsky equations are satis�ed by the MST solutions.
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Chapter 4

Gravitational Self-Force Theory

To meet the accuracy requirements for performing precision tests of GR by matching theoretical

templates to experimental signals, the GSF approach appears to be the most viable method for

modelling EMRIs [16, 17, 43]. This chapter shall serve as a review of GSF theory. As discussed in

the introduction, the self-interaction between the secondary and the spacetime it perturbs gives rise

to the GSF. Energy conservation demands the binary orbit shrinks due to the radiation-reaction

by emission of GWs and it is the SF that drives the binary to inspiral beyond geodesic motion.

To generate EMRI waveforms we need two things: the phase and the amplitude. Within GSF

theory, we shall approach modelling EMRIs using the two-timescale approximation in conjunction

with the self-consistent framework of BHPT from Chapter 2. The two-timescale approximation will

be used for the purposes of this chapter, in addition to Chapters 5 - 8. For a review of various

other methods for modelling EMRIs the reader is directed to Ref. [14] and the references therein.

Using the two-timescale approach, a simple scaling argument, which is detailed below [13], shows

us that we must calculate the phase to �rst post-adiabatic (1PA) order, which in turn requires the

determination of the metric perturbation through second-order in the small mass ratio [14]. While

this level of accuracy may not be required for the detection of EMRIs by space-bourne detectors, it

is certainly required if we wish to extract the parameters such as the mass and spin of the compact

bodies, or perform precision tests of GR using EMRI signals. In this chapter we will summarise the

procedure for calculating the GW phase using three di�erent approaches, introducing any necessary

quantities such as the GSF, GW energy �uxes and the binding energy. We shall also introduce

the �eld equations for the second-order metric perturbation, which we must solve to obtain the full

1PA phase correction. The second-order �eld equations also provide the motivation for one of the

main calculations in this work, given in Chapter 6, on the slow evolution of the �rst-order metric

perturbation. For the purposes of this work, all calculations will be done on constant t-slicing.

Results for hyperboloidal slicing can be found in Ref. [14].
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4.1 The two-timescale approximation

When modelling EMRIs we can consider two di�erent timescales. During the inspiral, these two

timescales are the orbital timescale, torb, and the radiation-reaction timescale, trr. The orbital

timescale is the time taken to complete an orbit, which in the weak �eld is torb ∼ M [13, 14]. The

radiation-reaction timescale is then the time over which the radius of the orbit shrinks in size due

to the radiation reaction from the emission of GWs, and is given by: trr ∼ M/ε [13, 14]. These

timescales change as the EMRI begins its plunge into merger. We will leave the discussion of the

transition to plunge to Chapter 7, and consider only the inspiral and hence inspiral timescales during

this chapter. By the scaling arguments above, we �nd that the number of orbits we can expect to see

during an EMRIs lifetime is given by the ratio of the two timescales: trr/torb ∼ 1/ε ≥ 104 [13, 14].

Due to the large number of orbits and long radiation-reaction timescale, EMRI signals could last

many years [10]. Therefore, we must compute the phase and amplitude of EMRI produced GWs

accurately enough so that the error accumulated over the thousands of orbits during the EMRIs

lifetime remains small.

Due to the disparate timescales, the radius of the orbit, rp evolves much more slowly than the

orbital phase. Any other physical orbital parameters that depend on the orbital radius, such as the

frequency and amplitude of the GWs, in addition to the orbital energy and angular momentum, will

also be slowly evolving. Therefore, GWs produced by EMRIs will be comprised of a slowly evolving

amplitude and a quickly evolving phase. We shall introduce the quantity slow-time, de�ned on

constant t-slicing by

t̃ = εt (4.1)

, over which the above listed `slow' parameters evolve. In the two-timescale approximation we can

then expand the orbital frequency Ω and radius rp in powers of ε such that [14]

Ω
(
t̃
)

=

∞∑
n=0

εnΩn

(
t̃
)
, (4.2)

rp

(
t̃
)

=
∞∑
n=0

εnrn
(
t̃
)
. (4.3)

Specialising to quasicircular, equatorial orbits, the quickly evolving GW phase, Φ is de�ned as the

time integral over the orbital frequency

Φ =

∫ t

mΩ
(
t′
)
dt′. (4.4)
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Using Eq. (4.2), the orbital phase φp then becomes 1 [14]

φp(t) =
1

ε

∫ t (
Ω0

(
t̃
)

+ εΩ1

(
t̃
)

+O
(
ε2
))
dt̃ (4.5)

=
1

ε

(
φ0(t) + εφ1(t) +O

(
ε2
))
. (4.6)

Here we see that we must calculate both φ0, referred to as the adiabatic or 0PA correction to

the phase, and φ1, referred to as the �rst post-adiabatic or 1PA correction, to ensure that the

accumulated error in the phase remains small, or O(ε), over the EMRIs lifetime. Fields such as the

metric perturbation must be treated with more attention in the two-timescale approximation than

the orbital parameters. In the self-consistent approximation the metric perturbation is written in

the following way [14]

hαβ(xµ; zν)→ hαβ(t, xa, ε) =

∞∑
n=1

εnhnαβ(t, xa), (4.7)

where xa = {r, θ, φ}. We can write Eq. (4.7) this way because any dependence on zα or functions of

zα depend on t. Now we must also consider the dependence on t̃. In the two-timescale approximation,

we assume that the self-consistent �elds can be written as [14]

hαβ(t, xa, ε)→ hαβ(t̃, φp(t, ε), xa, ε), (4.8)

where we are splitting up the dependence on fast and slow time, and φp(t, ε) is given by Eq. (4.6).

We can do this because the only quantity that evolves on the fast timescale t is φp, with all other

quantities evolving slowly with respect to t̃. The explicit dependence on ε is also more complicated

now in the two-timescale approximation, as the metric perturbation's dependence on functions of

zα, such as rp, are also now written as expansions in ε, as in Eq. (4.3). The metric perturbation can

then be written as a regular asymptotic expansion with �xed t̃, xa and φp in the following way

hαβ(t̃, φp(t, ε), xa, ε) =

∞∑
n=1

εnhnαβ(t̃, φp, x
a, ε), (4.9)

=
∞∑
n=1

εn
[
hnαβ(t̃, φp, x

a, 0) + ε∂εh
n
αβ(t̃, φp, x

a, 0) +O(ε2)
]
.

We then choose

h̃αβ(t̃, φp(t, ε), xa, ε) =

∞∑
n=1

εnh̃nαβ(t̃, φp, x
a), (4.10)

with

h̃1
αβ = h1

αβ(t̃, φp, x
a, 0), (4.11)

1Terms involving ε1/2 may appear if resonances are included. However, these only appear when the primary is a
Kerr black hole and the secondary follows some generic orbit, but not for quasicircular orbits [113].
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and

h̃nαβ = hnαβ(t̃, φp, x
a, 0) + ∂εh

n−1
αβ (t̃, φp, x

a, 0), for n > 1. (4.12)

Similarly to h̄αβ in Eq. (2.68), the trace reversal of h̃αβ can be written in terms of a mode-sum

decomposition with the separable form

˜̄hµν(xα; zα) =

∞∑
l=0

l∑
m=−l

˜̄hlmµν (xα;α) =

∞∑
l=0

l∑
m=−l

10∑
i=1

a
(i)
l

r
˜̄h

(i)
lm(t̃, φp, r)Y

(i),lm
µν (xa), (4.13)

and ˜̄h
(i)
lm takes the expansion

˜̄h
(i)
lm =

∞∑
n=1

εn˜̄h
n,(i)
lm . (4.14)

We will use tildes to denote �elds such as the metric perturbation and the SF in the two-timescale

approximation in this chapter. However, in later chapters the tilde notation will be dropped.

4.2 Modelling waveforms

In practice, GWs are observed at null asymptotic in�nity with respect to the primary black hole,

with cross-plus plane polarization. The amplitude of GWs need only be calculated to �rst-order in

the small mass ratio, as will be shown in Section 4.4, though the phase must be calculated through

1PA order, as shown by Eq. (4.6), which in turn requires knowledge of the metric perturbation

through second-order. Therefore, we will use the following expression to extract the GW amplitude

and phase that we will actually measure, to the level of accuracy required

h∞(xα; zα) = h+(xα; zα)− ih×(xα; zα) (4.15)

= lim
r→∞

r

M + µ
h1
m̄m̄ +O(ε), (4.16)

where h1
m̄m̄ = h̄1

αβm̄
αm̄β , and m̄ is given in Eq. (2.114d) for a Schwarzschild background, and the

tetrad decomposition is discussed earlier in Section 2.7.1. Choosing an l,m mode decomposition, the

part of the metric perturbation from which GWs can be observed in the two-timescale approximation

becomes

h∞(xα; zα) =
1

r

∑
lm

h∞lm(t̃, φp(t, ε), r, ε)−2Ylm(θ, φ). (4.17)

Converting from the tetrad basis to the BSL basis, we obtain

h1
m̄m̄ =

al
r

(
˜̄h

1,(7)
lm (t̃, φp(t, ε), r, ε) + i˜̄h

1,(10)
lm (t̃, φp(t, ε), r, ε)

)
−2Ylm(θ, φ)

∣∣∣
ε=0

, (4.18)

where al = a
(7)
l = a

(10)
l , de�ned in Eq. (2.69).
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The observable GW for a given l and m mode can therefore be written in the BSL basis that will

be used throughout this thesis in the following way

h̃∞lm(t̃, φp(t, ε), r, ε) = lim
r→∞

al

(
˜̄h

(7)
lm + i˜̄h

(10)
lm

)
e−imφp(t,ε) (4.19)

= Ã∞lm(t̃, r, ε)eiΦlm(t,ε), (4.20)

where

Ã∞lm =

∞∑
n=1

εnÃn,∞lm . (4.21)

In the following sections we will introduce the necessary ingredients to calculate the phase to 1PA

order in three di�erent ways; one which makes use of the equations of motion in the two-timescale

approximation while holding t̃ �xed for the purposes of di�erentiation, the second similar to the �rst

except with �xed Ω instead of t̃, and a third which makes use of the GW energy �uxes and binding

energy.

4.3 Equations of motion

The equation of motion describing the trajectory of the secondary is given by [14]

D2zµ

dτ2
= fµ, (4.22)

where
D

dτ
≡ dzα

dτ
∇α (4.23)

is a di�erential operator with respect to the background metric gαβ and fµ is the GSF due to

radiation-reaction. Writing out the di�erential operator explicitly, Eq. (4.22) becomes [14]

d2zµ

dt2
+

1

ut
dut

dt

dzµ

dt
+ Γµβγ

dzβ

dt

dzγ

dt
=

1

(ut)2 f
µ, (4.24)

where

uα =
dzα

dτ
. (4.25)

In the two-timescale approximation, we write the GSF as

fµ(t, ε) = εf̃µ1 (εt) + ε2f̃µ2 (εt) +O
(
ε3
)
, (4.26)
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and derivatives with respect to time at �xed r become [14](
∂

∂t

)
r

=
∂φp

∂t

∂

∂φp
+
∂t̃

∂t

∂

∂t̃
(4.27)

= Ω
∂

∂φp
+ ε

∂

∂t̃

= Ω0∂φp + ε
(
∂t̃ + Ω1∂φp

)
+O

(
ε2
)
.

For quasicircular equatorial orbits, the normalization condition gαβuαuβ = −1 determines the De-

tweiler redshift to be

ut
(
t̃
)

=
1√

1− 3M
rp(t̃)

. (4.28)

De�ning the two-timescale expansion of ut and ur as

ut =
∞∑
n=0

εnUn, (4.29)

ur =

∞∑
n=0

εnurn, (4.30)

then at leading order we have

U0

(
t̃
)

=
1√

1− 3M
r0(t̃)

, (4.31)

and

ur0
(
t̃
)

=
dr0

dt
=
dt̃

dt

dr0

dt̃
= ε

dr0

dt̃
. (4.32)

Replacing ut, ur, rp, Ω and fµ with their corresponding two-timescale expansions, the leading and

next to leading order of the r component of the equations of motion Eq. (4.24) yield [14]

Ω0(t̃) =

√
M

r3
0

, (4.33)

Ω1(t̃) =− 1

2f0r0Ω0

(
U−2

0 f̃ r1 +
3Mr1f0

r3
0

)
, (4.34)

where

f0 = f(r0) = 1− 2M

r0
. (4.35)

58



Similarly, the leading and next to leading order of the t component of Eq. (4.24) give [14]

dr0

dt̃
=

2 (r0 − 3M)2 (r0 − 2M)

M (r0 − 6M)
f̃ t1, (4.36)

dr1

dt̃
=

2r0f0 (r0 − 3M)2

M (r0 − 6M)
f̃ t2 +

r3
0 (r0 − 3M)

M (r0 − 6M)

df̃ r1
dt̃

+
2r2

0 (r0 − 3M)2 (r2
0 − 6Mr0 + 6M2

)
M2 (r0 − 6M)2 f̃ r1 f̃

t
1 (4.37)

+
4 (r0 − 3M)

(
r2

0 − 10Mr0 + 18M2
)

M (r0 − 6M)2 r1f̃
t
1.

Notice how both Eq. (4.36) and Eq. (4.37) blow up at the inner-most stable circular orbit (ISCO),

which occurs at r = 6M in Schwarzschild spacetime. We will shortly describe in Section 4.8 how

to use the quantities derived in this section to calculate the phase to 1PA order. Namely we solve

for r0 and r1 as input to Ω0 and Ω1. Firstly however, we must calculate the �rst and 2GSF in the

two-timescale approximation.

4.4 Calculating the Gravitational self-force

From Eq. (4.36) we see that calculating the phase to 0PA order requires knowledge of the t component

of the �rst-order SF. Equation (4.37) then shows that the 1PA correction to the phase also requires

the calculation of f̃ t1, in addition to f̃ r1 (and its slow-time derivative, by Eq. (4.37)) and f̃ t2. Using a

slightly di�erent form of the equations of motion we have [14, 17, 98]

D2zµ

dτ2
=− 1

2
Pµν

(
δρν − hRρν

) (
2hRβρ;α − hRαβ;ρ

)
uαuβ +O

(
ε3
)
, (4.38)

where

Pµν = gµν + uµuν , (4.39)

and hRαβ is the residual piece of the metric perturbation, which in the self-consistent approximation

has the expansion [14]

hRαβ = εh1R
αβ + ε2h2R

αβ . (4.40)

Rather than solving for the retarded �eld hαβ , we solve for the residual �eld hRαβ , de�ned by [14]

hRαβ = hαβ − hPαβ, (4.41)

where hPαβ is the puncture �eld. The puncture contains all of the singular behaviour of hαβ , which

can be subtracted mode-by-mode from the physical �eld using the decomposition in Eq. (2.68).

For a Schwarzschild background, this regularisation process is best understood in the Lorenz gauge

[17, 40, 16, 37], as discussed in the introduction. It is not possible to perform the subtraction in

Eq. (4.41) in a mode-sum decomposition when not in the Lorenz gauge. Therefore, the Lorenz

gauge shall be used throughout this thesis. We did not make the distinction between the retarded

and residual �eld in Section 2.5 when discussing the �rst-order metric perturbation, as we can solve
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Eq. (2.20) in the Lorenz gauge directly for the retarded �eld. It was shown by Warburton and

Wardell in 2013 how to puncture the �rst-order order scalar �eld [114], who later went on to show

how to puncture the �rst-order metric perturbation [115]. However, it is not necessary to subtract

the regularisation parameters mode-by-mode in the frequency domain for �rst-order calculations,

though in the time domain the m modes become divergent and a puncture scheme is required. A

puncture scheme is also necessary for solving the second-order metric perturbation in the Lorenz

gauge [14] 2.

Applying the two-timescale approximation to the right-hand side of Eq. (4.38) evaluating at the

particle, and matching order-by-order to the right-hand side of Eq. (4.26) gives a direct relation

between the SF and the metric perturbation components [14]

f̃α1
(
t̃
)

=
1

2
gαβh̃1R

u0u0,β, (4.42)

f̃α2
(
t̃
)

=
1

2
gαβh̃2R

u0u0,β +
1

2

[
r1

(
∂rg

αβh̃1R
u0u0,β + gαβh̃1R

u0u0,rβ

)
(4.43)

+ 2gαβh̃1R
u0u1,β + Pαβ0

(
2Γγ h̃1R

βγ − 2U0u
γ
0∂th̃

1R
βγ − h̃1Rγ

β h̃1R
u0u0,γ

)]
,

where the quantities h̃nRu0u0,β
are all evaluated on the world-line at leading order and are de�ned as

[14]

h̃nRu0u0,β = h̃nRµν,β
∣∣∣
zα0

uµ0u
ν
0 , (4.44)

where a comma denotes di�erentiation with respect to �xed slow time. The quantity P0 in Eq. (4.43)

is given by [14]

Pαβ0 = gαβ + uα0u
β
0 , (4.45)

and

Γα = U2
0

(
2Γαż0ż1 − 3Ω2

0f0r1δ
α
r

)
, (4.46)

is the leading order term of Γαβγ(zµ)uβuγ in the two-timescale approximation, where Γαż0ż1 is given

by

Γαż0ż1 = Γαβγ(zµ)żβ0 ż
γ
1 . (4.47)

2Upton and Pound show that the second-order metric perturbation can be calculated using mode-sum regulari-
sation, avoiding a puncture scheme by making use of the Detweiler stress energy tensor and a 'highly-regular gauge'
[116].
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Finally, we also use the following de�nitions in the equations above

zα0 = (t, r0, π/2, φp) , (4.48)

zα1 = (0, r1, 0, 0) , (4.49)

żα0 = (1, 0, 0,Ω0) , (4.50)

żα1 =
(
0, dr0/dt̃, 0,Ω1

)
, (4.51)

uα0 = U0ż
α
0 , (4.52)

uα1 = U1ż
α
0 + U0ż

α
1 . (4.53)

The t component of the �rst-order SF in the two-timescale expansion is then given by [14]

f̃ t1 =− 1

2

Ω0

f0
h̃1R
u0u0,φp (4.54)

=
1

2r0f0

∑
ilm

a
(i)
l iω(t̃)h̃

1R,(i)
lm

(
t̃, r0

)
Y

(i),lm
αβ (r0, π/2, 0)uα0u

β
0 , (4.55)

where h̃1R,(i)
lm is the residual piece of the trace reversed version of ˜̄h

1,(i)
lm from Eq. (4.14). The r

component of f̃µ1 is then given by [14]

f̃ r1 =
1

2
f0h̃

1R
u0u0,r (4.56)

=
1

2
f0

∑
i`m

a
(i)
l ∂r0

[
h̃

1R,(i)
lm

(
t̃, r0

)
Y

(i),lm
αβ (r0, π/2, 0)

]
uα0u

β
0 . (4.57)

The t component of the second-order SF can then be evaluated similarly, and is given by[14]

f̃ t2(t̃) =− 1

2
f−1

0 Ω0h̃
2R
u0u0,φp − f

−1
0 Ω0h̃

1R
u0u1,φp +

1

2
f−2

0 Ω0r1

(
f ′0h̃

1R
u0u0,φp − f0h̃

1R
u0u0,rφp

)
(4.58)

+
1

2

(
−f−1

0 δβt + U0u
β
0

)(
2Γγ h̃1R

βγ − 2U0u
γ
0∂t̃h̃

1R
βγ + f−1

0 Ω0h̃
1R
βt h̃

1R
u0u0,φp − f0h̃

1R
βr h̃

1R
u0u0,r

+r−2
0 h̃1R

βφ h̃
1R
u0u0,φp

)
,

where a prime on f denotes a derivative with respect to r. Note the appearance of the quantity

∂t̃h̃
1R
µν . To calculate the second-order SF we must calculate the slow-time derivative of the �rst-

order metric perturbation. This will be done in Chapter 6. It is also worth noting the distinction

between the dissipative and conservative contributions to the GSF, which are given simply in the

quasicircular case by [14]

f̃µn,diss =
(
f̃ tn, 0, 0, f̃

φ
n

)
, (4.59)

f̃µn,cons =
(

0, f̃ rn, 0, 0
)
, (4.60)

where the former is antisymmetric under the time reversal operation (t, φ) → (−t,−φ), and the

latter is symmetric.
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4.5 The second-order metric perturbation

We have applied the two-timescale approximation to the equations of motion. We must now apply

the two-timescale approximation to the linearised Einstein �eld equations as well, so that we can

solve for the metric perturbation in the two-timescale approach. We have already seen the self-

consistent equations for the �rst-order metric perturbation earlier in Eq. (2.20) from Chapter 2.

We will discuss how to solve the �rst-order �eld equations, at leading order in the two-timescale

approximation for quasicircular orbits in the Lorenz gauge, later in Chapter 5. This is equivalent to

solving for h̃1
αβ(t̃, φp, x

a, 0) from Eq. (4.11), where the metric perturbation has been evaluated at the

leading order contribution to the slowly evolving parameters it depends on, for example rp → r0. We

know from Sections (4.3)-(4.4) that we must also calculate the metric perturbation to second-order

in the small mass ratio in order to meet the accuracy requirements for the calculation of the phase.

In this section we will present the �eld equations that must be solved in order to calculate h2
αβ .

Recall that the linearised Einstein �eld equations, in no particular gauge, and in the self-

consistent approximation are given by

(
δ1G+ δ2G+ · · ·

) (
εh1

µν + ε2h2
µν + · · ·

)
= 8π

(
εT 1

µν + ε2T 2
µν + · · ·

)
, (4.61)

where δ1G acts linearly on the metric perturbation, δ2G quadratically, δ3G cubicle etc. The operators

δnG have l,m dependence, but this will not be written explicitly and is assumed throughout. At

�rst-order in the small mass ratio, in the self-consistent approximation, the linearised Einstein �eld

equations are

δ1G
[
h1
µν

]
= 8πT 1

µν , (4.62)

where square brackets denote an operator acting on the metric perturbation. In the Lorenz gauge

and using the BSL basis, Eq. (4.61) becomes

δ1G
(i)
(j)

(
εh̄

1,(j)
lm + ε2h̄

2,(j)
lm + · · ·

)
+ δ2G

(i)
(j)(k)

(
εh̄

1,(j)
lm + ε2h̄

2,(j)
lm + · · ·

)(
εh̄

1,(k)
lm + ε2h̄

2,(k)
lm + · · ·

)
= 8π

(
εS

1,(i)
lm + ε2S

2,(i)
lm + · · ·

)
.

(4.63)

In the Lorenz gauge, using the BSL basis, Eq. (4.62) becomes

δ1G
(i)
(j)

[
h̄

1,(j)
lm

]
= S

1,(i)
lm . (4.64)

In the two-timescale approximation, time derivatives in the Einstein operator can be written in the

two-timescale expansion using Eq. (4.27), so that

δ1G
(i)
(j) =

∞∑
n=0

εnδ1G
n,(i)
(j) , δ2G

(i)
(j)(k) =

∞∑
n=0

εnδ2G
n,(i)
(j)(k), etc., (4.65)
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where δ1G
n,(i)
(j) are given explicitly in Eq. (7.95), and in the two-timescale approximation, the Lorenz

gauge �eld equations become(
δ1G

0,(i)
(j) + εδ1G

1,(i)
(j) + · · ·

)(
ε˜̄h

1,(j)
lm + ε2˜̄h

2,(j)
lm + · · ·

)
+
(
δ2G

0,(i)
(j)(k) + εδ2G

1,(i)
(j)(k) + · · ·

)(
ε˜̄h

1,(j)
lm + ε2˜̄h

2,(j)
lm + · · ·

)(
ε˜̄h

1,(k)
lm + ε2˜̄h

2,(k)
lm + · · ·

)
+ · · ·

= 8π
(
εS̃

1,(i)
lm + ε2S̃

2,(i)
lm + · · ·

)
. (4.66)

Therefore in the two-timescale approximation, the �rst-order �eld equations are

δ1G
0,(i)
(j)

[
˜̄h

1,(j)
lm

]
= S̃

1,(i)
lm . (4.67)

At second-order in the small mass ratio, in the Lorenz gauge, and in the two-timescale expansion

we have

δ1G
0,(i)
(j)

[
˜̄h

2,(j)
lm

]
= S̃

2,(i)
lm − 2δ2G

0,(i)
(j)(k)

[
˜̄h

1,(j)
lm , ˜̄h

1,(k)
lm

]
− δ1G

1,(i)
(j)

[
˜̄h

1,(j)
lm

]
, (4.68)

where the second-order source in the two-timescale approximation is given explicitly by Eq. (7.78).

Note how the term ∂t̃
˜̄h

1,(i)
lm will appear in the third term of Eq. (4.68) and hence contributes to the

inhomogeneous solutions of ˜̄h2. Therefore, a piece of the second-order metric perturbation in the

two-timescale approximation is sourced in part by the slowly evolving �rst-order metric perturbation.

In order to solve for the full second-order metric perturbation, we must solve for the slowly evolving

�rst-order metric perturbation, which we will do in Chapter 6. Furthermore, using the fact that we

can write

∂t̃ =
dr0

dt̃
∂r0 , (4.69)

during the inspiral, we see from Eq. (4.36) that the two-timescale approximation breaks down as the

secondary approaches the ISCO, and the compact objects in the binary approach their transition to

plunge. This issue will be treated in Chapter 7.

4.6 Gravitational energy �ux

An additional quantity we may wish to calculate is the GW energy �ux, which will be referred

to as the �ux henceforth. Flux calculations are extremely important for modelling EMRIs, as they

determine the dominant contribution of the accumulated phase at �rst-order, with 2GSF corrections

determining the last few radians [4]. The �ux radiated to in�nity is given by [117]

Ė∞lm =
1

16π

∣∣∣ ˙̃h∞lm∣∣∣2 , (4.70)

where an overdot denotes a derivative with respect to t.
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Substituting ˙̃
h∞lm from Eq. (4.20) in Eq. (6.38) yields [4]

Ė∞lm =
1

16π
| ˙̃A∞lm + Ã∞lmiΦ̇lm|2 (4.71)

= lim
r→∞

| ˙̄̃h(7)
lm − i

˙̄̃
h

(10)
lm +

(
˜̄h

(7)
lm − i˜̄h

(10)
lm

)
iΦ̇lm|2

64π(l + 2)(l + 1)l(l − 1)
. (4.72)

Recall from Eq. (4.4) and Eq. (4.5) that Φ̇lm can be written as

Φ̇lm = −m
(
Ω0(t̃) + εΩ1(t̃) + · · ·

)
(4.73)

and recalling the expansion in Eq. (4.14) so that

˙̄̃
h

(i)
lm =

∞∑
n=1

εn+1∂t̃
˜̄h
n,(i)
lm , (4.74)

the �ux can then also be expanded as

Ė∞lm =
∞∑
n=1

εn+1Ėn,∞lm (4.75)

At leading order, that is O(ε2), the �ux radiated to in�nity is then given by [117]

Ė1,∞
lm = lim

r→∞
m2Ω2

0

64π(l + 2)(l + 1)l(l − 1)

∣∣∣˜̄h1,(7)
lm − i˜̄h1,(10)

lm

∣∣∣2 . (4.76)

The total energy �uxes radiated to in�nity (which is directly observable) and into the horizon of the

primary are given respectively by

F∞ =
∞∑
l=0

l∑
m=−l

Ė∞lm, (4.77)

FH =
∞∑
l=0

l∑
m=−l

ĖHlm, (4.78)

and the total energy �ux by

F = FH + F∞. (4.79)

Similarly to the energy �ux radiated to in�nity, the horizon energy �ux is de�ned as

ĖHlm =
1

16π

∣∣∣ ˙̃hHlm∣∣∣2 , (4.80)

where

h̃Hlm(t̃, φp(t, ε), r, ε) = lim
r→2M

al

(
˜̄h

(7)
lm + i˜̄h

(10)
lm

)
e−imφp(t,ε). (4.81)
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The horizon energy �ux admits a similar expansion to that of Ė∞lm to in�nity, given by

ĖHlm =

∞∑
n=1

εn+1Ėn,Hlm , (4.82)

such that

FH =
∞∑
n=1

εn+1Fn,H, (4.83)

F∞ =
∞∑
n=1

εn+1Fn,∞, (4.84)

F =

∞∑
n=1

εn+1Fn. (4.85)

4.7 Binding energy

The binding energy of the EMRI is yet another quantity that we need in order to calculate the phase

via one of the methods detailed in Section 4.8. The binding energy is given by [118]

Ebind = MB −MBH − µ, (4.86)

where MB is the Bondi mass and MBH is the full perturbed mass of the primary black hole, taken

to be the irreducible mass of the black hole, de�ned by its surface area [118]. These quantities are

given respectively by [118]

MB = M + ε(E0 + δM) + ε2M
(2)
B +O

(
ε3
)
, (4.87)

MBH = M + ε(δM) + ε2M
(2)
BH +O

(
ε3
)
, (4.88)

where δM is the perturbation to the mass M of the primary, the use of round brackets in the

superscripts are to distinguish from squared quantities, and for a point-like particle on a circular

orbit, the orbital energy at leading-order is given by [118, 4]

E0 =
f0

U0
=

(
1− 2M

r0

)/√
1− 3M

r0
, (4.89)

and M (2)
B and M (2)

BH are calculated from the second-order metric perturbation at in�nity and on the

horizon [118], though they shall not be detailed in this thesis. Substituting the expressions for MB

and MBH into Eq. (4.86) then yields

Ebind = εE0 + ε2
(
M

(2)
B −M (2)

BH

)
− µ. (4.90)

65



4.8 Calculating the phase

With all of the relevant quantities de�ned in the previous sections of this chapter, we can now begin

to construct the phase to 1PA order. Following the work of Ref. [14], there are three possible

approaches that use the two-timescale approximation within the self-consistent approach.

Method 1

Firstly, the metric perturbation is computed to second-order in the small mass ratio in the Lorenz

gauge. Speci�cally the pieces h̃1R,(i)
lm (t̃, r0) and h̃2R,(i)

lm (t̃, r0). These are computed using Eq. (4.67)

and Eq. (4.68). The latter also requires input of ∂t̃h̃
1R,(i)
lm (t̃, r0), which shall be calculated in Chap-

ter 6. The metric-perturbation is then substituted into the equations for the �rst- and second-order

GSF, f̃ t1, f̃
r
1 and f̃ t2, which are given by Eq. (4.54), Eq. (4.56) and Eq. (4.58) respectively. Note

that f̃ r1 and f̃ t2 also require input of ∂r0 h̃
1R,(i)
lm (t̃, r0) and ∂t̃h̃

1R,(i)
lm (t̃, r0) respectively. The solutions

to the GSF are then substituted into the expressions for dr0
dt̃

and dr1
dt̃

from Eq. (4.36) and Eq. (4.37)

respectively, which are then integrated to solve for r0 and r1. In turn, the slowly evolving radius

and SF are substituted into expressions for Ω0 and Ω1 from Eq. (4.33) and Eq. (4.34) respectively,

which are subsequently integrated to obtain the phase at 1PA order in the small mass ratio in the

two-timescale approximation. The �owchart below summarises the procedure for calculating the

phase using method 1

Metric Perturbation

Self Force

Frequency

Phase

hµν = εh̃1,R
µν + ε2h̃2,R

µν + · · ·

fµ(t, ε) = εf̃µ1
(
t̃
)

+ ε2f̃µ2
(
t̃
)

+ · · ·

Ω
(
t̃
)

= Ω0

(
t̃
)

+ εΩ1

(
t̃
)

+ · · ·

φp(t) = 1
ε

∫ t
Ω
(
t̃
)
dt̃, Φlm = −mφp

Method 2

In this second method, rather than calculating Ω order-by-order directly, we calculate the evolution

of Ω, that is dΩ/dt order-by-order and integrate this twice to obtain the phase through 1PA order.

We have the freedom to choose Ω = Ω0 and Ωn = 0 ∀ n for some initial time t, with Ω1 = 0 ∀ t
[?], and then solve for the evolution of the frequency. Integrating the resulting expression gives us

a solution to each order of Ω. Therefore, the phase can also be calculated by integrating over time
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twice the following expression [3]

dΩ

dt
= −

(
∂Ebind

∂Ω

)−1

F , (4.91)

We shall rewrite the �ux and binding energy from Eq. (4.79) and Eq. (4.90) respectively in terms of

the variable x = [(µ+M) Ω]2/3 and symmetric mass ratio ν, where

ν =
µM

(µ+M)2
=

ε

(1 + ε)2
, (4.92)

so that

ε =
1−
√

1− 4ν

1 +
√

1− 4ν
, (4.93)

= ν + 2ν2 + 5ν3 +O
(
ν4
)
. (4.94)

The variable x is used in order to make comparisons with NR and expansions in ε are re-summed

in terms of ν to restore the inherent symmetry of the full perturbed solution, which also yields the

most accurate waveforms when comparing with NR [3]. Using the two-timescale approximation,

both the binding energy and the �ux can be written in the following way: [3, 4, 118]

F(x) = ν2F1
ν (x) + ν3F2

ν (x) +O(ν4), (4.95)

Ebind(x) = ν(µ+M)
[
Ê0(x)− 1 + νÊSF(x) +O

(
ν2
)]
, (4.96)

where [3]

F1
ν (x) =

∞∑
l=0

l∑
m=−l

(
Ė1,∞
ν,lm + Ė1,H

ν,lm

)
, (4.97)

and

F2
ν =

∞∑
l=0

l∑
m=−l

Ė2,∞
ν,lm, (4.98)

and a subscript ν denotes re-summation with respect to ν. The second-order �ux, which appears

at O(ν3) does not include the second-order horizon �ux as there is currently no data for Ė2,H
lm , but

this quantity is expected to be negligible [93, 94]. The quantity Ê0 is then de�ned as

Ê0 = E0/(M + µ). (4.99)

Substituting the expression for Ω0 from Eq. (4.33) into x and expressing E0 in terms of x then gives

[119, 3]

Ê0(x) =
1− 2x√
1− 3x

, (4.100)

and ÊSF is the contribution to the �ux from the second-order SF [119, 3].
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To calculate the phase to 1PA order, we will need Ω̇ to next-to-leading order in ε. This will

require calculating the metric perturbation through second-order in the small mass ratio as input to

the �ux. Additionally, there will be self-force contributions to the next-to-leading order terms in the

binding energy and the �ux, particularly as the leading-order binding energy is O(ε2) [14, 119, 4, 3].

To solve for Ω from its evolution we can write Eq. (4.91) as [3]

dΩ

dt
=

ν

(µ+M)2
(F0 + νF1) , (4.101)

where [3]

F0(x) = −
(
∂ΩÊ0

)−1
F1
ν , (4.102)

and

F1(x) = −
(
∂ΩÊ0

)−1
F2
ν −

(
∂ΩÊ0

)−2
F1
ν∂ΩÊSF. (4.103)

In summary, the GW phase can be calculated using the following procedure

Metric Perturbation

Flux, Binding Energy

Frequency

Phase

hµν = εh̃1,R
µν + ε2h̃2,R

µν + · · ·

F =
∑(

ĖHlm + Ė∞lm
)
, Ebind

dΩ
dt = −

(
∂Ebind
∂Ω

)−1
F

φp(t) = 1
ε

∫ t
Ω
(
t̃
)
dt̃, Φlm = −mφp

The implementation of method 2 will be presented in Chapter 8, where the �ux and waveform

during the inspiral, calculated using the two-timescale approximation within the GSF approach will

be compared to results from NR simulations. The results of this comparison are based on Refs. [4]

and [3]. The reason method 2 has been implemented and not method 1 or 3 is due to legacy and

convenience. It just so happened that data for the binding energy [119] and �ux [3] had already

been calculated, whereas the second-order SF had not. We'll see in Chapter 8 that we actually use a

di�erent formula for the binding energy than presented in this chapter, that is the �rst-law binding

energy, again as a matter of convenience. The binding energy is slicing dependent and the correct

choice has yet to be determined. One way to determine the correct binding energy is to compare

results for the frequency evolution with those of method 3, after computing the second-order SF,

which has not yet been done. Reference [119] demonstrates using the �rst-law binding energy is a

reasonable starting point at least to begin generating 2GSF waveforms.
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Method 3

Alternatively, once again choosing Ω = Ω0 and Ωn = 0 ∀ n for some initial time t, with Ω1 = 0 ∀t
[14], we could write the slow evolution of Ω instead as

dΩ

dt̃
= εFΩ

0 (Ω) + ε2FΩ
1 (Ω). (4.104)

Returning to the equations of motion and solving for dΩ
dt̃

similarly to method 2, we �nd that the

�rst- and second-order pieces of the t component of Eq. (4.24) yield3 [14, 3]

FΩ
0 =− 3f0Ωf̃ t1

(MΩ)2/3U4
0

[
1− 6(MΩ)2/3

] , (4.105)

FΩ
1 =− 3f0Ωf̃ t2

(MΩ)2/3U4
0

[
1− 6(MΩ)2/3

] − 2ḞΩ
0 ∂Ωf̃

r
1

MU4
0

[
(MΩ)1/3 − 8MΩ + 12(MΩ)5/3

] (4.106)

− 4
[
1− 6(MΩ)2/3 + 12(MΩ)4/3

]
f̃ r1 f̃

t
1

MΩU6
0 f0

[
1− 6(MΩ)2/3

]2 , (4.107)

For the purposes of this thesis however, any evolution of the spin or mass of either the primary or

secondary shall be ignored, motivated by arguments in Refs. [3, 93]. The quantities FΩ
0 and FΩ

1 are

related to F0 and F1 from method 2 via FΩ
0 = F0

M+µ and FΩ
1 = F1

M+µ . The metric perturbation should

be calculated through second-order in the small mass ratio in the two-timescale approximation and

then substituted into expressions for the SF. In turn, the 0PA and 1PA corrections to the slow

evolution of the frequency are calculated using input from the SF. The slowly evolving frequency

can then be integrated over time twice to yield the orbital and hence GW phase for quasicircular

orbits. The procedure for calculating the phase using method 3 is summarised in the diagram below

Metric Perturbation

Self Force

Frequency

Phase

hµν = εh̃1,R
µν + ε2h̃2,R

µν + · · ·

fµ(t, ε) = εf̃µ1
(
t̃
)

+ ε2f̃µ2
(
t̃
)

+ · · ·

dΩ
dt̃

= FΩ
0 + εFΩ

1 + · · ·

φp(t) = 1
ε

∫ t
Ω
(
t̃
)
dt̃, Φlm = −mφp

The implementation of method 3 will also be seen in Chapter 8 when generating waveforms during

the transition to plunge, where a new timescale of orbital evolution must be introduced and quantities

in the two-timescale approximation in this section are re-expanded near the ISCO.

3This statement is true when excluding perturbations to the mass and spin of the primary.
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Chapter 5

Perturbations to Schwarzschild

Spacetime

One of the main goals and outputs of this thesis is to calculate the slowly evolving �rst-order metric

perturbation, the algorithm for which is presented in the next chapter. The slowly evolving metric

perturbation however depends on solutions to the �rst-order metric perturbation. As such, in this

Chpter an algorithm for calculating the Lorenz gauge metric perturbation to �rst-order in the small

mass ratio will be presented, in addition to numerical results. The calculation will be performed in

the frequency domain1 using the two-timescale approximation, on a Schwarzschild background with

a secondary following quasicircular equatorial orbits, with a spacetime foliation of hypersurfaces

de�ned by constant t. While the �rst-order Lorenz gauge metric perturbation has been calculated

throughout the literature [89, 90, 91, 46, 92, 83], an in-house solver is implemented, on which to build

the slowly evolving metric perturbation calculation in the next chapter. To implement an algorithm

which calculates the �rst-order metric perturbation in the Lorenz gauge, we follow Berndtson's

prescription [46], which relies on the gauge transformation from RW to Lorenz gauge quantities,

as outlined in Section 2.6. In this section, solutions to the RWZ master functions, in addition to

the gauge �eld M2af will be presented, from which the �rst-order Lorenz gauge, and indeed the

RW gauge metric perturbation can be constructed. To solve for M2af we employ the method of

partial annihilators in conjunction with the method of variation of parameters, the latter of which

will be used to solve for the RWZ �elds. All of the research presented in this chapter was done in

collaboration with Warburton.

1Recall the frequency domain expression of the metric perturbation from Eq. (2.29). Replacing ω with mφp(t) we
obtain a solution that is not strictly in the frequency domain, and is in fact the solution we use for the two-timescale
expansion discussed in later chapters. At leading order, for quasicircular equatorial orbits, these approaches are
equivalent. As such, we shall continue to use frequency domain solutions in this chapter and the proceeding chapter.
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5.1 Solving the Regge-Wheeler and Zerilli master functions

For a given l, m mode, the radial RWZ master equations, given by Eq. (2.49), can be solved using

the standard method of variation of parameters. With this approach the inhomogeneous solution

can be written as

ψs(r) = C+
s (r)ψ+

s (r) + C−s (r)ψ−s (r), (5.1)

where ψ±s are the two linearly independent homogenous solutions that represent ingoing and outgoing

radiation, to asymptotic null in�nity, I+ and the future event Horizon H+ respectively. These ho-

mogeneous solutions are determined by the BHPToolkit [1]. Their asymptotic boundary conditions

are

ψ+
s ∝ eiωr∗ , as r∗ →∞, (5.2)

ψ−s ∝ e−iωr∗ , as r∗ → −∞. (5.3)

The weighting functions C±s are given by

C+
s (r∗) =

∫ r∗

−∞

ψ−s (r′∗)Ss (r′∗)
Ws(r′∗)

dr′∗, (5.4)

C−s (r∗) =

∫ ∞
r∗

ψ+
s (r′∗)Ss (r′∗)
Ws(r′∗)

dr′∗, (5.5)

and the Wronskian, Ws is de�ned in the usual way

Ws(r∗) ≡
dψ+

s (r∗)
dr∗

ψ−s (r∗)−
dψ−s (r∗)
dr∗

ψ+
s (r∗) . (5.6)

As there are no �rst derivatives with respect to r∗ in Eq. (2.49), Ws is a constant by Abel's theorem.

Accordingly, we drop the dependence on r∗ of Ws. As the secondary can be treated as a point-like

particle to �rst-order in ε [14, 16], the sources of the RWZ master functions take the form

Ss(r) = ps(r, rp)δ(r − rp) + qs(r, rp)δ′(r − rp), (5.7)

where a prime denotes di�erentiation with respect to r. In the case of quasicircular equatorial orbits,

at leading order we have

Ss(r) = ps(r, r0)δ(r − r0) + qs(r, r0)δ′(r − r0), (5.8)

where the factors ps(r, r0) and qs(r, r0) can be determined from Eqs. (A.1)-(A.6) and Eqs. (2.48a)-

(2.48j). For example, the leading order source for the spin-weight s = 2 RW master function in the

odd-sector is [46]

Slm2 (r) =
4imπf(r)(2δ(r − r0) + rf(r)δ′(r − r0))

λ(λ+ 1)rr3
0

√
r0

r0 − 3
∂θY

∗
lm

(π
2
, 0
)
. (5.9)

72



We can immediately read o� ps(r, r0) and qs(r, r0) as

p2(r, r0) =
8imπf(r)

λ(λ+ 1)rr3
0

√
r0

r0 − 3
∂θY

∗
lm

(π
2
, 0
)
, (5.10)

q2(r, r0) =
4imπf(r)2

λ(λ+ 1)r3
0

√
r0

r0 − 3
∂θY

∗
lm

(π
2
, 0
)
. (5.11)

Due to the distributional form of Ss in Eq. (5.8), Eq. (5.4) and Eq. (5.5) become

C+
s (r) = c+

s Θ(r − r0), (5.12)

C−s (r) = c−s Θ(r0 − r), (5.13)

where integration by parts has been used to evaluate terms in Eq. (5.4) and Eq. (5.5) involving δ′,

and Θ is the Heaviside step function, de�ned so that Θ(x) = 1 for x > 0 and Θ(x) = 0 for x ≤ 0.

The constants c±s are the weighting coe�cients

c±s =
1

Ws

{
ψ∓s (r0) ps(r, r0)

f(r0)
− ∂

∂r

(
ψ∓s (r) qs(r, r0)

f(r)

)}∣∣∣∣∣
r=r0

, (5.14)

and the radial derivatives of ψs can be determined by taking the radial derivative of Eq. (5.1). Our

numerical integrator returns the ψs and its �rst, second, and third radial derivatives.

5.1.1 Numerical boundary conditions and implementation

When solving for perturbations on hypersurfaces of constant t we cannot place numerical boundary

conditions at future null in�nity, I+, and the future event Horizon H+. Instead we will �nd series

expansions of the solutions at �nite radii. For the homogeneous solutions to the RWZ equations we

expand the asymptotic boundary conditions in Eqs. (5.2) and (5.3) as

ψ+
s (r) = eiωr∗

nmax∑
i=0

A+
i

(rω)i

∣∣∣∣
r=rout

, (5.15)

ψ−s (r) = e−iωr∗
nmax∑
i=0

A−i f(r)i
∣∣
r=rin

, (5.16)

where the coe�cients A±i depend on the parameters s, l, m, r0. In order for the expansion in

Eq. (5.15) to converge, rout must be in the wave zone such that rω � 1 [120]. In practice we �nd

that rout = 104M is su�cient for the parameters we consider in this work. Similarly we �nd that

rin = (2+10−5)M ensures rapid convergence of the expansion in Eq. (5.16). We shall use these values

of rin/out though out this work. We also �nd a value of nmax = 50 is su�cient to ensure the series

expansions satisfy the homogeneous �eld equation to beyond machine precision. We �nd this value

of nmax is su�cient for all later boundary condition expansions as well. By substituting the above

expansions into the homogeneous �eld equation, Eq. (2.49), recurrence relations can be derived for
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the coe�cients A±i in terms of the leading i = 0 coe�cient. In our code we use the ReggeWheeler

package of the BHPToolkit [1] to compute ψ±s , which includes the boundary conditions for the RWZ

�elds. The numerical integration option in this package implements the above boundary condition

expansions and then numerically integrates to r0 to �nd the homogeneous solutions at any radius.

We note here that the ReggeWheeler package uses the MST method, introduced in Chapter 3, by

default. This method allows for very high precision numerical results to be obtained but has the

downside that it often requires extended precision arithmetic and typically is slower to compute the

homogeneous solution at a given radius for strong-�eld orbits. As the goal of this work is to provide

h1L
µν,r0 on a dense grid of r values for use in constructing the source to second-order perturbations,

we instead opt to use the faster numerical integration method.

5.1.2 Numerical results

As an example, in Fig. (5.1) we plot the results of the spin-weight s = 2 RW master function for the

(l,m) = (2, 1) mode at r0 = 10M out to large r.
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Figure 5.1: Real and imaginary parts of ψ2 for the (l,m) = (2, 1) mode with r0 = 10M [2].

5.2 Solving for the gauge �eld M2af

The equation governing M2af is given by [46]

L0M2af (r) = f(r) ψ0(r), (5.17)
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where L0 is the operator from Eq. (2.50) with a RW potential and spin-weight s = 0. Equation (5.17)

is exactly the RW equation, with a source that now contains ψ0 and is thus unbounded, where

previously we had distributional sources containing Dirac delta functions. The form of Eq. (5.17)

means that we can tackle it with the method of partial annihilators [102], which allows us to replace

the unbounded source with a compact one, at the expense of introducing a higher-order operator on

the left hand side of the �eld equations. Applying an additional L0 operator to Eq. (5.17) yields [2]

L0

(
1

f
L0M2af

)
= S0, (5.18)

where we have made use of the fact that L0ψ0 = S0, with the source S0 provided in Eq. (A.5). As

an inhomogeneous, fourth-order ODE, Eq. (5.18) will have four independent homogeneous solutions.

Two of these solutions will be ψ±0 from Section 5.1. Our numerical integrator returns the M2af and

its �rst, second, and third radial derivatives.

5.2.1 Numerical boundary conditions and implementation

As the fourth-order Eq. (5.18) does not have a known MST-type solution, the other two homogeneous

solutions must be obtained by numerical integration starting with appropriate boundary conditions

at �nite radii. Series expansions of the homogeneous solutions near in�nity and the horizon are

given by [2]

Mh4,+
2af (r) = reiωr∗

nmax∑
i=0

Ah4,+
i

(rω)i

∣∣∣∣
r=rout

, (5.19)

Mh4,−
2af (r) = f(r)e−iωr∗

nmax∑
i=−1

f(r)iAh4,−
i

∣∣∣∣
r=rin

. (5.20)

The coe�cients Ah4,±
i , not to be confused with those from Section 5.1.1, are derived by substituting

the above ansätze into Eq. (5.18) and matching the coe�cients of r and f(r). For brevity we have

suppressed some indices and functional dependence of the coe�cients in the series expansion which

depend on the parameters l, m and r0. The coe�cients Ah4,±
i obey recursion relations provided in

the supplementary material of Ref. [2]. For Eq. (5.19) if we set Ah4,+
0 = 1 and Ah4,+

1 = 0 we �nd

the series expansion satis�es Eq. (5.18) in the homogeneous case, but not L0M
h4,+
2af = 0 and thus we

know we have found another linearly independent homogeneous solution. If we set Ah4,+
0 = 0 and

Ah4,+
1 = 1 we recover the boundary conditions for ψ+

0 given in Eq. (5.15). Similarly for Eq. (5.20)

if we set Ah4,−
−1 = 1 and Ah4,−

0 = 0 we �nd a solution that satis�es Eq. (5.18) in the homogeneous

case, but not L0M
h4,−
2af = 0. If we set Ah4,−

−1 = 0 and Ah4,−
0 = 1 we recover the boundary conditions

for ψ−0 given in Eq. (5.16).
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Following the same procedure as in Section 5.1 when deriving ψs, the inhomogeneous solution to

Eq. (5.17) can be written as

M2af (r) =
(
ch2,−ψ−0 (r) + ch4,−Mh4,−

2af (r)
)

Θ(r0 − r) +
(
ch2,+ψ+

0 (r) + ch4,+Mh4,+
2af (r)

)
Θ(r − r0).

(5.21)

Substituting Eq. (5.21) into Eq. (5.18) and using the identity in Eq. (6.15), we match the coe�cients

of the Dirac delta functions and their radial derivatives with those in S0 and solve the linear system

of equation for ch2/4,±. We can write this system of linear equations in the following form

C = Φ−1 · J, (5.22)

where C = (ch2,−, ch4,−, ch2,+, ch4,+) and

Φ =


−ψ−0 −Mh4,−

2af ψ+
0 Mh4,+

2af

−∂rψ−0 −∂rMh4,−
2af ∂rψ

+
0 ∂rM

h4,+
2af

−∂2
rψ
−
0 −∂2

rM
h4,−
2af ∂2

rψ
+
0 ∂2

rM
h4,+
2af

−∂3
rψ
−
0 −∂3

rM
h4,−
2af ∂3

rψ
+
0 ∂3

rM
h4,+
2af


r=r0

. (5.23)

As the source S0 contains only Dirac delta functions with no radial derivatives, the vector J has

only one non-zero component such that J = (0, 0, 0, J3), where

J3 =
−16π

√
r0(r0 − 3M)

(r0 − 2M)2
Y ∗lm(π/2, 0). (5.24)
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5.2.2 Numerical results

In this section we present our numerical results for M2af and a check to provide con�dence in our

results. We begin by showing results for M2af in Fig. 5.2.
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−2

0

2

·103

r/M

M
2
a
f

Figure 5.2: Real and imaginary parts of M2af for the (l,m) = (2, 2) mode with r0 = 10M . The

amplitudes of the �eld grows proportional to r for large r, as determined by the asymptotic boundary

conditions, Eq. (5.19). Similar results are obtained for other even-sector multiple modes and di�erent

values of r0.
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As a check on the implementation of our partial annihilator scheme for M2af we verify that our

solution to the fourth-order equation with a distributional source, Eq. (5.18), satis�es the original

second-order equation Eq. (5.17) with an unbounded source. Figure 5.3 then shows that the relevant

second-order equation is satis�ed to near machine precision.
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|L0M2af |
|fψ0|
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6 ·10−14
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Figure 5.3: The top panel shows the absolute values of the left- and right-hand sides of Eq. (5.17),

given the solution for M2af computed using the fourth-order equation, Eq. (5.18). The data shown

is for r0 = 10M and (l,m) = (2, 1). The lower panel shows that the absolute value of the di�erence

between the data sets for the left- and right-hand side of Eq. (5.17) is near machine precision. The

lines joining data points are for visualisation purposes only.
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5.3 Numerical results for the Lorenz gauge metric perturbation

We now have all ingredients we need to completely reconstruct Berndtson's or the BSL �elds. With

con�dence in our solution for M2af we can compute h1L
µν . An example of the level of agreement with

previously published results from Ref. [91] is demonstrated in Fig. (5.4).
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Figure 5.4: Real and imaginary parts of the di�erence between the calculation of the metric per-

turbation components as computed using methods outlined in this work compared to results from

Ref. [91]. The top panel shows results for the i = 8 odd-sector component in the BSL basis for the

(l,m) = (2, 1) mode. The bottom panel then shows results for the i = 1 even-sector component

in the BSL basis for the (l,m) = (2, 2) mode. The orbital radius was chosen to be r0 = 9M and

results were plotted from 20M to 10000M for visualisation purposes. The di�erence can be as small

as machine precision nearer the horizon. The error is found to be smaller nearer the horizon due to

the choice of precision of the radial coordinate r, which was chosen to have 5 signi�cant �gures.
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We can also ensure that our solutions to h1L
µν are behaving as expected by checking that they are

C0 di�erentiable, as required in the Lorenz gauge, as shown in Fig. (5.5), though it is important to

note that this is a sanity check rather than a check on the validity of the results.
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Figure 5.5: Numerical results for h1L
µν , with the particle at r0 = 10M . The top and bottom left

panels show the real and imaginary parts of h̄(8)
21 and h̄

(1)
22 respectively, as r goes to in�nity. The

top and bottom right panels show the behaviour of the imaginary parts of h̄(8)
21 and h̄(1)

22 near the

particle respectively. We �nd similar results for all other remaining Lorenz gauge �elds, for di�erent

choices of modes, and di�erent values of r0. The lines joining data points in the right panels are for

visualisation purposes only.
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Chapter 6

The Slow Evolution of Perturbations to

Schwarzschild Spacetime

In this chapter, a novel algorithm for calculating the slow-time derivative of the �rst-order Lorenz

gauge metric perturbation will be described in detail, in addition to numerical results. We will focus

on radiative modes as the static modes are known analytically [92] and thus it is straightforward to

take the r0 derivative of them. Recall from Chapter 4 the motivation for this calculation. We saw

in Chapter 4 that the slow-time derivative of the metric perturbation contributes to the source of

the second-order metric perturbation, which goes into calculating the GW phase to post-adiabatic

order, required to perform precision tests of GR and obtain accurate parameter estimates from EMRI

signals. Due to the fact that the orbital radius of an EMRI evolves slowly, for quasicircular orbits

and using the two-timescale approximation, the slow-time derivative of the metric perturbation can

be written as
dh1L

µν

dt̃
=
dr0

dt̃

dh1L
µν

dr0
+O(ε), (6.1)

so that the slow-time derivative becomes a derivative with respect to r0. The terms slow-time

derivative and r0 derivative will be used interchangeably throughout this chapter, with a simple

transformation between the two given above. Taking an r0-derivative of the radial linearised Einstein

�eld equations from Eq. (2.84) we get

�(i)
(j)h̄

(j)
lm,r0

−M(i)
l(j)h̄

(j)
lm,r0

= S
(i)
lm,r0

−�(i)
(j),r0

h̄
(i)
lm. (6.2)

This equation is challenging to solve for two main reasons: (i) the source on the right-hand side

is unbounded, and (ii) the coupling between the tensor harmonic i-modes via the M(i)
l(j) matrix

increases the complexity and computational burden of the calculation. The non-compact source is

particularly challenging for the standard variation of parameters approach for constructing inhomo-

geneous solutions to ordinary di�erential equations (ODEs), as this approach relies on having the

homogeneous solutions computed for all radii inside the source. Nonetheless a numerical code using

the variations of parameters method to �nd solutions to Eq. (6.2) was implemented in Ref. [121].
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We present in this chapter a novel approach to calculating ∂t̃h
1
αβ by (i) making use of the gauge

transformation from Regge-Wheeler (RW) to Lorenz gauge solutions [46, 102] and (ii) using the

method of partial annihilators [102]. The combination of these two techniques means we only have

to numerically solve homogeneous equations for a handful of uncoupled scalar �elds that describe the

RW master variables and their r0 derivatives. We can then construct the inhomogeneous solutions

entirely from data obtained on the world-line. We �nd this approach more e�cient and easier to

implement than the variation of parameters method with an unbounded source, such as that of

Ref. [121].

Taking the r0 derivative of Berndtson's gauge transformation [46] from Section 2.6, the slowly

evolving Lorenz gauge metric perturbation can be written in terms of RWZ �elds and their slow-time

derivatives, in addition to the gauge �eldM2af and its slow-time derivative, and the radial derivatives

of all of the listed �elds. The r0 derivative of the �rst of Berndtson's gauge transformations from

Eq. (2.106a) is given by

h0,r0(r) =
1

iω

(
ψ1,r0 +

2λ

3
ψ2,r0

)
− h0

ω
ω,r0 . (6.3)

The r0 derivative of all of Berndtson's gauge transformations are trivial to derive from Eq. (2.106)

and Eq. (2.108), and won't be detailed here for brevity. All of the results in this chapter can

be found in Ref. [2] and play a vital role in the GSF program. The data for h1L
µν,r0 has already

been used to calculate waveforms and the energy �ux via the GSF approach and compare them

with NR simulations [4, 3] in addition to comparisons with EOB theory [93, 94] and will be used

in a number of forthcoming papers, for example, in the calculation of the second-order Teukolsky

source, which is ongoing research by collaborators [43, 95]. In this chapter, the r0 derivatives of

the RWZ master functions and the gauge �eld M2af will be determined, and their numerical results

presented, in addition to the r0 derivative of the �rst-order Lorenz gauge metric perturbation. The

slowly-evolving energy �ux will also be calculated to demonstrate further applications of this work.

All of the results presented in this chapter were obtained in collaboration with Warburton.

6.1 Slowly evolving Regge-Wheeler and Zerilli master functions

The slowly evolving RWZ master functions, ∂r0ψs, described by the following equation, are obtained

by taking the r0 derivative of Eq. (2.49) which yields

Lsφs = Ss,r0 − 2ωω,r0ψs, (6.4)

where we have de�ned

φs ≡ ψs,r0 , (6.5)

and a comma followed by r0 denotes a derivative with respect to r0. Unlike Ss, the source in

Eq. (6.4) is no longer compact, as ψs is de�ned over the entire domain. There are a variety of

numerical techniques for �nding solutions to equations of the form of Eq. (6.4) e.g., [46, 121, 95],

but none of them are as e�cient or easy to implement as solving an equation with a distributional
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source. We can �nd an equation for φs with a distributional source by noticing that applying the

operator Ls to the second term on the right hand side of Eq. (6.4), then making use of Eq. (2.49),

compacti�es that term. Applying the operator Ls to Eq. (6.4) therefore `partially annihilates' the

non-compact term on the right hand side [102, 122], yielding a fourth-order di�erential equation

with a compact, distributional source

L2
sφs = LsSs,r0 − 2ωω,r0Ss. (6.6)

Thus we obtain a family of fourth-order ODEs with compact sources, which we shall solve using the

method of variation of parameters. As a fourth-order di�erential equation, there are four independent

homogeneous solutions. Two of these are the homogeneous solutions to Eq. (2.49) as L(L(ψ±s )) =

L(0) = 0. The remaining two we denote by φh4,±
s . These are homogeneous solutions to the fourth-

order equation Eq. (6.6) but not the second-order equation, Eq. (2.49), and have the asymptotic

boundary conditions

φh4,+
s ∝ reiωr∗ , as r∗ →∞, (6.7)

φh4,−
s ∝ log(f(r))e−iωr∗ , as r∗ → −∞. (6.8)

Similarly to Eq. (5.1), and due to the distributional source, we can write the inhomogeneous solution

as

φs(r) =
[
ch2,+
s ψ+

s (r) + ch4,+
s φh4,+

s (r)
]

Θ(r − r0) +
[
ch2,−
s ψ−s (r) + ch4,−

s φh4,−
s (r)

]
Θ(r0 − r) (6.9)

+ cδsφ
δ
s(r)δ(r − r0),

where the constant coe�cients (for a given s, l,m, r0) are given by

ci,+s Θ(r − r0) =

∫ r∗

−∞

W i,+
s (r′∗)Ss (r′∗)
Ws

dr′∗, (6.10)

ci,−s Θ(r0 − r) =

∫ ∞
r∗

W i,−
s (r′∗)Ss (r′∗)
Ws

dr′∗, (6.11)

where i ∈ {h2, h4} and Ss is de�ned as

Ss ≡ LsSs,r0 − 2ωω,r0Ss. (6.12)

The fourth-order WronskianWs is also constant by Abel's Theorem and has the standard de�nition

Ws = det


ψ−s φh4,−

s ψ+
s φh4,+

s

∂r∗ψ
−
s ∂r∗φ

h4,−
s ∂r∗ψ

+
s ∂r∗φ

h4,+
s

∂2
r∗ψ
−
s ∂2

r∗φ
h4,−
s ∂2

r∗ψ
+
s ∂2

r∗φ
h4,+
s

∂3
r∗ψ
−
s ∂3

r∗φ
h4,−
s ∂3

r∗ψ
+
s ∂3

r∗φ
h4,+
s

 , (6.13)
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and Wh2/4,±
s are given by the determinant of the matrices obtained from deleting the �nal row

and the column containing the corresponding �eld, φh2/4,±
s and its derivatives from the matrix in

Eq. (6.13) [123, 102], where we have de�ned φh2,±
s ≡ ψ±s . The �eld φδs(r) in Eq. (6.9) is required to

balance the forth derivative of the delta function that appears in the source in Eq. (6.6).

Owing to the distributional source, the integrals in Eqs. (6.10) and (6.11) can be carried out

analytically by repeated application of integration by parts. An equivalent approach is to match the

coe�cients of the delta function and its derivatives from the left- and right-hand side of Eq. (6.6).

Following from Eq. (5.8) and Eq. (6.12), Ss takes the form

Ss = a0(r, r0)δ(r − r0) + a1(r, r0)δ′(r − r0) + a2(r, r0)δ′′(r − r0) + a3(r, r0)δ′′′(r − r0) (6.14)

+ a4(r, r0)δ(4)(r − r0),

where the functions a0(r, r0), . . . , a1(r, r0) can be identi�ed with combinations of p(r, r0), q(r, r0)

and their derivatives with respect to r and r0 by replacing the Ss in Eq. (6.12) with the right-hand

side of Eq. (5.8). Making use of the following identity

f(r)δ(r − r0) = f(r0)δ(r − r0), (6.15)

and other identities derived from radial derivatives of Eq. (6.15), given in Appendix C, the source Ss
can be written in terms of Dirac delta functions and their radial derivatives with constant coe�cients

Ss = b0(r0)δ(r − r0) + b1(r0)δ′(r − r0) + b2(r0)δ′′(r − r0) + b3(r0)δ′′′(r − r0) (6.16)

+ b4(r0)δ(4)(r − r0),

where the constants b0(r0), . . . , b4(r0) can be identi�ed with combinations of a0(r0, r0), . . . , a4(r0, r0)

and their radial derivatives, evaluated at r = r0 such that they are now functions of r0 only. As an

example, the coe�cients of the Dirac delta functions and their derivatives are given explicitly for

the odd-sector source for spin-weight s = 2 in Appendix D. Substituting Eq. (6.9) into Eq. (6.6),

and making use of Eq. (6.15) and other identities from Appendix C, we obtain

L2
sφs = β1(r)Θ(r − r0) + β2(r)Θ(r0 − r) + c0(r0)δ(r − r0) + c1(r0)δ′(r − r0) (6.17)

+ c2(r0)δ′′(r − r0) + c3(r0)δ′′′(r − r0) + c4(r0)δ(4)(r − r0),

where c0(r0), . . . , c4(r0) can be identi�ed with combinations of ch2/4,±
s and cδs. Immediately we �nd

β1(r) = β2(r) = 0 as these coe�cients satisfy the homogeneous �eld equation, and there are no

Heaviside terms on the right-hand side of Eq. (6.6). Equating the constant coe�cients of the Dirac

delta functions and their radial derivatives from Eq. (6.17) with those in Eq. (6.16), we obtain a

linear system which we can solve for ch2/4,±
s and cδs in terms of p(r0, r0), q(r0, r0) and their derivatives,

evaluated at r = r0.
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We can write this linear system of equations in the following form

Cs = Φ−1
s · Js, (6.18)

where Cs = (ch2,−
s , ch4,−

s , ch2,+
s , ch4,+

s ) and

Φs =


−ψ−s −φh4,−

s ψ+
s φh4,+

s

−∂rψ−s −∂rφh4,−
s ∂rψ

+
s ∂rφ

h4,+
s

−∂2
rψ
−
s −∂2

rφ
h4,−
s ∂2

rψ
+
s ∂2

rφ
h4,+
s

−∂3
rψ
−
s −∂3

rφ
h4,−
s ∂3

rψ
+
s ∂3

rφ
h4,+
s


r=r0

. (6.19)

The vector Js is given by J = (J0, J1, J2, J3) where Jn is the jump in the nth derivative of φs on the

world-line. We give the explicit form of φδs(r0) and these jumps for the s = 2 RW �eld in odd-sector

in Appendix E. The jump conditions for the Zerilli master function are too long to write here but

are included in the supplemental material of Ref. [2].

6.1.1 Numerical boundary conditions and implementation

The asymptotic boundary conditions for φh4,±
s , given in Eqs. (6.7) and (6.8), can be expanded as

φh4,+
s (r) = reiωr∗

nmax∑
i=0

[Ah4,+
i +Bh4,+

i log(r)]

(rω)i

∣∣∣∣
r=rout

, (6.20)

φh4,−
s (r) = e−iωr∗

nmax∑
i=0

[Ah4,−
i +Bh4,−

i log(f(r))]f(r)i
∣∣
r=rin

. (6.21)

As before, the coe�cients Ah4,±
i and Bh4,±

i depend on the parameters s, l, m, r0 and are derived by

substituting the above ansätze into the fourth-order equations Eq. (6.6), and should not be confused

with the coe�cients from Section 5.2.1 which are labelled similarly. The recurrence relations for

these coe�cients is provided in the supplementary material of Ref. [2], and depend on the choice

of potential, either RW or Zerilli. The series approximation to the homogeneous solutions near

the boundaries are then given in terms of one of the leading coe�cients. For the expansion at

large radius for both the RW and Zerilli cases we �nd Ah4,+
0 = Bh4,+

1 /2 and Bh4,+
0 = 0. For the

series approximation that satis�es the homogeneous fourth-order equation, but not the homogeneous

second-order equation, we �nd we can set, e.g., Bh4,+
1 = 1 and Ah4,+

1 = 0. Note if we set Bh4,+
1 = 0

and Ah4,+
1 = 1 we recover the boundary condition expansion in Eq. (5.15) above for the homogeneous

second-order equation. For the expansion near the horizon we �nd that setting Ah4,−
0 = 0 and

Bh4,−
0 = 1 provides an approximate solution to the fourth-order equation (but not the second-

order equation). Setting Ah4,−
0 = 1 and Bh4,−

0 = 0 we similarly recover the boundary condition in

Eq. (5.16). Once the value of the leading terms is set, all other coe�cients are then determined

by the recurrence relations. These homogeneous solutions are not calculated by any package in

the BHPToolkit so we solve the recurrence relations with the above conditions. This provides the

85



boundary conditions at rout and rin and we use the NDSolve function of Mathematica to numerically

integrate the solutions to r0. As mentioned in Chapter 5, we once again �nd that a value of nmax = 50

is su�cient to ensure the series expansions satisfy the homogeneous �eld equation to beyond machine

precision.

6.1.2 Numerical results

Using the homogeneous solutions computed numerically as described in Section 5.1.1 and the jump

conditions from Eq. (6.18), Appendix E and the supplementary material of Ref. ([2]), we obtained

numerical results for the r0 derivatives of all of the RWZ master functions. As an example, in

Fig. (6.1) we plot the results of the spin-weight s = 2 RW master function for the (l,m) = (2, 1)

mode at r0 = 10M out to large r.

200 400 600 800 1,000

−2

0

2 ·10−3

r/M

φ
2

Figure 6.1: Real and imaginary parts of φ2 = ψ2,r0 for the (l,m) = (2, 1) mode with r0 = 10M .

The amplitude of the wave grows proportional to r for large r, as determined by the asymptotic

boundary condition in Eq. (6.20).

86



To test the results of our partial annihilator method, we check that φ2 satis�es the original

second-order equation with a non-compact source, Eq. (6.4). Our numerical integrator returns the

φ2 and its �rst, second, and third radial derivatives which we use to compute the left-hand side

of Eq. (6.4). We compute the right-hand side of Eq. (6.4) using the inhomogeneous solution to ψ2

calculated in Chapter 5 and �nd this matches the left-hand side to near machine precision. We give

an example of this for the (l,m) = (2, 1) mode in Figure 6.2.

0

2

4
·10−6

|L2φ2|
|2ωω,r0ψ2|

6 8 10 12 14
−6

−4

−2
0 ·10−20

r/M

Figure 6.2: Absolute values of the left and right hand sides of Eq. (6.4). The top panel demonstrates

that our calculation of φ2, where φ2 = ψ2,r0 , for r0 = 10M and (l,m) = (2, 1) solves Eq. (6.4),

ignoring terms involving the Dirac delta functions and its derivatives. The lower panel shows the

absolute value of the di�erence between the data sets for the left- and right-hand side of Eq. (6.4).

This error is dominated by the interpolation of the numerical homogeneous solutions and their

radial derivatives. When performing the numerical integration, the default method for interpolation

of Mathematica was used, with the options set are WorkingPrecision → 40, MaxSteps → 106,

InterpolationOrder → All. A numerical choice for the interpolation order such as 10 would

decrease the accuracy but increase the speed of the code. The lines joining data points are for

visualisation purposes only.
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6.2 Slowly evolving gauge �eld M2af

To compute the slow-time derivative of the Lorenz gauge metric perturbation we must also compute

M2af,r0 . By taking an r0 derivative of Eq. (5.17) we obtain

L0M2af,r0 = fφ0 − 2ωω,r0M2af , (6.22)

which also has a unbounded source. In fact both terms on the right hand side of Eq. (6.22) are

unbounded as they are de�ned everywhere from the horizon to in�nity. We can choose to write

M2af,r0 as a linear combination of two �elds such that

M2af,r0(r) = χ1(r) + χ2(r), (6.23)

with

L0χ1 = fφ0, (6.24)

L0χ2 = −2ωω,r0M2af . (6.25)

As both of these equations have unbounded sources, we turn once again to the method of partial

annihilators. By making use of Eq. (2.49) for s = 0, Eq. (6.4) and Eq. (5.17), we obtain two

sixth-order ODEs with distributional sources

L2
0

(
1

f
L0χ1

)
= L0S0,r0 − 2ωω,r0S0, (6.26)

L0

(
1

f
L2

0χ2

)
= −2ωω,r0S0, (6.27)

which we shall also solve via the method of variation of parameters. Both Eq. (6.26) and Eq. (6.27)

have six independent homogeneous solutions. For Eq. (6.26), four of these are given by ψ±0 and

Mh4,±
2af . The �nal pair we will denote by χh6,±

1 which satisfy the homogeneous sixth-order equation

but neither the homogenous second-order equation
(
L0χ

h6,±
1 6= 0

)
nor the homogenous fourth-order

equation
(
L0(1/fL0)χh6,±

1 6= 0
)
. For Eq. (6.27), four of the homogeneous solutions are given by ψ±0

and φ±0 . Similarly we will denote the �nal pair by χh6,±
2 .

6.2.1 Numerical boundary conditions and implementation

For our numerical scheme we use the following series expansion of the χh6,±
k �elds at �nite radii as

boundary conditions

χh6,+
k (rout) = r2eiωr∗

nmax∑
i=0

Ah6,+
k,i +Bh6,+

k,i log(r)

(rω)i

∣∣∣∣
r=rout,

(6.28)
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and

χh6,−
k (rin) = e−iωr∗

nmax∑
i=0

[Ah6,−
k,i +Bh6,−

k,i log(f(r))]f(r)i
∣∣
r=rin,

(6.29)

where k ∈ {1, 2}. The recursion relations for Ah6,±
k,i and Bh6,±

k,i are derived by substituting the

above ansätze into Eq. (6.26) and Eq. (6.27). Similarly to those for M2af , the recursion relations

depend on the parameters l,m and r0. These recurrence relations are provided in the supplementary

material of Ref. [2]. For χh6,+
1 the three undetermined coe�cients are Ah6,+

1,1 , Ah6,+
1,2 and Bh6,+

1,1 .

The �eld equations Eq. (6.26) and Eq. (6.27) also enforce that Bh6,+
0,0 = 0, Ah6,+

1,0 = Bh6,+
1,1 /4 and

Bh6,+
1,2 = i(l(l+ 1) + 1 + 4iω)Bh6,+

1,1 /2ω. Setting Ah6,+
1,1 = Bh6,+

1,1 = 0 and Ah6,+
1,2 = 1 we �nd the series

in Eq. (6.28) approximates a solution that satis�es Eq. (6.26) in the homogenous case, but not the

homogenous ODEs with operators L0 or L0(1/fL0). Thus χh6,+
1 is a linearly independent of the

other two bases {ψ+
0 ,M

h4,+
2af }. For χh6,−

1 the three undetermined coe�cients are Ah6,−
1,0 , Ah6,−

1,1 and

Bh6,−
1,1 . The �eld equation also sets Bh6,−

1,0 = 0. Setting Ah6,−
1,0 = Ah6,−

1,1 = 0 and Bh6,−
1,1 = 1 we �nd

the series in Eq. (6.29) approximates a solution that satis�es Eq. (6.26) in the homogenous case, but

neither the second- nor fourth-order ODEs. This demonstrates that we have found another linearly

independent homogeneous solution.

For χh6,+
2 , the three undetermined coe�cients are Ah6,+

2,0 , Ah6,+
2,1 and Ah6,+

1,1 . The �eld equations

Eq. (6.26) and Eq. (6.27) also enforce that Bh6,−
2,0 = Bh6,−

2,1 = 0 and Bh6,−
2,1 = −i(4 + l+ l2)Ah6,+

2,0 /ω+

2h6,+
2,1 . Setting Ah6,+

2,0 = 1 and Ah6,+
2,1 = Ah6,+

2,2 = 0 we �nd the series in Eq. (6.28) approximates

a solution that satis�es Eq. (6.27) in the homogenous case, but not the homogeneous ODEs with

operators L0 or L2
0. Thus χ

h6,+
2 is linearly independent from the other two bases {ψ+

0 , φ
h4,+}. For

χh6,−
2 the three undetermined coe�cients areAh6,−

2,0 , Ah6,−
2,1 andBh6,−

2,0 . The �eld equation also enforces

that Bh6,−
2,1 = i(1+ l+ l2)Bh6,−

2,0 /(i+4ω). Setting Ah6,−
2,0 = Ah6,−

2,1 = 0 and Bh6,−
2,0 = 1 we �nd the series

in Eq. (6.29) approximates a solution that satis�es Eq. (6.27) but not the second- or fourth-order

ODEs. This demonstrates that we have found the �nal linearly independent homogeneous solution.

We can then write the retarded solutions to Eq. (6.26) and Eq. (6.27) in the form

χ1(r) = χ−1 (r)Θ(r0 − r) + χ+
1 (r)Θ(r − r0), (6.30)

χ2(r) = χ−2 (r)Θ(r0 − r) + χ+
2 (r)Θ(r − r0), (6.31)

where

χ±1 (r) =
(
ch2,±ψ±0 (r) + ch4,±Mh4,±

2af (r) + ch6,±χh6,±
1 (r)

)
, (6.32)

χ±2 (r) =
(
ch2,±ψ±0 (r) + ch4,±φh4,±

0 (r) + ch6,±χh6,±
2 (r)

)
. (6.33)

The coe�cients in the above equations can be found by substituting Eqs. (6.30) and (6.31) into

Eqs. (6.26) and Eqs. (6.27), respectively, and matching the coe�cients of the delta functions and

their derivatives on the left- and right-hand sides of the resulting equations. For χ1 we can once
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again write the resulting system of equations in the now familiar form

C = Φ−1 · J, (6.34)

where C = (ch2,−, ch4,−, ch6,−, ch2,+, ch4,+, ch6,+) and

Φ =



−ψ−0 −Mh4,−
2af −χh6,−

1 ψ+
0 Mh4,+

2af χh6,+
1

−∂rψ−0 −∂rMh4,−
2af −∂2

rχ
h6,−
1 ∂rψ

+
0 ∂rM

h4,+
2af ∂rχ

h6,+
1

−∂2
rψ
−
0 −∂2

rM
h4,−
2af −∂3

rχ
h6,−
1 ∂2

rψ
+
0 ∂2

rM
h4,+
2af ∂2

rχ
h6,+
1

−∂3
rψ
−
0 −∂3

rM
h4,−
2af −∂4

rχ
h6,−
1 ∂3

rψ
+
0 ∂3

rM
h4,+
2af ∂3

rχ
h6,+
1

−∂4
rψ
−
0 −∂4

rM
h4,−
2af −∂4

rχ
h6,−
1 ∂4

rψ
+
0 ∂4

rM
h4,+
2af ∂4

rχ
h6,+
1

−∂5
rψ
−
0 −∂5

rM
h4,−
2af −∂5

rχ
h6,−
1 ∂5

rψ
+
0 ∂5

rM
h4,+
2af ∂5

rχ
h6,+
1


r=r0

. (6.35)

For χ1, the four non-zero components of the vector J are given in Appendix E.0.2. For χ2, the

matrix Φ is the same in Eq. (6.35) exceptMh4,±
2af is replaced by φh4,±

0 and χh6,±
1 is replaced by χh6,±

2 .

As the source for χ2 contains only Dirac delta functions with no radial derivatives, the vector J has

only one non-zero component and we �nd that J = (0, 0, 0, 0, 0, J5) where

J5 = −48πm2M
√
r0 − 3M

r
3/2
0 (r0 − 2M)4

Y ∗lm(π/2, 0). (6.36)
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6.2.2 Numerical results

We check that our solution for M2af,r0 , computed as the sum of the solutions of two inhomoge-

neous sixth-order equations, Eq. (6.26) and Eq. (6.27), satis�es the original second-order equation,

Eq. (6.22), with an unbounded source.
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Figure 6.3: Top panel: Real and imaginary parts of M2af,r0 for the (l,m) = (2, 2) mode with

r0 = 10M . The amplitudes of the �elds grow as r2 at large r, as determined by the asymptotic

boundary condition Eq. (6.28). Similar results are obtained for other even-sector multiple modes

and di�erent values of r0. Bottom panel: demonstrates r2 behaviour at large r.
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Figure 6.4 then shows that the relevant second-order equations are satis�ed to near machine precision.

0

0.5
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|L0M2af,r0
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|fψ0,r0
−2ωω,r0

M2af |
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0
·10−15

r/M

Figure 6.4: The top panel shows the absolute values of the left- and right-hand sides of Eq. (6.22), for

M2af,r0 given the solution computed using Eq. (6.23) and the two sixth-order equations, Eq. (6.26)

and Eq. (6.27). The data shown is for r0 = 10M and (l,m) = (2, 2) . The lower panel shows the

absolute value of the di�erence between the data sets for the left- and right-hand side of Eq. (6.22)

is near machine precision. The lines joining data points are for visualisation purposes only.
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6.3 Numerical results for the slowly evolving Lorenz gauge metric

perturbation

Sample results of h1L
µν,r0 are presented below in Fig. (6.5).
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Figure 6.5: Numerical results for h1L
µν,r0 ,with the particle at r0 = 10M . The top and bottom left

panels show the real and imaginary parts of ∂r0 h̄
(8)
21 and ∂r0 h̄

(1)
22 respectively, as r tends towards

in�nity. The top and bottom right panels show the behaviour of the imaginary parts of ∂r0 h̄
(8)
21 and

∂r0 h̄
(1)
22 near the particle respectively. We �nd similar results for all other remaining Lorenz gauge

�elds, for di�erent choices of modes, and di�erent values of r0. The lines joining data points in the

right panels are for visualisation purposes only.

As a check on our results for ∂r0 h̄
(i)
lm we compare them with a numerically computed r0 derivative

of h̄(i)
lm. In our check we computed data from our partial annihilator method at r = 50M with r0

ranging from 6.4M to 7.3M in steps of 0.1M . The numerical derivatives are obtained by interpolating

data for the metric perturbation for di�erent values of r0, keeping the �eld point r constant. For the

numerical derivatives data was computed at r = 50M for r0 ranging from 6.5M to 7.5M in steps

of 0.1M . The end points of the interpolation were then discarded to mitigate error. We present

the result of the comparison in Fig. 6.6 where we �nd near machine precision agreement between

our results for ∂r0 h̄
(8)
21 and ∂r0 h̄

(1)
22 and the numerical r0 derivatives of h̄(8)

21 and h̄(1)
22 respectively. In

general, using numerical derivatives is less accurate and much less e�cient as data for each �eld

point r needs to be calculated for a number of values of r0 to interpolate and di�erentiate. As such,

our method of calculating h1L
µν,r0 is favourable.
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Figure 6.6: Comparison of numerical results for h1L
µν,r0 computed using the partial annihilator method

and by taking a numerical derivative of h1L
µν . The top panel shows the real part of ∂r0 h̄

(8)
21 and the

third panel shows the real part of ∂r0 h̄
(1)
22 at a �xed �eld point r = 50 as a function of r0. The second

and forth panels show that the absolute value of the di�erence between numerically computing the

r0 derivative and computing the r0 derivative using our partial annihilators method is near machine

precision. The error is larger near the end points on the plot due to the fact that the error from

interpolating data is larger at the end points. The error is also greater in the even-sector due to

the larger number of �elds involved in calculating the metric perturbation. We �nd similar results

for all other remaining Lorenz gauge �elds, their radial derivatives as well as for a di�erent choice

of modes, �xed �eld point and set of radii r0. The lines joining data points are for visualisation

purposes only.
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It is instructive to consider the e�ciency of the partial annihilator approach versus taking the

numerical derivative for computing the slowly evolving metric perturbation. One signi�cant new

calculation introduced in the gauge transformation in the even sector is the calculation of M2af,r0 .

Using the partial annihilator method we must solve the left-hand side of Eq. (6.26) 6 times and

Eq. (6.27) 4 times (two less as two of the bases are the same as for Eq. (6.26)), giving a total of

10 ODE evaluations. Computing M2af requires solving the left-hand side of Eq. (5.18) 4 times and

to numerically calculate its r0 derivative to a relative precision of ∼ 10−15 at, e.g., r0 = 7.5M we

�nd we must evaluate M2af 8 times at equally spaced radii between r0 = 7.5± 0.1M and �t to an

eighth-order polynomial. This gives a total of 4×8 = 32 ODE evaluations. This means our approach

is 32/10 = 3.2 times faster than numerically computing the derivative of M2af,r0 . In practice, when

computing h1L
µν,r0 the speed up is about twice this as four of the homogeneous solutions for Eqs. (6.26)

and (6.26), namely ψ±0 and φ±0 , will already be computed in other parts of the calculation.

6.4 Slowly evolving energy �ux

In order to calculate the GW energy �ux radiated to null in�nity we consider perturbations with

constant retarded time, u = t − r∗. These perturbations can be related to the perturbations on

constant t slices via

ψ
lm,[u]
2 = ψlm2 e−iωr∗ , (6.37)

where ψlm2 denotes evaluation on t slicing and ψ
lm,[u]
2 on u slicing, and we have reintroduced the

labels l and m. The GW energy �ux radiated to in�nity can then be calculated via [103, 124]

Ė∞lm =
λl(l + 1)

8π
g(r0)|ψlm,[u]

2 |2r→∞, (6.38)

=
λl(l + 1)

8π
g(r0)|c+

2,lm|2, (6.39)

where g(r0) = 1 for the RW case in the odd-sector, g(r0) = (ω/2)2 for the Zerilli case in the even-

sector, and the limit to in�nity is taken with respect to �xed retarded time. Taking an r0 derivative

of Eq. (6.38) we obtain

∂r0Ė
∞
lm =

λl(l + 1)

8π

{
2g(r0)Re

[
φ
lm,[u]
2 ψ

lm,[u]∗
2

]
+ g′(r0)|ψlm,[u]

2 |2
}
r→∞

. (6.40)

To evaluate this formula we start by taking the r0 derivative of Eq. (6.37) to obtain

φ
lm,[u]
2 = e−iωr∗

(
φlm2 − ir∗ω,r0ψlm2

)
. (6.41)

Now using Eqs. (5.1), (6.9) and the following leading terms in the boundary condition expansions

Eqs. (5.15) and (6.20), given by
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ψlm2 e−iωr∗ ∼ c+
2

[
1 +

il(l + 1)r
3/2
0

2mr

]
, (6.42)

φlm2 e−iωr∗ ∼ ch2,+
2 + ch4,+

2

[r
2

+ log(r)
]
, (6.43)

we get

φ
lm,[u]
2 ∼

(
ch4,+

2 +
3ic+

2 m

r
5/2
0

)[r
2

+ log(r)
]

+ ch2,+
2 − c+

2

[
3l(l + 1)

4r0
+

3im log(2)

r
5/2
0

]
. (6.44)

Note that the expansions given in Eqs. (6.42) and (6.43) are valid for both the RW and Zerilli

potentials. In order for this result to be �nite, when we take the limit to in�nity we must have

ch4,+
2 = −3ic+

2 m

r
5/2
0

. (6.45)

Combining the above results, the GW �ux to in�nity in the odd-sector is given by

∂r0Ė
∞,RW
lm =

λl(l + 1)

4π

[
Re
(
ch2,+

2 c+∗
2

)
− |c+

2 |2
(

3l(l + 1)

4r0

)]
, (6.46)

and in the even-sector by

∂r0Ė
∞,Z
lm =

m2

4r3
0

(
∂r0Ė

∞,RW
lm − 6|c+

2 |2
4r0

)
. (6.47)

As a further check that our results are working correctly, we compute ∂r0Ė
∞
lm using Eq. (6.46) and

Eq. (6.47) and compare these results to the r0 derivative of the �ux when computed numerically. To

compute the latter we compute the �ux on a dense grid of r0 values using the ReggeWheeler package

[1]. Using the standard least-squares algorithm we �t this data to an eighth-order polynomial centred

on the r0 value where we wish to compute the r0 derivative of the �ux. The linear coe�cient in this

�t is the numerical approximation to the r0 derivative of �ux. We �nd excellent agreement between

these two methods and present some sample numerical results in Table 6.1. We also numerically

check that the relation in Eq. (6.45) between ch4,+
2 and c+

2 holds to machine precision.

To assess the e�ciency of our partial annihilator method while avoiding issues regarding the

level of code optimisation between our code and the BHPToolkit we can count the number of

times our approach must solve an ODE versus the number of times required when computing the

r0 derivative numerically. Numerically computing the homogeneous basis of solutions is by far the

largest computational cost as all the other steps, such as matching to get the inhomogeneous solutions

or calculating the �ux, are quick algebraic operations. Computing φ2 using the partial annihilator

method requires solving the left-hand side of Eq. (6.6) four times. To numerically compute the r0

derivative of the �ux at, e.g., r0 = 8M , to a relative precision of ∼ 10−12 we �nd we must compute
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r0/M
M3

µ2 ∂r0F∞ rel. err.

6 −8.859960015046× 10−4 4.1× 10−11

8 −1.291224908187× 10−4 1.2× 10−12

10 −3.155702796251× 10−5 1.2× 10−13

Table 6.1: Numerical results for the r0 derivative of the �rst-order GW energy �ux radiated to null
in�nity, with modes summed up to lmax = 15, where F ]∞ is given by Eq. (4.77). The �rst column
gives the orbital radius, the second column shows the r0 derivative of the �ux radiated to in�nity
as computed from our partial annihilator calculation. The third column shows the relative error
compared to a result computed by caclculating the �ux at many orbital radii and taking a numerical
derivative as described in the main text.

the �ux at 11 equally spaced radii between in the range r0 ± 0.2M , and �t to an eighth-order

polynomial. This requires solving the left-hand side of Eq. (2.49) 22 times. Thus our method is

22/4 = 5.5 faster to compute ∂r0Ė
lm
∞ than the numerical derivative approach. In practice, when

performing the Regge-Wheeler to Lorenz transformation the speed up is closer to a factor of 10 as

two of the homogeneous solutions to Eq. (6.6) are ψ±2 which will already be computed for other

parts of the transformation. We also note that in order to reach a relative precision beyond ∼ 10−9

in the numerical r0 derivative computed using the ReggeWheeler BHPToolkit package, we had to

use extended precision arithmetic.

6.5 Di�erentiability of second-order source

In this section we examine the di�erentiability of the slowly evolving terms that contribute to the

source of the second-order metric perturbation. Recall from Eq. (4.68) that (dropping the tildes

from the original equation and assuming a two-timescale expansion)

δ1G
0,(i)
(j)

[
h̄

2,(j)
lm

]
= S̃

2,(i)
lm − 2δ2G

0,(i)
(j)(k)

[
h̄

1,(j)
lm , h̄

1,(k)
lm

]
− δ1G

1,(i)
(j)

[
h̄

1,(j)
lm

]
, (6.48)

and let

h̄
2,(j)
lm = h̄

2,(j)
P + h̄

2,(j)
R , (6.49)

such that

δ1G
0,(i)
(j)

[
h̄

2,(j)
R

]
= S

2,(i)
lm − δ1G

0,(i)
(j)

[
h̄

2,(j)
P

]
− 2δ2G

0,(i)
(j)(k)

[
h̄

1,(j)
lm , h̄

1,(k)
lm

]
− δ1G

1,(i)
(j)

[
h̄

1,(j)
lm

]
. (6.50)

Due to the order of the puncture, the contribution

δ1G
0,(i)
(j)

[
h̄

2,(j)
P,ms

]
+ δ1G

1,(i)
(j)

[
h̄

1,(j)
lm

]
, (6.51)
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is expected to be C0 di�erentiable, where h̄2,(j)
P,ms is de�ned to be the piece of the puncture that is pro-

portional to ṙ0 and is referred to as the multi-scale piece. Figure 6.7 shows how any jumps appearing

in the individual terms from Eq. (6.51) cancel so that their sum is C0 di�erentiable, providing an

additional useful check on our calculation of h1L
µν,r0 . The position of the particle was chosen to be at

r0 = 8.4M , with the even-sector components shown for the (l,m) = (2, 2) mode below.
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Figure 6.7: Plot of δ1G
0,(i)
(j)

[
h̄

2,(j)
P,ms

]
, δ1G

1,(i)
(j)

[
h̄

1,(j)
lm

]
when summed over j from 1 to 10, with i = 1.

In each case, the desired C0 di�erentiability of the sum of the terms is achieved [2, 4].
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Figure 6.8: Same as Fig. (6.7) except for i = 2.
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Figure 6.9: Same as Fig. (6.7) except for i = 3.
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Figure 6.10: Same as Fig. (6.7) except for i = 4.
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Figure 6.11: Same as Fig. (6.7) except for i = 5.
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Figure 6.12: Same as Fig. (6.7) except for i = 6.
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Figure 6.13: Same as Fig. (6.7) except for i = 7.
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The odd-sector components are then shown for the (l,m) = (2, 1) mode
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Figure 6.14: Same as Fig. (6.7) except for i = 8.
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Figure 6.15: Same as Fig. (6.7) except for i = 9.
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Figure 6.16: Same as Fig. (6.7) except for i = 10.
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Chapter 7

Transition to Plunge

Throughout this thesis so far, only the inspiral part of the waveform has been considered. To

generate the full waveform, the transition to plunge, merger and ring-down of the binary must also

be considered [48]. This chapter will focus on modelling the transition to plunge of the binary, in

particular on calculating the amplitude and phase of GWs produced by EMRIs. In fact, the results

in this chapter are also found to be applicable to intermediate mass ratio inspirals (IMRIs), as will

be shown in Chapter 8. For IMRIs, where ε ∼ 0.1 can still be considered `small', are modelled very

well using the GSF approach [3, 4]. The transition to plunge is much more important for modelling

IMRIs however, where the overall signal length is much shorter than for an EMRI. We are now

beginning to detect IMRIs from ground based detectors, for example GW191219_163120 [7] and

need improved models for accurate parameter estimation of these signals. This provides the primary

motivation for the research in this chapter, which was done in collaboration with Küchler, Geo�rey

Compère and Pound, continuing to use a spacetime foliation of hypersurfaces de�ned by constant t.

To model the transition to plunge, a new time scale must be introduced. In Chapter 4 and

Chapter 6 we have seen that the orbital radius shrinks due to GW emission over a timescale of

t̃ = εt, the slow-time, during inspiral. Recall some of the physical quantities of the inspiral as

expanded in the small mass ratio, which were introduced in Chapter 4

dΩ

dt
= ε

∞∑
n=0

εnFΩ
n (Ω), (7.1)

rp =

∞∑
n=0

εnrn(Ω), (7.2)

fµ(Ω) = ε

∞∑
n=0

εnfµn (Ω), (7.3)

h̄
(i)
lm =

∞∑
n=1

εnh̄
n,(i)
lm (r,Ω, φp) =

∞∑
n=1

εnh̄
n,(i)
lm (r,Ω)e−imφp , (7.4)

S
(i)
lm =

∞∑
n=1

εnS
n,(i)
lm (r, rp, ṙp,Ω, φp), (7.5)
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where an overdot denotes di�erentiation with respect to t and the tilde on the SF and metric

perturbation of Chapter 4 are dropped henceforth, with all quantities assumed to be expanded

using the two-timescale approximation. The explicit dependence on variables in Eq. (7.5) will be

made clear later in Section 7.3. Note that in the inspiral, we may wish to write the dependence on

Ω of some quantity equivalently as dependence on rp, as Ω = Ω(rp). One must take care however

as explicit dependence on both rp and Ω may appear, as will be seen in Eq. (7.76). Regardless, in

both the inspiral and the transition regimes, φp is not a slowly evolving quantity, and while it is a

functional of Ω, it depends only on t and not on t̃.

During the transition, the binary evolves more quickly than in the inspiral. The entire transition

to plunge occurs over a much shorter time compared to the full inspiral of an EMRI, and is expected

to contribute very little to the overall waveform, lasting for a proper time of [48, 60, 93]

∆τ ∼ ε−1/5, (7.6)

which corresponds to a radial width of

∆r ∼ ε2/5, (7.7)

and a change in frequency of

∆Ω ∼ ε2/5. (7.8)

A more concrete estimate of the width of the transition from inspiral to plunge is given in Ref. [93].

Therefore, in the transition regime, we introduce the `slightly faster' slow-time [48]

t̃ = λt, where λ = ε
1
5 . (7.9)

The metric perturbation and frequency can be determined during the transition by using the new

timescale and setting ε→ λ5. To calculate the metric perturbation to second-order in the small mass

ratio, terms in the expansion must be included up to λ10 therefore. The two-timescale approximation

of the inspiral starts to break down near the ISCO [14, 4]. As such, quantities such as the orbital

radius and frequency during the transition are expanded near the ISCO. Physical quantities of

interest for modelling GWs during the transition are then given instead by [125, 126, 62]

Ω = ΩI + λ2∆Ω, (7.10)

dΩ

dt
= λ2d∆Ω

dt
= λ3

∞∑
n=0

λnF∆Ω
n (∆Ω), (7.11)

rp = rI + λ2
∞∑
n=0

λnRn(∆Ω), (7.12)

fµ(Ω) = λ5
∞∑
n=0

λnFµn (Ω), (7.13)
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and

h̄
(i)
lm =

∞∑
n=5

λnj
n,(i)
lm (r,∆Ω, φp), (7.14)

S
(i)
lm =

∞∑
n=5

λns
n,(i)
lm (r, rp, ṙp,Ω, φp), (7.15)

where

rI = 6M, (7.16)

ΩI =
1

M

√
1

63
. (7.17)

Note that, for rp > rI, ∆Ω < 0 and for rp < rI, ∆Ω > 0. Unlike the inspiral, there is no longer

a direct relationship between Ω and rpduring the transition to plunge. To model GWs in the

transition therefore, one can solve for the transition quantities above by two di�erent means. The

�rst method involves re-deriving the linearised Einstein �eld equations and equations of motion in

the new timescale and solving directly for transition quantities. The second method involves re-

expanding the inspiral solutions in the new timescale, taking the limit of late times in the inspiral,

and matching to transition quantities in the limit of early times in the transition. Both methods

must of course yield identical solutions, and hence exploring both avenues provides a useful check on

one's results. In this chapter, the second method shall be used, as this will allow transition quantities

to be written in terms of inspiral quantities, most of which have already been solved in references

[14, 119, 3, 4, 2], and some of which are solved earlier in this thesis, leaving fewer unknowns to be

determined. Using the equations of motion from Chapter 4 and expanding about the ISCO we can

determine the evolution of the frequency during the transition in terms of inspiral quantities as an

expansion in powers of λ.
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7.1 Revisiting the equations of motion

In this section we will determine the terms in the expansions for rp and dΩ
dt in both the inspiral and

transition, that is rn, Rn, FΩ
n and F∆Ω

n . The late time limit for inspiral quantities and the early

time limit for transition quantities will be examined as each of these limits correspond to the limit

near the ISCO, where both inspiral and transition solutions should match. The quantities derived in

this section will prove useful in determining the phase and amplitudes of GWs during the transition.

7.1.1 Inspiral

Specifying Ω = Ω0 as in methods 2 and 3 outlined in Section 4.8, the equations of motion from

Eq. (4.24) establish that the coe�cients of the powers of ε in rp from Eq. (7.2) are given by [62, 126,

125]

r0 =
M

(MΩ)2/3
, (7.18)

r1 = − f r1
3Ω2U2

0 f0
, (7.19)

r2 = − 1

3Ω2U2
0 f0

f r2 +
2(4− 45(MΩ)2/3 + 114(MΩ)4/3 − 72(MΩ)2)

3Ω3(MΩ)U6
0D

3

(
f t1
)2

+ (7.20)

+
(1− 4(MΩ)2/3)

9Ω3(MΩ)1/3U4
0 f

3
0

(f r1 )2 +
2f0

Ω2(MΩ)U8
0D

2
f t1∂Ωf

t
1,

with

U0 =
1

(1− 3(MΩ)2/3)1/2
, (7.21)

D =
(

1− 6(MΩ)2/3
)
, (7.22)

f0 = 1− 2M

r0
= 1− 2(MΩ)2/3. (7.23)

Recall from Eq. (4.105) that we also have

FΩ
0 = − 3f0Ω

(MΩ)2/3U4
0D

f t1. (7.24)

and from Eq. (4.107) that the next-to-leading order forcing term is given by

FΩ
1 =

3ΩU2
0 f0

(
2f t1(Ω)

(
1
U4

0

)4
∂Ωf

r
1 (Ω)− f t2(Ω)(MΩ)1/3Df0

)
− 4f r1 (Ω)f t1(Ω)

(
12(MΩ)4/3 +D

)
MΩD2U6

0 f0
.

(7.25)

The frequency Ω will be determined from its evolution, dΩ
dt , after initially solving for FΩ

n from

Eq. (7.1), following method 3 from Section 4.8. It is worth noting here one of the crucial di�erences
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between the work here and that of OT, discussed in the introduction. While OT strictly imposes

quasi-circularity such that f r = 0 [48], Eq. (7.19) and Eq. (7.20) capture the deviation from quasi-

circularity during the transition from inspiral to plunge, following the self-consistent approach of

Compère and Küchler [62].

7.1.2 Inspiral at late times

At late times in the inspiral we set Ω→ ΩI +λ2∆Ω, with ∆Ω < 0 [48]. Taking the limit of r0, r1, r2,

FΩ
0 and FΩ

1 from Eqs. (7.18)-(7.20) and Eq. (7.24) near the ISCO, by setting Ω→ ΩI + λ2∆Ω and

re-expanding in terms of powers of λ2∆Ω determines that [125] This establishes that at late times

in the inspiral, corrections to the orbital radius and forcing terms take the form [125, 126]

rΩ
0 = 6M + r(2,1)λ2∆Ω + r(4,2)λ4∆Ω2 + r(6,3)λ6∆Ω3 +O(λ8) (7.26)

rΩ
1 = λ5

[
r(5,0) + r(7,1)λ2∆Ω +O(λ4)

]
, (7.27)

FΩ
0 =

F
(3,−1)
Ω

λ2∆Ω
+ F

(5,0)
Ω + F

(7,1)
Ω λ2∆Ω + F

(9,2)
Ω λ4∆Ω2 +O(λ6), (7.28)

FΩ
1 =

F
(6,−2)
Ω

λ4∆Ω2
+
F

(8,−1)
Ω

λ2∆Ω
+ F

(10,0)
Ω +O(λ2). (7.29)

where the notation of the superscripts will be explained momentarily, and the constant coe�cients

are given by [125, 126]

r(2,1) = − 24
√

6M2, (7.30a)

r(4,2) = 720M3, (7.30b)

r(6,3) = − 3840
√

6M4, (7.30c)

r(5,0) = − 108M2f1
r (ΩI), (7.30d)

r(7,1) = 108M2(10
√

6Mf1
r (ΩI)− 20

√
6M∂Ωf

1
r (ΩI)), (7.30e)

and [125, 126]

F
(3,−1)
Ω =

f t1(ΩI)

24M2
, (7.31a)

F
(5,0)
Ω =

−3
√

6Mf t1(ΩI) + ∂Ωf
t
1(ΩI)

24M2
, (7.31b)

F
(7,1)
Ω =

−92M2f t1(ΩI)− 6
√

6M∂Ωf
t
1(ΩI) + ∂2

Ωf
t
1(ΩI)

48M2
, (7.31c)

F
(9,2)
Ω =

1548
√

6M3f t1(ΩI)− 276M2∂Ωf
t
1(ΩI)− 9

√
6M∂2

Ωf
t
1(ΩI) + ∂3

Ωf
t
1(ΩI)

144M2
, (7.31d)

which are the 0PA contributions to the GSF. For the purposes of the calculations in this chapter,

the other coe�cients will not be listed.
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Using the equations of motion, the �rst-order SF can be written in terms of the �rst-order energy

�ux in the following way [127]

f t1(Ω) = − 1

f0U2
0

F1(r0(Ω)), (7.32)

∂Ωf
t
1(Ω) = 3

√
6M(−F1(6M) + 12M∂r0F1(6M)), (7.33)

where F1 is the sum of the �rst order energy �uxes through in�nity and the horizon, de�ned in

Section 4.6. The values of the �rst-order total �ux and its derivative with respect to r0, when

evaluated at the ISCO, are given below in Table (7.1)(
M
µ

)2
F1(6M) M3

µ2 ∂r0F1(6M)

0.0009403393563150952 -0.0008920288801933012

Table 7.1: Numerical results for �rst-order total energy �ux and its r0 derivative evaluated at

the ISCO for quasicircular equatorial orbits. The value for F1(6M) can be calculated using the

BHPToolkit [1], and ∂r0F1(6M) is determined using the method outline in Section 6.4. Note the

di�erence with Table (6.1), which includes only the �rst-order energy �ux radiated to in�nity.

Therefore, as the particle approaches the ISCO, dΩ
dt and rp can be written in the following form [125]

dΩ

dt
= λ5

[
F

(3,−1)
Ω

λ2∆Ω
+ F

(5,0)
Ω + F

(7,1)
Ω λ2∆Ω + F

(9,2)
Ω λ4∆Ω2 +O(λ6)

]
(7.34)

+ λ10

[
F

(6,−2)
Ω

λ4∆Ω2
+
F

(8,−1)
Ω

λ2∆Ω
+ F

(10,0)
Ω +O(λ2)

]
+O(λ15),

rp = 6M + r(2,1)λ2∆Ω + r(4,2)λ4∆Ω2 + r(6,3)λ6∆Ω3 +O(λ8) (7.35)

+ λ5
[
r(5,0) + r(7,1)λ2∆Ω +O(λ4)

]
+O(λ10).

It is from Eqs.(7.34) and (7.35) where the choice of notation becomes clear. In the expansion of

dΩ/dt and rp, the �rst superscript on the constant coe�cients is chosen to represent the power of λ

and the second superscript denotes the power of ∆Ω.

7.1.3 Transition

By choosing rp and fµ to be the transition expansions from Eq. (7.12) and Eq. (7.13) respectively,

the t component of the equations of motion from Eq. (4.24) determines that, at O(λ5) [125]

−24M2F∆Ω
0 (∆Ω)

[
−∆Ω + 9

√
6M

(
∂∆ΩF

∆Ω
0 (∆Ω)

)2
+ 9
√

6MF∆Ω
0 (∆Ω)∂2

∆ΩF
∆Ω
0 (∆Ω)

]
= f t1(ΩI),

(7.36)
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and at O(λ10)1

F∆Ω
1 (∆Ω) = 0. (7.37)

At O(λ15), F∆Ω
2 couples to F∆Ω

0 in the following way

24
√

6M3F∆Ω
0 (∆Ω)

(
18∂∆ΩF

∆Ω
0 (∆Ω)∂∆ΩF

∆Ω
2 (∆Ω)− 11∆Ω2

)
+ ∆Ω

(
8
√

6f t1(ΩI)M + ∂Ωf
t
1(ΩI)

)
=

F∆Ω
2 (∆Ω)

(
2f t1(ΩI)

F∆Ω
0 (∆Ω)

+ 24M2
(

9
√

6M
(
∂∆ΩF

∆Ω
0 (∆Ω)

)2 −∆Ω
))

+216M3F∆Ω
0 (∆Ω)2

(
156M∂∆ΩF

∆Ω
0 (∆Ω)−

√
6∂2

∆ΩF
∆Ω
2 (∆Ω)

)
,

(7.38)

where terms involving ∂2
∆ΩF

∆Ω
0 have been reduced to a combination of F∆Ω

0 and ∂∆ΩF
∆Ω
0 using

Eq. (7.36). The coupled equations Eq. (7.36) and Eq. (7.38) can then be solved numerically in the

following way. The coupled equations are di�cult to solve directly, and are made easier to solve by

making the following replacements, which were �rst observed by Compère [126]

∆Ω = α2/5β3/5t, (7.39)

F∆Ω
0 (∆Ω) = α3/5β−2/5X0(α−2/5β3/5∆Ω), (7.40)

F∆Ω
2 (∆Ω) = α3/5β−2/5X2(α−2/5β3/5∆Ω), (7.41)

where [104]

α = − f t1(ΩI)

432
√

6M3
, (7.42)

β =
1

9
√

6M
, (7.43)

so that Eq. (7.36) and Eq. (7.38) become [126]

X0(t)
(
X ′0(t)2 − t

)
+X0(t)2X ′′0 (t)− 1 = 0, (7.44)

− 31/10∂Ωf
1
t (ΩI)

2
√

2(Mf1
t (ΩI))3/5

t− 33/5(−Mf1
t (ΩI))

2/5

[
2t+

11

2
X0(t)t2 + 13X0(t)2X ′0(t)

]
(7.45)

−X2(t)X ′0(t)2 +X0(t)2X ′′0 (t) + 2X0(t)X ′0(t)X ′2(t) +
2X2(t)

X0(t)
+ tX2(t) = 0.

Using Mathematica's NDSolveValue function with Method → `ImplicitRungeKutta' and

AccuracyGoal → ∞, the simpli�ed coupled ODEs can be solved numerically, and the results can

be seen in Fig. (7.1) [126]. The initial conditions are given by rearranging Eq. (7.40) and Eq. (7.41)

for X0 and X2, and replacing F∆Ω
0 and F∆Ω

2 with their respective early time expansions, given in

the next subsection by Eq. (7.53) and Eq. (7.54) respectively. However, to obtain stable numerical

1Note that F∆Ω
1 is non-zero on hyperboloidal slicing, which is key in matching to the plunge [126].
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solutions we must include higher order contributions. Converting to the variable X0 and X2, the

initial conditions are then given by [126]

X0(t0) = − 1

t
− 3

t6
− 177

t11
− 29349

t16
− 9346005

t21
− 4846966614

t26
− 3722335794387

t31
(7.46)

− 3972772364116824

t36
− 5628415395384607293

t41
− 10223331600760441482825

t46

− 23167355502936795986195010

t51
,

X2(t0) = − 1.24338856914683318262945630044− 5.7270612249289095272197379651

t5
(7.47)

− 538.14669953365742657341937005

t10
− 123573.898042321183276235978732

t15
,

which are evaluated at some su�ciently negative early time t0.

−20 −10 0 10 20 30

0

100

200

300

t/M

X0

X2

Figure 7.1: Leading order and next-to-leading order terms in the evolution of the frequency during

the transition. The quantities X0 and X2 are de�ned in Eq. (7.40) and Eq. (7.41) respectively. The

initial time is chosen to be t0 = −20M , which lies deep in the inspiral.

The r component of the equations of motion Eq. (4.24) at O(λ2), O(λ3) and O(λ4) then determine

respectively that [126]

R0 = − 24
√

6M2∆Ω, (7.48)

R1 = 0, (7.49)

R2 = − 144
[
−5M3∆Ω2 + 18

√
6M4F∆Ω

0 (∆Ω)∂∆ΩF
∆Ω
0 (∆Ω)

]
. (7.50)
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7.1.4 Transition at early times

The near ISCO limit for F∆Ω
1 , R0 and R1 are trivial, and given immediately by Eq. (7.37), Eq. (7.48)

and Eq. (7.49) respectively. As the particle approaches the ISCO, dΩ
dt and rp are expected to take

the following form in terms of powers of λ and ∆Ω [125]

dΩ

dt
= λ2d∆Ω

dt
= λ2

{
λ

[
F

(3,−1)
Ω

∆Ω
+
F

(3,−6)
Ω

∆Ω6
+
F

(3,−11)
Ω

∆Ω11
+O(∆Ω−16)

]
+ λ2(0) + λ3

[
F

(5,0)
Ω +O(∆Ω−5)

]
(7.51)

+ λ4
[
F

(6,−2)
Ω ∆Ω−2 +O(∆Ω−7)

]
+ λ5

[
F

(7,−1)
Ω ∆Ω +O(∆Ω−4)

]
+ λ6

[
F

(8,−1)
Ω ∆Ω−1 +O(∆Ω−6)

]
+ λ7

[
F

(9,2)
Ω ∆Ω2 +O(∆Ω−3)

]
+ λ8

[
F

(10,0)
Ω +O(∆Ω−5)

]
+O(λ9)

}
,

rp = 6M + r(2,1)λ2∆Ω + λ3(0) + λ4
[
r(4,2)∆Ω2 +O(∆Ω−3)

]
+ λ5r(5,0) (7.52)

+ λ6
[
r(6,3)∆Ω3 +O(∆Ω−2)

]
+ λ7

[
r(7,1)∆Ω +O(∆Ω−4)

]
+O(λ8),

where the �rst superscripts have the same meanings as in the inspiral regime. The above expansions

establish that the transition quantities at early times then take the following form

F∆Ω
0 =

f t1(ΩI)

24M2∆Ω
+

√
3

2

f t1(ΩI)
3

256M5∆Ω6
+

177f t1(ΩI)
5

16384M8∆Ω11
+O

(
∆Ω−16

)
, (7.53)

F∆Ω
2 =

−3
√

6Mf t1(ΩI) + ∂Ωf
t
1(ΩI)

24M2
+
−132Mf t1(ΩI)

3 + 5
√

6f t1(ΩI)
2∂Ωf

t
1(ΩI)

1536M5∆Ω5
(7.54)

+
−3213

√
6Mf t1(ΩI)

5 + 525f t1(ΩI)
4∂Ωf

t
1(ΩI)

16384M8∆Ω10
+O

(
∆Ω−15

)
,

and

R2 = 720M3∆Ω2 +
9
√

3
2f

t
1(ΩI)

2

∆Ω3
+

567f t1(ΩI)
4

64M3∆Ω8
. (7.55)

(7.56)

Note that F∆Ω
0 at early times and FΩ

0 at late times are equivalent. Note also that for a spacetime

foliation of hyperboloidal slicing, F∆Ω
1 is no longer zero, which becomes important when matching to

the plunge [104]. This is beyond the scope of this thesis however and is currently being implemented

by collaborators.
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7.2 Composite solution for the phase at 0PA order

We must now �nd a way to combine the inspiral and transition solutions so that they match in the

near ISCO limit. This is done using a composite expansion. At 0PA order, that is to �rst-order in

ε, in terms of Ω and ε, the frequency evolves as

dΩ

dt
=


εFΩ

0 (Ω) + ε
3
5

[
F∆Ω

0

(
Ω−ΩI

ε
2
5

)
+ ε

2
5F∆Ω

2

(
Ω−ΩI

ε
2
5

)]
− ε

[
F

(3,−1)
Ω
Ω−ΩI

+ F
(5,0)
Ω

]
, r > 6M

ε
3
5

[
F∆Ω

0

(
Ω−ΩI

ε
2
5

)
+ ε

2
5F∆Ω

2

(
Ω−ΩI

ε
2
5

)]
, r < 6M,

(7.57)

which includes only dissipative e�ects of the GSF, f t1 discussed in Section 4.4. The �rst term describes

the inspiral and all remaining terms describe the transition, except the �nal term for when r > 6M ,

which is required to cancel the inspiral term at late times, as will be demonstrated momentarily. In

the near ISCO limit, and using Eq. (7.28) to replace the FΩ
0 term, the evolution of the frequency

for r > 6M becomes

dΩ

dt
≈ ε

[
F

(3,−1)
Ω

(Ω− ΩI)
+ F

(5,0)
Ω + F

(7,1)
Ω (Ω− ΩI) + F

(9,2)
Ω (Ω− ΩI)

2

]
(7.58)

+ ε
3
5

[
F∆Ω

0

(
Ω− ΩI

ε
2
5

)
+ ε

2
5F∆Ω

2

(
Ω− ΩI

ε
2
5

)]
− ε

[
F

(3,−1)
Ω

Ω− ΩI
+ F

(5,0)
Ω

]
,

= ε
[
F

(7,1)
Ω (Ω− ΩI) + F

(9,2)
Ω (Ω− ΩI)

2
]

+ ε
3
5

[
F∆Ω

0

(
Ω− ΩI

ε
2
5

)
+ ε

2
5F∆Ω

2

(
Ω− ΩI

ε
2
5

)]
, (7.59)

so that in the limit Ω→ ΩI, where ∆Ω→ 0, the divergent terms involving F (3,−1)/(Ω− ΩI) cancel

analytically, in addition to terms involving F (5,0)
Ω and the solutions either side of the ISCO match

at r = 6M .

To demonstrate how the frequency and phase change when the transition is included, it is

instructive to compare the numerical solutions of the frequency and phase from the composite

expansion, which contains information about both the inspiral and transition, with the solutions

obtained when one considers the inspiral only. With an initial orbital radius of rp = 9M , initial phase

φp = 0 and using Mathematica's NDSolveValue function with the precision and accuracy goals both

set to 13, the frequency and phase were obtained numerically by solving a set of coupled di�erential

equations. The parameters M + µ = 1.00001 and ν = 0.084279 were chosen, corresponding to the

SXS catalogue NR simulation SXS:BBH:1108 [128]. NR simulations were used to set the parameters

M and ν to compare GSF waveforms with those from NR later on in Chapter 8. This particular

simulation was chosen because it was one of the few available in the IMRI regime at the time of

writing, as most SXS simulations are for near comparable masses. For the inspiral-only solution,

denoted by the label 0PA the following set of equations were integrated up to rp ≤ 6.0001M

dΩ0PA

dt
= νFΩ

0 (Ω0PA),
dφ0PA

p

dt
= Ω0PA(t), (7.60)
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with the initial conditions

Ω0PA(t) =

√
M + µ

rp(t)3
, rp

(
t0PAmin

)
= 9(M + µ), φp

(
t0PAmin

)
= 0. (7.61)

The numerical solver then determines the beginning and end times of the integration, t0PAmin = 0 and

t0PAmax. Two di�erent versions of the composite expansions were then integrated. The �rst, which shall

be referred to as Composite0, denoted by the label C0, as it includes only FΩ
0 and F∆Ω

0 and not

F∆Ω
2 and hence only a part of the 0PA solution, involves solving the following set of equations over

di�erent intervals. The �rst set of equations

dΩL
C0

dt
= νFΩ

0 (ΩL
C0) + ν

3
5F∆Ω

0

(
ΩL
C0 − ΩI

ν
2
5

)
− F

(3,−1)
Ω

ΩL
C0 − ΩI

ν,
dφC0,L

p

dt
= ΩL

C0(t), (7.62)

are integrated up to ΩL
C0(t) ≥ ΩI − 0.001, with initial conditions

ΩL
C0

(
tC0,L
min

)
=

√
M

(9M)3
, φC0,L

p

(
tC0,L
min

)
= 0, (7.63)

where the label L denotes the solution `left' of, or for times before the ISCO. The integration of the

above equations will stop at some end time tC0,L
max , with t

C0,L
min = 0. Then, the set of equations

dΩNI

dt
= ν

[
F

(5,0)
Ω + F

(7,1)
Ω (ΩNI − ΩI) + F

(9,2)
Ω (ΩNI − ΩI)

2
]
+ν

3
5F∆Ω

0

(
ΩL − ΩI

ν
2
5

)
,

dφNI
p

dt
= ΩNI(t),

(7.64)

and initial conditions

ΩNI
C0

(
tC0,NI
min

)
= ΩL

C0

(
tC0,L
max

)
, φNI

p

(
tC0,NI
min

)
= φC0,L

p

(
tC0,L
max

)
, (7.65)

were integrated from tC0,NI
min = tC0,L

max to where ΩNI
C0(t) = ΩI, which occurs at some time t = tC0I . The

label NI refers to the near ISCO solution, and I the time at which the ISCO is reached. Finally,

the equations
dΩR

C0

dt
= ν

3
5F∆Ω

0

(
ΩR

C0 − ΩI

ν
2
5

)
,

dφC0,R
p

dt
= ΩR

C0(t), (7.66)

with initial conditions

ΩR
C0

(
tC0,R
min

)
= ΩNI

(
tC0
I

)
, φC0,R

p

(
tC0,R
min

)
= φNI

p

(
tC0
I

)
, (7.67)

will be solved by integrating from tC0,R
min = tIC0 to when ΩR

C0(t) ≥
√

M
(3M)3 , which occurs at some

time t = tC0,R
max , where the label R refers to a solution that is to the `right' of, or for times after the

ISCO. The choice of cut-o� is rather arbitrary, so long as the orbital radius is far enough from the
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horizon of the primary. The total frequency is then determined by

ΩC0(t) =


ΩL
C0, for 0 ≤ t ≤ tC0,L

max ,

ΩNI
C0, for tC0,L

max ≤ t ≤ tIC0,

ΩR
C0, for tIC0 ≤ t ≤ tC0,R

max ,

(7.68)

and similarly for the phase. The second composite expansion, referred to as Composite2, denoted

by the label C2, is the same as for the C0 solution except for that now we include F∆Ω
2 to the right

of the ISCO, and an additional term of −νF (5,0)
Ω to the left such that

dΩL
C2

dt
= νFΩ

0 (ΩL
C2) + ν

3
5

[
F∆Ω

0

(
ΩL
C2 − ΩI

ν
2
5

)
+ ν

2
5F∆Ω

2

(
ΩL
C2 − ΩI

ν
2
5

)]
−
(

F
(3,−1)
Ω

ΩL
C2 − ΩI

+ F
(5,0)
Ω

)
ν,

(7.69)

dΩNI
C2

dt
= ν

[
F

(7,1)
Ω (ΩNI

C2 − ΩI) + F
(9,2)
Ω (ΩNI

C2 − ΩI)
2
]

+ ν
3
5F∆Ω

0

(
ΩNI
C2 − ΩI

ν
2
5

)
(7.70)

+ νF∆Ω
2

(
ΩNI
C2 − ΩI

ν
2
5

)
,

dΩR
C2

dt
= ν

3
5F∆Ω

0

(
ΩR
C2 − ΩI

ν
2
5

)
+ νF∆Ω

2

(
ΩR
C2 − ΩI

ν
2
5

)
. (7.71)

The initial conditions, equations governing the phase and the times at which the left, near ISCO

and right solutions are used are the same as before except that the label C0 is replaced with C2.

The numerical results for the frequency and the phase are given below in Fig. (7.2) and Fig. (7.3)

respectively, using values for f t1(ΩI) and ∂Ωf
t
1(ΩI) from Table (7.1).
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Figure 7.2: The di�erence between computing the frequency using only the inspiral compared to

using the composite solutions Composite0 and Composite2. For the parameters M + µ = 1.00001

and ν = 0.084279 and initial conditions rp = 9M and φp = 0 at t = 0, the ISCO is reached at

tI = 667.983M , shown by the grey vertical line. For the inspiral-only results, the phase blows up

near the ISCO and its integration is cut o� at rp ≤ 6.0001M . The Composite0 and Composite2

solutions show how the calculation of the phase can be smoothly extended through the ISCO.

Composite2 improves on the results of Composite0 by taking into account more terms in the 0PA

composite solution.

117



300 400 500 600 700 800
10

20

30

t/M

φ
p

Inspiral
Composite0
Composite2

IS
C
O

Figure 7.3: The same as Fig. (7.2) except for the orbital phase. It is vital to capture even a small

change in the phase during the transition for parameter estimation of IMRIs signals measured by

ground based detectors.

To obtain the evolution of the frequency and hence the orbital phase to 1PA order, we must

�rst calculate the retarded metric perturbation and SET to second-order in the small mass ratio,

now in the transition regime. The remainder of this chapter is dedicated to doing just that, leaving

the 1PA phase calculation to future research, which is currently being implemented by collaborators

(Küchler and Compère) at the time of writing.
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7.3 The stress-energy tensor

Recall the self-consistent expansion of the SET from Eq. (2.14), Eq. (2.78) and Eq. (2.79)

T lmµν (xα; zα) =
∞∑
n=1

εnTn,lmµν (xα; zα), (7.72)

T
(i)
lm (t, r) =

∞∑
n=1

εnT
n,(i)
lm (t, r), (7.73)

S
(i)
lm(t, r) =

∞∑
n=1

εnS
n,(i)
lm (t, r), (7.74)

where there is a suppressed dependence on zα, which will be made explicit momentarily. Recall from

Eq. (2.41) and Eq. (2.75) that for equatorial orbits

T
1,(i)
lm (r, rp, ṙp,Ω, φp) = − 1

κ(i)

∮
dΩ ηαµηβν

uαuβ
utr2

p

Ȳ (i),lm
µν (rp, θ, φ)δ(r − rp)δ(θ − π/2)δ(φ− φp)

= − 1

κ(i)(rp)

uα(rp)uβ(rp)

ut(rp)r2
p

ηαµ(rp)ηβν(rp)Ȳ (i),lm
µν (rp, π/2, φp)δ(r − rp) (7.75)

S
1,(i)
lm (r, rp, ṙp,Ω, φp) = − πf(rp)

4a
(i)
l κ(i)(rp)

uα(rp)uβ(rp)

ut(rp)rp
ηαµ(rp)ηβν(rp)Ȳ (i),lm

µν (rp, π/2, φp)δ(r − rp),

(7.76)

where in the two-timescale approximation, φp = φp(t), rp = rp(t̃) and Ω = Ω(t̃). The explicit de-

pendence on ṙp and Ω, in addition to rp appear in the components of uα for quasicircular, equatorial

orbits. The explicit dependence on t is absorbed by the dependence on φp. At second-order in ε we

have [14]

T 2
µν = −µ

2

∫
uµuν (gρσ − uρuσ)h1R

ρσ

δ4 (xα − zα(τ))√−g dτ, (7.77)

where h1R
µν is the residual �eld introduced in Section 4.4.
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During the inspiral, for quasicircular equatorial orbits, expanding S(i)
lm gives

S
(i)
lm(r, rp, ṙp,Ω, φp) = (7.78)

εS
1,(i)
lm (r, r0(Ω), 0,Ω, φp)δ(r − r0(Ω))

+ ε2

{
S

2,(i)
lm (r, r0(Ω), 0,Ω, φp)δ(r − r0(Ω))− S1,(i)

lm (r, r0(Ω), 0,Ω, φp)r1(Ω)δ′(r − r0(Ω))

+

[
FΩ

0 ∂ṙ0S
1,(i)
lm (r, r0(Ω), 0,Ω, φp) (∂Ωr0(Ω))

+ ∂r0S
1,(i)
lm (r, r0(Ω), 0,Ω, φp)r1(Ω)

]
δ(r − r0(Ω))

}

+ ε3

{
S

3,(i)
lm (r, r0(Ω), 0,Ω, φp)δ (r − r0(Ω))− S2,(i)

lm (r, r0(Ω), 0,Ω, φp)r1(Ω)δ′ (r − r0(Ω))

+ S
1,(i)
lm (r, r0(Ω), 0,Ω, φp)

[
1

2
r1(Ω)2δ′′ (r − r0(Ω))− r2(Ω)δ′ (r − r0(Ω))

]
+ FΩ

0 (Ω)

(
∂ṙ0S

2,(i)
lm (r, r0(Ω), 0,Ω, φp) (∂Ωr0(Ω)) δ (r − r0(Ω))

− ∂ṙ0S
1,(i)
lm (r, r0(Ω), 0,Ω, φp) (∂Ωr0(Ω)) r1(Ω)δ′ (r − r0(Ω))

)
− ∂r0S

1,(i)
lm (r, r0(Ω), 0,Ω, φp)r1(Ω)2δ′ (r − r0(Ω))

+ ∂r0S
2,(i)
lm (r, r0(Ω), 0,Ω, φp)r1(Ω)δ (r − r0(Ω))

+

([
FΩ

1 (Ω) (∂Ωr0(Ω)) + FΩ
0 (Ω) (∂Ωr1(Ω))

]
∂ṙ0S

1,(i)
lm (r, r0(Ω), 0,Ω, φp)

+
1

2

(
FΩ

0 (Ω)
)2
∂2
ṙ0S

1,(i)
lm (r, r0(Ω), 0,Ω, φp) (∂Ωr0(Ω))2

+ ∂rpS
1,(i)
lm (r, r0(Ω), 0,Ω, φp)r2(Ω)

+ FΩ
0 (Ω)∂r0∂ṙ0S

1,(i)
lm (r, r0(Ω), 0,Ω, φp)r1(Ω) (∂Ωr0(Ω))

+
1

2
∂2
r0S

1,(i)
lm (r, r0(Ω), 0,Ω, φp)r1(Ω)2

)
δ (r − r0(Ω))

}

+O(ε4),

where δ′ refers to di�erentiation with respect to r and the chain rule has been applied

drp

dt
=
drp

dΩ

dΩ

dt
,

dr0

dt
=
dr0

dΩ

dΩ

dt
.
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To obtain the source for the transition, we must re-expand around ΩI. Setting Ω → ΩI + λ2∆Ω,

terms such as S1,(i)
lm (r, r0(Ω), 0,Ω, φp) become

S
1,(i)
lm (r, r0(Ω), 0,Ω, φp)→ S

1,(i)
lm (r, r0(ΩI), 0,ΩI, φp) (7.79)

+ λ2∆Ω∂Ωr0(ΩI)∂r0S
1,(i)
lm (r, r0(ΩI), 0,ΩI, φp)

+ λ2∂ΩS
1,(i)
lm (r, r0(ΩI), 0,ΩI, φp).

where r0(ΩI) = 6M , and ∂Ωr0(ΩI) = r(2,1) by Eq. (7.26). It turns out that the only term appearing

at O(ε3) in the inspiral source, that contributes to O(ε2) or lower in the transition, is that involving

r2, in particular the last term in the expression for r2 from Eq. (7.20). Rewriting this term by

replacing f t1 in terms of FΩ
0 using Eq. (7.24) yields

2f0

Ω2(MΩ)U8
0D

2
f t1∂Ωf

t
1 =

1

9Ω6r2
0(r0 − 2M)2

(
r2

0 − 9Mr0 + 18M2
) (7.80)

×
{

2MFΩ
0

(
− ΩFΩ

0

(
r3

0 − 9Mr2
0 + 36M3

)
∂Ωr0

− r0

(
FΩ

0 − Ω∂ΩF
Ω
0

)
(r0 − 6M)(r0 − 3M)(r0 − 2M)

)}
,

Replacing the forcing term FΩ
0 and r0 in Eq. (7.80) with their respective late time expansions from

Eq. (7.29) and Eq. (7.26), the leading term of the resulting expression for r2 is

r2 = −

(
F

(3,−1)
Ω

)2

108∆Ω3Ω5
Iλ

6
+O(∆Ω2λ−4). (7.81)

Therefore we expect to see a contribution of the term involving r2 to the source at O(λ9) during

the transition. All other terms that contribute to the source at O(ε3) during the inspiral will not

be reduced in order signi�cantly enough to appear at O(λ10) or lower. Thankfully this means we do

not need to compute the third-order SF, as only contributions from f t1 appear!
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In the transition regime, the source from Eq. (7.78) then becomes

S
(i)
lm(r, rp, ṙp,Ω, φp) = (7.82)

{
λ5S

1,(i)
lm (r, 6M, 0,ΩI, φp)δ(r − 6M)

+ λ7∆Ω

{
− S1,(i)

lm (r, 6M, 0,ΩI, φp)r(2,1)δ′(r − 6M) +

[
∂r0S

1,(i)
lm (r, 6M, 0,ΩI, φp)r(2,1)

+ ∂ΩS
1,(i)
lm (r, 6M, 0,ΩI, φp)

]
δ(r − 6M)

}

+ λ8F
(3,−1)
Ω r(2,1)

∆Ω
∂ṙ0S

1,(i)
lm (r, 6M, 0,ΩI, φp)δ(r − 6M)

+ λ9 ∆Ω2

2

{
S

1,(i)
lm (r, 6M, 0,ΩI, φp)

[(
r(2,1)

)2
δ′′(r − 6M)− 2r(4,2)δ′(r − 6M)

]
+ 2

[
∂ΩS

1,(i)
lm (r, 6M, 0,ΩI, φp) + ∂r0S

1,(i)
lm (r, 6M, 0,ΩI, φp)r(2,1)

] (
r(2,1)

)
δ′(r − 6M)

+

[
∂2
r0S

1,(i)
lm (r, 6M, 0,ΩI, φp)

(
r(2,1)

)2
+ 2∂r0S

1,(i)
lm (r, 6M, 0,ΩI, φp)r(4,2)

+ ∂2
ΩS

1,(i)
lm (r, 6M, 0,ΩI, φp) + ∂r0∂Ω2S

1,(i)
lm (r, 6M, 0,ΩI, φp)r(2,1)

]
δ(r − 6M)

+

(
F

(3,−1)
Ω

)2

108M∆Ω3Ω5
I

[
S

1,(i)
lm (r, 6M, 0,ΩI, φp)δ′(r − 6M)

− ∂r0S
1,(i)
lm (r, 6M, 0,ΩI, φp)δ(r − 6M)

]}

+ λ10

{
S

2,(i)
lm (r, 6M, 0,ΩI, φp)δ(r − 6M)− S1,(i)

lm (r, 6M, 0,ΩI, φp)r(5,0)δ′(r − 6M)

− F (3,−1)
Ω ∂ṙ0S

1,(i)
lm (r, 6M, 0,ΩI, φp)

(
r(2,1)

)2
δ′(r − 6M)

+ ∂ṙ0S
1,(i)
lm (r, 6M, 0,ΩI, φp)

(
F

(5,0)
Ω r(2,1) + 2F

(3,−1)
Ω r(4,2)

)
δ(r − 6M)

+

[
∂r0S

1,(i)
lm (r, 6M, 0,ΩI, φp)r(5,0) + F

(3,−1)
Ω ∂ṙ0∂r0S

1,(i)
lm (r, 6M, 0,ΩI, φp)

(
r(2,1)

)2
]
δ(r − 6M)

+ F
(3,−1)
Ω

[
∂r0∂ΩS

1,(i)
lm (r, 6M, 0,ΩI, φp)

(
r(2,1)

)2
]
δ(r − 6M)

}

+O(λ11)

}
.
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7.4 The metric perturbation and �eld equations

We have now determined the phase during both the inspiral and the transition. What remains to

generate a waveform is to calculate the metric perturbation amplitudes. The inspiral amplitudes

were calculated in Chapter 5, and we must now calculate the amplitudes during the transition. To

do so, we will examine the structure of the metric perturbation in the inspiral, re-expanded in the

near ISCO limit. Naïvely expanding the inspiral metric perturbation about the ISCO yields

h̄
(i)
lm(r,Ω, φp) = λ5h̄

1,(i)
lm (r, λ2∆Ω + ΩI, φp) + λ10h̄

2,(i)
lm (r, λ2∆Ω + ΩI, φp) +O(λ15)

= λ5h̄
1,(i)
lm (r,ΩI, φp) + λ7∆Ω∂Ωh̄

1(r,ΩI, φp) + λ9 (∆Ω)2

2
∂2

Ωh̄
1(r,ΩI, φp) (7.83)

+ λ10h̄
2,(i)
lm (r,ΩI, φp).

We will discover however that this naive Taylor expansion is not the full story, and that there are

missing contributions to the metric perturbation in the transition. To rectify this, we must return

to the �eld equations in search of this missing information.

7.4.1 Slowly evolving time derivative operators during inspiral

To obtain the transition amplitudes, we must examine the linearised Einstein �eld equations in the

transition regime, in particularly, how time derivatives behave on the transition timescale. Recall

the operator δG(i)
(j) from Eq. (2.82) in the self-consistent expansion. The operator contains terms

involving ∂t and ∂2
t , which for quasicircular, equatorial orbits, can be written as

∂t = Ω∂φp + Ω̇∂Ω, (7.84)

∂2
t = (Ω∂φp + Ω̇∂Ω)(Ω∂φp + Ω̇∂Ω), (7.85)

= Ω2∂2
φp

+ 2ΩΩ̇∂Ω∂φp + Ω̇∂φp + Ω̇(∂ΩΩ̇)∂Ω + Ω̇2∂2
Ω,

where an overdot here denotes a full derivative with respect to t. The time derivative operator can

be expanded in the inspiral regime by de�ning

∂t =
∞∑
n=0

εn∂
(n)
t , (7.86)

∂2
t =

∞∑
n=0

εn�(n)
t , (7.87)

such that

∂
(0)
t = Ω∂φp , ∂

(1)
t = FΩ

0 ∂Ω, ∂
(2)
t = FΩ

1 ∂Ω, ∂
(3)
t = FΩ

2 ∂Ω, (7.88)
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and

�(0)
t = Ω2∂2

φp
, (7.89)

�(1)
t = FΩ

0 (2Ω∂Ω∂φp + ∂φp), (7.90)

�(2)
t = FΩ

0

(
∂ΩF

Ω
0

)
∂Ω +

(
FΩ

0

)2
∂2

Ω + FΩ
1 (2Ω∂Ω∂φp + ∂φp , ) (7.91)

�(3)
t =

(
FΩ

1 ∂ΩF
Ω
0 + FΩ

0 ∂ΩF
Ω
1

)
∂Ω + 2FΩ

0 F
Ω
1 ∂

2
Ω + FΩ

2 (2Ω∂Ω∂φp + ∂φp). (7.92)

The time derivative operators from the inspiral can then be determined in the near ISCO limit, using,

Eq. (7.28) and Eq. (7.29) to obtain time derivatives, and hence the linearised Einstein operators for

the transition regime.

7.4.2 Inspiral metric perturbation at late times

Recall the self-consistent expansion of Eq. (4.63) from Chapter 4

δ1G
(i)
(j)

(
εh̄

1,(i)
lm (r,Ω, φp) + ε2h̄

2,(i)
lm (r,Ω, φp) + · · ·

)
(7.93)

+ δ2G
(i)
(j)(k)

(
εh̄

1,(i)
lm (r,Ω, φp) + ε2h̄

2,(i)
lm (r,Ω, φp) + · · ·

)(
εh̄

1,(k)
lm (r,Ω, φp) + ε2h̄

2,(k)
lm (r,Ω, φp) + · · ·

)
+ · · ·

= εS
1,(i)
lm (r, rp, ṙp,Ω, φp) + ε2S

2,(i)
lm (r, rp, ṙp,Ω, φp) + · · · .

In the two-timescale expansion, recall from Eq. (4.65) that δ1G
(i)
(j) becomes

δ1G
(i)
(j) =

∞∑
n=0

εnδ1G
n,(i)
(j) , (7.94)

where, after dropping the l subscripts onMΩ andMr for convenience and making use of the slowly

evolving time derivative operators during the inspiral

δ1G
0,(i)
(j) = δ

(i)
(j)

(
1

4
(�(0)

t − ∂2
r∗) + Vl(r)

)
+M(i)

Ω(j)∂
(0)
t +M(i)

r(j), (7.95a)

δ1G
1,(i)
(j) =

1

4
δ

(i)
(j)�

(1)
t +M(i)

Ω(j)∂
(1)
t , (7.95b)

δ1G
2,(i)
(j) =

1

4
δ

(i)
(j)�

(2)
t +M(i)

Ω(j)∂
(2)
t . (7.95c)

At �rst-order in ε, the Lorenz gauge �eld equations in the two-timescale approximation during

inspiral are

δ1G
0,(i)
(j)

[
h̄

1,(j)
lm (r,Ω, φp)

]
= S

1,(i)
lm (r, r0(Ω), 0,Ω, φp)δ(r − r0(Ω)), (7.96)

as we have seen before in Eq. (4.67). In the limit near the ISCO, this becomes simply

δ1G
0,(i)
(j)

[
h̄

1,(j)
lm (r,ΩI, φp)

]
= S

1,(i)
lm (r, 6M, 0,ΩI, φp)δ(r − 6M). (7.97)
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At second-order in ε, the Lorenz gauge �eld equations in the two-timescale approximation during

inspiral are

δ1G
0,(i)
(j)

[
h̄

2,(j)
lm (r,Ω, φp)

]
= S̃

2,(i)
lm (r, r0(Ω), 0,Ω, φp)− 2δ2G

0,(i)
(j)(k)

[
h̄

1,(j)
lm , h̄

1,(k)
lm

]
− δ1G

1,(i)
(j)

[
h̄

1,(i)
lm

]
+ FΩ

0 (Ω)∂ṙ0S
1,(i)
lm (r, r0(Ω), 0,Ω, φp)∂Ωr0(Ω)δ(r − r0(Ω)), (7.98)

with

S̃
2,(i)
lm (r, r0(Ω), 0,Ω, φp) =− S1,(i)

lm (r, r0(Ω), 0,Ω, φp)rΩ
1 (Ω)δ′(r − r0(Ω)) (7.99)

+
[
S

2,(i)
lm (r, r0(Ω), 0,Ω, φp)

+ rΩ
1 (Ω)∂r0S

1,(i)
lm (r, r0(Ω), 0,Ω, φp)

]
δ(r − r0(Ω)),

where the source terms can be read from the coe�cient of ε2 in Eq. (7.78) and S̃2,(i)
lm should not be

confused with that from Chapter 4. We shall let

h̄
2,(i)
lm (r,Ω, φp) = h̄

2,(i)
P (r,Ω, φp) + h̄

2,(i)
R1 (r,Ω, φp) + h̄

2,(i)
R2 (r,Ω, φp), (7.100)

for a given l,m mode, such that

δ1G
0,(i)
(j)

[
h̄

2,(j)
P

]
= S̃

2,(i)
lm , (7.101)

δ1G
0,(i)
(j)

[
h̄

2,(j)
R1

]
=− 2δ2G

0,(i)
(j)(k)

[
h̄

1,(j)
lm , h̄

1,(k)
lm

]
, (7.102)

δ1G
0,(i)
(j)

[
h̄

2,(i)
R2

]
=− δ1G

1,(i)
(j)

[
h̄

1,(j)
lm

]
+ FΩ

0 S̃
1,(i)
lm , (7.103)

where

S̃
1,(i)
lm (r, r0(Ω), 0,Ω, φp) = ∂ṙ0S

1,(i)(r, r0(Ω), 0,Ω, φp) (∂Ωr0(Ω)) δ(r − r0(Ω)). (7.104)

Equation (7.103) can then be written as

δ1G
0,(i)
(j)

[
h̄

2,(j)
R2

]
=− δ1G

1,(i)
(j)

[
h̄

1,(j)
lm

]
+ FΩ

0 S̃
1,(i)
lm , (7.105)

=−
(

1

4
δ

(i)
(j)�

(1)
t +M(i)

Ω(j)∂
(1)
t

)
h̄

1,(j)
lm + FΩ

0 S̃
1,(i)
lm ,

=−
(

1

4
δ

(i)
(j)F

Ω
0 (2Ω∂Ω∂φp + ∂φp) +M(i)

Ω(j)F
Ω
0 ∂Ω

)
h̄

1,(j)
lm + FΩ

0 S̃
1,(i)
lm ,

=− FΩ
0

(
1

4
δ

(i)
(j)(2Ω∂Ω∂φp + ∂φp) +M(i)

Ω(j)∂Ω

)
h̄

1,(j)
lm + FΩ

0 S̃
1,(i)
lm .

Therefore, we can rewrite h̄2,(i)
lm as

h̄
2,(i)
lm (r,Ω, φp) = h̄

2,(i)
P (r,Ω, φp) + h̄

2,(i)
R1 (r,Ω, φp) + FΩ

0 (Ω)ĥ
2,(i)
R2 (r,Ω, φp), (7.106)
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such that

δ1G
0,(i)
(j)

[
ĥ2

R2

]
= −

(
1

4
δ

(i)
(j)(2Ω∂Ω∂φp + ∂φp) +M(i)

Ω(j)∂Ω

)
h̄

1,(j)
lm + S̃

1,(i)
lm . (7.107)

We can factor out FΩ
0 because the operator δ1G

0,(i)
(j) does not contain any Ω derivatives and hence

leaves functions of Ω unchanged. The expansion of the metric perturbation in the inspiral near the

ISCO then becomes

h̄
(i)
lm(r,∆Ω, φp) = λ5h̄

1,(i)
lm (r,ΩI, φp) + λ7∆Ω∂Ωh̄

1,(i)
lm (r,ΩI, φp) + λ8F

(3,−1)
Ω

∆Ω
ĥ

2,(i)
R2 (r,ΩI, φp) (7.108)

+ λ9 (∆Ω)2

2
∂2

Ωh̄
1,(i)
lm (r,ΩI, φp) + λ10h̄

2,(i)
P (r,ΩI, φp) + λ10h̄

2,(i)
R1 (r,ΩI, φp)

+ λ10F
(5,0)
Ω ĥ

2,(i)
R2 (r,ΩI, φp) + λ10F

(3,−1)
Ω ∂Ωĥ

2,(i)
R2 (r,ΩI, φp).

The term ĥ
2,(i)
R2 appears in the inspiral at O(ε2), but in the limit near the ISCO has a contribution

to both O(λ8) and O(λ10). Hence we have recovered additional information in the transition that

was previously unaccounted for. We will repeat the same procedure for higher order terms in the

inspiral metric perturbation to ensure we are not neglecting any contributions that may appear at

lower orders in the transition.

At third-order in ε, the �eld equations are

δ1G
0,(i)
(j)

[
h̄

3,(j)
lm

]
=− δ1G

1,(i)
(j)

[
h̄

2,(j)
lm

]
− δ1G

2,(i)
(j)(k)

[
h̄

1,(j)
lm

]
− δ3G

0,(i)
(j)(k)(t)

[
h̄

1,(j)
lm , h̄

1,(k)
lm , h̄

1,(t)
lm

]
(7.109)

− δ2G
1,(i)
(j)(k)

[
h̄

1,(j)
lm , h̄

1,(k)
lm

]
− δ2G

0,(i)
(j)(k)

[
h̄

1,(j)
lm , h̄

2,(k)
lm

]
,

where the source terms can be read from the coe�cient of ε3 in Eq. (7.78), but are not given explicitly

here due to the length of expressions. The sources will be reinstated later on in Section 7.4.3 as they

are too long to express here. After some investigation it was found that all terms on the right-hand

side of the third-order equation other than the �rst two would not be reduced by O(λ5) or more.

Therefore, considering only the �rst two terms on the right-hand side, we let

h̄
3,(i)
lm (r,Ω, φp) = h̄

3,(i)
A (r,Ω, φp) + h̄

3,(i)
B (r,Ω, φp), (7.110)

for a given l,m mode, such that

δ1G
0,(i)
(j)

[
h̄

3,(j)
A

]
=− δ1G

1,(i)
(j)

[
h̄

2,(j)
lm

]
, (7.111)

δ1G
0,(i)
(j)

[
h̄

3,(j)
B

]
=− δ1G

2,(i)
(j)

[
h̄

1,(j)
lm

]
. (7.112)
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Considering �rst Eq. (7.111)

δ1G
0,(i)
(j)

[
h̄

3,(j)
A

]
=− δ1G

1,(i)
(j)

[
h̄

2,(j)
lm

]
, (7.113)

=− δ1G
1,(i)
(j)

[
h̄

2,(j)
P + h̄

2,(j)
R1 + FΩ

0 ĥ
2,(j)
R2

]
,

=− FΩ
0

(
1

4
δ

(i)
(j)(2Ω∂Ω∂φp + ∂φp) +M(i)

Ω(j)∂Ω

)(
h̄

2,(j)
R1 + FΩ

0 ĥ
2,(j)
R2

)
,

=− FΩ
0

(
1

4
δ

(i)
(j)(2Ω∂Ω∂φp + ∂φp) +M(i)

Ω(j)∂Ω

)
h̄

2,(j)
R1

−
(
FΩ

0

)2(1

4
δ

(i)
(j)(2Ω∂Ω∂φp + ∂φp) +M(i)

Ω(j)∂Ω

)
ĥ

2,(j)
R2

− FΩ
0

(
1

4
δ

(i)
(j)2Ω

(
∂ΩF

Ω
0

)
∂φp ĥ

2,(j)
R2 +M(i)

Ω(j)

(
∂ΩF

Ω
0

)
ĥ

2,(j)
R2

)
,

where higher-order terms are ignored and the puncture terms have been discarded, to be reinstated

later on. In the limit near the ISCO

δ1G
0,(i)
(j)

[
h̄

3,(j)
A

]
=− F

(3,−1)
Ω

λ2∆Ω

(
1

4
δ

(i)
(j)(2Ω∂Ω∂φp + ∂φp) +M(i)

Ω(j)∂Ω

)
h̄

2,(j)
R1 (7.114)

−
(
F

(3,−1)
Ω

λ2∆Ω

)2(
1

4
δ

(i)
(j)(2Ω∂Ω∂φp + ∂φp) +M(i)

Ω(j)∂Ω

)
ĥ

2,(j)
R2

− F
(3,−1)
Ω

λ2∆Ω

{
1

4
δ

(i)
(j)2Ω

(
∂Ω
F

(3,−1)
Ω

λ2∆Ω

)}
∂φp ĥ

2,(j)
R2 −M

(i)
Ω(j)

(
∂Ω
F

(3,−1)
Ω

λ2∆Ω

)
ĥ

2,(j)
R2 ,

= δ
(i)
(j)

Ω

2

(
F

(3,−1)
Ω

)2

λ6∆Ω3
∂φp ĥ

2,(j)
R2 ,

where only terms contributing to O(λ10) or lower are considered, that is, in the limit near the ISCO,

O(ε3) contributions from the inspiral must be lowered by at least λ5. All higher order terms are

neglected. Next, considering Eq. (7.112)

δ1G
0,(i)
(j)

[
h̄

3,(j)
B

]
=− δ1G

2,(i)
(j)

[
h̄

1,(j)
lm

]
, (7.115)

= −
(

1

4
δ

(i)
(j)�

(2)
t +M(i)

Ω(j)∂
(2)
t

)
h̄

1,(j)
lm ,

= −
{

1

4
δ

(i)
(j)

(
FΩ

0 (∂ΩF
Ω
0 )∂Ω + (FΩ

0 )2∂2
Ω + FΩ

1 (2Ω∂Ω∂φp + ∂φp)
)

+M(i)
Ω(j)

(
FΩ

1 ∂Ω

)}
h̄

1,(j)
lm ,
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which in the near ISCO limit becomes

δ1G
0,(i)
(j)

[
h̄

3,(j)
B

]
= δ

(i)
(j)

(
F

(3,−1)
Ω

)2

4λ6∆Ω3
∂Ωh̄

1,(j)
lm . (7.116)

Therefore we can rewrite h̄3,(j)
lm as

h̄
3,(j)
lm (r,Ω, φp) = FΩ

0 (Ω)
(
∂ΩF

Ω
0 (Ω)

)
ĥ3

A(r,Ω, φp) + FΩ
0 (Ω)

(
∂ΩF

Ω
0 (Ω)

)
ĥ3

B(r,Ω, φp), (7.117)

where, ignoring higher order terms,

δ1G
0,(i)
(j)

[
ĥ

3,(j)
A

]
= δ

(i)
(j)

Ω

2
∂φp ĥ

2,(j)
R2 , (7.118)

δ1G
0,(i)
(j)

[
ĥ

3,(j)
B

]
=

1

4
δ

(i)
(j)∂Ωh̄

1,(j)
lm . (7.119)

Seeing as both terms in Eq. (7.117) have the same structure, we can write

ĥ
3,(i)
lm = ĥ

3,(i)
A + ĥ

3,(i)
B , (7.120)

h̄
3,(i)
lm = FΩ

0

(
∂ΩF

Ω
0

)
ĥ3, (7.121)

δ1G
0,(i)
(j)

[
ĥ

3,(j)
lm

]
= δ

(i)
(j)

Ω

2
∂φp ĥ

2,(j)
R2 +

1

4
δ

(i)
(j)∂Ωh̄

1,(j)
lm . (7.122)

Finally, at fourth-order in ε, the �eld equations are

δ1G
0,(i)
(j)

[
h̄

4,(j)
lm

]
= −δ1G

1,(i)
(j)

[
h̄

3,(j)
lm

]
− δ1G

2,(i)
(j)

[
h̄

2,(j)
lm

]
− δ1G

3,(i)
(j)

[
h̄

1,(j)
lm

]
, (7.123)

where the source terms are neglected here due to the length of expressions, and it will turn out they

will not be needed anyway as we will see later that all fourth-order contributions vanish. Terms

involving δ2G, δ3G and δ4G are also neglected here as they do not reduce the order of the metric

perturbation signi�cantly enough. We shall let

h̄
4,(i)
lm (r,Ω, φp) = h̄

4,(i)
A (r,Ω, φp) + h̄

4,(i)
B (r,Ω, φp) + h̄

4,(i)
C (r,Ω, φp), (7.124)

such that

δ1G
0,(i)
(j)

[
h̄

4,(i)
A

]
=− δ1G

1,(i)
(j)

[
h̄

3,(j)
lm

]
, (7.125)

δ1G
0,(i)
(j)

[
h̄

4,(i)
B

]
=− δ1G

2,(i)
(j)

[
h̄

2,(j)
lm

]
, (7.126)

δ1G
0,(i)
(j)

[
h̄

4,(i)
C

]
=− δ1G

3,(i)
(j)

[
h̄

1,(j)
lm

]
. (7.127)
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Considering �rst Eq. (7.125), we shall only keep terms that lower the O(ε4) terms in the inspiral by

λ10 or more in the near ISCO limit

δ1G
0,(i)
(j)

[
h̄

4,(i)
A

]
=− δ1G1

[
h̄

3,(j)
lm

]
, (7.128)

=− FΩ
0

(
1

4
δ

(i)
(j)(2Ω∂Ω∂φp + ∂φp) +M(i)

Ω(j)∂Ω

)(
FΩ

0

(
∂ΩF

Ω
0

)
ĥ

3,(j)
lm

)
,

=−
(
FΩ

0

)2 (
∂ΩF

Ω
0

)(1

4
δ

(i)
(j)(2Ω∂Ω∂φp + ∂φp) +M(i)

Ω(j)∂Ω

)
ĥ

3,(j)
lm

− FΩ
0

(
1

4
δ

(i)
(j)2Ω

(
∂ΩF

Ω
0

)2
∂φp ĥ

3,(j)

Ã
+M(i)

Ω(j)

(
∂ΩF

Ω
0

)2
ĥ

3,(j)
lm

)
−
(
FΩ

0

)2(1

4
δ

(i)
(j)2Ω

(
∂2

ΩF
Ω
0

)
∂φp ĥ

3,(j)

Ã
+M(i)

Ω(j)

(
∂2

ΩF
Ω
0

)
ĥ

3,(j)
lm

)
,

=−
(
FΩ

0

(
∂ΩF

Ω
0

)2
+
(
FΩ

0

)2 (
∂2

ΩF
Ω
0

))(
δ

(i)
(j)

Ω

2
∂φp +M(i)

Ω(j)

)
ĥ

3,(j)
lm ,

which in the near ISCO limit become

δ1G
0,(i)
(j)

[
h̄

4,(i)
A

]
=− 2

(
F

(3,−1)
Ω

)3

λ10∆Ω5

(
δ

(i)
(j)

Ω

2
∂φp +M(i)

Ω(j)

)
ĥ

3,(j)
lm .

Next, considering Eq. (7.126)

δ1G
0,(i)
(j)

[
h̄

4,(i)
B

]
=− δ1G2

[
h̄

2,(j)
lm

]
, (7.129)

=

{
1

4
δ

(i)
(j)

[
FΩ

0 (∂ΩF
Ω
0 )∂Ω + (FΩ

0 )2∂2
Ω + FΩ

1 (2Ω∂Ω∂φp + ∂φp)
]

+M(i)
Ω(j)

(
FΩ

1 ∂Ω

)}(
FΩ

0 ĥ
2,(j)
R2

)
,

=

{
1

4
δ

(i)
(j)

[
FΩ

0 (∂ΩF
Ω
0 )∂Ω + (FΩ

0 )2∂2
Ω

]}(
FΩ

0 ĥ
2,(j)
R2

)
,

=
1

4
δ

(i)
(j)

[
FΩ

0 (∂ΩF
Ω
0 )2 + (FΩ

0 )2
(
∂2

ΩF
Ω
0

)]
ĥ

2,(j)
R2 ,

which in the near ISCO limit becomes

δ1G
0,(i)
(j)

[
h̄

4,(i)
B

]
=

3

4
δ

(i)
(j)

(
F

(3,−1)
Ω

)3

λ10∆Ω5
ĥ

2,(j)
R2
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Finally, considering Eq. (7.127)

δ1G0
[
h̄4

C

]
=− δ1G3

[
h̄1
lm

]
, (7.130)

=

(
1

4
δ

(i)
(j)�

(3)
t +M(i)

Ω(j)∂
(3)
t

)
h̄

1,(j)
lm ,

=

{
1

4
δ

(i)
(j)

[(
FΩ

1 ∂ΩF
Ω
0 + FΩ

0 ∂ΩF
Ω
1

)
∂Ω + 2FΩ

0 F
Ω
1 ∂

2
Ω + FΩ

2 (2Ω∂Ω∂φp + ∂φp)
]

(7.131)

+M(i)
Ω(j)

(
FΩ

2 ∂Ω

)}
h̄

1,(j)
lm ,

which in the near ISCO limit becomes

δ1G0
[
h̄4

C

]
=

1

4
δ

(i)
(j)

[(
F

(6,−2)
Ω

λ4∆Ω2

(
−F

(3,−1)
Ω

λ4∆Ω2

)
+
F

(3,−1)
Ω

λ2∆Ω

(
−2

F
(6,−2)
Ω

λ6∆Ω3
−
))

∂Ω (7.132)

+ 2
F

(3,−1)
Ω

λ2∆Ω

F
(6,−2)
Ω

λ4∆Ω2
∂2

Ω

]
h̄

1,(j)
lm ,

> O(λ10).

Putting this altogether we have

h̄
4,(i)
lm =

[
FΩ

0 (∂ΩF
Ω
0 )2 + (FΩ

0 )2
(
∂2

ΩF
Ω
0

)]
ĥ

4,(i)
A +

[
FΩ

0 (∂ΩF
Ω
0 )2 + (FΩ

0 )2
(
∂2

ΩF
Ω
0

)]
ĥ

4,(i)
B , (7.133)

where, ignoring higher order terms

δ1G
0,(i)
(j)

[
ĥ

4,(j)
A

]
=

(
δ

(i)
(j)

Ω

2
∂φp +M(i)

Ω(j)

)
ĥ

3,(j)
lm , (7.134)

δ1G
0,(i)
(j)

[
ĥ

4,(j)
B

]
=

1

4
δ

(i)
(j)ĥ

2,(j)
R2 . (7.135)

(7.136)

As both terms in Eq. (7.133) have the same structure, similarly to our approach at third-order in ε,

we can write

ĥ
4,(i)
lm = ĥ

4,(i)
A + ĥ

4,(i)
B , (7.137)

h̄
4,(i)
lm =

[
FΩ

0 (∂ΩF
Ω
0 )2 + (FΩ

0 )2
(
∂2

ΩF
Ω
0

)]
ĥ

4,(i)
lm , (7.138)

δ1G
0,(i)
(j)

[
ĥ

4,(j)
lm

]
=

(
δ

(i)
(j)

Ω

2
∂φp +M(i)

Ω(j)

)
ĥ

3,(j)

Ã
+

1

4
δ

(i)
(j)ĥ

2,(j)
R2 . (7.139)

This concludes all of the inspiral metric perturbation contributions at O(λ10) or lower that appear

in the limit near the ISCO, and hence are valid during the transition. The full metric perturbation,
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valid in both the inspiral and transition can therefore be written in terms of inspiral quantities as

h̄
(i)
lm(r,Ω, φp) = λ5h̄

1,(i)
lm (r,ΩI, φp) + λ7∆Ω∂Ωh̄

1,(i)
lm (r,ΩI, φp) + λ9 (∆Ω)2

2
∂2

Ωh̄
1
lm(r,ΩI, φp) (7.140)

+ λ10
{
h̄

2,(i)
P (r,ΩI, φp) + h̄

2,(i)
R1 (r,ΩI, φp)

}
+ λ10FΩ

0 ĥ
2,(i)
R2 (r,Ω, φp)

+ λ15FΩ
0

(
∂ΩF

Ω
0

)
ĥ

3,(i)
lm (r,ΩI, φp) + λ20

{
FΩ

0

(
∂ΩF

Ω
0

)2
+
(
FΩ

0

)2 (
∂2

ΩF
Ω
0

)}
ĥ

4,(i)
lm (r,ΩI, φp)

+O(λ25).

Noting the dependence on Ω and not ΩI of ĥ2
R2. The term involving ∂2

ΩF
Ω
0 can be replaced using

Eq. (7.36), using the fact that FΩ
0 and F∆Ω

0 match in the transition regime. In the limit near the

ISCO, Eq. (7.140) then becomes

h̄
(i)
lm(r,∆Ω, φp) = λ5h̄

1,(i)
lm (r,ΩI, φp) + λ7∆Ω∂Ωh̄

1,(i)
lm (r,ΩI, φp) + λ8F

(3,−1)
Ω

∆Ω
ĥ

2,(i)
R2 (r,ΩI, φp) (7.141)

+ λ9 (∆Ω)2

2
∂2

Ωh̄
1,(i)
lm (r,ΩI, φp)− λ9

(
F

(3,−1)
Ω

)2

∆Ω3
ĥ

3,(i)
lm (r,ΩI, φp)

+ λ10
[
h̄

2,(i)
P (r,ΩI, φp) + h̄

2,(i)
R1 (r,ΩI, φp)

]
+ λ10F

(5,0)
Ω ĥ

2,(i)
R2 (r,ΩI, φp) + λ10F

(3,−1)
Ω ∂Ωĥ

2,(i)
R2 (r,ΩI, φp) +O(λ11),

where any contribution from h̄
4,(i)
lm has been eliminated using the second-order ODE for FΩ

0 . In

Chapter 5 we calculate h̄1,(i)
lm , and in ∂r0 h̄

1,(i)
lm , from which we can easily obtain ∂Ωh̄

1,(i)
lm by the chain

rule. The terms h̄2,(i)
P , h̄

2,(i)
R1 , ĥ

2,(i)
R2 have also already been calculated by Warburton et al [118, 4, 3].

What remains to be calculated are: ∂2
Ωh̄

1,(i)
lm and ĥ

3,(i)
lm . Most of the work involved in calculating

the GW amplitudes is already done therefore. The above derivation demonstrates that we need

not solve directly for the transition amplitudes jn,(i)µν therefore, which would require re-deriving the

Einstein �eld equations in the transition and solving a completely new set of equations.
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7.4.3 Inspiral �eld equations at late times

Reinstating the source terms, the full set of �eld equations in the transition regime that we need to

solve are listed as follows

O(λ5) : δ1G
0,(i)
(j)

[
h̄

1,(j)
lm (r,ΩI, φp)

]
= S

1,(i)
lm (r, 6M, 0,ΩI, φp)δ(r − 6M), (7.142)

O(λ7) : δ1G
0,(i)
(j)

[
∂Ωh̄

1,(j)
lm (r,ΩI, φp)

]
= r(2,1)

[
− S1,(i)

lm (r, 6M, 0,ΩI, φp)δ′(r − 6M) (7.143)

+ (∂r0 + ∂Ω)S
1,(i)
lm (r, 6M, 0,ΩI, φp)δ(r − 6M)

]
,

O(λ8) : δ1G
0,(i)
(j)

[
ĥ

2,(j)
R2 (r,ΩI, φp)

]
= −

(
1

4
δ

(i)
(j)(2Ω∂Ω∂φp + ∂φp) +M(i)

r(j)∂Ω

)
h̄

1,(j)
lm (r,ΩI, φp)

+ ∂ṙ0S
1,(i)
lm (r, 6M, 0,ΩI, φp)r(2,1)δ(r − 6M), (7.144)

O(λ9) : δ1G
0,(i)
(j)

[
∂2

Ωh̄
1,(j)
lm (r,ΩI, φp)

]
= S

1,(i)
lm (r, 6M, 0,ΩI, φp) (7.145)

×
[(
r(2,1)

)2
δ′′(r − 6M)− 2r(4,2)δ′(r − 6M)

]
+ 2

(
r(2,1)∂r0 + ∂Ω

)
S

1,(i)
lm (r, 6M, 0,ΩI, φp)r(2,1)δ′(r − 6M)

+
[
∂2
r0S

1,(i)
lm (r, 6M, 0,ΩI, φp)

(
r(2,1)

)2

+ 2∂r0S
1,(i)
lm (r, 6M, 0,ΩI, φp)r(4,2)

+ ∂2
ΩS

1,(i)
lm (r, 6M, 0,ΩI, φp)

+ ∂r0∂ΩS
1,(i)
lm (r, 6M, 0,ΩI, φp)r(2,1)

]
δ(r − 6M),

δ1G
0,(i)
(j)

[
ĥ

3,(j)
lm (r,ΩI, φp)

]
= δ

(i)
(j)

(
Ω

2
∂φp ĥ

2,(j)
R2 (r,ΩI, φp) +

1

4
∂Ωh̄

1,(j)
lm (r,ΩI, φp)

)
(7.146)

+
1

108MΩ5
p

[
∂r0S

1,(i)
lm (r, 6M, 0,ΩI, φp)δ(r − 6M)

− S1,(i)
lm (r, 6M, 0,ΩI, φp)δ′(r − 6M)

]
,
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O(λ10) : δ1G
0,(i)
(j)

[
h̄

2,(j)
P (r,ΩI, φp)

]
= S

2,(i)
lm (r, 6M, 0,ΩI, φp)δ(r − 6M) (7.147)

− S1,(i)
lm (r, 6M, 0,ΩI, φp)r(5,0)δ′(r − 6M)

+ ∂rpS
1,(i)
lm (r, 6M, 0,ΩI, φp)r(5,0)δ(r − 6M),

δ1G
0,(i)
(j)

[
h̄

2,(j)
R1 (r,ΩI, φp)

]
= −2δ2G

0,(i)
(j)(k)

[
h̄

1,(j)
lm (r,ΩI, φp), h̄

1,(k)
lm (r,ΩI, φp)

]
, (7.148)

δ1G
0,(i)
(j)

[
F

(5,0)
Ω ĥ

2,(j)
R2 (r,ΩI, φp)

]
= F

(5,0)
Ω

(
1

4
δ

(i)
(j)(2Ω∂Ω∂φp + ∂φp) +M(i)

r(j)∂Ω

)
h̄

1,(j)
lm (r,ΩI, φp)

− F (3,−1)
Ω

(
1

4
δ

(i)
(j)(2Ω∂Ω∂φp + ∂φp) +M(i)

r(j)∂Ω

)
∂Ωh̄

1,(j)
lm (r,ΩI, φp)

+ ∂ṙ0S
1,(i)
lm (r, 6M, 0,ΩI, φp)

[
− F (3,−1)

Ω

(
r(2,1)

)2
δ′(r − 6M)

+
(
F

(5,0)
Ω r(2,1) + 2F

(3,−1)
Ω r(4,2)

)
δ(r − 6M)

]
, (7.149)

δ1G
0,(i)
(j)

[
∂Ωĥ

2,(j)
R2 (r,ΩI, φp)

]
= ∂ṙ0 (∂r0 + ∂Ω)S

1,(i)
lm (r, 6M, 0,ΩI, φp)

(
r(2,1)

)2
δ(r − 6M).

(7.150)

Notice how the terms involving F
(3,−1)
Ω in Eq. (7.149) cancel, recovering the same equation as

Eq. (7.144), due to the fact that the second term on the right-hand side of Eq. (7.103) becomes

δ1G
1,(i)
(j) [h̄

1,(j)
lm ] =

(
1

4
δ

(i)
(j)�

(1)
t +M(i)

Ω(j)∂
(1)
t

)
h̄1,(j)(r,Ω, φp) (7.151)

= FΩ
0

(
1

4
δ

(i)
(j)(2Ω∂Ω∂φp + ∂φp) +M(i)

Ω(j)∂Ω

)(
h̄1,(j)(r,ΩI, φp) + λ2∆Ω∂Ωh̄

1,(j)(r,ΩI, φp)
)

=
F

(3,−1)
Ω

λ2∆Ω

(
1

4
δ

(i)
(j)(2Ω∂Ω∂φp + ∂φp) +M(i)

Ω(j)∂Ω

)
h̄1,(j)(r,ΩI, φp)

+ F
(5,0)
Ω

(
1

4
δ

(i)
(j)(2Ω∂Ω∂φp + ∂φp) +M(i)

Ω(j)∂Ω

)
h̄1,(j)(r,ΩI, φp)

+ F
(3,−1)
Ω

(
1

4
δ

(i)
(j)(2Ω∂Ω∂φp + ∂φp) +M(i)

Ω(j)∂Ω

)
∂Ωh̄

1,(j)(r,ΩI, φp),

where the third term is sourced in the following way(
1

4
δ

(i)
(j)(2Ω∂Ω∂φp + ∂φp) +M(i)

Ω(j)∂Ω

)
∂Ωh̄

1,(j) = ∂ṙ0S
1,(i)
lm

[ (
∂2

Ωr0

)
δ(r − 6M)− (∂Ωr0)2 δ′(r − 6M)

]
.

(7.152)
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Replacing the term

F
(3,−1)
Ω

(
1

4
δ

(i)
(j)(2Ω∂Ω∂φp + ∂φp) +M(i)

Ω(j)∂Ω

)
∂Ωh̄

1,(j)
lm (r,ΩI, φp),

in Eq. (7.149) with the right-hand side of Eq. (7.152), all terms involving F (3,−1)
Ω cancel, then divid-

ing across by F (5,0)
Ω recovers the Eq. (7.144).

The quantity ∂2
Ωh̄

1,(i)
lm can be determined from ∂2

r0 h̄
1,(i)
lm by numerically di�erentiating ∂r0 h̄

1,(i)
lm

from Chapter 6. While a numerical derivative will be less accurate than directly solving Eq. (7.145), it

will surely save many hours of work if we can avoid solving Eq. (7.145), or alternatively, implementing

a partial annihilators scheme for second r0 derivatives. Both of these methods would involve deriving

new boundary conditions and jump conditions. As we only need to evaluate the second Ω derivative

of the �rst-order metric perturbation for when Ω = ΩI, it makes more sense therefore to proceed

with numerical integration. We must also �nd a way to solve for ĥ3,(i)
lm to complete the 0PA waveform

in the transition. We know all of the source terms in Eq. (7.146) already, but we shall leave solving

this equation to future research.

7.4.4 Matching to the transition metric perturbation at early times

We have saved a lot of time by avoiding solving the �eld equations directly in the transition regime.

However, it remains instructive to examine the structure of the metric perturbation in the transition

to ensure we have captured all of the information when re-expanding the inspiral quantities in the

near ISCO limit. During the transition, the time derivative operator is now

∂t =

∞∑
n=0

λn∂
(n)
t (7.153)

where

∂
(0)
t = Ω∂φp , ∂

(1)
t = ∂

(2)
t = 0, ∂

(3)
t = F∆Ω

0 ∂Ω, ∂
(4)
t = 0, ∂

(5)
t = F∆Ω

2 ∂Ω. (7.154)
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Writing the metric perturbation and linearised Einstein �eld equations in the BSL basis and using

the two-timescale expansion tells us that the structure of the metric perturbation in the transition

is [125, 126, 104]

O(λ5) : j
5,(i)
lm (r,Ω, φp) = ĵ

5,(i)
lm (r,ΩI, φp), (7.155a)

O(λ6) : j
6,(i)
lm (r,Ω, φp) = 0, (7.155b)

O(λ7) : j
7,(i)
lm (r,Ω, φp) = ∆Ωĵ

7,(i)
lm (r,ΩI, φp), (7.155c)

O(λ8) : j
8,(i)
lm (r,Ω, φp) = F∆Ω

0 ĵ
8,(i)
lm (r,ΩI, φp), (7.155d)

O(λ9) : j
9,(i)
lm (r,Ω, φp) = F∆Ω

0

(
∂∆ΩF

∆Ω
0

)
ĵ

9,(i)
A (r,ΩI, φp) + ∆Ω2ĵ

9,(i)
B (r,ΩI, φp), (7.155e)

O(λ10) : j
10,(i)
lm (r,Ω, φp) = ĵ

10,(i)
A (r,ΩI, φp) + F∆Ω

2 ĵ
10,(i)
B (r,ΩI, φp) (7.155f)

+ F∆Ω
0

(
∂∆ΩF

∆Ω
0

)2
ĵ

10,(i)
C (r,ΩI, φp)

+
(
F∆Ω

0

)2 (
∂2

∆ΩF
∆Ω
0

)
ĵ

10,(i)
D (r,ΩI, φp) + ∆ΩF∆Ω

0 ĵ
10,(i)
E (r,ΩI, φp).

Matching the transition to the inspiral in the near ISCO limit gives

O(λ5) : ĵ
5,(i)
lm (r,ΩI, φp) = h̄

1,(i)
lm (r,ΩI, φp), (7.156a)

O(λ6) : ĵ
6,(i)
lm = 0, (7.156b)

O(λ7) : ĵ
7,(i)
lm (r,ΩI, φp) = ∂Ωh̄

1,(i)
lm (r,ΩI, φp), (7.156c)

O(λ8) : ĵ
8,(i)
lm (r,ΩI, φp) = ĥ

2,(i)
R2 (r,ΩI, φp), (7.156d)

O(λ9) : ĵ
9,(i)
A (r,ΩI, φp) = ĥ

3,(i)
lm (r,ΩI, φp), ĵ

9,(i)
B (r,ΩI, φp) =

1

2
∂2

Ωh̄
1,(i)
lm (r,ΩI, φp), (7.156e)

O(λ10) : ĵ
10,(i)
A (r,ΩI, φp) = h̄

2,(i)
R1 (r,ΩI, φp) + h̄

2,(i)
P (r,ΩI, φp), (7.156f)

ĵ
10,(i)
B (r,ΩI, φp) = ĥ

2,(i)
R2 (r,ΩI, φp),

ĵ
10,(i)
C (r,ΩI, φp) = ĵ

10,(i)
D (r,ΩI, φp) = ĥ

4,(i)
lm (r,ΩI, φp),

ĵ
10,(i)
E (r,ΩI, φp) = ∂Ωĥ

2,(i)
R2 (r,ΩI, φp).

Rearranging the equation of motion for F∆Ω
0 , Eq. (7.36) so that

F∆Ω
0

(
∂ΩF

∆Ω
0

)2
+
(
F∆Ω

0

)2
∂2

ΩF
∆Ω
0 =

1

9
√

6M

(
3F1(6M)

96M2
−∆Ω

)
, (7.157)

where we have used Eq. (7.33) to make the replacement in Eq. (7.157) [14]

f t1(ΩI) = −3

4
F1(rI), (7.158)

and using the fact that ĵ10,(i)
C = ĵ

10,(i)
D , we can simplify the behaviour at O(λ10) to

O(λ10) : j10
lm = ĵ

10,(i)
A +

F1(6M)

288
√

6M3
ĵ

10,(i)
C +F∆Ω

2 ĵ
10,(i)
B + ∆ΩF∆Ω

0

(
ĵ

5,(i)
E − 1

9
√

6M
ĵ

5,(i)
C

)
, (7.159)
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when evaluated at Ω = ΩI.

Setting

ĵ
10,(i)
A +

F1(6M)

288
√

6M3
ĵ

10,(i)
C → ĵ

10,(i)
A , ĵ

10,(i)
E − 1

9
√

6M
ĵ

10,(i)
C → ĵ

10,(i)
C , (7.160)

we have

O(λ10) : j10
lm =

{
ĵ

10,(i)
A + F∆Ω

2 ĵ
10,(i)
B + ∆ΩF∆Ω

0 ĵ
10,(i)
C

} ∣∣∣∣
Ω=ΩI

. (7.161)

Finally, for the matching we have

O(λ10) : ĵ
10,(i)
A (r,ΩI, φp) = h̄

2,(i)
R1 (r,ΩI, φp) + h̄

2,(i)
P (r,ΩI, φp), (7.162)

ĵ
10,(i)
B (r,ΩI, φp) = ĥ

2,(i)
R2 (r,ΩI, φp),

ĵ
10,(i)
C (r,ΩI, φp) = ∂Ωĥ

2,(i)
R2 (r,ΩI, φp).

This simpli�cation has the bene�t that we are no longer required to solve for a part of the metric

perturbation at fourth-order in the inspiral so that

O(λ5) : ĵ
5,(i)
lm (r,ΩI, φp) = h̄

1,(i)
lm (r,ΩI, φp), (7.163a)

O(λ6) : ĵ
6,(i)
lm (r,ΩI, φp) = 0, (7.163b)

O(λ7) : ĵ
7,(i)
lm (r,ΩI, φp) = ∂Ωh

1(r,ΩI, φp), (7.163c)

O(λ8) : ĵ
8,(i)
lm (r,ΩI, φp) = ĥ2

R2(r,ΩI, φp), (7.163d)

O(λ9) : ĵ
9,(i)
A (r,ΩI, φp) = ĥ

3,(i)
lm (r,ΩI, φp), ĵ

9,(i)
B (r,ΩI, φp) =

1

2
∂2

Ωh
1(r,ΩI, φp), (7.163e)

O(λ10) : ĵ
10,(i)
A (r,ΩI, φp) = h̄

2,(i)
R1 (r,ΩI, φp) + h̄

2,(i)
P (r,ΩI, φp), (7.163f)

ĵ
10,(i)
B (r,ΩI, φp) = ĥ

2,(i)
R2 (r,ΩI, φp), ĵ

10,(i)
C (r,ΩI, φp) = ∂Ωĥ

2,(i)
R2 (r,ΩI, φp).
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Chapter 8

Second-Order Waveforms and Energy

Flux

The results presented in this chapter build on over a decade of progress of the 2GSF program. In

this chapter, numerical results for the total energy �ux through second-order will be presented, in

addition to gravitational waveforms generated using method 2 which was outlined in Section 4.4.

In Section 8.1, results for the �ux will be presented, in Section 8.2 the 1PA inspiral waveform, and

in Section 8.3, the 0PA waveform during the transition regime. Results from the �rst two sections

were obtained in collaboration with Pound, Wardell, Warburton, Miller and in the latter case, Le

Tiec. The �nal section was done in collaboration with Pound, Küchler and Compère, using codes

written by the previous group of collaborators. All results will be compared with NR simulations,

for the dominant (l,m) = (2, 2) mode. The �ux and inspiral waveforms shown here include data for

the slow-time derivative of the metric perturbation components in the Lorenz gauge, calculated in

Chapter 6. This data has also been used recently to make comparisons between waveforms generated

using GSF theory and EOB theory, the results of which can be found in references [93, 94].

8.1 Comparing GSF energy �ux with NR during inspiral

Recall from Eq. (4.95) that the total energy �ux can be expanded in powers of ν as [3, 4]

F(x) = ν2F1
ν (x) + ν3F2

ν (x) +O(ν4), (8.1)

where

x = [(µ+M) Ω]2/3 . (8.2)

The variable x is used in order to make comparisons with NR and expansions in ε are re-summed in

terms of ν to restore the inherent symmetry of the full perturbed solution, which also yields the most

accurate waveforms in comparison with NR [3]. We shall consider only the energy �ux radiated to

in�nity up to O(ν3), and through the horizon at leading order, and discard the �ux radiated through
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the horizon at O(ν3), as this is expected to be small and has not yet been calculated [93, 94, 4]. For

a given l,m mode, the total energy �ux we shall calculate is

Flm(x) = ν2
[
Ė1,∞
ν,lm(x) + Ė1,H

ν,lm(x)
]

+ ν3Ė2,∞
ν,lm(x) +O(ν4). (8.3)

Recall that the quantities Ė1,∞
ν,lm, Ė

1,H
ν,lm and Ė2,∞

ν,lm are obtained by expanding in powers of ν the

expressions [117, 4, 3]

Ė∞lm =
1

16π

∣∣∣ ˙̃h∞lm∣∣∣2 , (8.4)

ĖHlm =
1

16π

∣∣∣ ˙̃hHlm∣∣∣2 , (8.5)

which were introduced earlier in Section 4.6. Note that the leading-order energy �ux is the same

when expanded in powers of either ε or ν. Again to assist with the comparison to NR, the quantity

that will be plotted is the Newtonian normalised �ux [4]

F̂lm =
Flm
FN
lm

, (8.6)

where FN
lm is the leading-order term in the PN series for a given l,m mode. For example [4, 129]

FN
22 =

32

5
x5ν2. (8.7)

Finally, rather than x, we use x̄, which is given by

x̄ = [(M + µ)$]2/3, (8.8)

where

$ = Φ̇22/2. (8.9)

In the weak �eld and for small mass ratios is [3]

$ = Ω0 +O(ε). (8.10)

A comparison between the energy �ux radiated to in�nity calculated using the GSF approach and

NR for the dominant (l,m) = (2, 2) mode is shown in Fig. (8.1) and Fig. (8.2) for q = 10 and q = 1

respectively, where

q = M/µ = ε−1. (8.11)
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Figure 8.1: Total Newtonian normalised GW energy �ux for the dominant (l,m) = (2, 2) mode and

a mass ratio of 1:10 [4]. The numbers on the top horizontal axis denote the number of GW cycles

before merger. The green line shows the results for the �ux calculated when considering only 0PA

e�ects, that is when only ν2 terms are included. The orange dashed line shows results from the PN

series at 3.5PN order. In blue are the results from the NR simulation SXS:BBH:1107 [128], where the

blue window shows the uncertainty in these results, given by the di�erence between extrapolation

from third and fourth-order polynomial �ts in the NR simulations. The red triangles are the data

points obtained when including the full second-order GSF energy �ux calculation using Eq. (8.3).

The orange circles denote the second-order GSF results obtained if the multi-timescale piece of the

puncture, which contains the slow-time derivatives of the metric perturbation, are not included. The

horizontal dashed line delineates the location of the ISCO.
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Figure 8.2: The same as Fig. (8.1), with q = 1. For this equal mass ratio binary, the NR simulation

SXS:BBH:1132 was used [128] [4].

In both Fig. (8.1) and Fig. (8.2), there is very good agreement with the 2GSF calculation of

the total energy �ux compared to NR simulations. For an IMRI with a mass ratio of 1:10, the �ux

calculation using the 2GSF approach lies within the blue NR window up until around 8 GW cycles

before merger, and remains close to NR results up to about 3.5 cycles before merger. For an equal

mass ratio binary, the 2GSF results remain within the blue NR window up to around 10 cycles

before merger. These results demonstrate the power of the 2GSF approach to accurately model

much more than the EMRI parameter space. In both the q = 10 and q = 1 cases, we see the 2GSF

�ux calculation breaks down as the secondary approaches the ISCO, and the 2GSF data diverges

from the NR results. This is unsurprising. Recall from Eq. (4.69) that any terms in the source for

the inhomogeneous second-order metric perturbation that contain slow-time derivatives of the �rst

order metric perturbation will behave like

dh̄1
µν

dt̃
=
dr0

dt̃

dh̄1
µν

dr0
, (8.12)

during the inspiral, and from Eq. (4.36) we saw that dr0
dt̃

blows up near the ISCO. As discussed in

Chapter 7, a new timescale must be used once the binary enters the transition to plunge regime as

the secondary nears the ISCO. The calculation of the second-order �ux is particularly important for

EMRIs due to their long signal lengths and any error in the phase accumulates over long timescales.
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Modelling the GSF energy �ux calculations though second-order in the small mass ratio during the

transition is ongoing research, based on the work of Chapter 7.

8.2 Comparing GSF waveforms with NR during inspiral

Following method 2 outlined in Section 4.8, waveforms using the 2GSF program can be generated

and compared to NR simulations. The 1PA GW phase, re-summed in terms of ν, is calculated by

solving the following coupled set of equations

dΩ

dt
=

3
(

1− 3M
r0(t)

)3/2√
M
r0(t)

M2
(

1− 6M
r0(t)

) F1
ν (r0(t))ν (8.13)

+
3
(

1− 3M
r0(t)

)3/2√
M
r0(t)

M2
(

1− 6M
r0(t)

) {
2

(
1− 3M

r0(t)

)3/2(
1− 6M

r0(t)

) F1
ν (r0(t))∂xE

1stlaw
bind (x) + F2

ν (r0(t))

}
ν2,

dφp

dt
= Ω(t), (8.14)

Ω(t) =

√
M

r3
0(t)

, (8.15)

with initial conditions

r0(0) = 25M, φp(0) = 0. (8.16)

For the numerical calculations,M is set to 1. An initial orbital radius of r0 = 25M is chosen because

the NR simulations are relatively short. The 0PA GW can be determined similarly by discarding

the ν2 term in the frequency evolution. Rather than using the binding energy in Eq. (4.96), we use

the binding energy that comes from the �rst law of black hole mechanics [130, 118]

E1stlaw
bind (x) = −1

3
xz′(x) +

z(x)

2
+

(7− 24x)x

6(1− 3x)3/2
+
√

1− 3x− 1, (8.17)

where z is the �rst-order Detweiler red-shift [130, 118]. In Ref. [118] it is shown that the �rst law

binding energy is comparable to that from GSF results 1. Additionally, in order to make a meaningful

comparison with between the NR waveform and the composite waveform during the transition, we

must �nd a time tmatch where the NR phase matches that of our 1PA inspiral solution, occurring at

1The reason for using the �rst-law binding energy for generating waveforms rather than that de�ned in Eq. (4.96) is

purely logistical. Currently there is more data for E1stlaw
bind than Ebind, and the former is easier to calculate as we don't

need to determine ÊSF. The binding energy also depends on the choice of spacetime foliation, and the calculation of
Ebind has currently not been optimised for the best choice of slicing.
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some choice of initial radius rinit0 . Integrating the following equation over the entire NR waveform

dΦNR
22

dt
= −2

√
M

(rinit0 )3
, (8.18)

and solving for t will determine when t = tmatch. The time frame integrated over will depend on

whether we are matching to the 0PA or 1PA solutions. Therefore, there will be di�erent matching

times for both the 0PA and 1PA waveforms, corresponding to t0PAmatch and t1PAmatch respectively. The

GW amplitudes are then determined from

h0PA
lm (Ω(t)) =

2Z1,∞
lm

(
[(M + µ)Ω(t)]−2/3

)
(imM(M + µ)2Ω(t))2 , (8.19)

h1PA
lm (Ω(t)) = − 2Z2,∞

lm

(
[(M + µ)Ω(t)]−2/3

)
(imM(M + µ)2Ω(t))2 , (8.20)

where Z1,∞
lm and Z2,∞

lm are the �rst- and second-order radially perturbed Weyl scalars evaluated

at in�nity, which can be determined by the BHPToolkit [1]. The quantity Z1,∞
lm is related to the

leading order of Eq. (2.132). The quantities Z1,∞
lm and Z2,∞

lm can be written respectively in terms of

the �rst- and second-order contributions to the metric perturbation components h̄(7)
lm and h̄

(10)
lm in

the two-timescale approximation. This can be seen using the fact that in the limit as r → ∞ we

have

ΨP
4 =

1

2

∂2

∂t2
(h+ − ih×) , (8.21)

= − ω2

2
(h+ − ih×) . (8.22)

The second equality holds in the frequency domain, or equivalently for quasicircular orbits in the

two-timescale approximation. Research is currently being done to construct the GW amplitudes

directly from the �rst and second-order perturbed Weyl scalars, where the latter remains to be

solved [43, 5, 75]. Recall from Chapter 4 that the full GW is then constructed using Eq. (4.20)

h̃∞lm(t̃, φp(t, ε), r, ε) = (h+ − ih×) , (8.23)

= lim
r→∞

al

(
˜̄h

(7)
lm + i˜̄h

(10)
lm

)
e−imφp(t,ε), (8.24)

= Ã∞lm(t̃, r, ε)eiΦlm(t,ε). (8.25)

The GW amplitude is expanded in powers of ν using the two-timescale approximation to 1PA order

as

Ãν∞lm = νÃ1ν,∞
lm + ν2Ã2ν,∞

lm . (8.26)
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For the 0PA waveform in the even-sector we have

Ã1ν,∞
lm = h0PA

lm (Ω0PA(t)), (8.27)

where Ω0PA is the solution to Ω in Eq. (8.13) when only the leading order term in ν is included. For

the full 1PA waveform in the even-sector we then have

Ã1ν,∞
lm = h0PA

lm (Ω1PA(t)), (8.28)

Ã2ν,∞
lm = h0PA

lm (Ω1PA(t)) + h1PA
lm (Ω1PA(t)) +

2r0

3M

1− M

r0(t)

1√
1− 3M

r0(t)

 dΩ

dr0
∂Ωh

0PA
lm (Ω1PA(t)).

(8.29)

and Ω1PA is the solution to Eq. (8.13) when terms up to ν2 are included. For comparison with NR,

the 0PA and 1PA GSF GWs are then generated in the following way

h̃∞,0PA
lm (t) = Re

[
νÃ1ν,∞

lm (t− t0 + t0PAmatch)e−im(φ0PAp (t−t0+t0PAmatch)−∆φ0PAp )
]
, (8.30)

h̃∞,1PA
lm (t) = Re

[(
νÃ1ν,∞

lm (t− t0 + t1PAmatch) + ν2Ã2ν,∞
lm (t− t0 + t1PAmatch)

)−im(φ1PAp (t−t0+t1PAmatch)−∆φ1PAp )
]
,

(8.31)

where

∆φ0PAp =
ΦNR

22 (t0)

2
− φ0PA

p (t0PAmatch), (8.32)

∆φ1PAp =
ΦNR

22 (t0)

2
− φ1PA

p (t1PAmatch), (8.33)

and t0 is the start time of a given NR simulation. Note that the de�nition of A1ν,∞
lm is di�erent

depending on whether we are generating the 0PA waveform, or the full 1PA waveform, and we

should use either Eq. (8.27) or Eq. (8.28) respectively. Results for both the 0PA and 1PA waveforms

generated via the GSF approach are shown in Fig. (8.3) and Fig. (8.4) for two di�erent mass ratios,

and are compared with NR simulations SXS:BBH:1107 and SXS:BBH:1132 [128] respectively, which

take the form

h̃∞,NR
lm (t) = Re

[
ÃNR,∞
lm (t)ei2ΦNR

22 (t)
]
, (8.34)

and the choice of NR simulation determines the choice of mass ratio, which is then also used in the

GSF waveform parameters for a meaningful comparison.
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Figure 8.3: Waveform of the dominant (l,m) = (2, 2) mode for a mass ratio of ν = 0.0826458,

corresponding to ε = 0.100002, with M + µ = 0.999995 and rinit0 = 13.828M . In black is the

NR waveform generated by the SXS:BBH:1107 simulation [128] and in yellow is the 1PA GSF

waveform. In the inset, the blue line is the 0PA GSF waveform. The 1PA signals were matched at

t1PAmatch = 81172M [3]. The vertical dashed black line denotes the initial time of the SXS simulation.
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Figure 8.4: The same as Fig. (8.3) except using the NR simulation SXS:BBH:1132 [128], which

determines that ν = 0.25, corresponding to ε = 1, M +µ = 1 and rinit0 = 23.935M . The 1PA signals

were matched at t1PAmatch = 4869M . The vertical dashed black line denotes the initial time of the SXS

simulation.

As in Section 8.2, Fig. (8.3) and Fig. (8.4) show that there is good agreement between the GSF

and NR waveforms, even for intermediate and equal mass ratios. The 1PA signals begin to de-phase

close to the ISCO and end before the two-timescale approximation of the inspiral breaks down. The

next section extends these waveforms further into the transition regime. It is worth noting that even

the 0PA waveforms agree very well with the NR simulations at early times, which is demonstrated

by Fig. (8.5) and Fig. (8.6). However, this is because the GSF waveforms being compared with NR

signals are for comparable mass ratios, with relatively short signals and there is less accumulated

error in the phase than we would see from 0PA results for longer signals. An additional point of

discussion is that the de-phasing seen between the GSF waveforms and NR results is worse for q = 1

than for q = 10 as expected. This is consistent with a larger accumulated error in the phase from

the greater number of oscillations that can be seen in Fig. (8.4) compared to Fig. (8.3).
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8.3 Comparing GSF waveforms with NR during transition

We will now generate the GSF waveform during the transition, using the results from Chapter 7,

for the (l,m) = (2, 2) mode, to 0PA order only. The results in this section were obtained in

collaboration with Küchler, Compère and Pound. For comparison, the NR phase ΦNR
lm and amplitude

ÃNR,∞
lm are imported from the SXS catalogue, using the NR simulation: SXS:BBH:1108 [128], where

ν = 0.0884279, corresponding to ε = 0.108696 andM +µ = 1.00001. In order to make a meaningful

comparison with between the NR waveform and the composite waveform during the transition, once

again we must �nd a time tmatch where the NR phase matches that of our composite solution. To

determine tmatch for the C0 model from Section 7.2, this can be achieved by integrating the following

equation from the beginning to end times of the NR waveform

dΦNR
22

dt
= −2ΩC0(0), (8.35)

and solving for t, which will give the solution tC0
match. It turns out that the solution is the same

regardless of the choice of either ΩC0 or ΩC2, hence there will be no label to distinguish the C0 or

C2 solution to tmatch. Note how in the transition, Ω 6=
√
M/r3

0 and the frequency is solved following

the method outlined in Section 7.2. For the mode and NR simulation used here, tmatch = 5887.61M .

We would �rst like to compare the NR simulation with the 0PA solution when considering the

inspiral only. As in previous chapters, to generate the GSF waveform, all numerical calculations

will be done by setting M = 1. Recall that the composite solutions C0 and C2, and inspiral-only

solutions for Ω and φ from Section 7.2 were solved to 0PA order with the initial conditions that

rp = 9(M + µ). Starting the integration reasonably close to the ISCO ensures not only that the

composite solution will be valid during the transition, but also minimises the de-phasing with the NR

simulated waveform, especially given that we are only consider the 0PA order. The 0PA inspiral-only

waveform is then given by

h̃GW,0PA
lm (t) = Re

[
νÃ1ν,∞

lm (t− t0PAmatch)e−im(φ0PAp (t−t0PAmatch)−∆φ0PAp )
]
, (8.36)

where

∆φ0PAp =
ΦNR

22 (t0PAmatch)

2
− φ0PA

p (t0PAmin ). (8.37)

Notice how the times are switched compared to Eq. (8.32) and Eq. (8.33). The quantities t0 = t0PAmin

and t0PAmatch are determined similarly to the previous section, except that the latter is determined by

integrating the equation

dΦNR
22

dt
= −mΩ0 = −2

√
M + µ

(M + µ)393
= − 2

27(M + µ)
, (8.38)

following from the initial conditions of the 0PA frequency in Section 7.2. We see from Fig. (8.7) that

the 0PA inspiral-only solution quickly de-phases compared to NR results and does not capture the
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transition very well, as was to be expected.

5,900 6,000 6,100 6,200 6,300 6,400 6,500 6,600 6,700 6,800
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t/M
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Inspiral 0PA

Figure 8.7: Comparison between the 0PA GSF waveform and NR simulation SXS:BBH:1108 [128]

during the transition for the (l,m) = (2, 2) mode. The GSF waveform is generated using inspiral

quantities only. The ISCO is delineated by the grey line and occurs at t0PA
max = 6539.34M .

To improve on the results of Fig. (8.7), we shall implement the Composite0 solution, for which the

waveform will look like

h̃GW,C0
lm (t) =


Re
[
νÃ1ν,∞

lm (t− tC0match)e−im(φC0p (t−tC0match)−∆φ0PAp )
]
,

{
0, tC0,Lmax

}
,

Re
[{
νÃ1ν,∞

lm

(
tI − tC0match

)
+ (ΩC0

(
t− tC0match

)
− ΩI)

×∂ΩÃ
1ν,∞
lm

(
tI − tC0match

) }
e−im(φC0

p (t−tC0match)+∆φC0
p )], {

tC0,Lmax , t
C0,R
max

}
,

(8.39)

which recovers the O(λ5) and O(λ7) portion of Eq. (7.83), with

∆φC0
p =

ΦNR
22 (tC0match)

2
− φC0p (0). (8.40)

The new and improved comparison between the NR simulation and Composite0 solution can be seen

in Fig. (8.8).
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Figure 8.8: The same as Fig. (8.7), except that the 0PA GSF waveform is now generated using the

Composite0 solution. Recall that this does not include all 0PA corrections.

The 0PA GSF waveform now extends through the transition, though there are still issues with de-

phasing in comparison to the NR results. In fact the de-phasing gets worse before it gets better, and

the C0 waveform is worse than the inspiral only solution. The C0 amplitude during the transition is

also obviously incorrect. These results can be improved further by replacing C0 in Eq. (8.39) with

C2 to obtain Fig. (8.9).
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Figure 8.9: The same as Fig. (8.8), except that the 0PA GSF waveform is now generated using the

Composite2 solutions. This contains all 0PA corrections.

Figure (8.9) demonstrates the comparison between the full 0PA composite GSF waveform during

the transition and the NR simulation SXS:BBH:1108. There is less de-phasing compared to the

Composite0 results, and the amplitude is greatly improved. Implementing the 1PA results using the

methods outlined in Chapter 7 will only improve the agreement further. The agreement between NR

and GSF results can be improved further by attaching the plunge to the waveform. These extensions

shall be left to future research however, and are currently being implemented by collaborators. The
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1PA results will also make further use of the slowly evolving metric perturbation calculation from

Chapter 6. A �nal point worth noting is how to chose the best method to stitch the full waveform

together. The time tC0,Lmax is determined by stopping the integration at rp ≤ 6.0001M . This could

be made more precise by allowing the cut-o� radius to be determined by the width of the transition

for a given mass ratio, recalling from Eq. (7.7) that the radial width of the transition is given by

∆r ∼ ε2/5. (8.41)

Calculating this cut o� radius for every possible mass ratio would not be e�cient however if the goal

is to produce waveforms quickly. Alternatively, one could use the composite solution throughout

the entire waveform. However, another issue arises with this approach. Recall from Eq. (7.57) that

from r > 6M , the composite frequency evolves as

dΩ

dt
= εFΩ

0 (Ω) + ε3/5

[
F∆Ω

0

(
Ω− ΩI

ε2/5

)
+ ε2/5F∆Ω

2

(
Ω− ΩI

ε2/5

)]
− ε

[
F

(3,−1)
Ω

Ω− ΩI
+ F

(5,0)
Ω

]
, (8.42)

which, so far we have only been concerned with at late times in the inspiral. Recalling the early

time expansion, if extended to early inspiral times, the frequency now evolves as

dΩ

dt
= εFΩ

0 (Ω) + ε3/5

[
F

(3,−1)
Ω ε2/5

(Ω− ΩI)
+
F

(3,−6)
Ω ε12/5

(Ω− ΩI)6
+
F

(3,−11)
Ω ε22/5

(Ω− ΩI)11
+O(∆Ω−16)

]
(8.43)

+ ε2/5

[
F∆Ω

2

(
Ω− ΩI

ε2/5

)]
− ε

[
F

(3,−1)
Ω

Ω− ΩI
+ F

(5,0)
Ω

]
,

= εFΩ
0 (Ω) +

[
ε
F

(3,−1)
Ω

(Ω− ΩI)
+ ε2 F

(3,−6)
Ω

(Ω− ΩI)6
+ ε5 F

(3,−11)
Ω

(Ω− ΩI)11
+O(∆Ω−16)

]
(8.44)

+ ε2/5

[
F∆Ω

2

(
Ω− ΩI

ε2/5

)]
− ε

[
F

(3,−1)
Ω

Ω− ΩI
+ F

(5,0)
Ω

]
,

where only the term F∆Ω
0 has been expanded at early times, as there is no need to expand inspiral

quantities during the early inspiral. We see a number of divergent terms appearing. While at

early times Ω should be much smaller than ΩI, and of course so is ε3, the quantity Ω − ΩI, that

appears in the denominator, is not as numerically large as we would like compared to the coe�cient

F
(3,−6)
Ω , meaning that F∆Ω

0 is more dominant at early times than it should be. We see that the

divergent terms in Eq. (8.44) involving F (3,−1)
Ω cancel, however there are still additional divergent

terms appearing at early times. We would need to include additional terms in the composite solution

to cancel divergences at early times. We must also check whether higher order terms compete with

their corresponding coe�cients. Research is ongoing to determine the best approach for generating

full waveforms, through all of the inspiral, transition and plunge, and indeed how many additional

divergent terms need to be included, if this number is at all �nite.
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Chapter 9

Lorenz Gauge Perturbations to Kerr

Spacetime

In general, physical BHs are expected to be rotating. A review of the observational constraints on

black hole spin is given in Ref. [18]. As such, modelling EMRIs on a fully generic Kerr background

will allow us to explore a larger portion of the GW parameter space, allowing future tests of GR

by space-bourne detectors. Introducing rotation deeply complicates calculations in BHPT. While

separable solutions to the �rst-order metric perturbation of a Schwarzschild background can be

determined by solving the linearised Einstein �eld equations in the Lorenz gauge and by using

a mode-sum decomposition in conjunction with either Berndtson's or the BSL basis, the same

cannot be done in Kerr. Separable solutions are instead found curvature perturbations on a Kerr

background, when projecting onto a set of null tetrads, usually in either the NP or GHP formalism

[37, 68, 105, 106]. It is the existence of a particular tetrad which allows for this separability.

Progress in calculating perturbations of a Kerr background was discussed in the introduction,

as well as at the end of Section 2.7, which in particular addressed issues with using the radiation

gauge. Current state of the art SF calculations are those of Van de Meent, who uses the no-

string radiation gauge reconstruction to implement the �rst-order SF calculation for a fully generic,

inclined and eccentric bound orbits in the frequency domain [72]. This calculation is however, in

its current implementation, is too slow to generate enough waveforms that are also long enough on

time to perform matched �ltering with LISA's future data stream. Another means to obtain the SF

through second-order is presented in the work of Toomani et al. [43], who combine the corrector-

tensor method of GHZ [75] with the no-string radiation gauge, proposing a more regular Teukolsky

puncture scheme.

Another possible avenue is to construct the Kerr metric perturbation in the Lorenz gauge, where

the regularisation of the SF is well understood. At present, there are no known solutions for metric

perturbations sourced by a small compact object orbiting a Kerr black hole in the Lorenz gauge and

the frequency domain, though Dolan does this for quasicircular orbits in the time domain [76, 77, 78,

79]. We saw in Chapter 2, 5 and 6 how Berndtson constructs the Lorenz gauge metric perturbation
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to a Schwarzschild background in terms of RW gauge perturbations and a gauge transformation

[46]. Berndtson's method is however not general enough to easily extend to Kerr or to second-order

in the small mass ratio as all of the calculations in [46] are speci�c to a Schwarzschild background

at �rst-order. The primary objective of this chapter is to progress in constructing a regular Lorenz

gauge metric perturbation at �rst-order in the small mass ratio on a Kerr background as a sum of

modes, in the frequency domain.

In this chapter, source-free metric perturbations will be constructed explicitly from a spin-weight

s = 1 gauge vector on a Kerr background in the Lorenz gauge using the method of Dolan, Kavanagh

and Wardell from Ref. [5]. While pure gauge contributions to the metric perturbation are unphys-

ical, they are necessary to determine the SF, which is gauge dependent quantity. The s = 0, 1

perturbations will also be derived in the Schwarzschild limit and are shown to recover Berndtson's

homogeneous expressions [46]. This provides insight to the meaning of M2af and to the form of

sourced Lorenz gauge metric perturbation expressions in the Kerr case, using Berndtson's inhomo-

geneous expressions. We will �rst introduce the concept of constructing the metric perturbation

using a Hertz potential via Wald's method of adjoints [108] and use yet another of Wald's results

[69] to understand the contribution of either the RWZ �elds andM2af or the perturbed Weyl scalars

to the metric in Schwarzschild and Kerr respectively. We will introduce the GHP like formalism of

Ref. [5] in the Kinnersley tetrad, which will provide the machinery from which we derive our main

results in this chapter. All of the research presented in this chapter was done in collaboration with

Dolan.

9.1 Radiative and non-radiative multipoles of the metric perturba-

tion

For the mode-sum decomposition of Eq. (2.68), the l = 0 mode contributes to only scalar perturba-

tions, the l = 1 mode contributes to scalar and vector perturbations, and l ≥ 2 modes contribute

scalar, vector and tensor perturbations to the metric. Only the l ≥ 2 modes of the metric per-

turbation are responsible for gravitational radiation in both Schwarzschild and Kerr background

spacetimes. In [69], Wald proves that for a Kerr background, either of the perturbed Weyl scalars

ΨP
0 or ΨP

4 , related to Rlm±2 by Eqs. (2.131)-(2.133, fully determine the radiative part of the metric

(the part responsible for gravitational radiation), or what is referred to as the `non-trivial' part of

the metric perturbation by Wald in Ref. [69]. However, there are perturbations on which neither

ΨP
0 nor ΨP

4 contain information. The non-radiative contributions to the metric, often referred to as

the completion parts of the metric or as the `trivial' parts of the metric perturbation in [69], are

the perturbations to the mass M and angular momentum a of the Kerr metric, given by δM and

δa respectively, in addition to perturbations that are `pure gauge', which are unphysical [69]. Any

other perturbations such as those toward the Kerr-NUT and `C metric' solutions, are considered

physically unacceptable [69] and will be ignored here. We shall however concern ourselves with the

non-physical contribution to the metric that a gauge choice provides, as this will still contribute
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to the GSF, which is gauge independent [83]. We can then consider the metric perturbation to be

comprised in the following way

hµν ∼ curvature purturbations + δa+ δM + gauge. (9.1)

Hence GWs encode information on δM and δa as well as the perturbed Weyl scalars, through

the phase evolution due to the GSF. In the Schwarzschild case for example, the l = 0 and l = 1

modes correspond exactly to the mass (scalar) and angular momentum (vector) perturbations to the

spacetime respectively, and any scalar or vector-like perturbations from the l ≥ 2 modes contribute

to a gauge piece.

From Wald's result we can determine whether the various RWZ �elds andM2af contribute to the

radiative or completion parts of the metric perturbation by examining how these �elds contribute

to the perturbed Weyl scalars. It is not immediately obvious how the RWZ �elds and M2af will

contribute to the metric perturbation as they all appear in Berndtson's expressions for the metric

perturbation for the l ≥ 2 modes [46], and hence may either contribute to the radiative modes or

pure gauge completion piece. For type D spacetimes, the tetrad is chosen so that the only non-zero

perturbed Weyl scalars are those that are gauge invariant [46, 37, 68], which are given by

ΨP
0 =− δRαβγδlαmβlγmδ, (9.2)

ΨP
4 =− δRαβγδnαm̄βnγm̄δ, (9.3)

where δRαβγδ is the perturbed Riemann tensor and the tetrad legs are de�ned explicitly in Eq. (2.114)

for the Kinnersley tetrad. Berndtson shows that only the RWZ �eld ψ2 contributes to either of the

perturbedWeyl scalars in the odd- or even-sector [46]. This result was independently corroborated by

Wardell and Durkan, by projecting Berndtson's metric components from Eqs. (2.106a)-(2.106c) and

Eqs. (2.108a)-(2.108f) onto the Kinnersley tetrad, given in Eqs. (9.21a)-(9.21j) and substituting into

the perturbed Weyl scalars expressed in terms of the perturbed metric tetrad components, provided

in [68, 37]. The expressions recovered, which relates Teukolsky variables to RWZ variables, are in

fact identically the Chandrasekhar transformations. It is not trivial to expect this result however.

It is not necessarily the case that only ψ2 should contribute to the perturbed Weyl scalars, which

have spin weight ±2 as di�erential operators can raise or lower the spin weight of a scalar [68, 37].

This result allows us to defer solving forM2af in order to obtain the radiative part of the Lorenz

gauge metric perturbation. Then the radiative modes of hLµν can de fully determined using the semi-

analytical MST method. Even thoughM2af , in addition to ψs for s ∈ {0, 0b, 1} do not contribute to
the radiative part of the metric, caution should be taken not to disregard them entirely. Detweiler

and Poisson show that the l = 0 and l = 1 modes of the metric perturbation have a signi�cant

contribution to the SF [83]. The gauge completion parts are also important in calculating the SF,

which is gauge dependent, though can be ignored when calculating gauge invariants such as the �ux.
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9.2 Useful identities

The following identities of the spin coe�cients in the Kinnersley tetrad will come into use in Sec-

tion 9.4 and Section 9.5 and are given here for reference [107]

lν±∇ν lµ± = 0, (9.4a)

mν
±∇νmµ

± = cot θmµ
±, (9.4b)

lν+∇νmµ
+ = mν

+∇ν lµ+ =
ρ,θ
ρ
lµ+ +

ρ,r
ρ
mµ

+, (9.4c)

lν−∇νmµ
+ = mν

+∇ν lµ− =
ρ̄,θ
ρ̄
lµ− +

ρ̄,r
ρ̄
mµ

+, (9.4d)

lν+∇ν lµ− + lν−∇ν lµ+ =

(
Σ,r

Σ
− ∆,r

∆

)(
lµ+ + lµ−

)
− 1

∆

Σ,θ

Σ

(
mµ

+ +mµ
−
)
, (9.4e)

mν
+∇νmµ

− +mν
−∇νmµ

+ = −∆Σ,r

Σ

(
lµ+ + lµ−

)
+

(
Σ,θ

Σ
− cot θ

)(
mµ

+ +mµ
−
)
, (9.4f)

where , r and , θ on Σ and ∆ denote di�erentiation with respect to r and θ respectively. The tetrad

legs are de�ned explicitly in Eq. (2.115). The following identities of the di�erential operators will

also prove useful later in this chapter [107]

Dn = D + n
∆,r

∆
, (9.5a)

D†n = D† + n
∆,r

∆
, (9.5b)

Ln = L+ n cot θ, (9.5c)

L†n = L† + n cot θ, (9.5d)

where n ∈ Z and the operators D,D†,L,L† are de�ned earlier in Eq. (2.124). It is then easy to show

that [107]

D†
( ϕ

∆

)
=

1

∆
D†−1ϕ, (9.6a)

D† (∆ϕ) = ∆D†1ϕ, (9.6b)

D
( ϕ

∆

)
=

1

∆
D−1ϕ, (9.6c)

D (∆ϕ) = ∆D1ϕ, (9.6d)

where ϕ is an arbitrary scalar �eld which is a function of r.
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In the Schwarzschild limit, the derivatives along the mµ
± tetrad legs act as spin raising and lowering

operators on the spin-weighted spherical harmonics sYlm(θ, φ) and provide some further useful iden-

tities. Suppressing the explicit dependence on θ and φ of sYlm henceforth, unless it is instructive to

include, we have [107]

L (Ylm) = λ1 (−1Ylm) , (9.7a)

L† (Ylm) =− λ1 (−1Ylm) , (9.7b)

L−1 (−1Ylm) = λ2 (−2Ylm) , (9.7c)

L†−1 (1Ylm) =− λ2 (2Ylm) , (9.7d)

L−1L (Ylm) = Λ (−2Ylm) , (9.7e)

L†−1L† (Ylm) = Λ (2Ylm) , (9.7f)

L†1 (−1Ylm) =− λ1 (Ylm) , (9.7g)

L1 (1Ylm) = λ1 (Ylm) , (9.7h)

L†2 (−2Ylm) =− λ2 (−1Ylm) , (9.7i)

L2 (2Ylm) = λ2 (1Ylm) , (9.7j)

L†1L†2 (−2Ylm) = Λ (Ylm) , (9.7k)

L1L2 (2Ylm) = Λ (Ylm) , (9.7l)

where Ylm has spin weight s = 0, with normalisation de�ned in Eq. (2.24) and the eigenvalues are

de�ned as [107]

λ1 =
√

2(λ+ 1) =
√
l(l + 1), (9.8)

λ2 =
√

2λ =
√

(l − 1)(l + 2), (9.9)

Λ = λ1λ2, (9.10)

where λ is de�ned earlier in Eq. (2.107). By comparing Berndtson's de�nitions of W and X from

Eq. (2.31) and Eq. (2.32) to the directional derivatives from Eqs. (2.124d)-(2.124c) and Eqs. (9.5c)-

(9.5d) it can also be determined that

W + iX = L†−1L†Ylm, (9.11)

W − iX = L−1LYlm. (9.12)

9.3 Constructing pure gauge metric perturbations

We must now generate the pieces of the metric perturbation that are missing from a radiation gauge

construction. Contributions to the metric perturbation that are not captured by the radiation gauge

solution will either be `pure gauge', or contribute to mass and angular momentum perturbations to

the background spacetime. In this chapter we shall only consider perturbations that are pure gauge.

We would also like to transform from the radiation gauge to the Lorenz gauge, so that the metric

perturbation is in a suitable gauge for SF calculations. Therefore, any pure gauge contributions we

consider in this chapter shall also be chosen to satisfy the Lorenz gauge. We shall also consider

only source free perturbations. For convenience the superscript indicating the order of the metric

perturbation will be dropped, as only the �rst-order metric perturbation will be considered. A
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generic vector potential can be written in the follow way [107]

ξµ =
1

Σ

(
α+l

µ
+ + α−l

µ
− + β+m

µ
+ + β−m

µ
−
)

(9.13)

A homogeneous metric perturbation that is pure gauge, for a given spin-weight s can be generated

by a gauge vector ξµs as follows

hµν = −2ξs(µ;ν). (9.14)

The metric perturbation will satisfy the Lorenz gauge condition of Eq. (2.65) provided that the

gauge vector satis�es

�ξµs = 0, (9.15)

∇µξµs =
1

2
h, (9.16)

which are true for both homogeneous and inhomogeneous perturbations. In the following sections

we will chose a gauge vector that satis�es these properties in order to generate spin-weight s = 0, 1

perturbations. It will also be useful to determine the metric perturbation as projected onto a tetrad,

as perturbations in Kerr become more tractable in this formalism. The metric perturbation can

then be written as

hab = hµνe
µ
ae
ν
b . (9.17)

where {a, b} ∈ {1, 2, 3, 4} and ea = {l+, l−,m+,m−}. Putting Eq. (9.14) together with Eq. (9.17)

we obtain

h
(ξs)
ab = eµa (eνb ξ

s
ν),µ + eµb (eνaξ

s
ν),µ −

(
eµa∇µeνb + eµb∇µeνa

)
ξsν . (9.18)

For example, the metric perturbation as projected along the lµ+, l
µ
+ direction is given by

hl+l+ = hµν l
µ
+l
ν
+, (9.19)

=
(
∇µξ1

ν +∇νξ1
µ

)
lµ+l

ν
+,

= lµ+∇µ
(
lν+ξ

1
ν

)
+ lν+∇ν

(
lµ+ξ

1
µ

)
− lµ+

(
∇µlν+

)
ξ1
ν − lν+

(
∇ν lµ+

)
ξ1
µ,

= 2lµ+∂µ
(
lν+ξ

1
ν

)
−
(
lµ+∇µlν+ + lµ+∇µlν+

)
ξ1
ν ,

= 2D
(
ξ1 · l+

)
,

where we have used identities from Eqs. (2.120)-(2.123) and Eqs. (9.4a) - (9.4f).
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The remaining metric perturbation components as projected onto the Kinnersley tetrad can also be

determined from the gauge vector as follows [107]

hl+l+ = 2D (ξs · l+) , (9.20a)

hl−l− = 2D† (ξs · l−) , (9.20b)

hl+l− =

(
D +

f ′

f

)
(ξs · l−) +

(
D† +

f ′

f

)
(ξs · l+) , (9.20c)

hl+m+ =

(
D − 2

r

)
(ξs ·m+) + L† (ξs · l+) , (9.20d)

hl+m− =

(
D − 2

r

)
(ξs ·m−) + L (ξs · l+) , (9.20e)

hl−m+ =

(
D† − 2

r

)
(ξs ·m+) + L† (ξs · l−) , (9.20f)

hl−m− =

(
D† − 2

r

)
(ξs ·m−) + L (ξs · l−) , (9.20g)

hm+m+ = 2L†−1 (ξs ·m+) , (9.20h)

hm−m− = 2L−1 (ξs ·m−) , (9.20i)

hm+m− = L†1 (ξs ·m−) + L1 (ξs ·m+) + 2rf (ξs · l+ + ξs · l−) . (9.20j)
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It will be useful to compare equations from Eq. (9.20) in the Schwarzschild limit with Berndtson's

expressions for the �rst-order metric perturbation in the Lorenz gauge [46]. Using the identities forW

and X from Eq. (9.11) and Eq. (9.11) then projecting the odd and even-sector metric perturbations

in terms of Berndtson's variables from Eq. (2.30) and Eq. (2.33) onto the Kinnersley tetrad yields

the following expressions

hl+l+ =
1

f
(H0 + 2H1 +H2)Ylm, (9.21a)

hl−l− =
1

f
(H0 − 2H1 +H2)Ylm, (9.21b)

hl+l− = − 1

f
(H0 −H2)Ylm, (9.21c)

hm+m− = 2r2KYlm, (9.21d)

hm+m+ = 2
(
iho2 + r2G

)
L†−1L†Ylm = 2Λ

(
iho2 + r2G

)
2Ylm, (9.21e)

hm−m− = 2
(
−iho2 + r2G

)
L−1LYlm = 2Λ

(
−iho2 + r2G

)
−2Ylm, (9.21f)

hl+m+ = − λ1

f
[(−iho0 + he0) + f (−iho1 + he1)] 1Ylm, (9.21g)

hl+m− =
λ1

f
[(iho0 + he0) + f (iho1 + he1)]−1Ylm, (9.21h)

hl−m+ = − λ1

f
[(iho0 − he0)− f (iho1 − he1)] 1Ylm, (9.21i)

hl−m− = i
λ1

f
[(iho0 + he0)− f (iho1 + he1)]−1Ylm, (9.21j)

which are also multiplied by an additional factor of e−imφp(t) on the right-hand side and the su-

perscripts o and e are used to di�erentiate between odd- and even-sector perturbations with the

same labels. We can interpret these equations as either having a sum over modes on the right-hand

side, or a suppressed l,m label on the right. The dependence of the various functions on the radial

coordinate r has also been suppressed. Note that Eq. (9.21) is true only in cases where l ≥ 2 and

ω 6= 0.

9.4 Constructing s = 0 perturbations

As discussed in Section 2.7.3, the radiation gauges are de�ned such that that the metric perturbation

is trace free. However, considering only trace free solutions leads to missing contributions from the

non-radiative sector, which have been shown to contribute to the SF [83]. In this section, we shall

construct a gauge vector that generates a trace of the metric perturbation, left out by the radiation

gauges by de�nition. We will start by taking the trace for the �rst-order linearised Einstein �eld

equations Eq. (2.67), which tells us that the trace of the homogeneous metric perturbation must

satisfy

�h = 0, (9.22)
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where

� ≡ 1√−g∇µ
(√−g∇µ) , (9.23)

when acting on a scalar �eld, with g = det(gµν). For a Schwarzschild background and using the

mode-sum decomposition of Eq. (9.28), Eq. (9.22) becomes[
f(r)∂2

r +

(
2f(r)

r
+ f ′(r)

)
∂r −

l(l + 1)

r2
+

ω2

f(r)

]
hlm = 0. (9.24)

An example of a spin-weight s = 0 gauge vector that satis�es gauges Eq. (9.15) and Eq. (9.16), but

is non-unique was determined in Ref. [5], and can be written as

ξµ0 = − 1

2iω
Kµν∇νh+ 2∇µκ, (9.25)

where Kµν is the conformal Killing-Yano tensor, given by [5]

Kµν = (ρ+ ρ̄)n[µlν] + (ρ̄− ρ)m[µm̄ν],

=
r∆

Σ
l
[µ
+ l

ν]
− −

ia cos θ

Σ
m

[µ
+m

ν]
− ,

(9.26)

and κ describes the scalar, trace-free perturbations, satisfying [5]

�κ =
1

2
h, (9.27)

which is also true in the presence of sources. In the Schwarzschild limit, the scalars h and κ can be

written as a mode-sum decomposition [5]

h =
∞∑
l=0

l∑
m=−l

hlm(r)Ylm(θ, φ)e−imφp(t), m 6= {0,±1},

κ =

∞∑
l=0

l∑
m=−l

κlm(r)Ylm(θ, φ)e−imφp(t), m 6= {0,±1},
(9.28)

where hlm(r) here should not be confused with that from Section 4.4.

159



The explicit form of the scalar homogeneous metric perturbation components, generated by a gauge

vector with spin-weight s = 0, as projected onto the Kinnersley tetrad are not provided in Ref.

[5] and were derived independently by Dolan and Durkan, whose results were corroborated and are

given here, in the Schwarzschild limit

hl+l+ = −
(

1

iω
DrDhlm + 4DDκlm

)
Ylm, (9.29a)

hl−l− = −
(
− 1

iω
D†rD†hlm + 4D†D†κlm

)
Ylm, (9.29b)

hl+l− = − 2

f

[
−1

2
hlm +

1

r2

((
Dr2fD† +D†r2fD

)
κlm − 4rfκlm,r

)]
Ylm, (9.29c)

hm+m− = 2r2

[
hlm +

2

r2
(l(l + 1)κlm − 2rfκlm,r)

]
Ylm, (9.29d)

hm+m+ = −4Λκlm+2Ylm, (9.29e)

hm−m− = −4Λκlm−2Ylm, (9.29f)

hl+m+ = l(l + 1)

[
r

2iω
Dhlm + 4Dκlm −

4

r
κlm

]
+1Ylm, (9.29g)

hl+m− = −l(l + 1)

[
r

2iω
Dhlm + 4Dκlm −

4

r
κlm

]
−1Ylm, (9.29h)

hl−m+ = l(l + 1)

[
− r

2iω
D†hlm + 4D†κlm −

4

r
κlm

]
+1Ylm, (9.29i)

hl−m− = −l(l + 1)

[
− r

2iω
D†hlm + 4D†κlm −

4

r
κlm

]
−1Ylm, (9.29j)

where the right-hand sides of the above equations are multiplied by an additional factor of e−imφp(t).

The next question to answer is: how are these results related to those of Berndtson in Eqs.

(2.108a)-(2.108f)? Noting that there is no s = 0 contribution in the odd-sector, by taking the trace

of the even-sector metric perturbation from Eq. (2.33) respectively, we immediately �nd that

Tr
(
heµν
)

=
∞∑
l=0

l∑
m=−l

ψlm0
r
Ylm(θ, φ)e−imφp(t), (9.30)

=⇒ hlm =
ψlm0
r
, for l +m = even, (9.31)

which is a well known result. Note that we have reinstated the l,m labels on ψ0. By substituting

Berndtson's homogeneous even-sector expressions for H0, H1, H2, h0, h1,K and G from Eqs. 2.108a)-

(2.108f) in terms of RWZ variables and M2af into Eqs. (9.21a)-(9.21j), turning o� all odd-sector

perturbations and the RWZ �elds in the even-sector with s = {0b, 1, 2}, then comparing with Eqs.
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(9.29j)-(9.29j), determines that

M2af = 2rκ, (9.32)

ψ0 = rh, (9.33)

which also hold separately for each l,m mode. Note that in the homogeneous case, ψ0b = ψ0,

and turning o� the �eld ψ0b is equivalent to setting M2af = 2rκ − ψ0b. While Eq. (9.33) is just

a rearrangement of Eq. (9.31), the new result in Eq. (9.32) relates M2af to κ from Ref. [5] in the

Schwarzschild limit. It turns out that Eq. (9.27) is exactly the same as Eq. (5.17) for homogeneous

ψ0 and we have the following equivalences for the Schwarzschild limit

�h = 0 ↔ L0ψ0 = 0, (9.34)

�κ =
1

2
h ↔ L0M2af = fψ0. (9.35)

While M2af comes from the gauge transformation from the RW to Lorenz gauge, it is di�cult

to understand the exact meaning of M2af from Berndtson's derivation. The result in Eq. (9.32)

elucidates that M2af contributes to the metric perturbation as a pure gauge quantity, and is the

piece of the s = 0 gauge vector that generates the scalar, trace-free perturbation to the metric, at

least in the homogeneous case and in the Schwarzschild limit.

9.5 Constructing s = ±1 perturbations
As the trace of the metric perturbation is entirely generated by a gauge vector with spin-weight

s = 0, we need only consider s = 1 perturbations that are trace free [5]. Chrzanowski showed that

one can construct metric perturbations in the IRG from a vector potential ξµIRG with spin-weight

s = 1 in the following way[63]

ξµIRG = −lµ(δ + 2β + τ)Ψ1 +mµ(D + ρ)Ψ1, (9.36)

=
ρ̄2

√
2Σ

(
−lµ+L†1 +mµ

+D
) Ψ1

ρ̄
, (9.37)

where Ψ1 is the s = 1 Hertz potential. The Hertz potential for the IRG can be written in the

separable form, in the mode-sum decomposition

Ψ1 =
∞∑
l=0

l∑
m=−l

P lm−1 (r)Slm−1(θ, φ)e−imφp(t), m 6= 0, (9.38)

where

P lm−1 =Rlm−1, (9.39)

P lm+1 =∆Rlm+1, (9.40)
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and Slms (θ, φ) = Slms (θ, 0)eimφ are the spin-weighted spheroidal harmonics with normalisation de�ned

in Eq. (2.135), not to be confused with the sources of the RWZ equations, and Rlm±1 is the solution to

the homogeneous Teukolsky equation for spin-weight s = ±1 from Eq. (2.133). In the Schwarzschild

limit Slms (θ, φ) become the spin-weighted spherical harmonics, sYlm(θ, φ), which for s = 0 are just

Ylm. In the Lorenz gauge, the s = 1 vector potential should satisfy Eqs. (9.15)-(9.16). We can then

transform from the IRG to the Lorenz gauge in the following way

ξµL = ξµIRG −∇µχ, (9.41)

where subscript L denotes the Lorenz gauge, and IRG denotes the ingoing radiation gauge. The

Lorenz gauge is preserved if [107]

�χ = ∇µξµIRG. (9.42)

Solving for χ gives [107]

χ = −
√

2

2iω
DL†1Ψ1. (9.43)

Therefore, Lorenz gauge metric perturbations can be generated by the s = 1 vector [107]

ξµ1 =
ρ̄2

√
2Σ

(
−lµ+L†1 +mµ

+D
) Ψ1

ρ̄
−∇µ

√
2

2iω
DL†1Ψ1. (9.44)

We can check that ξµ1 satis�es the condition that the metric perturbation is trace free, with h =

gµνhµν , and ∇µξµ1 = 0 and Eq. (9.15) are automatically satis�ed by construction. These are recog-

nisable as the electromagnetic �eld equations in the Lorenz gauge, though ξµ1 is not necessarily an

electromagnetic �eld. In our case, ξµ1 generates gravitational perturbations. Unlike in the s = 0 case,

constructing a metric perturbation from the vector Eq. (9.44) will generate a metric perturbation

with contributions that come from the IRG, and that are pure gauge. For this reason we shall not

refer to ξµ1 as a gauge vector, but as a vector potential.
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The tetrad components of the �rst-order, trace-free, Lorenz gauge metric perturbation to a Kerr

background that are generated purely by an s = 1 vector in the absence of sources can be obtained

by substituting Eq. (9.44) into Eq. (9.20). The resulting components are given by

hl+l+ =

√
2

iω
DDDL†1Ψ1, (9.45a)

hl−l− = − 4√
2
D†
(
ρ̄L†1Ψ1

∆

)
+

√
2

iω
D†D†DL†1Ψ1, (9.45b)

hl+l− = − 2D†
(
ρ̄L†1Ψ1

∆

)
+

1√
2iω
D†D†DL†1Ψ1 +

1√
2iω
D†DDL†1Ψ1 (9.45c)

−
(

Σ,r

Σ
− ∆′

∆

)[
1√
2iω
DDL†1Ψ1 −

2ρ̄

∆
L†1Ψ1 +

1√
2iω
D†DL†1Ψ1

]
+

1

∆

Σ,θ

Σ

[
1√
2iω
L†DL†1Ψ1 +

√
2ρ̄2D

(
Ψ1

ρ̄

)
+

1√
2iω
LDL†1Ψ1

]
,

hl+m+ =
1√
2iω

(
L† − 2

ρ,θ
ρ

)
DDL†1Ψ1 +

1√
2iω

(
D − 2

ρ,r
ρ

)
L†DL†1Ψ1, (9.45d)

hl+m− =
1√
2iω

(
L − 2

ρ̄,θ
ρ̄

)
DDL†1Ψ1 +

1√
2iω

(
D − 2

ρ̄,r
ρ̄

)
LDL†1Ψ1 (9.45e)

+D
[√

2ρ̄2D
(

Ψ1

ρ̄

)]
− 2
√

2ρ̄ρ̄,rD
(

Ψ1

ρ̄

)
,

hl−m+ =
1√
2iω

(
D† − 2

ρ̄,r
ρ̄

)
L†DL†1Ψ1 +

1√
2iω

(
L† − 2

ρ̄,θ
ρ̄

)
D†DL†1Ψ1 (9.45f)

−
√

2
ρ̄

∆

(
L† − 2

ρ̄,θ
ρ̄

)
L†1Ψ1,

hl−m− =

(
D† − 2

ρ,r
ρ

)[√
2ρ̄2D

(
Ψ1

ρ̄

)]
−
√

2
ρ̄

∆

(
L − 2

ρ,θ
ρ

)
L†1Ψ1 (9.45g)

+

√
2

iω
D†DLL†1Ψ1 −

√
2

iω

(
ρ,θ
ρ
D†DL†1ψ +

ρ,r
ρ
LDL†1Ψ1

)
,

hm+m+ =

√
2

iω
L†−1L†DL†1Ψ1, (9.45h)

hm−m− = 2
√

2ρ̄2L−1D
(

Ψ1

ρ̄

)
+

√
2

iω
L−1LDL†1Ψ1, (9.45i)

hm+m− =
√

2ρ̄2DL†
(

Ψ1

ρ̄

)
+

√
2

iω
DL†LL†1Ψ1 +

√
2

iω
DLL†L†1Ψ1 (9.45j)

−
√

2ρ̄
Σ,r

Σ
L†1Ψ1 +

∆√
2iω

Σ,r

Σ

(
D +D†

)
DL†1Ψ1

−
(

Σ,θ

Σ
− cot θ

)[√
2ρ̄2D

(
Ψ1

ρ̄

)
+

1√
2iω

(
L† + L

)
DL†1Ψ1

]
.

These results are not given in [5] and are given here for the �rst time. When the Hertz potential

Ψ1 is written in its separable form and in a mode sum decomposition we quickly �nd that the

metric perturbation components from Eq. (9.45) mix together spin-weighted spheroidal harmonics
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of di�erent spin weights. The above expressions can be simpli�ed using the vacuum Teukolsky

Equations for s = ±1, which are given by [37, 107](
∆D†D − 2iωr

)
P lm−1 =l(l + 1)P lm−1 , (9.46a)(

∆DD† + 2iωr
)
P lm+1 =l(l + 1)P lm+1 , (9.46b)(

L0L†1 + 2aω cos θ
)
Slm−1 =− l(l + 1)Slm−1, (9.46c)(

L†0L1 − 2aω cos θ
)
Slm+1 =− l(l + 1)Slm+1, (9.46d)

and the vacuum Teukolsky-Starobinsky identities for the s = ±1 case, given by [107]

∆DDP lm−1 = BP lm+1 , (9.47a)

∆D†D†P lm+1 = BP lm−1 (9.47b)

L†0L†1Slm−1 = BSlm+1, (9.47c)

L0L1S
lm
+1 = BSlm−1, (9.47d)

where [107]

B ≡
√
λ4

1 + 4amω − 4a2ω2. (9.48)

In the Schwarzschild limit we choose a slightly di�erent gauge vector, which better exploits

the symmetry of the problem, from which a piece of the �rst-order metric perturbation can be

constructed [107]

ξµ1 =
∞∑
l=1

l∑
m=−l

α

2r2

[
l(l + 1)

(
P lm−1 l

µ
+ + P lm+1 l

µ
−
)
Ylm +D†P lm+1LYlmmµ

+ +DP lm−1L†Ylmmµ
−
]
e−imφp(t),

(9.49)

with m 6= 0 and where

α ≡ −
√
l(l + 1)√

2iω
. (9.50)

We can check that ξµ1 from Eq. (9.49) satis�es the condition that ∇µξµ1 = 0 and that it generates a

metric perturbation which is trace free, such that h = gµνhµν .
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Applying the spin coe�cient identities, the spin-weighted spherical harmonics identities from Eq.

(9.2), the s = 1 vacuum Teukolsky equations from Eq. (9.46d), the s = 1 vacuum Teukolsky-

Starobinsky identities from Eqs. (9.5) and the identities from Eq. (9.6) to the individual components

of h1
ab yields

hl+l+ =

[
2αλ2

1

r2f
D−1P

lm
+1

]
Ylm, (9.51a)

hl−l− =

[
2αλ2

1

r2f
D†−1P

lm
−1

]
Ylm, (9.51b)

hl+l− =
αλ2

1

r2f

[(
D − 2

r

)
P lm−1 +

(
D† − 2

r

)
P lm+1

]
Ylm, (9.51c)

hl+m+ = −2αλ1

r2f

[
λ2

1P
lm
+1 − rfDP lm−1

]
+1Ylm, (9.51d)

hl+m− =
2αλ1

r2f

[
(λ2

1 − iωr)P lm+1 − rfD†P lm+1

]
−1Ylm, (9.51e)

hl−m+ = −2αλ1

r2f

[
(λ2

1 + iωr)P lm−1 − rfDP lm−1

]
+1Ylm, (9.51f)

hl−m− =
2αλ1

r2f

[
λ2

1P
lm
−1 − rfD†P lm+1

]
−1Ylm, (9.51g)

hm+m+ = 2αΛ
(
DP lm−1

)
+2Ylm, (9.51h)

hm−m− = 2αΛ
(
DP lm+1

)
−2Ylm, (9.51i)

hm+m− = −αλ2
1

[(
D† − 2

r

)
P lm+1 +

(
D − 2

r

)
P lm−1

]
Ylm, (9.51j)

where the right-hand side of the above equations are also multiplied by an additional factor of

e−imφp(t) and summed over l and m modes, as in Eq. (9.38). These expressions are also true for an

individual l,m mode. Recall from Section 2.7, one could also have used the Carter tetrad. While the

Carter tetrad provides more symmetric solutions, which is useful if one is considering contributions

from both ΨP
0 and ΨP

4 , it carries an additional factor that depends on the NP spin coe�cients.

This factor is zero in the Kinnersley tetrad. The Kinnersley tetrad provides slightly more concise

results therefore, particularly if one only wishes to consider contributions from one of ΨP
0 or ΨP

4 .

Much of literature is also based on the Kinnersley tetrad, meaning that many useful identities used

throughout this chapter are more readily available and do not need to be derived from scratch.
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As shown in Section 9.4, comparing the metric perturbation components in the Schwarzschild

limit with Berndtson's expressions provide a useful check of results in Kerr. In order to compare

Eq. (9.51) with Berndtson's source-free metric components as projected onto a tetrad from Eq. (9.21)

however, we must �rst convert P lm±1 into RW �elds. The Chandrasekhar transformations, given earlier

in Section 3.1, relate the homogeneous solutions to the Teukolsky and Regge-Wheeler equations in

the Schwarzschild limit. Dropping the l,m labels for now, for the s = 1 case, these relations are

given by [86, 107]

ψ1 = c− (rDP−1 − P−1) = c−r2DP−1

r
(9.52)

ψ1 = c+

(
rD†P+1 − P+

)
= c+r

2D†P+1

r
. (9.53)

Inversely [86, 107]

P−1 =
rf

c−λ2
1

D†ψ1, (9.54)

P+1 =
rf

c+λ2
1

Dψ1. (9.55)

From the s = 1 vacuum Teukolsky-Starobinsky identities in Eq. (9.5) we �nd that the constants

c− and c+ must be equal, so we will chose c± = 1 [86, 107]. From Eq. (9.51) we see that we must

convert various combinations of the operators Dn and D†n acting on P±1 into expressions written in

terms of RW �elds. Using Eqs. (9.52)-(9.55) it is straightforward to show that [107]

DP−1 =
1

r

(
ψ1 +

rf

λ2
1

D†ψ1

)
, (9.56)

D†P+1 =
1

r

(
ψ1 +

rf

λ2
1

Dψ1

)
. (9.57)

Some further rearranging yields [107]

D†P−1 =
1

λ2
1

(f + 2iωr)D†ψ1 +
ψ1

r
,

DP+1 =
1

λ2
1

(f − 2iωr)Dψ1 +
ψ1

r
.

(9.58)

Finally, we can also show that [107]

D−1P+1 = − 1

λ2
1

(1 + 2iωr)Dψ1 +
ψ1

r
,

D†−1P−1 = − 1

λ2
1

(1− 2iωr)D†ψ1 +
ψ1

r
.

(9.59)

Note that the above expressions relating ψ1 to P±1 hold for a given l,m mode.
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The metric perturbations of Eq. (9.51) then become

hl+l+ =
2α

r2f

(
λ2

1

r
ψ1 − (1 + 2iωr)Dψ1

)
Ylm, (9.60a)

hl−l− =
2α

r2f

(
λ2

1

r
ψ1 − (1− 2iωr)D†ψ1

)
Ylm, (9.60b)

hl+l− =
α

r2

[
2λ2

1

rf
ψ1 −

(
D† +D

)
ψ1

]
Ylm, (9.60c)

hm+m− = α

[
−2λ2

1

r
ψ1 + f

(
D† +D

)
ψ1

]
Ylm, (9.60d)

hm+m+ = 2αΛ

(
ψ1

r
+
rf

λ2
1

D†ψ1

)
+2Ylm, (9.60e)

hm−m− = 2αΛ

(
ψ1

r
+

f

λ2
1

Dψ1

)
−2Ylm, (9.60f)

hl+m+ = 2αλ

(
−1

r
D +

f

rλ2
1

D† +
1

r2

)
ψ1+1Ylm, (9.60g)

hl+m− = 2αλ

(
1

r
D − f

rλ2
1

D† +
iω

λ2
1

− 1

r2

)
ψ1−1Ylm, (9.60h)

hl−m+ = 2αλ

[(
−1

r
+

f

rλ2
1

− iω

λ2
1

)
D† +

1

r2

]
ψ1+1Ylm, (9.60i)

hl−m− = 2αλ

(
1

r
D† − f

rλ2
1

D − 1

r2

)
ψ1−1Ylm, (9.60j)

where the right hand side of the above equations are multiplied by an additional factor of e−imφp(t).

As before, the above expressions are applicable as expressions for individual modes or as a sum of

modes.

Notice how the radial Hertz potentials P lm±1 collapse to the s = 1 RW �eld in Eq. (9.52) and

Eq. (9.53), where no distinction is made between s = ±1 due to s2 term in the RW equation,

Eq. (2.49). Unlike in the s = 0 case, where only the even-sector components are non-zero, there is

no way to tell from Eq. (9.60) when ψ1 is that of the odd-sector or that of the even-sector. How then

can we compare with Berndtson's tetrad components of the metric perturbation from Eq. (9.21)?

There are two facts we must consider. The �rst is that thus far, we have only considered a single

polarisation in the mode sum decomposition of either the Hertz potential or the metric perturbation,

described by e−imφ. This is exactly what we did when modelling GWs in Section 4.2 and Chapter 8.

De�ning

φ̂(t, φ) = φ− φp(t), (9.61)

and recalling Eq. (9.38), the Hertz potential can be rewritten in the following way

Ψ1 =
∞∑
l=1

l∑
m=1

(
β1P

lm
±1 Ŷ

lm
±1 e

imφ̂ + β2P
l,−m
±1 Ŷ l,−m

±1 e−imφ̂
)
, (9.62)
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capturing both ingoing and outgoing radiation, where β1 and β2 are complex constants to be de-

termined and Ŷ lm
s (θ) = sYlm(θ, 0) and Ŷlm(θ) = Ylm(θ, 0). The gauge potential generated by the

Hertz potential then takes the form

ξµ(t, r, θ, φ) =
∞∑
l=0

l∑
m=0

(
β1ξ̂

lm
µ (r, θ)eimφ̂(t,φ) + β2ξ̂

l,−m
µ (r, θ)e−imφ̂(t,φ)

)
. (9.63)

The second fact we must consider is that the full physical metric is real valued and should be written

as

Re[hµν ] = hµν + h∗µν , (9.64)

where ∗ denotes complex conjugation, which we have previously ignored in earlier chapters. Using

these two facts, the metric perturbation can be rewritten in the form

Re[hµν ] =
∞∑
l=0

l∑
m=0

2
(
β1ξ̂

lm
(µ;ν)e

imφ̂
)

+ 2
(
β2ξ̂

l,−m
(µ;ν)e

−imφ̂
)

+ c.c (9.65)

=
∞∑
l=0

l∑
m=0

2
(
β1ξ̂

lm
(µ;ν)e

imφ̂
)

+ 2
(
β2ξ̂

l,−m
(µ;ν)e

−imφ̂
)∗

+ c.c (9.66)

=
∞∑
l=0

l∑
m=0

2
[
β1ξ̂

lm
(µ;ν) +

(
β2ξ̂

l,−m
(µ;ν)

)∗]
eimφ̂ + c.c, (9.67)

(9.68)

where `c.c' denotes complex conjugate terms. Projected onto tetrad components yields

Re[hµν ]eµae
ν
b = Re[hab] =

∞∑
l=0

l∑
m=0

[
β1ĥ

lm
µν +

(
β2ĥ

l,−m
µν

)∗]
eµae

µ
b e
imφ̂ + c.c (9.69)

=
∞∑
l=0

l∑
m=0

[
β1ĥ

lm
ab +

(
β2ĥ

l,−m
ēaēb

)∗]
eimφ̂ + c.c. (9.70)

The term in the square brackets now captures everything required to extract the odd and even parity

contributions. Therefore the complex conjugate terms can once again be ignored for the purposes

of the remainder of the calculation in this section. Consider the coe�cient of eimφ̂ of the metric

perturbation tetrad components for a given l,m mode

hlmab =
[
β1ĥ

lm
ab +

(
β2ĥ

l,−m
e∗ae
∗
b

)∗]
eimφ̂. (9.71)

The quantity ĥlmab can be written in the separable form

ĥlmab = hlmab (r)sY
ab
lm(θ)e−imφ̂, (9.72)
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where the superscript a, b on sY
ab
lm is a label, not an index.

For example, for (a, b) = (1, 1), Eq. (9.51a) sets

hlml+l+ =
2αλ2

1

r2f
D−1P

lm
+1 (r), (9.73)

sY
l+l+
lm = Ŷlm(θ), s = 0. (9.74)

The remaining quantities ĥlmab can be determined from Eq. (9.51). However, the quantities
(
ĥl,−me∗ae

∗
b

)∗
still need to be determined. The following identities will prove useful in determining these. Under the

operation Xlm → X∗l,−m, for some quantity X, the radial and spherical parts of the Hertz potential

transform as [97, 37, 107]

P lm±1 (r)→ (−1)mP lm±1 (r), (9.75)

Ŝlms (θ)→ (−1)s−mŜlm−s(θ), (9.76)

Ŷ lm
s (θ)→(−1)s−m Ŷ lm

−s (θ), (9.77)

Ŷlm(θ)→(−1)−m Ŷlm(θ), (9.78)

where we have de�ned

Ŝlms (θ) = Slms (θ, 0). (9.79)

The quantities ω, α,K and Q and the directional derivatives then transform as [107]

ω →− ω, (9.80a)

α→ α, (9.80b)

K → −K, (9.80c)

Q→ −Q, (9.80d)

D → D, (9.80e)

D† → D†, (9.80f)

L → L†, (9.80g)

L† → L, (9.80h)

and under complex conjugation the tetrad basis vectors are

l̄µ+ = lµ+, l̄µ− = lµ−, m̄µ
+ = mµ

−, m̄µ
− = mµ

+, (9.81)

where an over bar on lµ± or mµ
± denotes complex conjugation. The quantities

(
ĥl,−me∗ae

∗
b

)∗
can now be

determined. For example

(
hl,−m
l̄+ l̄+

)∗
=
(
hl,−ml+l+

)∗
= (−1)m

2αλ2
1

r2f
D−1P

lm
+1 (r) = (−1)mhlml+l+ (9.82)(

Y
l̄+ l̄+
l,−m

)∗
=
(
Y
l+l+
l,−m

)∗
= (−1)m Ŷlm(θ). (9.83)

Therefore (
ĥl,−m
l̄+ l̄+

)∗
= ĥlml+l+ , (9.84)
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and

hlml+l+ = (β1 + β∗2)ĥlml+l+e
imφ̂. (9.85)

In general it can be shown that(
hl,−m
āb̄

)∗
sY

ab
l,−m = (−1)shlmab −sY

ab
lm . (9.86)

Finally we have

hlml+l+ =
[
β1ĥ

lm
l+l+ +

(
β2ĥ

l,−m
l+l+

)∗]
= (β1 + β∗2)hlml+l+Ylm, (9.87a)

hlml−l− =
[
β1ĥ

lm
l−l− +

(
β2ĥ

l,−m
l−l−

)∗]
= (β1 + β∗2)hlml−l−Ylm, (9.87b)

hlml+l− =
[
β1ĥ

lm
l+l− +

(
β2ĥ

l,−m
l+l−

)∗]
= (β1 + β∗2)hlml+l−Ylm, (9.87c)

hlmm+m− =
[
β1ĥ

lm
m+m− +

(
β2ĥ

l,−m
m−m+

)∗]
= (β1 + β∗2)hlmm+m−Ylm, (9.87d)

hlmm+m+
=
[
β1ĥ

lm
m+m+

+
(
β2ĥ

l,−m
m−m−

)∗]
=
(
β1h

lm
m+m+

+ β∗2h
lm
m−m−

)
2Ylm, (9.87e)

hlmm−m− =
[
β1ĥ

lm
m−m− +

(
β2ĥ

l,−m
m+m+

)∗]
=
(
β1h

lm
m−m− + β∗2h

lm
m+m+

)
−2Ylm, (9.87f)

hlml+m+
=
[
β1ĥ

lm
l+m+

+
(
β2ĥ

l,−m
l+m−

)∗]
=
(
β1h

lm
l+m+

− β∗2hlml+m−
)

1Ylm, (9.87g)

hlml+m− =
[
β1ĥ

lm
l+m− +

(
β2ĥ

l,−m
l+m+

)∗]
=
(
β1h

lm
l+m− − β∗2hlml+m+

)
−1Ylm, (9.87h)

hlml−m+
=
[
β1ĥ

lm
l−m+

+
(
β2ĥ

l,−m
l−m−

)∗]
=
(
β1h

lm
l−m+

− β∗2hlml−m−
)

1Ylm, (9.87i)

hlml−m− =
[
β1ĥ

lm
l−m− +

(
β2ĥ

l,−m
l−m+

)∗]
=
(
β1h

lm
l−m− − β∗2hlml−m+

)
−1Ylm, (9.87j)

where the central part and right hand side of the above equations are also multiplied by an additional

factor of e−imφp(t). We can now begin to extract the odd- and even-parity contributions. Equating

right-hand sides of Eq. (9.87) with the right-hand sides of Eq. (9.21) respectively and solving for
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Berndtson's variables in terms of hlmab yields

H lm
0 =

f

4

(
hlml+l+ − 2hlml+l− + hlml+l+ + hlml−l−

)
(β1 + β∗2) , (9.88a)

H lm
1 =

f

4

(
hlml+l+ − hlml−l−

)
(β1 + β∗2) , (9.88b)

H lm
2 =

f

4

(
hlml+l+ + 2hlml+l− + hlml+l+ + hlml−l−

)
(β1 + β∗2) , (9.88c)

K lm =
1

2R2
hlmm+m− (β1 + β∗2) , (9.88d)

Glm =
1

4r2Λ

(
hlmm−m− + hlmm+m+

)
(β1 + β∗2) , (9.88e)

hlm0 =
f

4λ1

(
−hlml+m+

+ hlml+m− + hlml−m+
− hlml−m−

)
(β1 + β∗2) , (9.88f)

hlm1 =
1

4λ1

(
−hlml+m+

+ hlml+m− − hlml−m+
+ hlml−m−

)
(β1 + β∗2) , (9.88g)

in the even-sector, where there is always a factor of β1 + β∗2 and

hlm0 =
f

4iλ1

(
hlml+m+

+ hlml+m− − hlml−m+
− hlml−m−

)
(β1 − β∗2) , (9.89a)

hlm1 =
1

4λ1

(
hlml+m+

+ hlml+m− + hlml−m+
+ hlml−m−

)
(β1 − β∗2) , (9.89b)

hlm2 =
i

4Λ

(
hlmm−m− − hlmm+m+

)
(β1 − β∗2) , (9.89c)

in the odd-sector, where there is always a factor of β1 − β∗2 . By considering the two polarization

degrees of freedom we have been able to extract the odd- and even-sector components, which are

given by the imaginary and real parts of Eq. (9.21) respectively. This parity extraction only makes

sense in the Schwarzschild limit however. This result is similar to that of Lousto and Whiting,

who also made use of the parity decomposition to reconstruct the metric perturbation from a Hertz

potential for a Schwarzschild background in the time domain [66]. Substituting in for hlmab to the

equations above gives

H0 =
αλ

2r2

(
D−1P+1 +D†−1P+1 −

(
D − 2

r

)
P−1 −

(
D† − 2

r

)
P+1

)
(β1 + β∗2) ,

H2 =
αλ

2r2

(
D−1P+1 +D†−1P+1 +

(
D − 2

r

)
P−1 +

(
D† − 2

r

)
P+1

)
(β1 + β∗2) ,

H1 =
αλ

2r2

(
D−1P+1 −D†−1P−1

)
(β1 + β∗2) ,

h0 =
α

2r2

(
2λ2

1 (P+1 − P−1)− iωr (P+1 + P−1)
)

(β1 + β∗2) ,

h1 =
α

2r2f

(
2λ2

1 (P+1 + P−1)− 2rf
(
DP−1 +D†P+1

)
− iωr (P+1 − P−1)

)
(β1 + β∗2) ,

K = − αλ
2r2

[
D†P+1 +DP−1 −

2

r
(P+1 + P−1)

]
(β1 + β∗2) ,

G =
α

2r2

(
DP−1 +D†P+1

)
(β1 + β∗2) ,

(9.90)
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in the even-sector and

h0 =
αω

2r
(P−1 − P+1) (β1 − β∗2) ,

h1 =
α

2ir

(
2
(
DP−1 −D†P+1

)
− iω

f
(P+1 + P−1)

)
(β1 − β∗2) ,

h2 =
α

2i

(
DP−1 −D†P+1

)
(β1 − β∗2) ,

(9.91)

in the odd-sector, for a given l,m mode.

Making use of the relations from Eqs. (9.52) - (9.59) which converts P±1 and its directional

derivatives to ψ1, we can recover Berndtson's source-free gauge transformation for the s = 1 contri-

butions [46]

H0 = − α
r2

(
(1− f)∂r +

2ω2r

f

)
(β1 + β∗2)ψ1,

H2 = − α
r2

(
(1 + f)∂r +

2ω2r

f
− 2λ2

1

r

)
(β1 + β∗2)ψ1,

H1 = − iαω
rf

(
2f∂r −

1

r

)
(β1 + β∗2)ψ1,

h0 = − iαω
λ

(
f∂r +

2λ2
1

r

)
(β1 + β∗2)ψ1,

h1 =
2α

λ2
1

(
(λ2

1 − f)

r
∂r −

ω2

2f
− λ2

1

r2

)
(β1 + β∗2)ψ1,

K =
α

r2

(
f∂r −

λ2
1

r

)
(β1 + β∗2)ψ1,

G =
α

λ2
1r

2

(
f∂r +

λ2
1

r

)
(β1 + β∗2)ψ1,

(9.92)

and

h0 =
iαω2

λ2
1

(β1 − β∗2)ψ1,

h1 = −αω
λ2

1

(
∂r −

2

r

)
(β1 − β∗2)ψ1,

h2 =
αω

λ2
1

(β1 − β∗2)ψ1.

(9.93)

in the odd-sector, again for a given l,m mode. Comparing with Eq. (2.106) and Eq. (2.108) deter-

mines that [107]

β1 + β∗2 = −
√

2
√
l(l + 1), (9.94)

and

β1 − β∗2 =

√
2
√
l(l + 1)

ω2
i. (9.95)
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Therefore

β1 =

√
l(l + 1)√

2

(
i

ω2
− 1

)
, (9.96)

β2 =

√
l(l + 1)√

2

(
i

ω2
+ 1

)
. (9.97)

Here we have shown for the �rst time that Berndtson's gauge transformation and metric recon-

struction can be recovered in the Schwarzschild limit of the perturbation to a Kerr background

as constructed by a spin-weight s = ±1 vector, when projected onto the Kinnersley tetrad in the

absence of sources. The odd- and even-sector split, previously unknown, was also recovered. This

result, in conjunction with the fact that Berndtson provides expressions for the metric perturbation

to a Schwarzschild background in the sourced case bodes well for determining a sourced Lorenz

gauge metric perturbation for a Kerr background.

9.6 Adding sources

Before attempting to add sources to the Lorenz gauge metric perturbation of a Kerr background,

we should aim to recover Berndtson's sourced expressions from Ref. [46] with a Hertz potential and

gauge transformation. This shall be left to future work, but we shall summarise how to begin. In

the s = 0 case it is straightforward to show that the source S0 from Eq. (A.5) can be derived from

the trace of the even-sector SET in Eq. (2.37)

Slm0 = −16πrfT e,lm, where T e,lm = gµνT e,lmµν . (9.98)

From the trace of the sourced Einstein �eld equations Eq. (2.67) we �nd that

�hlm = −16πTlm, (9.99)

which is equivalent to

L0ψ0 = S0, (9.100)

where the l,m labels have once again been dropped, as in Chapter 5. In the presence of sources,

there is no immediate change to the s = 0 metric perturbation expressions given in Eq. (9.29) other

than hlm is now inhomogeneous and κlm is also sourced by the retarded solution to hlm. Notice how

any terms in Eq. (9.29) containing two directional derivatives along lµ± will introduce terms involving

Tlm, which for the point-like particles that we are considering, contain Dirac-delta functions. We

can use the fact that in the Lorenz gauge, the �rst-order metric perturbation components are C0

di�erentiable. This is true in both Boyer-Lindquist/Schwarzschild coordinates and in the Kinnersley

tetrad [90]. Therefore, additional terms must be added to the metric components to exactly cancel

any distributional terms that are introduced in the sourced case to ensure C0 di�erential behaviour.

This idea can be applied to contributions to the metric perturbation from all spin weights.
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When comparing the results to Berndtson's inhomogeneous even-sector expressions, a number of

things remain unclear however. It is di�cult to see from Berndtson's expressions which components

of the SET are introduced by which �elds. This is due to a number of factors. Components of the SET

and their radial derivatives can be replaced by using the condition that the SET is divergence free.

We have also seen that spin weights can be raised and lowered by directional derivatives. Berndtson's

expressions also combine �elds of di�erent spin weights. Furthermore, it remains unclear how to

introduce the �eld ψ0b, which only di�erentiates itself from ψ0 in the sourced case. Noticing that ψ0b

always appears together with M2af in the even-sector expressions for H0, H1, H2, h0, h1,K and G

from Eqs. (2.108a)-(2.108f), one approach would be to combine the s = 0 equations in the following

way

� (κ+ κ0b) =
1

2
h+

S0b

2rf
, (9.101)

which is equivalent to

L0 (M2af + ψ0b) = fψ0 + S0b, (9.102)

where we have introduced the �eld κ0b such that

�κ0b =
S0b

2rf
. (9.103)

Unlike Slm0 , Slm0b contains a term proportional to the radial derivative of the Dirac delta function.

This means that any terms in the metric perturbation components in Eq. (9.29) that include a single

radial derivative of κ will give rise to a distributional term which must also be cancelled to achieve

C0 di�erentiability, required of the Lorenz gauge metric perturbation.
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Chapter 10

Conclusion

In this chapter a comprehensive summary of all results presented in this thesis will be discussed,

followed by an exposition of possible directions for future research, that build on this work.

10.1 Summary of results

In Chapter 3, the MST package was implemented to the BHPToolkit [1], in particularly the novel

feature for calculating MST solutions to the homogeneous Teukolsky equation. The implementa-

tion relied on the derivation provided in this thesis of contiguous Hypergeometric functions for the

Teukolsky MST parameters. Later in Chapter 6, the calculation for the r0 derivative of the radiative

modes of the �rst-order metric perturbation in the Lorenz gauge was presented, on a Schwarzschild

background, for circular orbits in the frequency domain, based on the work in Ref. [2]. Using the

gauge transformation �rst derived in Ref. [46], solutions to h1L
µν were obtained in terms of RWZ mas-

ter functions and the gauge �eld M2af , in addition to their radial derivatives. The quantity h1L
µν,r0

was determined in terms of Regge-Wheeler-Zerilli (RWZ) master functions, M2af , their derivatives

with respect to r0, in addition the radial derivatives of the listed �elds. The �eld equations for the

r0 derivative of the RWZ master functions and M2af have sources which with unbounded support

which is challenging for the standard variation of parameters method to tackle. To overcome this,

the method of partial annihilators was used [102, 122, 95] which gives us higher-order di�erential

equations but with distributional sources. While this work was being prepared for publication, a sim-

ilar procedure for computing the RWZ master functions was sketched in Appendix C of Ref. ([122]).

In Figs. 6.2, 6.4 and 6.6, the numerical results presented show agreement with results obtained by

taking a numerical derivative of the relevant �eld. The results of this work are already being used

to compute slow-time derivatives of the metric perturbation that feed into the source for second-

order in the mass ratio calculations in order to determine the GW phase to 1PA order [14], forming

part of the recent calculations of the second-order energy �ux at in�nity [4] and waveforms through

second-order [3], as shown in Chapter 8, in addition to comparisons with EOB theory [93, 94].

In Chapter 7, the transition to plunge was discussed, and the structure of the phase and metric

perturbation, in addition to the perturbed Einstein �eld equations were determined to 1PA order.
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Transition waveforms were then implemented using the GSF approach in Chapter 8 for the �rst time.

These waveforms were generated for quasicircular, equatorial orbits on a Schwarzschild background

to 0PA order, for mass ratios of ∼ 1 : 10 and 1 : 1. Finally, in Chapter 9, contributions to

the �rst-order Lorenz gauge metric perturbation to a Kerr black hole were generated from a spin-

weighted s = 1 gauge vector in the absence of sources, and were shown to recover Berndtson's gauge

transformation in the Schwarzschild limit.

10.2 Future work

There is a variety of natural extensions to the work in this thesis. Firstly, with the numerical results

from Chapter 5 and Chapter 6, one could immediately construct the �rst-order metric perturbation

and its r0 derivative in the RW gauge. It is also worth noting that whilst this work was being

prepared, a new numerical approach to frequency-domain calculations of perturbations of black hole

spacetimes was developed [95]. That work showed, using a scalar-�eld toy model for a Schwarzschild

background, that using hyperboloidal compacti�ed coordinates with a pseudo-spectral numerical

scheme allows the r0 derivative of the scalar �eld to be calculated e�ciently. It would be interesting

future work to compare the pros and cons of the partial annihilator method used in this work with

the hyperboloidal approach.

Secondly, the partial annihilator approach can also be applied to the Teukolsky formalism [105].

This would allow for the slow-time derivative of the metric perturbation of a particle moving on either

circular or spherical orbits around a Kerr black hole to be calculated in either a radiation gauge

[131, 132, 133, 43] or, following recent work, the Lorenz gauge, as presented in Chapter 9 and Ref.

[5]. However, it seems unlikely that the method of partial annihilators will be applicable to second-

order perturbations, due to the form of the second-order equations. Recent work by Green et al. [75]

and Toomani et al. [43] instead present schemes on how to implement the second-order Teukolsky

equation in Kerr. Thirdly, recall that up to M2af , h1L
µν can be written in terms of semi-analytic

MST expansions [85]. The gauge �eld M2af currently has no known MST-type expansion however,

excluding analytic high-order PN calculations of h1L
µν similar to those in, e.g., [134, 87, 135, 136].

Research is currently being done to �nd a PN solution for M2af [88], which would allow one to

obtain a PN series solutions of the complete Lorenz gauge metric perturbation.

A further extension to the work of Chapter 5 and Chapter 6 would be to include eccentric orbits,

which are more challenging to implement than circular orbits. The same partial annihilator method

can be applied to eccentric orbit equations, arriving at sources which only have support within the

radial libration region [102]. For highly eccentric orbits it is likely that a time-domain approach

would be preferable. In this approach, the derivative with respect to eccentricity or, e.g., the semi-

major axis would only act on the source, leaving the time-domain operator unchanged. This suggests

that already existing time-domain codes, e.g., [137, 138, 139], could be quickly modi�ed to calculate

the slow-time derivatives for these orbits. After the application of the method of partial annihilators,

the r0 derivative of the eccentric source for the resulting fourth-order ODE of the spin-weight s = 2
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RW master function in the odd-sector was calculated by Durkan. The weighting coe�cients for

the retarded ψ0 �eld were also calculated, following the method of variation of parameters and

extended homogeneous solutions [103, 140], making use of integration by parts and regularising the

integrand, removing singularities introduced in the eccentric case [89]. The retarded �eld recovered

the correct numerical solution in the limit of circular orbits. However, the calculation for eccentric

orbits currently fails to converge, and for this reason these results were omitted from this thesis.

Fourier theory tells us that if the retarded �eld is continuously di�erentiable, its Fourier series will

converge exponentially. If the retarded �eld is C0 di�erentiable, the Fourier series will converge

as 1/n2, where n is the number of terms in the Fourier series. It is expected that the solution

to ∂r0ψ0 should converge, and further research is required to understand the error in the current

implementation.

Work from Chapter 7 on the transition regime is only the beginning of a long research program,

as waveforms will need to be implemented to 1PA order for generic orbits on a Kerr background and

must be extended to include the plunge, merger and ring-down. Currently research is being done by

collaborators to calculate the amplitude and phase to next-to-leading-order in the small mass ratio

within the two-timescale approximation, for quasicircular, equatorial orbits on a Schwarzschild back-

ground, in addition to extending the waveform through to plunge. To complete the 1PA transition

calculation, recall from Chapter 7 that only ∂2
r0h

1,(i)
lm and ĥ3,(i)

lm need be determined, evaluated at ΩI.

The majority of work from Chapter 7 should be easily extendible to Kerr, as derivations were pri-

marily concerned with the structure of solutions. Of course quantities such as Ω0, and the equations

of motion will di�er in the Kerr case, however the principles remain the same. The main hurdle

therefore remains the calculation of the second-order metric perturbation on a Kerr background.

Solving the perturbed �eld equations for eccentric orbits shall also be left to future research.

Finally, possible extensions to the work from Chapter 9 are detailed as follows. The s = 2

contribution to the Lorenz gauge metric perturbation of a Kerr black hole in the absence of sources

are presented in [5]. It would be insightful to check that Berndtson's transformation is recovered in

the s = 2 case, in the absence of sources. The next logical step would then be to implement the metric

perturbations of Dolan et. al [5] and Chapter 9 for circular orbits. As discussed in earlier chapters,

for a point-like particle we can solve the retarded Lorenz gauge metric perturbation components

everywhere in spacetime, even in the absence of sources. Away from the world-line, distributional

terms go to zero, and on the world-line, distributional terms cancel, ensuring C0 di�erentiability

of Lorenz gauge solutions. Therefore, we can already begin to implement the retarded �rst-order

metric perturbation to a Kerr background in the Lorenz gauge without needing to add sources to

either the work of Dolan et al. [5] or work from Chapter 9. To do this, one need only update

the current algorithm for calculating h1L
µν and h1L

µν,r0 in terms of Teukolsky variables and any gauge

�elds, which can be done in a similar way to the RWZ and M2af �elds. Ultimately, sources will

need to be added however, and again these should recover Berndtson's transformation in the sourced

case, providing an insightful check on results in Kerr. Current research by Wardell, Kavanagh and

Dolan will provide source Lorenz gauge perturbations to Kerr in the electromagnetic case. For the
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sourced gravitational case, one possible path would be to �rst determine sources for circular orbits.

One could determine the distributional pieces of the retarded Teukolsky and gauge �elds, and in

principle subtract the same term from the overall expression for the metric perturbation components

to recover C0 di�erentiability. This may provide insight as to how to add source terms to the metric

perturbation for generic orbits in the gravitational case, which remains an open problem.
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Appendix A

Sources for Regge-Wheeler and Zerilli

master functions

Here we provide expressions for the sources to the RWZ master functions from Eq. (2.49) in terms

of the components of T 1
µν . All of the expressions in this section are provided by reference [46]. The

components of T 1
µν are given explicitly by Eq. (2.48). The following expressions are the sources for

the odd-sector RW master functions [46]:

Slm1 (r) =
32π(λ+ 3)(r − 2M)2

3r3
Solm12 (r) +

32πλ(r − 2M)

3r3
Solm22 (r) (A.1)

+
16π(r − 2M)3

r3
∂rSo

lm
12 (r) +

32πλ(r − 2M)2

3r3
∂rSo

lm
22 (r),

Slm2 (r) = − 16πf(r)2

r
Solm12 (r) +

32π
(
6M2 − 5Mr + r2

)
r4

Solm22 (r)− 16πf(r)2

r
∂rSo

lm
22 (r). (A.2)
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The following expressions are the sources for the even-sector RWZ master functions. Here Slm2
refers to the source for the Zerilli master function [46]:

Slm2 (r) =
16πM(2M − r)(3M − (λ+ 3)r)

iωr(3M + λr)2
Selm01 (r) +

8π(r − 2M)2

3M + λr
Selm11 (r) (A.3)

+
16π(2M − r)

(
6M2 + (λ− 3)Mr + λ(λ+ 1)r2

)
iωr2(3M + λr)2

Selm02 (r)

+
16π(r − 2M)2

r(3M + λr)
Selm12 (r) +

32π(2M − r)
r2

Selm22 (r) +
8π(r − 2M)2

iω(3M + λr)
∂rSe

lm
01 (r)

+
16π(r − 2M)2

iωr(3M + λr)
∂rSe

lm
02 (r),

Slm1 (r) =
16πr

3iω
Selm00 (r) +

32π(r − 2M)2

3(iω)2r2
Selm01 (r) +

64πM(2M − r)
3(iω)2r3

Selm02 (r) (A.4)

− 16π(r − 2M)2

3iωr
Selm11 (r) +

16π(r − 2M)2

3iωr2
Selm12 (r) +

32πλ(2M − r)
3iωr2

Selm22 (r)

+
16π(2M − r)

iωr2
Uelm22 (r)− 32π(r − 2M)2

3(iω)2r2
∂rSe

lm
02 (r),

Slm0 (r) = − 16πrSelm00 (r) +
16π(r − 2M)2

r
Selm11 (r) +

32π(r − 2M)

r2
Uelm22 (r), (A.5)

Slm0b (r) =
4πr

(
(−6λ− 5)M + r

(
3λ+ 2(iω)2r2 + 2

))
(iω)2(2M − r) Selm00 (r) (A.6)

− 8π
(
M
(
−2λ+ 8(iω)2r2 − 3

)
− 2(iω)2r3 + λr + r

)
(iω)3r

Selm01 (r)

− 16π(λ+ 1)
(
M − 2(iω)2r3

)
(iω)3r2

Selm02 (r)

+
4π(2M − r)

(
(14λ+ 17)M − r

(
7λ+ 2(iω)2r2 + 8

))
(iω)2r

Selm11 (r)

− 8π(λ+ 1)(2M − r)
(iω)2r

Selm12 (r) +
16πλ(λ+ 1)(2M − r)

(iω)2r2
Selm22 (r)

− 8π(6λ+ 7)(2M − r)
(iω)2r2

Uelm22 (r)− 8π(λ+ 1)(2M − r)
(iω)3r

∂rSe
lm
02 (r).
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Appendix B

Coupling matrices for linearised Einstein

�eld equations in the Lorenz gauge

The matricesM(i)
Ω,l(j) andM

(i)
r,l(j) are given here explicitly for constant t slicing [90, 89, 104]:

M(2)
Ω(1) = −M(2)

Ω(2) = −f
′

2
, (B.1)

M(2)
Ω(3) = −f

′f
2
, (B.2)

M(4)
Ω(4) = −M(4)

Ω(5) =M(8)
Ω(8) = −M(8)

Ω(9) =
f ′

4
, (B.3)

M(1)
r(1) = −M(1)

r(5) =M(3)
r(3) =M(3)

r(6) =M(6)
r(3) =M(6)

r(6) =
f

2r2

(
1− 4M

r

)
, (B.4)

M(1)
r(3) =

1

2
(f ′f2)∂r −

f2

2r2

(
1− 4M

r

)
, (B.5)

M(1)
r(6) = − f2

2r2

(
1− 6M

r

)
, (B.6)

M(2)
r(1) = −1

2
(f ′f)∂r −

f ′f
2r

, (B.7)

M(2)
r(3) =

1

2
(f ′f2)∂r +

f ′f2

2r
, (B.8)

M(2)
r(4) = − f2

2r2
, (B.9)

M(2)
r(5) = 2M(4)

r(7) = 2M(8)
r(10) =

f ′f
2r

, (B.10)

M(2)
r(6) =

f ′f2

r
, (B.11)

M(3)
r(1) = −M(3)

r(5) =M(6)
r(1) = −M(6)

r(5) =M(7)
r(7) =M(10)

r(10) = − f

2r2
, (B.12)
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M(4)
r(2) =M(5)

r(1) = −M(5)
r(3) = − l(l + 1)f

2r2
, (B.13)

M(4)
r(4) =M(8)

r(8) =
1

4
(f ′f)∂r −

3f ′f
4r

, (B.14)

M(4)
r(5) = −1

4
(f ′f)∂r −

f ′f
2r

, (B.15)

M(4)
r(6) = − l(l + 1)f ′f

4r
, (B.16)

M(5)
r(3) =

l(l + 1)f2

2r2
, (B.17)

M(5)
r(5) =M(9)

r(9) =
f

r2

(
1− 9M

2r

)
, (B.18)

M(5)
r(6) =

l(l + 1)f

2r2

(
1− 3M

r

)
, (B.19)

M(5)
r(7) =M(9)

r(10) = − f

2r2

(
1− 3M

r

)
, (B.20)

M(7)
r(5) = −2M(10)

r(9) = −1

2
(l − 1)(l + 2)

f

r2
, (B.21)

M(8)
r(9) = −1

4
(f ′f)∂r −

f ′f
2r

, (B.22)

where the l subscripts have been dropped, and prime denotes a derivative with respect to r.
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Appendix C

Properties of delta functions and their

derivatives

The following properties can be derived by taking repeated derivatives of the �rst rule, rearranging

and applying previous rules [102]:

f(x)δ(x− a) = f(a)δ(x− a), (C.1)

f(x)δ′(x− a) = − f ′(a)δ(x− a) + f(a)δ′(x− a), (C.2)

f(x)δ′′(x− a) =f ′′(a)δ(x− a)− 2f ′(a)δ′(x− a) + f(a)δ′′(x− a), (C.3)

f(x)δ′′′(x− a) = − f ′′′(a)δ(x− a)− 3f ′(a)δ′′(x− a) + 3f ′′(a)δ′(x− a) + f(a)δ′′′(x− a), (C.4)

f(x)δ(4)(x− a) = f (4)(a)δ(x− a)− 4f ′′′(a)δ′(x− a) + 6f ′′(a)δ′′(x− a)− 4f ′(a)δ′′′(x− a) (C.5)

+ f(a)δ(4)(x− a),

f(x)δ(5)(x− a) = − f (5)(a)δ(x− a) + 5f (4)(a)δ′(x− a)− 10f ′′′(a)δ′′(x− a) (C.6)

+ 10f ′′(a)δ′′′(x− a)− 5f ′(a)δ(4)(x− a) + f(a)δ(5)(x− a),

where prime denotes derivatives with respect to x and a is a constant and f is some scalar �eld.

These identities are particularly useful in determining the coe�cients of the Dirac delta function

and its radial derivatives in the expression Eq. (6.16). These coe�cients can then be found in

Appendix D for the case where s = 2 in the odd-sector.
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Appendix D

Coe�cients of Dirac delta functions and

the radial derivatives of Dirac delta

functions for s = 2 in the odd-sector

The equations below give the coe�cients in Eq. (6.16) for the case of s = 2 in the odd-sector.

b0(r0) =
8imMπ

(l + 2)(l + 1)l(l − 1)r10
0

(
r0

r0 − 3M

)3/2 {
1080(l2 + l + 1)M4 − 6(246l(l + 1) (D.1)

−m2 + 194)M3r0 + (722l(l + 1)−m2 + 412)M2r2
0 − 3(49l(l + 1) + 16)Mr3

0

+ 10l(l + 1)r4
0

}
∂θY

∗
lm(π/2, 0),

b1(r0) =
8imMπ(2M − r0)

(l + 2)(l + 1)l(l − 1)r10
0

(
r0

r0 − 3M

)3/2 {
3240M4 + 6(38l(l + 1) +m2 − 430)M3r0 (D.2)

+ (−248l(l + 1) + 11m2 + 604)M2r2
0 + (87l(l + 1)− 4m2 − 32)Mr3

0

− 10l(l + 1)r4
0

}
∂θY

∗
lm(π/2, 0),

b2(r0) =
8imMπ(r0 − 2M)2

(l + 2)(l + 1)l(l − 1)r9
0

(
r0

r0 − 3M

)3/2 {
996M3 + 2(6l(l + 1) + 3m2 − 260)M2r0 (D.3)

− (10l(l + 1) + 2m2 − 49)Mr2
0 + 2(l(l + 1) + 3)r3

0

}
∂θY

∗
lm(π/2, 0),

b3(r0) =
8imMπ(2M − r0)3

(l + 2)(l + 1)l(l − 1)r8
0

(
r0

r0 − 3M

)3/2 (
126M2 − 47Mr0 + 2r2

0

)
∂θY

∗
lm(π/2, 0), (D.4)

b4(r0) =− 16imMπ(r0 − 2M)4

(l + 2)(l + 1)l(l − 1)r6
0

√
r0

r0 − 3M
∂θY

∗
lm(π/2, 0). (D.5)
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Appendix E

Jump conditions

In this appendix we present the jump conditions required to construct the various �elds that go into

calculating h1L
µν,r0 . The jump conditions for the r0 derivative of the Zerilli master function are too

long to present here so we including them in the supplemental material of Ref. [2].

E.0.1 Jump conditions in φ2 in the odd-sector

For the odd-sector the jump conditions in Eq. (6.18) are for s = 2 given by:

J0 =
8iπmM(3M − 2r0)∂θY

∗
lm(π/2, 0)

(l − 1)l(l + 1)(l + 2)r
5/2
0 (r0 − 3M)3/2

, (E.1)

J1 =
8iπmM∂θY

∗
lm(π/2, 0)

(l − 1)l(l + 1)(l + 2)r
7/2
0 (r0 − 3M)3/2(r0 − 2M)2

{
− 2

(
l2 + l − 3

)
r3

0 (E.2)

− 2M2r0

(
6l(l + 1) + 3m2 − 22

)
+Mr2

0

(
10l(l + 1) + 2m2 − 31

)
− 12M3

}
,

J2 = − 8iπmM∂θY
∗
lm(π/2, 0)

(l − 1)l(l + 1)(l + 2)r
9/2
0 (2M − r0)3(r0 − 3M)3/2

{
2M3r0

(
18l(l + 1) + 27m2 + 16

)
(E.3)

−M2r2
0

(
40l(l + 1) + 41m2 + 4

)
+Mr3

0

(
15l(l + 1) + 8m2

)
− 2l(l + 1)r4

0 − 48M4
}

,

J3 =
8iπmM∂θY

∗
lm(π/2, 0)

(l − 1)l(l + 1)(l + 2)r
11/2
0 (r0 − 3M)3/2(r0 − 2M)4

{
− 2l(l + 1)

(
l2 + l − 5

)
r5

0 (E.4)

− 24M4r0

(
5l(l + 1) + 10m2 − 42

)
+Mr4

0

(
l(l + 1)

(
14l(l + 1) + 4m2 − 61

)
− 12

(
m2 + 4

) )
+ 2M3r2

0

(
(12l(l + 1) + 59)m2 + 2l(l + 1)(6l(l + 1) + 5) + 3m4 − 476

)
+M2r3

0

(
−20l(l + 1)m2 − 2l(l + 1)(16l(l + 1)− 51)− 2m4 + 21m2 + 356

)
− 288M5

}
.
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The coe�cient of the Dirac delta function in Eq. (6.9) is given by:

cδsφ
δ
2(r0) =

−8imMπ

λl(l + 1)r0

√
r0(r0 − 3M)

∂θY
∗
lm(π/2, 0). (E.5)

E.0.2 Jump conditions for χ1

For χ1 the J vector in Eq. (6.34) has components J = {0, 0, J2, J3, J4, J5} where:

J2 =
16π

√
r0(r0 − 3M)

(r0 − 2M)2
Y ∗lm(π/2, 0), (E.6)

J3 = − 8π
(
42M2 − 21Mr0 + 2r2

0

)
(2M − r0)3

√
r0(r0 − 3M)

Y ∗lm(π/2, 0), (E.7)

J4 =
32π

(
M2r0

(
6l2 + 6l + 3m2 − 2

)
−Mr2

0

(
5l2 + 5l +m2 − 4

)
+ l(l + 1)r3

0 − 24M3
)

r0

√
r0(r0 − 3M)(r0 − 2M)4

(E.8)

× Y ∗lm(π/2, 0),

J5 =
16π

r2
0(2M − r0)5

√
r0(r0 − 3M)

{
4M3r0

(
21l2 + 21l + 33m2 − 23

)
− 4M2r2

0

(
9l2 + 9l (E.9)

+ 15m2 + 16
)
− 5Mr3

0

(
3l2 + 3l −m2 − 8

)
+ 6l(l + 1)r4

0 − 72M4
}
Y ∗lm(π/2, 0).
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