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In 2015, gravitational waves (GWs) were observed by direct detection for the very first time, over one-
hundred years since the publication of Einstein’s theory of general relativity (GR). Since then, GWs
produced by a variety of systems have been detected. The laser interferometer space antenna (LISA),
due to be launched in 2037 by the European Space Agency, will be sensitive to a new frequency of
the GW spectrum than we are currently capable of detecting with ground based interferometry. One
of the most highly anticipated sources of GWs detectable to LISA, that we have so far been blind
to, are extreme mass ratio inspirals (EMRIs). These are binary systems comprised of a black hole
that is at least ten-thousand times more massive than its satellite. Provided our models are accurate
enough, matched filtering between detected and theoretical GW signals can provide a measure of
precisely how well GR describes our Universe. To achieve this scientific goal, we must calculate the
phase of GWs sourced by EMRIs to post-adiabatic order, which in turn requires knowledge of the
gravitational self-force (GSF) and metric perturbation through second-order in the small mass ratio.
This thesis aims to further our understanding of the evolution of EMRI spacetimes, by determining
the phase and amplitude of the GWs they emit.

Within the framework of GR, black hole perturbation theory (BHPT), GSF theory, and the two-
timescale approximation, this work presents a number of novel calculations as tools for modelling
EMRI waveforms. In particular, the MST package was developed for the Black Hole Perturbation
Toolkit (BHPToolkit), which solves the Regge-Wheeler (RW) and Teukolsky equations via the Mano-
Suzuki-Takasugi method. Another major result in this thesis is the Lorenz gauge calculation of the
slowly-evolving first-order metric perturbation for quasicircular, equatorial orbits on a Schwarzschild
background during inspiral. This provides a key ingredient to the source of the second-order metric
perturbation, and is already being used to generate post adiabatic EMRI waveforms via the GSF
approach. Post-adiabatic waveforms presented in this thesis are also found to describe intermediate
mass ratio inspirals (IMRIs) to a high degree of accuracy. One IMRI, GW191219 163120 with
a mass ratio of approximately 1:26 has already been detected by interferometers on the ground
[7]. Thus work presented here is deemed applicable for GW science now and in the future. The
transition to plunge is also examined in detail, and waveforms are computed during the transition
regime to adiabatic order, again for quasicircular, equatorial orbits around a Schwarzschild black
hole. Perturbations to a Kerr black hole will also be explored, and a final output of this work is a
‘pure gauge’ contribution to the first-order Lorenz gauge metric perturbation, generated by a gauge

vector.
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Collaborations

Chapter 3: This work was done in collaboration with Wardell, who implemented the recursion re-
lations for the MST coefficients and asymptotic amplitudes for the MST package, in addition to
scripting the package for use in the BHPToolkit [I]. Casals also provides some asymptotic expres-
sions, with Ottewill acting as an additional advisor on this project. The Regge-Wheeler section of

the MST package had already been implemented by Wardell, Kavanagh and others.

Chapters 4 and 5: The work in these chapters was done in collaboration with Niels Warburton
and is based on the paper from Ref. [2]. The boundary conditions for the rg derivatives of the Regge-
Wheeler fields in addition to the boundary conditions of My, and its ro derivative were derived
by Warburton. Warburton proposed the splitting of 0,,Ma,s into x1 and x2 as well as using the
method of partial annihilators. The jump conditions were also derived independently by Warburton
and I. The ry derivative of the energy flux was also calculated by Warburton. All other aspects of

these chapters were derived and implemented by me, with the help of Warburton when needed.

Chapter 7: This work was done in collaboration with Lorenzo Kiichler, Geoffrey Compére and
Adam Pound. All derivations in this chapter were derived independently both by Kiichler and I,
with help from Compére and Pound.

Chapter 8: This work was done in collaboration with Lorenzo Kiichler, Geoffrey Compére, Adam
Pound, Niels Warburton, Barry Wardell, Jeremy Miller and Alexandre Le Tiec. The inspiral wave-
forms and the Mathematica notebooks that generate them were first implemented by Wardell, and
were built on by Kiichler and I for the transition regime. Le Tiec advised on the comparison with
numerical simulations from the SXS catalogue and the inspiral results are based on the paper from
Ref. [3]. Le Tiec also suggested using the binding energy and flux to compute the inspiral, rather
than using the second-order self-force. The flux calculation is then based on the paper from Ref. [4].
Numerical solutions to F2 were obtained by Compére and are presented here. The metric pertur-

bation, source and field equations were also derived independently by Kiichler and 1.
Chapter 9: This work was done in collaboration with Sam Dolan and Barry Wardell, and is

based on the work of Ref. [5]. The results in this section were derived independently by Dolan and
I. This work was supported by the STSM COST Action CA16104.
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Chapter 1

Introduction

This aim of this chapter is to motivate the research presented in this work. An overview of the
problems this thesis endeavours to solve will be outlined, with a brief description of the methodology
required of the calculations involved. This will be followed by a summary of the structure of this

work, including any conventions that may be used.

1.1 Motivation

Gravitational wave (GW) astronomy has seen huge progress since the first discovery by the Laser
Interferometer Gravitational-Wave Observatory (LIGO)/ Virgo Collaboration in 2015 [6]. To date,
GWs have been detected from numerous sources including compact binaries with mass ratios from
1:1 to ~ 1:26, the latter of which being GW191219 163120. [7], binary neutron stars [8] and black
hole-neutron star mergers [9]. The next generation of space-based GW detectors such as the Laser
Interferometer Space Antenna (LISA) [10], with access to millihertz frequencies, will expand the
current parameter space of compact binaries available to detection. This drives the need to develop
GW models for millihertz sources: extreme-mass-ratio inspirals (EMRIs), one of the key anticipated
sources detectable by LISA. EMRIs are binary systems of compact objects in which the larger body,
which shall be referred to as the primary, has a mass M that is at least 10? times that of the smaller
body, which shall be referred to as the secondary, with mass u, giving rise to the quantity referred
to as the small mass ratio, given by ¢ = u/M < 10~%. Astrophysical observations establish the
primary as a supermassive black hole (SMBH) with a mass of ~ 10* — 107 M, residing in galactic
centres, and the secondary as a stellar-mass compact object, either a black hole (BH), neutron star,
or some exotic compact object [11]. Most galaxies are expected to host a central SMBH with many
smaller compact satellites, furnishing the hearts of galaxies as natural EMRI laboratories.

GWs produced by EMRIs are expected to have a frequency range between ~ 1073 — 1072 Hz
[10], placing them comfortably within the LISA band, detectable so long as their signal is sufficiently
loud [12]. Astrophysical population studies estimate that LISA will observe between a few and a
few thousand EMRIs over its lifetime [12]. Furthermore, owing to their extreme mass ratio, EMRIs

inspiral slowly when sufficiently far from merger, giving rise to two different timescales: the orbital



timescale, t,1, and the radiation-reaction timescale, ¢,,. The orbital timescale is the time taken to
complete an orbit, which in the weak field is given by top, ~ M [13] [I4]. The radiation-reaction
timescale is then the time over which the orbit shrinks in size due to the back reaction from the
emission of GWs, and is given by: t,, ~ M/e [13, 14]. By a simple scaling argument, taking the
quotient of the two timescales, we can expect to see O(¢~!) [I3] [I4], or > 10* orbits over an EMRIs
lifetime. Due to the large number of orbits and long radiation-reaction timescale, EMRI signals
could last many years [10], making them detectable out to red-shifts of z ~ 3 — 4 [I1], [10)], though
this number varies throughout the literature. These estimates provide substantial motivation to
develop models of EMRIs with which to perform matched filtering of LISA’s future data stream.
Searching for and parameterizing EMRI waveforms in the LISA data stream relies crucially on
theoretical waveform templates. Therefore, we must compute the phase and amplitude of EMRI
waveforms so that the error accumulated over the thousands of orbits during the EMRIs lifetime
remains small. In fact, the total accumulated phase error, d®, of the template with respect to the
true signal must be < 1 radian [I0] 13} [14]. While this level of precision may not be needed in
order to detect EMRIs, an accuracy of 0® < 1 is required in order to perform precision tests of
GR using parameter estimation [L0]. Adiabatic templates are expected to enable an estimation
of parameters such as the mass and angular momentum of the primary to within 10% accuracy
[13], 14, 15]. While detecting EMRIs alone would be a phenomenal scientific achievement, accurate
parameter estimation and precision tests of GR are two of LISAs main scientific goals [10], and will

serve as the primary motivation of this thesis.

1.2 Overview

EMRIs detectable by LISA are estimated to have a mass ratio of 107% to 1077 [I1I]. Modelling
EMRIs is therefore a task for black hole perturbation theory (BHPT), where the primary dictates
the background spacetime, usually described by either the Schwarzschild or Kerr metric, and the
secondary introduces a perturbation to the background spacetime. The metric and physical quan-
tities are perturbed about their background values and can be written in terms of an expansion in
powers of the small mass ratio [16, [I7, [14]. To leading order, the secondary can be modelled as
a point-like particle [I6]. In order to reach the accuracy of §® < 1, required for precision tests
of GR and parameter estimation, the metric perturbation must be calculated up to and including
second-order in the small mass ratio expansion [13], corresponding to a calculation of the GW phase
through to O(e?), such that §® ~ O(e). Tt is expected that the amplitude of a given GW, which
is related to the amplitude of the metric perturbation, need only be determined to first-order in
¢ for detection by space-bourne interferometers. However, to calculate the phase to the degree of
accuracy desired, the second-order piece of the metric perturbation is required as input. Therefore,
the metric-perturbation will be calculated through to O(£?), to meet the phase accuracy goal.

Not only do we need to calculate the phase and amplitudes of EMRI produced GWs accurately

enough, but also quickly enough, to cover the large parameter space that EMRIs encompass. Without



complete theoretical models, the LISA mission will fall short of its scientific goals. Our models must
be able to generate GWs efficiently for every possible morphology, that is for every detectable mass
ratio, orientation in space and spin configuration. The ultimate goal for EMRI science therefore,
is to model GWs sourced by a Kerr primary, with a spinning secondary, following generic orbits.
These are the systems expected to be found in nature and the most generic models will recover the
most science from the many possible EMRI signals LISA may detect |10} 1], [I8]. With LISA due to
launch in 2037 (at the time of writing), our models must be able to generate a waveform template
for a given set of parameters in milliseconds if we are to cover the parameter space by LISA’s launch
date. There are a number of ways to tackle waveform generation. Numerical relativity (NR) has
had great success in modelling compact binary systems with mass ratios of 1:1 up to ~ 1 : 10
[19]. EMRIs cannot be modelled using NR however, as resolving the smaller secondary is extremely
computationally expensive for the number of orbital cycles until merger that must be simulated,
which scales as e 1. Post Newtonian (PN) theory has also been very successful for modelling GWs
in the weak field [19]. Effective-one-body (EOB) theory goes further, covering the entire parameter
space [19] 20} 211, 22], though relies on calibration with results from other approaches. The work
in this thesis will model EMRIs following the gravitational self-force (GSF) approach, a branch
of BHPT that has been over 25 years in the making, beginning with the MiSaTaQuWa equation
in 1997 [23| 24]. The first waveforms to include post adiabatic corrections to the phase using the
GSF approach were produced in late 2021, for quasicircular, equatorial orbits, on a Schwarzschild
background [3]. These waveforms make use of work presented in Chapter [6] of this thesis. These
results include the contribution of the second-order metric perturbation, which takes input from
calculations in this thesis [3, 2]. This is the first step of many in developing a huge database of more
generic waveforms. The GSF program has many moving parts. This thesis aims to summarise GSF
theory, providing new tools for generating EMRI waveforms using the GSF approach. In particularly,
this thesis will focus on calculating the first-order metric perturbation and related quantities that
feed into the solution of the second-order metric perturbation, which are needed to determine the

amplitude and phase of the GWs we are trying to model, and to ensure that 6® ~ O(e).

The challenge of answering the question ‘how does a gravitating body’s trajectory evolve in space-
time?’ has a long history, complicated by the fact that that same body is perturbing the background
spacetime, hence influencing its own motion. When modelling EMRIs via the GSF approach, this
is truly the question we must answer. Einstein’s theory of GR dictates that a point-like particle,
with no mass or size, necessarily follows a geodesic path [25 26l 27]. It wasn’t shown until the
1970s by Dixon that test-bodies (i.e. those that do not have their own gravitational field) of finite
size introduce corrections beyond geodesic motion, due to coupling between the body’s multipole
moment with the curvature of the external spacetime in which it travels [28], 29, 30, 16]. Hartle
and Thorne later progressed further |31} 32, B3], using perturbation theory to show that in the limit
of small mass and size, neglecting finite size effects, such an object follows a geodesic path in the
external spacetime, that is the full spacetime including the perturbing body. The external spacetime

is of course influenced by the object itself, and was not fully determined at the time. Finally, as GW



detectors were becoming a reality, Mino, Saskai and Tanaka [23], in addition to Quinn and Wald
[24], took a huge leap forward by deriving the so called MiSaTaQuWa equation of motion, which
included the effect of the object’s own gravitational field on its trajectory. It was then Detweiler and
Whiting who realised the equivalence between the MiSaTaQuWa equation and the geodesic equation
of a particular spacetime, that of a perturbed vacuum metric [34) [35], recovering the earlier results
of Hartle and Thorne to first-order in the perturbation. Rather than paraphrasing the effect this self
interaction has on a body’s motion through a vacuum spacetime, a quote from Barack and Pound’s

2018 review [16] could not have put it more succinctly:

“At leading order one has a pointlike particle moving in a geodesic orbit around the large black
hole. At subsequent orders, interaction of the particle with its own gravitational perturbation gives
rise to an effective “self-force”, which drives the radiative evolution of the orbit, and whose effects

can be accounted for order by order in the mass ratio." [16]

More recently, the problem of a gravitating body travelling through a vacuum spacetime, that
is the problem of modelling EMRIs, is tackled using the GSF approach via the self-consistent and
two-timescale approximations [16] [14] [I7], which will be explained in more technical detail in the
chapters that proceed. There is a preference for using the two-timescale approximation as calcula-
tions using the self-consistent approach alone must be done in the time domain for each point in
time. This is much slower and more difficult to implement than the two-timescale approximation

[14], and for these reasons the self-consistent approach has not been implemented even at first-order.

As explained by Barack and Pound [16], the self-force (SF) is what drives the secondary beyond
geodesic motion, causing the compact objects in the binary to spiral in towards each-other, until
they eventually collide and merge into a single body. The binary goes through a number of stages
before this happens: between the time the binary forms and when the secondary nears the inner-
most stable circular orbit (ISCO) is referred to as the inspiral. This is followed by a transition to
plunge [36] [16], as the black holes begin to fall into one another. This is quickly followed by the
plunge itself, just before the merger stage, after which the ring-down occurs [6l 16, 37, 38]. The
resulting black hole will have a mass greater than M but less than M 4 p by conservation arguments,
and the area of its event horizon will not be less than the sum of the areas of the event horizons of
the individual black holes, by the third law of black hole thermodynamics. Fach of these different
stages of the binary’s lifecycle are reflected in the features of the GWs produced. Each stage has its
own distinct dynamical behaviour and must be modelled separately. This thesis will focus on the

treatment of both the inspiral and of the transition to plunge.

In the GSF approach, the secondary can be treated as a point-like particle at leading order in
the perturbation [16]. The approximation of the secondary as a point-like particle simplifies certain
calculations, as distributional sources are easier to deal with mathematically than those that are
non-compact, as will be shown in Chapter [5] and Chapter [f] However, there is no such thing as a

free lunch, and this treatment introduces singular behaviour requiring regularisation, analogous to



re-normalisation in quantum field theory. It was Detweiler and Whiting who first showed that the
MiSaTaQuWa SF could be split into regular and singular contributions [35] 34]. Detweiler postulated
that the same should be true of the second-order GSF, which was proven by Pound in 2017 [39]. The
regularisation procedure of the metric perturbation will not be detailed here other than to say that
it is best understood in the Lorenz gauge for a Schwarzschild background [16], 87, 17, [40]. It is worth
noting that regularisation has been done to first-order in the radiation [4I] and Regge-Wheeler (RW)
gauges [42], with progress towards more regular second-order SF calculations using the Teukolsky
formalism [43]. Regularisation parameters have also been calculated for a Kerr background in the
Lorenz gauge to first-order, though we are currently lacking the metric perturbation to regularise
[44, 45]. Furthermore, while the Teukolsky formalism requires solving for less fields than the 10
coupled fields of the Lorenz gauge, current algorithms have already been set up in the Lorenz gauge.
The Teukolsky formalism will still require metric reconstruction. It is for these reasons that the

majority of work in this thesis will be presented in the Lorenz gauge.

Returning to the problem at hand, the two-timescale approximation exploits the disparate
timescales top, and t,, introduced earlier, allowing us to define the quantity of ‘slow-time’, ¢, over
which physical quantities such as the orbital radius, orbital frequency, orbital energy, angular mo-
mentum and metric perturbation evolve, while the phase evolves on a faster timescale over a single
orbit. In the two timescale approximation, the slowly evolving first-order metric perturbation con-
tributes to second-order source, and must be calculated if we wish to perform precision tests of GR
or conduct parameter estimation from EMRI signals as discussed in Section [I.I} In this thesis, the
first-order Lorenz gauge metric perturbation and its derivative with respect to ¢ will be calculated
for quasicircular, equatorial orbits on a Schwarzschild background in the frequency domain during
the inspiral. These calculations are based on the work from [2]. These Lorenz gauge quantities are
calculated by making use of Berndtson’s gauge transformation [46], which transforms RW gauge
solutions into the Lorenz gauge. Rather than directly solving the 10 coupled linearised Einstein
field equations in the Lorenz gauge to obtain the first-order metric perturbation, Berndtson allows
us to construct the metric perturbation from 7 decoupled fields that obey very similar equations,
simplifying the problem greatly. These are the RW and Zerilli (RWZ) master functions, in addition
to two gauge fields. The slow-time derivative of the first-order metric perturbation in the Lorenz
gauge can then be solved by taking the slow-time derivative of RW gauge quantities and the gauge
transformation. This proves much simpler than directly solving for yet another coupled set of 10
partial differential equations which would be obtained by differentiating the Einstein field equations
with respect to slow-time, as is shown in more detail later by Eq. . In Chapter |5|and Chapter @,
the slowly evolving RWZ fields, in addition to the gauge contributions are solved using the method
of partial annihilators and variation of parameters. These novel results act as inputs to generating

never before seen GSF waveforms, through second-order in the small mass ratio, in Ref. [3].

Another important quantity is the total energy flux, which is particularly important for EMRIs
due to their long signal lengths, allowing us to take account of the accumulated orbital phase over

tens or hundreds of thousands of orbits. The flux and the binding energy are used to determine



the evolution of the frequency of GWs, which dictates the motion of the secondary. While the
energy flux radiated to infinity is something we can measure directly, the energy flux radiated
through the horizon determines how the parameters of the primary evolve, such as its mass and
angular momentum [47]. Results from this thesis have contributed the first calculation of the total
energy flux via the GSF approach through second-order in the small mass ratio [4], a calculation
which is presented again in Chapter [8] Both the second-order GSF (2GSF) inspiral waveforms and
flux calculations have been found to agree very well with NR simulations for intermediate mass
ratio inspirals (IMRIs), at least up until the secondary approaches the inner-most stable circular
orbit (ISCO), where current inspiral models break down, which will be discussed at multiple stages
throughout this thesis. Reasonably good agreement between GSF and NR results have even been
found for near equal mass ratio inspirals, despite initially being intended for modelling EMRIs. These
results are not completely surprising, as modelling IMRIs via the GSF approach is still expected to
work well by virtue of the fact that € ~ 1/10 can be considered numerically small, and §® = 0.1
remaing < 1 radian. Comparing with shorter NR GW signals also leaves less time for error to

accumulate in the phase.

However, as mentioned earlier, the inspiral is not the full story. The radiation-reaction time
hastens as the secondary begins its transition to plunge, and ¢ is no longer so slow. Physical
quantities that evolve with respect to slow-time, such as the orbital radius, frequency, energy, angular
momentum and GW amplitude will evolve more quickly [48]. The equations of motion, the field
equations, and hence solutions to the metric perturbation and GW phase will evolve differently
during the transitional period compared to the inspiral, and a new timescale must be chosen to
correctly evolve GWs through the transition regime [48, [14]. The transition is more important
for modelling IMRIs than EMRIs [49, 50|, due to their shorter signal lengths, recalling earlier
scaling arguments. Shorter signals rely on accurate waveform templates particularly during times
surrounding the merger where the signal is loudest. On the other hand, detecting EMRIs relies much
more on the accumulated signal-to-noise ratio (SNR) over long periods of time, as one tiny black hole
falls quietly into another, much larger black hole. The LIGO, Virgo, KAGRA Collaboration recently
detected a compact binary with a mass ratio of 26:1, comfortably labelling the binary in question as
an IMRI [7]. Now that we are seeing IMRIs being detected by ground-based interferometry, models
are needed with which to perform matched filtering for improved parameter estimation, as current
EOB [51], 52| 53| [54] and Phenom [38] models, which have been calibrated to NR simulations, in
addition to NR surrogate models [55] 56] [I]], are not currently calibrated for higher IMRI mass ratios.
Work from this thesis on the transition to plunge should therefore prove useful for both ground-based
and space-based GW astronomy alike. It is rather encouraging to know that we may not have to

wait until 2037 to see observational confirmation of the results presented here.

The transition to plunge will be treated in Chapter [7] which explores the structure of the phase
and metric perturbation through to second-order during the transition regime. In collaboration
with Kiicheler, Compére and Pound, the phase and amplitude are calculated to adiabatic order in

the transition for quasicircular, equatorial orbits on a Schwarzschild background. Adiabatic GSF



waveforms for the transition regime are then presented in Chapter |8 which include leading order
dissipative SF effects. Research on the transition to plunge began in the year 2000 by Ori and Thorne
(OT), who propose a scheme for generating GW templates in the transition regime for circular,
equatorial orbits around a Kerr black hole [48]. A similar calculation was done independently at
the same time by Buonanno and Damour [57]. The work by OT has since remained the basis of
the vast majority of calculations in the transition regime. It was not until 2019 that the work of
OT was extended to arbitrarily inclined orbits by Lim, Khana, Anuj and Hughes [58, 59]. Burke,
Gair and Simo6n further extend the OT procedure for any spin, in particular for near extremal Kerr
black holes [60]. They note one limitation of OT is the assumption that the energy and angular
momentum evolve linearly in proper time, which is relaxed in Ref. [60]. Compére, Fansen and
Jonas then include non-quasicircular effects [6I]. Compére and Kiichler then deviate from the OT
prescription and present a self-consistent approach to the transition motion at leading order in the
transition timescale, taking account of SF effects [62]. The key difference in the treatment of the
transition regime in this thesis is that it easily allows for the extension to post-adiabatic corrections,
which the OT prescription does not, and any restricting assumptions of the OT procedure are no
longer required. Post-adiabatic contributions to the transition are left to be determined, in addition

to attaching the plunge dynamics, which is currently undergoing research by collaborators.

While the majority of results in this thesis are specialised for a Schwarzschild background, per-
turbations to a Kerr black hole will be derived in Chapter[9] Introducing rotation deeply complicates
perturbation calculations. To solve the perturbed Einstein field equations in Kerr, one employs the
Newman-Penrose (NP) formalism to obtain the fully separable Teukolsky equation, whose solution
is related to the perturbed Weyl scalars, which describe the perturbations to the curvature of the
spacetime. The first metric perturbations to rotating black holes were constructed in the radiation
gauge using a Hertz potential by Chrzanowski [63] in addition to Cohen and Kegeles [64] [65], which
together will be referred to as the CCK reconstruction. It was Lousto and Whiting who later related
the Hertz potential, from which the metric is constructed, to the perturbed Weyl scalars in the
time-domain in the Schwarzschild limit [66]. The CCK method is applicable only in the absence of
sources, but extensions of their work allow for sourced perturbations [67]. However, metric pertur-
bations in the radiation gauge have an infinite string-like singularity [36] and are incomplete besides
[68,[69]. By carrying out the CCK reconstruction in two different regions, either side of the secondary
particle, a ‘no-string’ radiation gauge solution is obtained [70)], 41l [71], though a singularity remains
on the surface defined by the radial distance of the particle from the primary black hole. This is
the most prominent approach to modelling EMRIs and performing GSF calculations in Kerr. In
particular, work by Van de Meent has used the no-string reconstruction to implement the first-order
SF calculation for a fully generic, inclined and eccentric bound orbits in the frequency domain [72].
There is ongoing work to implement metric reconstruction for GSF applications in the time domain
[73], [74]. The singular surface at the particle however remains a large stumbling block for 2GSF
calculations. There are a number of possible directions currently being explored to overcome this.

For example, Green, Hollands and Zimmerman (GHZ) show how to construct the sourced metric



perturbation solution using a Hertz potential, a gauge transformation from the radiation gauge and
a ‘corrector tensor’ [75]. The work of Toomani et al. [43] go further, combing the work of GHZ with

the no-string radiation gauge, and a more regular Teukolsky puncture scheme is proposed.

As the regularisation of the SF is currently best understood in the Lorenz gauge, another desirable
avenue therefore is to construct the Kerr metric perturbation in the Lorenz gauge. For example,
Dolan calculates the first-order Lorenz gauge metric perturbation to a Kerr black hole in the time
domain for circular, equatorial orbits. While this work remains unpublished, it is used in Refs.
[76l, 77, [78, [79]. More recent work by Osburn and Nishimura, who calculate the scalar SF in the
Lorenz gauge on a Kerr background for circular orbits by using elliptical PDEs, thus circumventing
numerical instabilities of hyperbolic PDEs [8()], provide another promising method to obtain Lorenz
gauge perturbations of rotating black holes. There has also been significant progress by Dolan,
Kavanagh and Wardell, who have determined source-free perturbations in both the electromagnetic
and gravitational case to a Kerr black hole in the Lorenz gauge [5, 81, 82], by construction from a
Hertz potential and transforming from the radiation to the Lorenz gauge. This is the method we
shall follow in Chapter [9]

The full metric perturbation is made up of a number of different contributions. Gravitational
radiation is described fully by the perturbed Weyl scalars and is determined by spin-weight s = 2
perturbations [69]. Perturbations to the overall mass and angular momentum of the spacetime,
i.e. perturbations to the mass and angular momentum of either a Schwarzschild or Kerr black
hole, are then described by monopole and dipole contributions (for spherical [ modes) to the metric
perturbation respectively [69]. In some cases there exists contributions that are ‘pure gauge’, but they
hold no physical information [69]. Detweiler and Poisson show that the low multipole modes, [ =0
and [ = 1 of the metric perturbation have a significant contribution to the self-force [83]. The s =1
contribution to the homogeneous, first-order metric perturbation of a Kerr black hole in the Lorenz
gauge are not provided in [5], and will be derived in Chapter @]for the first time, in collaboration with
Dolan. While the gauge contributions to the metric are unphysical, they are required to determine
a Lorenz gauge solution, for which the regularisation parameters for the SF have already been
calculated [44], 45]. A pure gauge s = 1 metric perturbation is derived by construction from an s = 1
gauge vector, and the solution is written in terms of s = 1 Teukolsky fields. In the Schwarzschild
limit, using the Chandrasekhar transformation, Berndtson’s gauge transformation for the s = £1
case can be recovered, where the Lorenz gauge metric perturbation is written in terms of s = 1 RW
fields. However, there is currently no available analytic solution that relates the first-order Lorenz
gauge metric perturbation of rotating black holes to the perturbed Weyl scalars in the presence
of sources. As Berndtson’s gauge transformation contains sources, research in Chapter [9] aims to
provide insight as to how to introduce source terms to the Kerr case in the future, hence extending
the work of Dolan et al [3].

A final tool derived in this thesis is the implementation of the Mano-Suzuki-Takasugi (MST)
method [84] 85] [86], used for calculating semi-analytic solutions to the Teukolsky and RW equations

in the low-frequency regime. MST solutions are written in terms of a convergent series of hypergeo-



metric and Coulomb functions, describing GWs radiated into the primary’s horizon and to infinity,
respectively [84] 85, 86, 87]. The coefficients of the MST series are written in terms of powers of
small frequency € = 2Mw, which corresponds directly to a post-Minkowskian (PM) expansion [85].
For bound orbits, the PM assumption that GC—QM < r coincides exactly to the PN assumption that
v? < ¢? |85, [84]. For circular orbits, low frequencies correspond to large distances, and the MST
method can be used to compute GWs radiated to infinity to arbitrarily high orders in a PN series
[84] [87] as well as providing a means to write down PN series solutions of GWs absorbed into either
a Schwarzschild or Kerr black hole, something that is difficult to do using other methods [84, [87].
In Chapter [3, the MST method was implemented for the Teukolsky case, while the RW case had
already been implemented by Wardell et al. The MST package was implemented in Mathematica
and published in the black hole perturbation toolkit (BHPToolkit) 1], an open source resource for
computing useful quantities commonly needed to do BHPT. While the MST method was initially
derived for low-frequencies, its implementation in the BHPToolkit allows for numerical valued solu-
tions to be determined for any frequency, providing a useful tool for the scientific community. The
MST method allows for extremely high precision calculations, though at the cost of speed. However,
depending on one’s goal, using the BHPToolkit one has the option to use either the MST method or
standard numerical integration to solve the Teukolsky and RW equations. Given that the radiative
piece of the metric perturbation is captured by the solutions to the Teukolsky equation [69], one
could write the radiative contribution to the first-order metric perturbation in any gauge, entirely
as a semi-analytic MST series for low frequencies, corresponding to a PN type solution. If one
was able to determine a low-frequency expansion solution to the gauge contributions of Berndtson’s
gauge transformation, one could then obtain a PN series solution to the full Lorenz gauge metric
perturbation to first-order in the small mass ratio for a Schwarzschild background. While there is
currently no known semi-analytic solution to the gauge contributions of Berndtson’s transformation,

there is progress being made in recent research [88].

1.3 Structure

This thesis will be structured in the following way. A review of BHPT will first be provided in
Chapter [2] to set up the machinery used throughout this work. Chapter [3| will then introduce the
MST method for calculating semi-analytic solutions to the RW and Teukolsky equations in the low-
frequency regime. This chapter will also discuss in detail the implementation of the MST package,
which had been made available as part of the BHPToolkit [I], and is one of the main outputs of this

thesis.

A review of GSF theory will then be provided in Chapter |4] which follows Ref. [14] and sets up
in detail the motivation and methodology for the remaining chapters. Following Ref. [2], Chapter
will describe how to calculate the retarded first-order Lorenz gauge metric perturbation in the
frequency domain for quasicircular, equatorial orbits on a Schwarzschild background. While this

quantity has been calculated throughout the literature in both the frequency and time domain



189, 90], [91], 46], 92| 83], this will serve as input to the algorithm in Chapter [6] which also follows
Ref. [2]. Chapter [6] will detail the novel calculation of the retarded slowly evolving first-order
Lorenz gauge metric perturbation, also in the frequency domain for quasicircular, equatorial orbits
on a Schwarzschild background. Both Chapter [5] and Chapter [6] make use of Berndtson’s gauge
transformation, from RW gauge solutions to the Lorenz gauge. The calculation of the slowly evolving
metric perturbation plays a vital role in the GSF program. The slowly evolving first-order metric
perturbation contributes to the source of the second-order metric perturbation, which in turn goes
into calculating the GW phase to post-adiabatic order, required to perform precision tests of GR
and obtain accurate parameter estimations from EMRI signals. The data for the slowly evolving
first-order Lorenz gauge metric perturbation is one of the major results produced in this thesis and
has already been used to calculate waveforms and the energy flux via the GSF approach, and to
compare them with NR simulations [4, B]. These results have also been used to make comparisons
with EOB theory [93], [04] and will be used in a number of forthcoming papers, for example, in
the calculation of the second-order Teukolsky source, which is undergoing research by collaborators
[43], ©95].

The calculations from Chapter 5] and Chapter [] are relevant only during the inspiral part of the
waveform however, and break down as the secondary approaches the ISCO. The dynamics of the
binary changes, and the orbital radius of the EMRI evolves on a faster timescale than during the
inspiral as the binary begins its transition to plunge. Chapter[7]covers the transition to plunge regime
in detail. The main results are the calculation of the adiabatic GW phase and amplitude during
the transition, obtained in collaboration with Kiichler, Compeére and Pound. Results from previous
chapters are then combined in Chapter [8] where the energy flux and waveforms generated by the
GSF approach are presented, based on the work of Refs. [3, 4]. This chapter includes comparisons
between the 2GSF calculations of the energy flux and waveforms with NR simulations during the
ingpiral, and for adiabatic waveforms during the transition regime. Results show that the GSF
approach to second-order in the small mass ratio agrees extremely well with NR simulations for
IMRIs and even reasonably well for equal mass ratios [3} 4].

For the majority of this thesis only a Schwarzschild background has been considered. The
ultimate goal however is of course to solve for the GW phase and amplitudes, and hence the first
and second-order metric perturbations for generic orbits on a Kerr background spacetime. Chapter [J]
covers perturbations to rotating black holes, following the method of [5]. The primary outputs of this
chapter are analytic solutions to gauge contributions of the homogeneous, first-order Lorenz gauge
metric perturbation for a Kerr background, which are constructed for the first time using an s = 1
vector, in collaboration with Dolan. The results are shown to recover those of Berndtson [46] in
the Schwarzschild limit. Finally, Chapter [10] concludes this work by summarising the main outputs
and provides a discussion on future directions of this research. The conventions used in this thesis
are outlined as follows. Geometric units will be used from the outset such that G = ¢ = 1, with
Lorentzian metric signature (— 4+ ++). A spacetime foliation of hypersurfaces defined by constant

t is assumed and hereafter, orbits are specialised to quasicircular and equatorial inspirals.
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Chapter 2

Black Hole Perturbation Theory

This chapter provides a review of BHPT, introducing tools required to obtain the results in later

chapters.

2.1 The metric perturbation and linearised Einstein field equations

The Einstein field equations, relating curvature of the spacetime to matter present in the spacetime,
are given by
G,uzl = 87TT/11/, (21)

where T}, is the stress-energy tensor (SET) and G, is the Einstein tensor, defined by

1
Gm/ = Rm/ - §guuR7 (22)

where R and R, are the Ricci scalar and tensor respectively, and are defined by

R,Lw = gaﬁRauﬁm (23)
R=g""R,., (2.4)
and the Riemann tensor is defined as
Rlljpa = VPFZF/LU - VUFI!/Lp + FZUFﬁp - FZpF¢a7 (25)
with the Christoffel connection
e — Lo 2.6
op = 59 (Gopw + Guop — Gupo) - (2.6)

In the absence of sources, where T, = 0, the solution to the vacuum Einstein field equations
describes either a black hole spacetime, or the most trivial solution, flat Minkowski space. By
Birkhoff’s theorem, in the static, spherically symmetric case, the solution to the vacuum Einstein

field equations is that of the Schwarzschild metric, and in the stationary, axisymmetric case, the field
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equations admit the Kerr solution. The line-element in the Schwarzschild spacetime is described by

ds® = —dr® = —f(r)dt* + f(lr)er + r?db? + r* sin® 0d¢”, (2.7)
where oM
fr)=1- 7 (2.8)

and the Schwarzschild metric is given by

g = diag (—f(r),f(r)_l,rQ,r2 sin? 9). (2.9)

The Kerr metric will be given later in Section Adding a perturbation to the spacetime, h,
that describes some small compact object, the full spacetime is defined by the metric g,,, with

coordinates x*, where
g (2% 2%) = g (%) + hp (%5 27). (2.10)

The background metric g, depends on the background coordinates z# and the retarded perturbation
h,. depends on both the background coordinates and the position on world-line of the object it
describes, 2#(7). In the case of EMRIs, the background metric g, describes a supermassive black
hole, which shall be referred to as the primary with mass M, and h,, describes the perturbation to
the spacetime introduced by some small compact object, either a black hole, neutron star, or some
other exotic compact object, and shall be referred to as the secondary with mass u. BHPT is a
natural choice for modelling EMRIs, where the small quantity in the perturbation is the small mass
ratio €, defined by .

= — 1. 2.11
€ Vi <K ( )

The metric perturbation is then expanded in powers of e [14]
Za”h” % 2%), (2.12)

where hjj, is the n'"-order metric perturbation. This is what is referred to as the self-consistent

approach. The Einstein field equations then become
g,uu = 877—71,uu (213)

where G, is the Einstein operator acting on the full spacetime and 7}, is the SET of the full
spacetime, which for a vacuum background is just the SET describing the source of the perturbation,

which can also be expanded in powers of the small mass ratio

ZS”T" ) (2.14)
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By setting g,, — g, in the definition of the Riemann tensor, in addition to the Ricci scalar and
Ricci tensor, whose background quantities are zero in vacuum, the full Einstein tensor can be written

as

Gy = G + 367G, (2.15)
n=1
such that
G =0, (2.16)
0"G = 81T, (2.17)
where, at leading order in ¢
0 G = ;(—Dhuﬁ?RW@h“ﬁwyvahu“+V,Nahya—vyvuh—g,wvavﬁhaﬁ+gwmh>, (2.18)

and the trace h™ for a given order in the perturbation is defined as
h' = Tr[hﬁy] = g"" I, (2.19)
The leading order linearised Finstein field equations can be expressed more simply as

1 17 _ 1
§'Ghl,) = 87T, (2.20)

1

o 10 6'Gy. The remainder of this work will specialise

where §'G is now the operator acting on h

to Boyer-Lindquist coordinates

= {t,r, 0,6} (2.21)
2 = {tp(T)7 Tp (7'), ep (T)7 (bp(T)}v (2-22)

where subscript p denotes quantities describing the position of the secondary particle. The spacetime
will also be considered as a foliation of hyperbolic slices defined by constant ¢ throughout this work,
unless specified otherwise. Raising and lowering indices and differential operations are performed

with respect to g,..

2.2 The tensor spherical harmonic basis

Solving the linearised Einstein field equations is often tackled using a tensor spherical harmonic basis,
which exploits the spherical symmetry in Schwarzschild, or axis-symmetry in Kerr. Beginning with
the explicit definitions of the tensor spherical harmonic basis from chapter 12 of Maggiore’s textbook:

“Gravitational Waves” [96], a tensor of type (0,2) can be written as a mode-sum decomposition in

13



the following way
[eS) l
hﬁw<ma) - Z Z Z h;m(u T)(t%m)w/(eu ¢)7 (223)
i =0 m=-I
where the explicit dependence on z® has been dropped for now, and the tensor spherical harmonic

basis elements, t* are given explicitly by [96]

100 0 010 0 00 0 0
00 0 0 1000 010 0
tit = Yim, t] = Yim,  tH0 = Yim,
m ooo0o0 | ™ im ooo0o0 | ™ tm ooo0o0 | ™
00 0 0 00 0 0 00 0 0
000 O 0 0 Jp 9y 00 0 0
000 0 00 0 0 00 8 o
tT0: Y, , tEt: Y; 7 tElZ fol Y,
tm 001 0 bms m « 0 0 o [ tm 0ox 0 o0 | ™
0 0 0 sin?9) x 0 0 0 0« 0 0
0 0 (1/sinf)d, —siné Oy 00 0 0
0 0 0 0 0 0 (1/sinf)d, —sind 9
tﬁri: }/lmv tlBT;: (/ )¢ b }/lmu
x 0 0 0 0 * 0 0
x 0 0 0 0 * 0 0
00 0 0 0 0 0 0
00 0 0 0 0 0 0
tlETr%: Yim’ tlBrr%: . . lm>
00 W X 0 0 —(1/sinf)X sind W
0 0 %« —sin?20W 00 * sinf X

and Y}, are the standard spherical harmonics, whose explicit dependence on 6 and ¢ has been
suppressed and will only be reintroduced where it is instructive to do so. In this work, the spherical

harmonics are normalized such that
[ [ 4606 3,06, 0)Yims (6,6) = 6w (2.24)

where * on the spherical harmonics denotes complex conjugation. The operators X and W are then
given by [46], O6]

X = 2698¢ —2cotf &b (2.25)
1

W =982 —cotl dp — —— 2. 2.26

670 0 sin29 ¢ ( )

14



The spherical harmonics transform under parity in the following way [97]
Yim(7 = 0,6+ 1) =(=1)" Yim(6, ), (2:27)

so that [96]
. (-4 if i={L0,T0,E1l, E2,tt, Rt, Et},
t' — A (2.28)
(-1 if = {B1, B2, Bt}.

The basis elements t’ that pick up a factor of (—1)! under parity are said to have electric-like parity,
or to be polar or even. Similarly, the basis elements t’ that pick up a factor of (—1)“rl under parity
are said to have magnetic-like parity, or to be axial or odd. For this reason the metric perturbation,
in the frequency domain, on constant t slices, is often written in terms of its even and odd sector

basis elements as follows [96), 46]

00 l 0o
ot 0.0) =3 30 [ e (b 0,0) + Hin o 0,0)) dw. (229

=0 m=—1""

Following Berndtson’s notation [46], the odd-sector metric perturbation contains 3 degrees of freedom
given by hi™(r), h{™(r) and hY"(r). For convenience the explicit dependence on 7 of the odd-sector
fields will be suppressed henceforth. The odd-sector metric perturbation in Berndtson’s notation is
then given by [46]

0 0 hi"cscf%k  —hfmsin g%
m Vi m i1 9Vim
T B I et S, S PR
*  x * hE™ sin? 0.X1,,, (6, ¢)
where Xj,, and W, are defined by
Wi (0, ¢) = 82?2’” — cot eaglem - 815208;;?;"7 (2.31)
Xim (0, ¢) = sii@@i& (c‘%ﬁem — cot GYlm> : (2.32)

The operators X;,,, and Wy, take on slightly different definitions in Berndtson thesis [46] compared
to those in Maggiore’s textbook [96]. The definitions from Eq. (2.31) and Eq. (2.32) shall be used
for the remainder of this thesis, and the explicit dependence on 6 and ¢ of X}, and Wy, will be

suppressed henceforth.
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The even-sector metric perturbation then contains 7 degrees of freedom, given by hi™(r), Ri™(r),
HE™(r), H™(r), HI™(r), K™ (r) and G"™(r), where hi™(r) and h{™(r) in the even-sector are distinct
to those in the odd-sector. As in the odd-sector, the explicit dependence on r of these fields will be

suppressed henceforth, and the full even-sector perturbation can be written as [46]

e,lm _
h/“/ (w7 r, 97 ¢) -

(1 _ %) H(l)valm Hjl[valm hlm 339/19771 hlm 3Yzm
HMY,,
S el e,
* * T (Klelm r2sin 0G"™ Xy, (2.33)
+G W)
* * * r2sin? 0 (Klelm
_GlmVVlm)

Note that the radial fields hJ™ and h{™ from the odd-sector should not be confused with those from

the even-sector.

2.3 The stress-energy tensor

The source of the perturbation to the spacetime is described by the SET, T},,. At leading order in
g, the secondary can be modelled as a point-like particle with mass p at some position z#(7) in the
spacetime [14, 98] [99] 40), 100]. This is also the reason why the SF is singular at the location of the
source. For the remainder of this chapter only the leading order SET shall be discussed. As such,

the superscript in Tﬁy will be dropped. Assuming no internal structure, the leading order SET is

o §4(x® — 29(1)) d2* dz¥
T = _— 2.34
R L (23

where g is the determinant of g,,,. Similarly to the metric perturbation, the SET can be decomposed

therefore given by

into a tensor spherical harmonic basis in the frequency domain, for constant ¢-slicing, in the following
way [46]

00 l
Tt 0,8) =y S / it (T;’Jm(w,r,e,@ + TS (w, 1,0, ¢)) dw, (2.35)
1=0 m=—1

where the explicit dependence on z® has been dropped for now. The odd- and even-sector SETs can

then be written as

0 0 Solm(r)csc agg"' b (1) sin 6 8(?0"1
qoim _ | ¥ 0 Solm(r)csc 08};—%” 5011”21(7“) sinea};’@m (2.36)
m % —Sobn(r) Xy, Solin(r) sin OWy,,,
* * Sy (r) sin? 0 X1,
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and

elm __
™ =
Seff (r)Yim  Segt (1) Yim Segy (r) S Segy (r) i
£ SeP(r)Yim Sel (r) g Sel (r) % 2
* * Ueln (r)Yim + Sebi (r) Wiy, L1 (r) sin Gle
* * * sin? 6 (Ue ( VYo —SeSs (r)Wim)
(2.37)
The radial components can be derived in the following way. Defining the four-velocity u*
dz"
o e 2.38
“ dr’ ( )
the SET can be rewritten as
® §4(a* = 2°(r))
™ = u/ ———utuVdr, (2.39)
—00 V=g
oo 4.0 _ L« ”w
:u/ O (a® = 2 m)) wh” (2.40)
oo V=g ut
1w’ 4, , a
= 'Mﬁ ut 67 (z — 2%(1)), (2.41)
where
F(x% = 2°(t)) = 8(r = rp(£))3(0 — 8(£))5(¢ — ¢p(1)). (2.42)
For circular, equatorial orbits
do
T'p =T0, ep = 07 7;) = Qa (243)
where
M
Q=,/—3 (2.44)
\ o
so that
ut = {u,0,0,Qu'}. (2.45)

Assuming the secondary’s world-line is time-like, the four-velocity obeys the normalisation condition

guut'u | =-1. (2.46)

e
For a Schwarzschild background, the time-like normalisation condition amounts to

‘ 1

u" = >
vV — 9t — 9¢>¢>Q

To
= _ 2.47
ro — 3M ( )

r¥=z%
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Therefore, components of the leading order SET for a particle travelling on circular, equatorial orbits

are given in the frequency domain by [46]

QO
o (r) = i 7y V30 = o)y (5.0). (2.450)
Soi3 (r) =0, (2.48b)
m B 7,292 L (T
Soi(r) = —2impuu’ S ) S(r — rg)(?ngm<§, O), (2.48¢)
2
el r) = Y050~ ro)vis, (5.0), (2,450
Segt(r) =0, (2.48¢)
Sel™(r) =0, (2.48f)
Uels(r) = Suu'r025(r — ro)¥, (5.0, (2.455)
QO
el (r) = impt g6 )i (5.0). (2.150)
Selig(r) =0, (2.481)
o PP+ 1) - 2m?) L (T .

All sources are compactly supported on the particle’s world-line and are provided by reference [46].
For the remainder of this work, orbits will be specialised to circular and equatorial. The distinction

to quasicircular orbits will be discussed later in Chapter

2.4 The Regge-Wheeler gauge

The RW gauge is defined by setting the field h™ from the odd-sector and the fields hi™, h4™ and G'™
from the even-sector for all [ and m to zero [46], 101], 96]. The RW and Zerilli (RWZ) equations for
spin-weight s = 2 are derived by applying the RW gauge to the odd and even-sectors of the generic
first-order linearised Einstein field equations with a Schwarzschild background respectively. The odd-
and even-sector solutions for the s = 0, 1 RW equations are derived similarly from electromagnetic
and scalar perturbations [96]. For generic spin-weight s and a given [, m mode, the RWZ master

equations are given in the frequency domain on constant ¢ slicing by [101] [96]

Lsths(r) = Ss(r), (2.49)
where 2
Ls= <dr% —V(r)+ w2), (2.50)
with
w = mf, (2.51)

18



having specialised to circular orbits. The tortoise coordinate r, for a Schwarzschild background is
defined such that
dry/dr = f(r)™". (2.52)

Integrating this and choosing an integration constant yields
r«(r) =1+ 2loglr/(2M) — 1]. (2.53)

The RW equation for some spin weight s is obtained by setting the potential V' (r) to

I(1+1)  2M(1 - s?)
V(r)=f(r) ( St 3 : (2.54)
Similarly, the Zerilli equation, defined only for s = 2, is obtained by setting the potential to
fr) [..9 3M 18M2 M
== 14+ — — 2.
V(r) e 2M* (A +1+ el I A+r ; (2.55)
with
A=X+3M/r, (2.56)
and
A=(1+2)(1—-1)/2. (2.57)

The RWZ master functions, ¢s(r) are then sourced by Ss(r), which are given explicitly in Ap-
pendix . The inhomogeneous Regge-Wheeler gauge metric perturbation, hl}}xv can then be recon-
structed from the RWZ master functions as shown by Regge and Wheeler [I01], [46]. Dropping the
[, m labels for convenience, the leading order odd-sector metric perturbations components in the RW

gauge, and in the absence of sources for a given [, m mode are [46]:

RW __ (2M — T) I _ % @
ho™ = ———1% (1 " ) i’ (2.58)
RV = }w, (2.59)

where 1o in this case obeys the RW equation, and in the even-sector, the leading order metric

perturbation components for a given [, m mode in the absence of sources are [46]

—3M? — 3AMr + Mr?) o) 1

HEW _ gRW _ ( 2 _ —18M* 4+ 9(1 — 2\) M3

0 2 r(3M + \r) (2M — r)r2(3M + Ar)? [ +9( YM>r
+ A% (14 A+ (iw)?r?) + 3M%r? (31 — 202 + 3(iw)?r?) + AM7r? (A — 2X?
+6(ZW>2T2)] ¢27 (260)
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w (—3M2 —3A\Mr + )\T’Q) (5

HW = —jwrh + @M G A (2.61)
oM 6M2+3)\M + A1+ \)r?

where ¥y now obeys the Zerilli potential. Returning to the RWZ equations, as a second-order
ordinary differential equation (ODE), there are two independent solutions corresponding to ingoing
and outgoing radiation respectively: ™ and ¢sP. These independent homogeneous solutions to
Eq. display the following asymptotic behaviour [86] 63]

1n,trae_iw7«*

S(r) ~ { J PR (2.63)

in,inc —uur in;ref joor
g ey — 400,

and

up,inceiwr*+ up,refe_m”»*’ e — —00,
() ~ { v vs (2.64)

up,tra g
Pt et T — +00,

in/up,inc/ref /tre . . o . .
where @/}}gn/ upine/ref/tra o pe the incidence/reflection /transmission coefficients respectively. In the

BHPToolkit [1], the radial RWZ functions are normalised such that the transmission coefficient,
YIS — 1 by default.

2.5 The Lorenz gauge

The Lorenz gauge is a desirable choice for a number of reasons. In the Lorenz gauge, the Einstein
field equations are manifestly hyperbolic and the solutions to the metric perturbation components
are CY differentiable at leading order in the small mass ratio. The regularization of the SF is also
best understood in the Lorenz gauge, as discussed earlier in the introduction. As such, most of the
calculations relating to the SF, including those in this thesis, are done in the Lorenz gauge [36].
The calculation of hlL can been found throughout the literature [89] 90, 911, 46|, 02, 83]. The Lorenz
gauge is defined by the gauge condition

hy =0 (2.65)

uv
where the trace-reversed metric is defined for a given order n in the perturbation

n n 1 Q n
h, =h, — S 9md Phis. (2.66)

It shall be assumed that the trace-reversed metric refers to Lorenz gauge perturbations throughout.
The first-order linearised Einstein field equations from [2.20] can then be written in the Lorenz gauge
as

Oh,, + 2R P, hls = 167T), (2.67)

n v'ia 2l

where [ = V*V,. Then the Lorenz gauge metric perturbation h}}; can be determined either by
solving Eq. (2.67) directly, as has been done numerically in both the time and frequency domains
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[89, 90, 91, 46], 92l [83] or via a gauge transformation [46] 5l 102] 83, 2]. Similarly to Eq. (2.23), the
first-order Lorenz gauge field equations can be tackled by using a mode-sum decomposition in the
Barack-Sago-Lousto (BSL) basis [89] 90]

o] l 00 l 10
Py () =D > B (a®) = Z Z YYD (0, ). (2.68)
=0 m=—1 i=1

=0 m=-1 _

The explicit dependence on z%(7) of the metric perturbation can be replaced by 2%(t) due to
Eq. . The dependence on z% of the metric perturbation can be written more simply as a
dependence on the variable ¢, which will remain in place for the remainder of this section. The
constant a;) are defined by [90, 89

1 fori=1,2,3,6
1/y/U(1+1) for i = 4,5,8,9, (2.69)
1/ /0+2) 0+ DIl —1) fori=T1,10,

Sl

and the BSL tensor spherical harmonics are defined so that [90]
/ an ™ [y ] Y 9™ = 5w, (2.70)
where df is the solid angle and n** is given by
n* = diag (1, f(r),r=2,r 2sin~?2 9) , (2.71)

and the components Yu(,i,)lm are given explicitly in Ref. [90], though are not required for the results
presented in this thesis and shall not be given here. The metric perturbation in the BSL basis takes

on the following expansion
Wb (a Z e A (x (2.72)
r) = Zgnﬁf;ﬁ (t,r). (2.73)
n=1

In the BSL basis, the SET becomes

) l [e's) l
Tw=ny Y Tm=-p> > Z Ty (&)Y, (7,0, ), (2.74)
=0 m=—1 =0 m=—11=1
such that )
(@) _ ap, v lm (3),lm *
T dQ) n T Y, 2.75
lm — /Mi(z)/ non af <ul/ > ) ( )
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where ;) is given by

f(r)? ifi=3,
k() = )
1 otherwise.
The sources Sl(;z are defined such that
ORI PO

Im 4@1(1) Im*

Both 5’1(2 and Tz(;n) take on the following expansions

T(Z (t,r) ZE
S(l (t, ) Ze”Slm (t,r)
The linearised Einstein field equations can then be written simply as [90], 89 [103] [14]

OO0 4+ @ 50 _ g
OO + M R =S ie {1,...,10},

where

a6 = 56 <4(‘92 o%,) + Vil )> . Vilr) = JL? (l(l+ 1) 2?”)
Defining the operator
5G8‘)) = DE;)) + Mz(?')v
with
Ml((i;) - Mg,)l(])at + M )(]),

the field equations can be further simplified in the BSL basis as

G ) = ).

(2.76)

(2.77)

(2.78)

(2.79)

(2.80)

(2.81)

(2.82)

(2.83)

(2.84)

The matrices Mg)l( ) and MU )( ;) are given in Appendlxexplicitly for constant ¢ slicing [90, 89, [104].
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The radial Lorenz gauge metric perturbation components in the BSL basis can be written in

terms of Berndtson’s variables, introduced earlier for the even-sector as follows [2]

and for the odd-sector

s
5(2)

Im

i,
5(9)

Ilm

7 (10)

lm

= rf(HG" + H™),

= orfH{",

= 2rK'm,

= 21(1 + 1)h",
=20(1+1)fR™,

= r(Hy" — HYY),

=2r(l = DI+ 1)(1 +2)G"™,

= 20(1 + 1)ni™,
=20(1+ 1) fh™,

21— DI+ D+ 2)

Rbm.
r 2

(2.85h)
(2.851)

(2.85))

The above expressions are derived by comparing the components of h)}; in each of [46] and [89].

2.6 Transformation from the Regge-Wheeler to the Lorenz gauge

For a gauge vector £* ~ O(e), the infinitesimal coordinate transformation

e N

allows the gauge transformation of the metric perturbation to be written as

By = Wy, = Ty + £,

where £ is the Lie derivative such that

One can then transform to Lorenz gauge solutions from RW solutions in the following way

£§7 uv = _2§(M;V)'

hlL“/ = hf}l\jv + "EEQMV?

where superscripts L and RW denote the Lorenz and RW gauges respectively.

(2.86)

(2.87)

(2.88)

(2.89)
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To preserve the Lorenz gauge, the gauge vector must satisfy
O¢k =0, (2.90)

and can be written in terms of a mode-sum decomposition as

Eu(t,,0,0) Z Z {[/ et (fZ’lm(w,r,G,qﬁ) (2.91)

=0 m=—1

2M
+& (w, 7,0, ¢)) dw} + 0106,6Co <1 — T> tYoo(0, ¢) (2.92)
+6p, Oyt [%g csc 9(%?)((;’@ — 00 Sin 981’1%(097 (b)} } ; (2.93)

where 0,4 is the Kronecker delta and

Yim Yim
§Z’lm(w,r,9,¢) = <0,0, Z"(w,r) csc@aa(; ,—Z"™(w, r)sin 9862 ) (2.94)
e,lm m m m aYim 8}/1»,”
£ ,1,0.0) = (M )Y M ¥, DE" o) 0 o ) 299
The gauge transformation for a given [, m mode in the odd-sector then looks like
hy = Y +iwZ, (2.96)
2
hy = AW 4 ~Z - 7', (2.97)
hy =W 4 7, (2.98)
where a prime on Z denotes differentiation with respect to r, and in the even-sector
24w 2M
2M
HY = H™Y — My +iwM; — M|, 2.1
R 2100
2M 2M
HY BV - =My -2 (1 — > My, (2.101)
r r
KY = gV o 2(2M72_7’)M1 + MM% (2.102)
r 72
hg = h¥ — Mo + iwMs, (2.103)
hy = W — My + gM2 — M3, (2.104)
r
M.
GY =Gghv - 22 (2.105)

r2

The definitions for the RW gauge quantities are given explicitly in Section All previous calcu-

lations of hllulj are numerical and done in either time or frequency domain [89] 90, 91, 46}, 92| R3].
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Using the decomposition of h}w in Eq. 1} and Eq. 1’ and following Berndtson’s prescription
[46] where h}}; satisfies the gauge condition Eq. 1' to leading order, the homogeneous odd-sector
components of h}}; for w # 0 and [ > 2 are given by the radial fields [2]

ho(r) = % <¢1 + 2;\¢2> ) (2.106a)
ha(r) = (wl)g ( - %Wz + %7/}1 - z—iwz - wi>, (2.106b)
ha(r) = (Z.:))Q (rf Yo + 91 + B+ QAS): — oM z/a) : (2.106¢)
where .
A=S-1(+2), (2.107)

and the [,m labels on radial fields from Eq. and Eq. will be dropped henceforth for
convenience. The fields 1; and 9 refer to solutions to Eq. , with a RW potential. Valid
odd-sector solutions to hg, hy and ho are constructed by solutions to ¥, and o for which [ + m is
an odd number. For w # 0 and [ > 2, the even-sector components of hf,j, given by the radial fields
ho, h1, Hy, H1, Hy, K and G can be written in terms of the fields o, 91, g, ¥, and their radial
derivatives, in addition to the gauge field Ma,; and its radial derivative. Here 11, 1, gy refer to
solutions of Eq. with a RW potential. The fields 1y and g differ only by their sources, given
in Appendix [A|l An explanation of the origin of ¥, can be found in Section (3.1.1) of Ref. [46]. The
field 19 is also a solution to Eq. with a Zerilli potential. The additional gauge field My, will
be discussed further in Chapters [b] [6] and [0l The explicit, source-free expressions are given below
[46] 2]
/ .
Hy(r) = — AL+ ;\zj\j)(%?g]\;f)\t)}\)”% + ((Z%ti))lﬁo + 4@2(;4—%_)\:1#1 + g (2.108a)
A1+ XN)

3(iw)2(2M — r)r*(3M + Ar)? |

18M™ + 3(=3 + 4\) M3r + (iw)*A\*r®

: 401+ X)) My
—3AM7? (14 A = 2(iw)?r?) + M? (6A*r? + 9(iw)*r?)] o + AL+ XM, J;wgg) Vi
2M (%b + Méaf) L2 (=2M2 + Mr + (iw)?r4) (top + Maqy)

+ r3 (2M — r)rt ’

M4 N, (6M +4XM —3r — 2xr — 2(iw)?r®) Yo (24+ 2\ )
Hy(r) = — - 2.108b
1) 3iwr 4iwMr? — 2iwr3 * 2Myr — r? + 2iwr ( )
2iw(—M +7)(bop + Magg) AL+ X) (BM? + 3AMr — Ar?) 1)y

(2M — r)r? 3iw(2M — r)r2(3M + Ar)
2i0 (P, + My, p)  A(1+ A\
n Obr 2af) ( . )1/117
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AL+ N) (Z9M2 4+ (3= BA)Mr +2X\r) oy, (=3M + 2r)tg

Halr) = 3(iw)2r3(3M + Ar) (2M —r)r ¥ (2.108¢)
41+ N (M =)y 2(6M? — (11 4+ 4N Mr + 12 (442X + (iw)*r?)) (Yop + Maay)
o ) + 4
iwr 2M —r)r
(=6M +4r) (g, + My ;) AL+ N) (41 + NM +7 (242X + (iw)?*r?)) ¢
* r3 + iw(2M —r)r3
AL +A) 4 3 2.4 N2 2
~ 3(w)2(2M — )30 + /\T)z[_54M +3(9 — 16A) M°r + X*r*(2 + 2\ + (iw)*r?)
+ 9M?r2(2X — 202 + (iw)?r?) + AM13(3 4 5\ — 422 4 6(iw)*r?)]ea,
A1+ N)(2M — r)ys —AM +2(24+ A + Maq 4(14 N)?
K(T) _ ( +3()ZEU)2T3 7”)¢2 + % + ( ( rzr>(w06 2 f) + ( Z—Z)r:;) ¢1 (2108d)
21+ N)(2M — 7)), AL+ ) (6M? 4+ 3AMr + A(1 + \)r?) ¢
* iwr3 a 3(iw)?rt(3M + Ar) (2.108¢)
(4M = 2r)(Yg, + May )
+ 3 ,
,
_ABH2N@CM =)y Yop+ Moy 2(1+ N1 (2M — 1)y
Glr) = 6(iw)?r2(3M + Ar) 73 iwrs jwrs (2.108f)
1 . .
+ 6(i0) 23 (30 + M2 [4N32 + A2 4 27(iw) 2 MPr? + MM (M + 2(iw)*r®)  (2.108g)
+ 302 (M2 + Mr+ 1% + (iw)*r?) |4,
A2M — ! —2M 2 + My, 41+ A 2MN
ho(’f’) _ ( 3iwrr)w2 + ( 2iw—|7:2r)1/}0 + ZW(wObT 2 f) + ( "i; )1/}1 + <1 . T) 17/}1
(2.108h)
(=2M + )y A(6M? + 3AM7r + A(1 + \)r?) oo
B 2iwr B 3iwr?(3M + Ar) ’
CAMBENM F A2+ N)r)yy 0 Aop + Mooy 2(¥gp + My s) .
ha(r) = 3(iw)2r(3M + M) AM —2r r? - r (2.108)
A

i N2 Nf2.3 3.2
" S @M =) By ) M 2N (=20 )

+ A2 (—12M2+2Mr 4207 + (iw)?r*) + 3AM (—4M? + 17 + 2(iw)*r*) ] s
(8M +8AM —dr—4AXr+(iw)?r3) b1 2(2M + 7 + 2\r)¢)}
2iwMr? — jwr? iwr? ’

Valid even-sector solutions are then constructed by solutions to g, %oy, ¥1, 2 and My,y for
which [ + m is an even number. The even-sector fields hg, h1, 11 and 19 should not be confused

with those from the odd-sector. The reader is referred to Ref. [46] for sourced expressions and for
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expressions where [ = 0,1 and w = 0. Berndtson’s gauge transformation from RW to Lorenz gauge
metric perturbations is equivalent to that of Hopper and Evans [102], who provide the same gauge

transformation for the s = 2 sector.

2.6.1 Differentiability of inhomogeneous expressions

For the sourced expressions of Berndtson’s gauge transformation, the reader is referred to the ap-
pendices of Ref. [46]. The retarded v, 11 and 1g, in both the odd- and even-sectors contain jump
discontinuities, while 1y and My, of the even-sector are continuous, and are CO differentiable. Any
jump discontinuities exactly cancel when transforming to the Lorenz gauge expressions of Eq.
and Eq. . Additionally, the source for 1, given in Eq. contains Dirac-delta functions,
but no derivatives, whereas all other RWZ sources, given in appendix [A] contain Dirac-delta func-
tions and a radial derivative of a Dirac-delta function. This means that the radial derivative of the
retarded fields o, 1,10y in either the odd- or even-sectors will contain a distributional term in-
volving a Dirac-delta function. Without compensating, this distributional term introduced by radial
derivatives of RWZ functions in transformation to the Lorenz gauge would spoil the C° differentia-
bility. Berndtson’s expressions for the inhomogeneous Lorenz gauge metric components therefore
contain additional distributional terms, related to the components of the stress-energy tensor, which
cancel any introduced by such radial derivatives of the fields [46l [102]. For a point-like particle on
circular orbits, we may use the homogeneous expressions of Eq. and Eq. to obtain
the retarded Lorenz gauge metric perturbation components everywhere except for at the particle, as
any terms involving the Dirac-delta function will go to zero away from the particle. For this reason,

in Chapter [5] and Chapter [, only the homogeneous gauge transformation is considered.

2.6.2 Satisfying the Lorenz gauge condition and field equations

In the absence of sources, substituting the odd-sector fields hg, hy and ho back into the odd-sector
field equations Eq. and Lorenz gauge condition in Eq. , and similarly substituting the
even-sector fields hg, hy, Ho, H1, H2, K and G back into the even-sector field equations and Lorenz
gauge conditions results in fourteen equations (ten from the linearised Einstein field equations and
four from the Lorenz gauge conditions) which include combinations of the RW master equations,
Zerilli equation, the equation for Ms,; given by Eq. , and their radial derivatives. In the
even-sector for example, the Lorenz gauge conditions and linearised Einstein field equations take the

following form

A (1) Lovo + Biwo(r) L1901 + Cim (1) L2902 + Dy (1) (LoMaay — f(r)%0) + Eim(1)0r (Lotbo) (2.109)
+Fi (1)0r (L1301) + Gim (1)0r (L2902) + Hiy (1)0r(LoMaay — f(1)tho) =0

The factors Ay, (r), Byn(r),... are factors that depend on r, [ and m, at least in the case of
circular orbits. Note that in the homogeneous case, g, = ¥g. It is easily seen that the individual

contribution of each of the homogeneous RW master functions, homogeneous Zerilli master function
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and My, to the Lorenz gauge condition and linearised Einstein field equations are identically zero.
This suggests that any of the RWZ fields or M,y can be ‘turned off’ (i.e. set to zero), while
still preserving the Lorenz gauge condition and satisfying the first-order linearised Einstein field
equations. Indeed this shows that the RWZ master functions, in addition to the gauge field My,
form a basis of homogeneous solutions to the first-order linearised Einstein field equations in the

Lorenz gauge, in the absence of sources.

2.7 Perturbations to rotating black holes

The metric describing a rotating, axisymmetric black holes with mass M and angular momentum a

is given by the Kerr solution

ds* = — dr? (2.110)

2M Y 2Mra?
= —|1- ")+ Zar? + 2d6? + (12 +a? + " sin29 ) sin? Od¢? (2.111)

z A by
4Mrasin? 6
— ————dtd
S dtdo,
where

¥ =72 +a?cos? 6, (2.112)
A=r2—2Mr+a®> or A= —ry)(r—r_). (2.113)

The radii r+ are the radius of the outer and inner horizons of a Kerr black hole respectively. In the
Schwarzschild limit, — — 0 and r4 — 2M.

2.7.1 The Teukolsky formalism

There is no known separable solution to the linearised Einstein field in Kerr. However, in type D
spacetimes such as Schwarzschild or Kerr E], there exists a set of null tetrads, onto which equations
describing perturbations to the curvature can be projected, and for which the resulting equations
are separable [105] [68]. The separable equations in question are precisely the Teukolsky equations,
whose solutions are related to the perturbed Weyl scalars. Often the Newman Penrose (NP) [106] or
Geroch-Held-Penrose (GHP) [68] 37| formalisms are used to achieve this. The formalism used in this
work follows that of Ref. [107] and is very similar to the NP and GHP formalisms, with some slight
differences. Examples of tetrads that attain this separability are the Carter and Kinnersley tetrads,

the latter of which shall be used throughout, for reasons discussed in Chapter [0] The Kinnersley

"While Schwarzschild and Kerr black holes are vacuum type D spacetimes, the statement applies to all type D
spacetimes, including the Kerr-Newman metric [68].
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tetrad is then defined as follows [107, [5, 68| 37, [107]

="

where [3],

= {£A7 (r? +4a%),1,0,£A a},

ml = {Fiasin,0,1, +icsch},
with

(Vul,) m*m” =r+iacosf

)
Il

(Vo) mfm” =r —iacos®,

ey
Il

such that

= pp= 2.

The background metric can then be written as [46, [68] 37, 5]:

g’ = —1*n" — n*l¥ + m*mY + mtm”.

The tetrad basis vectors have the normalisation conditions such that

Gumtm” =1,
gultn” =—1,
23]
A )
gumhim? =23,

gu 12 =

with all other inner products equal to zero.

(2.114a)

(2.114b)

(2.114c)

(2.114d)

(2.115a)
(2.115b)

(2.116)
(2.117)

(2.118)

(2.119)

(2.120)
(2.121)

(2.122)

(2.123)
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The directional derivatives along the tetrad {I%, 1", m//,m"} are defined as follows [5]

1K

D=0, =0~ % (2.124a)
1K
DI =119, =0, + A (2.124b)
L =mho, =0 - Q, (2.124c)
L=m'd, =0+ Q, (2.124d)
where @ is given by [5]
Q = mcesch — awsinb, (2.125)
K is given by
K = w(r? + a*) — am, (2.126)

and m is the azimuthal mode number. The Weyl tensor, which is a measure of the curvature of the

spacetime is then defined by

1
C,ul/oc,B = Rul/ocﬂ +—7 (R,uﬁgua - R;Lozguﬁ + Rl/aguﬂ _ Rvﬂgua)
" 2.127)
t . R( ) (2.
(n—1)(n—2) = Jkadvs = Jupdva)

where n is the number of dimensions of the spacetime. For the purposes of this work, n = 4. When
projected onto the Kinnersley tetrad, the five independent complex components of the Weyl tensor

are given by [68] [37]

W = Copysl®mPlIm?, (2.128a)
Uy = Cupysl®nPlIm®, (2.128b)
Wy = Cupysl®mPmin?, (2.128c¢)
W3 = Cupysl®nPmrn?, (2.128d)
Uy = Cupysn®mPnimd. (2.128¢)

For vacuum background spacetimes, the Weyl curvature is entirely captured by the Riemann tensor,

and the perturbed Weyl tensor is given by

0Cap = 0 Ruvap- (2.129)
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The perturbed Weyl scalars are then given by

U = 6Rups1mP1m?, (2.130a)
U = §R.5,510"1m°, (2.130b)
Y = R.p5l"mPmTn?, (2.130c)
WY = 6R,gs1%nPmn?, (2.130d)
U = §R, g snmPnYme. (2.130¢)

In type D spacetimes, there exists four null directions. Choosing the tetrad legs such that they
are parallel to these four null directions leaves only \1;0P and UY non-zero of the perturbed and
unperturbed Weyl scalars. It is this simplifications that allows for a separable solution of the metric
perturbation to a Kerr background to be determined. The perturbed Weyl scalars can then be

written in the separable form, using a mode-sum decomposition in the frequency domain

00 l

Vo= D RS0, g)e Y, (2.131)
=0 m=-1
o0 l '

Wi =D D ARU(r)ST(0,¢)e ), (2.132)
=0 m=-—1

such that, for s = 2, the radial function R4o satisfies

d dRm K? — 2is(r — M)K
I L isr = MK ycor — ) RI™(r) = 0, (2.133)
dr dr A

which is the homogeneous radial Teukolsky equation, for a Kerr black hole. Similarly to the RW
equation, the spin-weights s = +1, 0 correspond to electromagnetic and scalar perturbations respec-
tively, and s = 42 correspond to gravitational perturbations. The angular part of the perturbed

Weyl scalars, S are the standard spin-weighted spheroidal harmonics, which obey the equation [I]

1 d d 0)?
[sin&d@ (sin Gdﬁ) — a*w?sin? 6§ — (m—;anC(;s) — 2aws cos 0 + s + 2maw + )\slm:| S0, ) = 0,
(2.134)
and are normalised as - )
/ Sim| sinfdh = 1. (2.135)
0
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Any solution to Eq. (2.133)) should recover the correct asymptotic behaviour, which for the radial
Teukolsky function is given by [84] [86]

o { A o o7 o1
sim 7 1—2s pin,ref  jor* —1 pin,inc | —jwr* .
plm2s R el 4 pmIRDC ¢ for r — +o0
up,inc _jkr* —s pup,ref | _jkr*
RY _ Rslm € +A Rslm € for r — " (2 137)
slm Rup,trans 1—-2s jiwr* { .
b r e or r — +09Q,

where RZ and R™

S m are two independent solutions and r* is the well known tortoise coordinate

given by
2Mry r—7ry 2Mr_ r—7r_

1 — 1 2.138
7‘+—7’_n 2M T+—T_n 2M ( )

Tse =T+

and k is defined as

ma

k=w-— .
w 2MT’+

(2.139)

How to use the perturbed Weyl scalars to construct the metric perturbation for a Kerr background

will be discussed in the next subsection.

2.7.2 Metric reconstruction via a Hertz potential

In Ref. [108], Wald states and proves T heorem which is true for any perturbation equations coming

from solutions of decoupled equations

Theorem 1 Suppose the identity SE = OT holds for the linear partial differential operators S, &,
O and T. Suppose U satisfies OTU = 0. Then STV satisfies EF (ST‘IJ) = 0. Thus, in particular, if
& is self-adjoint then STV is a solution of £ (f) = 0.

Proof:
SE =0T, (2.140)
st = 1107, (2.141)
ETSTY = TTOMW, (2.142)
gisto = o, (2.143)
ESTU =0, (2.144)

where the last equality is true only if £ is self-adjoint [108].

Given that the first-order linearised Einstein field equations can be decoupled for both Schwarzschild
and Kerr backgrounds, Theorem [I]can be applied to constructing the source-free metric perturbation
in the following way. Let £ be defined as the operator which acts on the metric perturbation to
obtain the linearised Einstein field equations and is equivalent to §'G in eq. . Let T be the

operator which acts on the metric perturbation to obtain the perturbed Riemann tensor, which in
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vacuum spacetimes are the perturbed Weyl scalars from Eq. (2.133)). Let O be the operator that
obtains the Teukolsky equation from the perturbed Weyl scalars, and let S be the operator that
transforms the linearised Einstein field equations, if given in terms of the NP operators and scalars,
into the Teukolsky equation. Then, Theorem [I] states that the source-free metric perturbation can
be constructed from the Hertz potential ¥ in the following way[108] [68]

b = (ST0) (2.145)

7%

so long as ¥ is a solution to the homogeneous Teukolsky equation, OT¥ = 0. The operators S, &, O
and T will not be given explicitly here as this would require introducing many spin-coefficients that

are not used anywhere else in this thesis. Instead the reader is pointed to References [37] and [6§]

for the explicit definitions of these operators.

2.7.3 The radiation gauge

The metric reconstruction method that follows from Theorem [0 was first done in the radiation
gauges by Cohen and Kegeles and Chrzanowski [64], 63]. For Petrov type II spacetimes, the ingoing
radiation gauge (IRG) condition is defined by [68]

Phy, =0 (2.146)
9"y = 0, (2.147)

such that the metric perturbation is trace free and has zero projection along the principal null
direction of the tetrad leg I*. Similarly, the outgoing radiation gauge (ORG) condition is defined by
[68]

nhy, =0 (2.148)
9" Iy = 0. (2.149)

In type D spacetimes, the metric perturbation can also be written in the ORG similarly to Eq.
using the method of adjoints and a different choice of Hertz potential, but one that is related to
WIRG [68]. All results that hold for the IRG also hold for the ORG [68] and the choice of radiation
gauge will depend on the problem of interest at hand. The explicit form of Eq. can be found
in Chapter 3 of Ref. [68]. Neither the NP nor GHP formalisms shall be discussed in this report, as
they are detailed extensively throughout the literature and aren’t necessary for the main results of
this chapter. For a comprehensive review the reader is pointed to references [68] and [37]|. For either
choice of radiation gauge, obtaining W solves the source-free metric perturbation in that gauge, up
to a caveat that will be discussed in Section as it turns out that solving W only solves for the
radiative part of the metric perturbation in the corresponding radiation gauge. [69]

By Wald’s result from [69], we can make the observation that the metric perturbation in
Eq. , constructed using the Hertz potential ¥ is incomplete, missing perturbations to the
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mass and angular momentum of the spacetime, in addition to any gauge contributions. The radia-
tion gauges are also irregular for all orbits, as the metric perturbation due to a point-like particle
diverges to form a one-dimensional sting-like singularity, such that any neighbourhood of the particle
includes the singularity [36]. As mentioned in the introduction there are however ‘no-string’ gauge
solutions [70, 41l 71} [72] [73| [74, [75, 43]. However, due to the fact that the SF is best understood
in the Lorenz gauge, as discussed in Chapter [I] it is still desirable to obtain the Kerr metric per-
turbation in the Lorenz gauge by construction from a Hertz potential and transforming from the

radiation gauge. These arguments provide the motivation for research presented in Chapter [9]
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Chapter 3

Developing the MST Package for the
BHPToolkit

The first section of this chapter will provide a review of the MST method, named after Mano, Suzuki
and Takasugi. The remainder of the chapter will discuss the implementation of the MST package for
the BHPToolkit, an open source repository for software and data related to BHPT [I]. The MST

package was developed in collaboration with Wardell, Kavanagh, Casals and Ottewill.

3.1 The MST method

The MST method offers semi-analytic series solutions by means of a small frequency expansion to
the radial Teukolsky and RW master equations given by Eq. and Eq. respectively.
For circular orbits, a low-frequency expansion is equivalent to a solution that is valid in both the
PM and PN regimes [85] [86], 84], recalling that PM expansions are written as a power series in G,
the gravitational constant, corresponding to an expansion around Minkowski flat space, and the PN
series is written in terms of powers of ¢!, corresponding to an expansion about Newtonian gravity
[84],[85]. Using the MST series to study EMRISs is justified by the importance of matching strong and
weak field regimes, in addition to the series’ rapid convergence, allowing for many higher order terms
to be calculated in the PN series. While the derivation in this section uses the underlying assumption
that the frequency, w, is small, higher frequencies can be used in numerical algorithms. [87] A brief
derivation of the MST method will be detailed here for the radial Teukolsky equation, from which
the MST series for the Regge-Wheeler master functions can be recovered using the Chandrasekhar
transformation.

Throughout the literature, attempts to solve the radial Teukolsky equation begin by analysing
the equation’s properties. In its current form, Eq. contains regular singularities at the
horizons, r = ry and r = r_, and an irregular singularity at »r = oco. Therefore, to solve Eq.
analytically, one might first try to eliminate the regular singularities by using a change of variables
and rescaling the Teukolsky radial function, R (r). This was done by Teukolsky and Press in 1974
[109], by Leaver in 1986 [110] and by Mano, Suzuki and Takasugi in 1996 [85]. As Eq. is
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a second order ordinary differential equation, it will admit two independent solutions from which
physically relevant solutions can be constructed, namely the ingoing and upgoing solution, R™ and
R"P respectively. To obtain the ingoing and upgoing solutions, a sensible choice of rescaling and
change of variables is required to recover the asymptotic behaviour of Eq. and Eq.
respectively. The proposed change of variables for the ingoing solution and other relevant quantities

defined in [85] are given by

The ingoing Teukolsky radial solution can be rescaled in such a way that eliminates the regular
singularities of Eq. (2.133)) and captures them in the solution. This rescaling is given by [85] [84]

in (CIJ) _ eie/{x(_x)fsfi(eJrT)/Q(l . $)i(677)/2pin<x)7 (32)

slm

where pin(z) is to be determined, and depends on s,l and m. Rewriting Eq. (3.2 in terms of

the tortoise coordinate r* recovers the exact expression for the asymptotic behaviour of Rlsrllm in

Eq. (2.136) on the outer horizon and Appendix B of [85] gives a detailed derivation as to why the
choice of rescaling in Eq. (3.2)) removes, or rather captures, the singularity on the outer horizon E
Substituting Eq. (3.2)) into Eq. (2.133)), the radial Teukolsky equation becomes [84]

o(1—2)phy + [ — s —de —iT — (2 = 2im)alpi, + [ir(1 — i) + A+ s(s + 1)]pin =
2ier [—x(1 — 2)pi, + (1 — s + ie — iT)xpin| + [62 — ier(1 — 25)] pin. (3.3)

Having removed the poles of the radial Teukolsky equation, the resulting form is particularly inter-
esting. The left hand side of Eq. (3.3)) is in the form of the hypergeometric differential equation

d%w dw
x(1—x) 2 +(c—(a+b+1)x) o abw = 0, (3.4)
whose solutions are
wi(z) = 2F1(a,b;cx), (3.5)
wa(z) =2 "¢ 9F1(a—c+1,b—c+1;2 — ¢ ), (3.6)

!The other poles at r_ and oo are removed but not captured by the solution Eq. l|
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for the case where there is a singularity at z = 0 E] . This is equivalent to the case where there is a
singularity at r = 7, captured by Eq. (3.2)). The solution to pi,(z) should be chosen to correspond
to wi in order to recover the desired asymptotic behaviour of Rlsrllm on the outer horizon as w;
contains no additional pre-factors that include the dependent variable. wy may produce a solution
to the Teukolsky equation in some other basis, though it shall be disregarded here. The fact that the
terms on the right hand side of Eq. contain various powers of € is suggestive of an expansion
solution for pi,(z), for which € < 1. It should be noted that the quantity, A, the eigenvalue of
the angular Teukolsky equation, which is equivalently the equation for the spin-weighted spheroidal

harmonics, has the small frequency expansion [84]
A= X+ awAi + a®w?Xs + O ((aw)?) , (3.7)

where A\g = I(l+1) —s(s+1). The higher order terms can be determined by solving the equation for
spin-weighted spheroidal harmonics perturbatively, and are given completely analytically to arbitrary
order by the Spin Weighted Spheroidal Harmonics package in the BHPToolkit [I]. Therefore, the
leading order solution to pin(z) in Eq. for when € — 0, is given by [84]

hncl) pin(z) = oF(l+1—ir,—l—it;1 — s —ir;x). (3.8)
€E—>

To obtain the solution for pi,(x) for the case where € # 0, the parameters in eq. will change
slightly. However, it is difficult to determine the parameters of the hypergeometric function for the
case where ¢ # 0 from Eq. in its current form ﬂ . For this reason, the term A + s(s + 1) is
moved to the right hand side of Eq. . This introduces an O(1) quantity to the right hand side
of Eq. (3.3)), which must be removed if the right hand side is to be treated as an O(e) perturbation.
The renormalised angular momentum, v = [ + O(e), is introduced and the term v(v + 1) is added
to both sides of Eq. (3.3). Without changing anything, Eq. can be rewritten in the following
form [84]

(1l —2)pll +[1 — s —ie— it — (2 — 2iT)z|pl, + [iT(1 —i7) + v(v + 1)|pim =
2ier [—x(1 — 2)piy + (1 — s +ie —im)apin] + (v +1) = A —s(s+ 1) + € —ier(l — 25)] pin.
(3.9)

In this form, it is still easy to read what the hypergeometric parameters in pi,(z) should be for

2There are additional solutions to Eq. for which there are singularities at z = 1 and = = co. Each of these
solutions have various alternate forms, which can be found in the Digital Library of Mathematical Functions (DLMF)
[97]. For the ingoing radial Teukolsky solution, only the asymptotic amplitudes at H*, Z* and Z~ are of interest,
given by R RNl and RI™INC respectively. Therefore the solutions to the hypergeometric equation for which
there is a singularity at = 1 are not relevant to constructing the ingoing radial Teukolsky solution, as this occurs at
r = r_, on the inner horizon % ~. The solution required to recover R, on ZT and Z~ will be discussed later in this
section.

3To determine the parameters a, b and ¢ in o F} (a,b, ¢, z) for the Teukolsky case requires solving a set of simultaneous
equations, obtained by comparing the left hand side of Eq. with Eq. (3.4). Solving a +b+ 1 = 2 — 2iT and
—ab=1(l+1)+47(1 — 1) is much easier to solve than a +b+1 =2 — 2i7 and —ab= A+ s(s + 1) +i7(1 — 7). For

this reason, Eq. (3.3) is rearranged to the form in Eq. (3.9).
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the case where € # 0, as well as ensuring that the right hand side of Eq. (3.9) is at least an O(e)
perturbation, such that a solution to pin(x) that is an expansion in e makes sense, where ¢ < 1. For

€ # 0, pin(z) then becomes

o0
Pin = Z fn pn+u(x)7 (310)
n=—oo
Prniv(®) = 2Fi(n+v+1—ir,—n—v—ir;1l —s—ie—ir;z), (3.11)

where f,, are the MST coefficients to be determined. If one was to try to solve Eq. without
introducing the renormalised angular momentum, one would eventually face an equivalent procedure
in order for the series to converge to obtain a meaningful low-frequency expansion solution [84] [86].
As e — 0, the quantities v and X should behave in such a way that v — [ and A — Ag. A derivation of
the explicit form of v can be found in References [84] or [86]. The solution in Eq. is written as
a sum over n to exploit the standard recurrence relation identities for the hypergeometric functions
[86]

a(b—c)
(a—b)(a—b+1)
cla+b—1)—2ab
(a—b—1)(a—b+1)
b(a —c)
(a—b—1)(a—0)

x oFy(a,b;c;x) = oF 1 (a+1,0—1;¢;x) (3.12)

2Fi(a,b;c; x)

+ oF1(a—1,b+ 1;¢;2),

ab(c —b)
(a—b)(a—b+1)
ab(2¢c —a—b—1)
(a—b+1)(a—b—-1)
ab(a — ¢)
(a—b)a—b—1)

d
x(1— :U)@ oF 1 (a,b;c;x) = oF (a+1,0—1;¢;2) (3.13)

2Fi(a,b;c;x)

_l’_

oF 1 (a—1,b+ 1;¢;2).

Considering the right hand side of Eq. (3.9) as a perturbation, and applying the recurrence relations

Eq. (3.12) and Eq. (3.13)) to the equation

2ier [—x(1 — 2)pi, + (1 — s + i€ — iT)Tpin (3.14)
+ (v +1) = A=s(s+1) + € —ier(1 — 25)]pin = 0,

a recurrence relation for the MST series coefficients f,, can be derived [86]

g frt1 + By fn + v fa1 =0, (3.15)
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o — iek(n+v+1+s+ie)(n+v+1+s—ie)(n+v+1+ir) (3.16)
no (n+v+1)(2n+2v+3) ’ '

(e —mq) (s* + €2)
(n+v)n+v+1)’

Bl =-A=s(s+1)+(n+v)n+v+1)+e+ele—mq) + (3.17)

7z:_ie/<c(ﬂ—|—1/—s+z’e)(n+1/—s—ie)(n—i—u—iT). (3.18)
(n+v)2n+2v—1)

The renormalized angular momentum, v is defined such that the MST series converges. As a small

frequency expansion, v is given by [84] [86]

U—1 1 (_2 B 52 + ((l + 1)2 - 32)2 . (l2 — 52)2 > 62 +0 (63) ) (319)

M (+D)  @+D)@+2)2 13 @ -D2RI+1)

In the BHPToolkit, v is calculated using monodromy in Mathematica [111] and by a root finding
method for C++ [112]. Using Egs. (3.15)-(3.18) and initialising the series with fo = 1, the coefficients
fn can be determined either numerically or semi-analytically, as a small frequency expansion E] .
Recall that f, are derived from the underlying assumption that the right hand side of Eq. is a
perturbation, and hence analytic expressions for f, are valid only for ¢ < 1 and should be treated as
such. A detailed analysis is given in [84] to ensure that the recurrence relation Eq. converges,
such that the MST series can indeed provide a meaningful low-frequency expansion for the radial
Teukolsky solution. The ingoing radial Teukolsky solution in Eq. then becomes

00
R"(z) = €@ (—g)7s7HH/2( — g)ile=T)/2 Z fan2Fi(n+v+1—ir,—n—v—ir;1—s—ie—it;x).
n=—00

(3.20)
One of the key features of the MST series is that for larger values of |n|, the leading order terms of
each coefficient f,, depend on higher powers of € [86]. This means that for a given order in €, only a
relatively small number of terms in the MST series is required to obtain an accurate solution [86].
The solution in Eq. is valid over the domain —oco < & < 0 and recovers the desired asymptotic
behaviour at %, from which the asymptotic amplitude R'™ % can be calculated [84], 86, 85]. The
solution in Eq. is not valid at |z| = oo however and cannot therefore recover the asymptotic

in, inc

< and R;I;T: ef, and an alternative solution must be found to complete R‘;llm Recall

amplitudes R

that there are many alternate solutions to the hypergeometric equation, not all of them independent
in

and each valid for a particular domain. For example, another solution for R}

that is valid at large

“The choice of initialisation to solve for the MST series coefficients is arbitrary. A different choice for fu simply
changes the overall normalisation of the series, rescaling the asymptotic amplitudes. It is worth noting that f, has in
fact two linearly independent solutions, however freedom within the choice of v allows for a unique, consistent solution
to be determined [84]. A number of examples for f, are given in [86] for the Schwarzschild case, for different values
of [ and s. It is also worth keeping in mind that while all analytic MST expressions are derived under the assumption
that w is small, Eq. and Eq. can in principle be solved numerically for arbitrary frequencies.
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x is given by

sim = Rg + Ry, (3.21)
where
RY —eiens () =s—(/2)(e+7) (1 _ )i/ () (3.22)

= ., T(—s—ie—ir)T(2n+2v+1)
< 2L IiE 1— 1 '
S m+v+1—ir)I(n+v+1—s—ie)

1
x(l—x)"gFl(—n—u—ir,—n—V—s—ie;—2n—21/;1 >,
—x

and the slm label has been dropped for convenience. Rj and Ry »~1 are linearly independent, and

hence form a basis of solutions to the Teukolsky equation.

So far, only the ingoing solution to the Teukolsky equation Eq. (2.133]) has been discussed. To
determine the upgoing radial Teukolsky solution, a different rescaling to that of Eq. (3.2)) is used,
given by
f(2), (3.23)

A

—s—i(et+T)/
T

Ro =217 (1 _ &

where
Z=z—z2_=¢€r(l —x), (3.24)

and f(2) is to be determined, similarly to pi,(z) for the ingoing case. The sim label has also been
dropped here. A derivation of the prefactor in Eq. can be found in Appendix B of [85]. Unlike

lslllm however, Rc does not correspond to the upgoing solution exactly, which will be given later in
Eq. . Substituting Eq. into Eq. transforms the radial Teukolsky equation in to
the form of a perturbed Coulomb equation (hence the suggestive subscript ‘C’) instead of a perturbed
hypergeometric differential equation, as happened when substituting Eq. into Eq. [84].
The leading order Coulomb equation obtained has a regular singularity at 2 = 0, corresponding
to the inner horizon. The solutions to Coulomb’s equation again have many alternate forms that
can be found in the DLMF [97], such as the confluent hypergeometric function U E], which is the
usual choice for the upgoing MST series solution as its analytic properties allow for the solution of
Rc to be simplified, as well as allowing for the asymptotic behaviour of Rgfm to be recovered [84].

Similarly to pin(z), a detailed derivation of f(2) can be found in references [84] or [86] but will not

5Tt serves to list some of the many aliases of U that appear in the literature, in order to avoid confusion when
visiting the references provided throughout this report. U is often written as U, as is the case in Ref. [86], is referred
to in the DLMF [97] as one of the confluent hypergeometric functions, namely a solution to Kummer’s equation and
is also occasionally referred to as Tricomi’s function, which is also known as the confluent hypergeometric function of
the second kind. The label U is chosen here to reflect the corresponding Mathematica function, HypergeometricU[]
which will be used in Chapter
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be provided here for brevity. R¢ is then given by [84] [86]
Rc =R + RY, (3.25)
where RY and R” are linearly independent for a given slm mode, and are given respectively by [84]

Rl/+ :2V€—7reei7r(y+1—s) F(V +1-—s+ iE) e—iééu-l—ie(

5 —S—i6+ 2
M(v+ 1+ s—ie) ¢ —er) (3:26)

oo
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Similarly to the ingoing solution, one solution to the Coulomb type Teukolsky equation is chosen
such that the asymptotic behaviour of the upgoing radial function at |z| = oo in Eq. is
recovered, and is valid over the region r, < r. A suitable solution to Rlslllzn that satisfies these
conditions is found to be [84]

R

slm

(5) = R". (3.32)

The solutions Ry, Ry v-1 RY% and RY cannot all be independent and must therefore satisfy some
relation to each other. Each set of solutions can be thought of as an alternate basis to the Teukolsky
equation, however not every solution will produce a result from which the physics of interest, in this
case the asymptotic behaviour, is readily seen. While Ry and R;" ~1 are valid in the region r < oo,
R% and R” are valid in the region ry < r, to compare these solutions they must match in the
region 7y < r < oo. The only way this is possible is if the MST coefficients and the renormalized
angular momentum v work out to be the same for both sets of solutions. Thankfully this works out
to be the case, and is the reason why both sets of MST coefficients can be referred to as fnﬁ . The
relationship between R¢ and Ry is [84] [86]

RY = K, RY, (3.33)

where K, is given by Eq. (165) in [84] or Eq. (3.32) in [86].

6The fact that v and f, work out to be the same for both ingoing and upgoing solutions is often quoted in the
literature as surprising. However, given that R§, Ry“ "', R, and R” cannot all be independent, perhaps it’s no
mystery as there is necessarily a way to relate the hypergeometric and confluent hypergeometric solutions. Relations
between these functions can also be found in the DLMF [97] for special cases.
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Therefore, Rlsrllm can also be written as

b= K,RE+ K, 1RV, (3.34)

slm

which is valid in the region r+ < r, including at » = oo [84]. Equation (3.34) can then be used
in, inc

o and R?ll;nr f, Using the Chandrasekhar transformation,

to obtain the asymptotic amplitudes R
MST expressions can also be found for the ingoing and upgoing solutions to the Regge-Wheeler
equation, Eq. (2.49) [86]. Respectively, these are given by [86]
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The asymptotic behaviour of the Regge-Wheeler master functions is also satisfied by Eq. and
Eq. as required E] Eq. , Eq. Eq. and Eq. are all valid under the
assumption that € < 1, and hence naturally lend themselves to a low-frequency expansion, which
can easily be performed by using the Mathematica function, Series[]. As was the goal of the MST
method, we now have semi-analytic solutions to the Teukolsky and Regge-Wheeler equations. While

there are a number of alternate forms for ;‘}m, R} . in and 5P, which may be more suitable for

analysis near the horizon or near infinity, the respective definitions in Eq. (3.20)), Eq. (3.32) Eq. (3.35))
and Eq. (3.36]) shall be used whenever the MST series for the radial Teukolsky and Regge-Wheeler

master functions are required throughout this report. These expressions are valid over almost the

entire domain, and for the portions of the domain that they are not, the asymptotic definitions may

be used.

3.2 The MST package

The goal of the MST package is to compute the MST series for the radial ingoing and radial

upgoing Teukolsky and Regge-Wheeler master functions (and their derivatives) numerically, us-
ing Eq. (3.20), Eq. (3.32), Eq. (3.35) and Eq. (3.36). The MST package does this by defining

"Note that in [86], the functions ™ and UP are referred to as X™ and X P respectively. Note also that the MST
coefficients f,, are denoted as al in [86]. In this report, the convention of [84] will be adopted and the MST coefficients
will always be written in terms of f,. The relationship between different definitions for the MST coefficients can be
found in [86]. These relations explain the apparent differences between our 1'* and 2P compared to X™ and X"P in
[86]. These expressions however are in fact equivalent.
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the functions MSTRadialIn[s, 1, m, q, €, V¥, A, norm], MSTRadialUp[s, 1, m, q, €, v, A,
norm] and their derivatives. The parameters s, I, m, q, ¢, v and A have their usual meanings,
defined earlier in this report. To compute these functions, the variable $MasterFunction must be
set to either Teukolsky or ReggeWheeler according to the user’s requirements. v is calculated using
the function RenormalizedAngularMomentum[s, 1, m, a, w, Al, which is defined in another file
of the MST package in the BHPToolkit [I]. The parameter ‘norm’ refers to the user’s choice of
normalisation. The MST package follows the conventions and therefore normalisation of [84], so a
choice of ‘norm’ = 1 corresponds to the exact MST expressions from Eq. ([3.20), Eq. (3.32), Eq.
and Eq. . The parameters in MSTRadialIn[] and MSTRadialUp[] will henceforth be dropped

and for the remainder of this section parameters of Mathematica functions from the MST package

will only be specified when initially introduced. It should be kept in mind that MSTRadialIn[] com-
in
slm

putes either or isn, depending on the choice of $MasterFunction. Similarly, MSTRadialUp[]
computes either R}’ or ¢5". These functions also come with options for precision and accuracy
that correspond to Mathematica’s standard options. In this section, the MST coefficients will always

be written in terms of f,, using the convention of [84].

In order to compute MSTRadialIn[] and MSTRadialUp[], the MST package must also calculate
fn numerically, which it does by defining the function fnlq, €, s, 7, v, A, s, m, n] and using
a standard numerical algorithm to solve the recurrence relation in Eq. . The details of this
algorithm can be found in the MST package [I]. For the remainder of this section, the inner workings
of the MST package are described in detail, namely how MSTRadialIn[] and MSTRadial