
Title FPGA Based Modelling of an ADPLL Network

Authors(s) Dooley, C., Blokhina, Elena, Mulkeen, Brian, Galayko, Dimitri

Publication date 2019-07-18

Publication information Dooley, C., Elena Blokhina, Brian Mulkeen, and Dimitri Galayko. “FPGA Based Modelling of an

ADPLL Network.” IEEE, 2019.

Conference details The 2019 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and

Applications to Circuit Design (SMACD), Lausanne, Switzerland, 15-18 July 2019

Publisher IEEE

Item record/more

information

http://hdl.handle.net/10197/11204

Publisher's statement © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained

for all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.

Publisher's version (DOI) 10.1109/smacd.2019.8795299

Downloaded 2024-04-17 19:50:30

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A978-1-7281-1201-5%2F19&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F11204

FPGA Based Modelling of an ADPLL Network
C. Dooley1, E. Blokhina1, B. Mulkeen1, D. Galayko2

1School of Electrical & Electronic Engineering, University College Dublin
2LIP6 Lab, Sorbonne Université

Abstract—This paper introduces and compares the implement-
ation of a number of FPGA based ADPLL network prototyping
architectures. Networks are then created using three different
ADPLL implementations and tests performed on each. Based
on these test results, comparison is made to both the expected
performance and role of each ADPLL design as a development
tool.

I. MOTIVATION

The technical motivation underlying this paper is the cre-
ation of an Field Programmable Gate Array (FPGA) based pro-
totyping platform for All Digital Phase Lock Loop (ADPLL)
networks. As the creation of Application Specific Integrated
Circuits (ASICs) is an expensive and time consuming process,
and mistakes made in the design may require the manufacture
of a new chip, it is important to ensure that any errors
made in the design have been located and addressed before
manufacture. Simulations either at theoretical or gate/transistor
levels have global usage in minimising such errors due to the
ubiquity of simulators and their ease of use.
However simulations are only as good as the model used to
describe the dynamics of the system, and emulating real jitter
and other behaviours of a complex system is a rather difficult
task. An FPGA based prototype allows the system designers
to validate the performance of both design and simulation,
particularly the response to key noise sources such as power
supply noise. An FPGA is ideal for this task as it leverages
the existing skill set of a digital designer, permits the re-use
of certain blocks, and most importantly enables cost effective
and rapid reworking of the design.
An FPGA as a prototyping tool has seen use in UPMC
Sorbonne and University College Dublin, and has been used in
the testing of established designs prior to their implementation
in custom silicon [1], [2], the validation of realistic models
for use in high level simulations [3] and the exploration of
new designs for digital blocks before progressing on to true
digital design on a gate level. In the case of Shan et. al [2],
direct testing of control parameters was performed using an
FPGA based design, where all parameters were scaled down
proportionally and thus the ideal gains for the loop filter found
in simulation, could be tested in a more realistic setting.
Similarly Koskin et. al [3] used the analysis of a number of
ADPLLs implemented on an FPGA, both independently and
in a network, to validate previously obtained theoretical results
while avoiding the costs associated with the development of a
custom IC.
Prototyping on an FPGA does have its drawbacks, most
notably the mixed-signal circuits central to the operation of
an ADPLL are not implementable on an FPGA and while
most fundamental digital circuit elements are present these

elements are not true transistor level implementations of their
functionality but rather implemented by lookup tables and
other multi-role structures on the FPGA. These drawbacks
present a challenge to a designer as they restrict the potential
architecture of key blocks. This is of particular concern when
trying to mimic the behaviour of an established design on an
FPGA.
The particular system that this paper will discuss is an ADPLL
network. This is based on an idea first proposed in a 1995
paper by Pratt and Nguyen [4], in which they proposed an
alternative clock distribution network for ICs using a Cartesian
grid of clocking areas, each with their own Phase Lock
Loop, which has become known as a PLL Network . This
methodology was implemented by Gutnik et. al [5] who found
it to be feasible. Subsequently Javiden et. al [6] proposed
the implementation of such a system using All Digital PLLs,
which better suited the use cases of the technology and avoided
some of the flaws pointed out in the original paper. Zianbetov
and Shan followed on from this proposition by implementing
such a network on a custom IC [1], [2].
This paper will examine the process of creating such a system,
highlight the differences between potential designs and address
some of the challenges and pitfalls that may be encountered
along the way. This paper will also demonstrate that FPGA
based prototyping can play a central role on the pathway to
the implementation of an ADPLL network on a custom chip,
or indeed any number of similar applications. The paper is
organised as follows: Section II describes the system that will
be used on the FPGA and Section III the implementation
thereof and the challenges encountered in the process. Finally,
Section IV will present example measurements made on the
platform and discuss their merit.

II. SYSTEM ARCHITECTURE

An ADPLL network, as the name would suggest, is created
from a number of ADPLLs that are coupled using digital phase
comparators which attempt to measure the phase error between
two oscillators, with each non edge node being connected to
four neighbours. Figure 1 illustrates such a system on a small
scale, with a number of ADPLLs laid out in a Cartesian grid.
The individual ADPLLs, often called distributed ADPLLs as
the phase detectors are shared between nodes, are made up of
a digitally controllable oscillator, an error combination block
and a digital loop filter with the aforementioned digital phase
detectors lying between each pair of oscillators.

A. Digitally Controlled Oscillators

While regular Voltage Controlled Oscillator (VCO) is tuned
by the input voltage over a continuous range of values, in a
digital system there are a very limited number of voltages978-1-7281-1201-5/19/$31.00 ©2019 IEEE

Figure 1: ADPLL Network Architecture.

Figure 2: Distributed ADPLL Design.

representable, most commonly just two levels. As such, using
the voltage itself to control an oscillator is not a viable strategy
and instead Digitally (or Numerically) Controlled Oscillators
(DCO) accept an n bit wide control signal that alters the
period of the output waveform. While tuning range, centre
frequency and linearity apply as in a VCO, a DCO also has
a minimum frequency step as a result of the non continuous
control values. In combination with the bit width of the control
signal, the minimum frequency step limits the range over
which the oscillator can be tuned. Frequently the output of
the DCO is divided down to allow the control blocks in the
feedback path that are clocked on this signal, to run at a lower
and thus easier frequency.
B. Loop Filter

The loop filter is a key aspect of a phase lock loop as without
it only the current output of the phase detector could be used
to compute the control voltage of the VCO. In an ADPLL
it performs an identical role however, the digital environment
results in the traditional loop filter being replaced by a discrete
time Proportional Integral (PI) controller, with the integral path
of the controller implemented by an accumulator.
C. Error Combiner

The Error Combiner, as the name suggests, performs a
summation of the error signals from the phase detectors lying
between any neighbouring oscillator and its neighbours. It
is often convenient for this to be performed as a weighted
sum, thus avoiding different gain requirements for the loop
filter of oscillators in the corners of the grid that only have a
pair of neighbours. The ability to change the weights during
operation enables “uni-directional start-up”, which Javiden et.
al [6] found prevented the system from entering unwanted
stable equilibriums warned of in Pratt and Nguyen’s seminal
paper.
D. Phase Detector

In a conventional PLL the phase detector measures a value
proportional to the difference in phase between a pair of

signals, which is then output as a continuous voltage. A digital
phase detector then attempts to do the same by measuring
the time difference between fixed reference points in the
waveform, which as a digital system deals with square waves,
is typically the rising edge of each input to the block. As in
the oscillator, quantisation also plays a role in the behaviour of
this block, with the time difference between each rising edge
having a minimum possible measurement step. In distributed
ADPLLs the phase detector has dual outputs, each the inverse
of the other, in order to feed the correct value to both of the
connected error combiners.

III. FPGA PROTOTYPING

A. FPGA Restrictions

The use of an FPGA comes with many restrictions as to
how a complex system such as an ADPLL can be designed
with the mixed signal blocks, the DCO and phase detectors in
particular being curtailed by the lack of transistor level control
of the design and layout.
Two potential solutions exist which alleviate this problem, and
are suited to different frequency ranges and/or goals of the
designer. Firstly the clock signal generated by the FPGA’s
clock distribution block can be used to drive accumulator
based oscillators and phase detectors, a technique suitable in
two main use cases: The emulation of the performance of
an already designed system operating at a proportionally cut
down frequency or if the target frequency is low. The downside
of this approach is that the minimum steps are dictated by
the clock frequency of the FPGA, which at frequencies that
are not orders of magnitude lower than the FPGA clock will
result in coarse resolutions for detector or oscillator, and
thus greater jitter seen at the oscillator output. Accordingly
this method only suitable for use at frequencies that are
orders of magnitude lower than the maximum obtainable clock
frequency of the FPGA’s clock manager.
The second solution to the problem is more akin to the real
world system, and uses the delay through primitive elements
such as inverters, which can be deduced from measurements
on the FPGA of choice but will vary depending on the layout
selected. In the case of the FPGA used for this paper, a
Xilinx Artix-7 (XC7A100T-1CSG324C), this delay is in the
region of 300 picoseconds but varies depending on the routing
between elements. This design is better suited to scenarios
where the desired operating frequency is a significant fraction
of the maximum usable clock of the FPGA or it is particularly
desirable to have asynchronous behaviour in the system as in
an ASIC. It is not suited to lower frequency designs as the
number of inverters required will run into spacial constraints.

B. Digitally Controlled Oscillators on an FPGA

There are three key designs that be used to implement
a DCO on an FPGA, two relying on the FPGA clock and
one using inverter primitives. Each of these designs fulfils a
different role in mimicking the behaviour of an ASIC based
mixed signal DCO.

Design 1: If frequency linearity is a desired characteristic
of the oscillator, an accumulator based, FPGA clock driven
design is possible. Here the control code k is added to the
value stored in the accumulator at each rising edge of the
FPGA clock until overflow is reached at 2n − 1, where n is
the bit width of the counter, thus valuing each control code
increment at FPGA clock

2width Hz. The accumulator’s Most Significant
Bit (MSB) is used as the output of this block and forms a
square wave. This design is better suited to lower frequencies,
where the output of the DCO is orders of magnitude lower than
the clock signal driving it, as this ensures that the incremental
change due to the control code remains a small fraction of the
period.

Design 2: The second potential DCO design is an inverter
ring/chain which makes use of the delay through inverter
primitives, thus bearing significant resemblance to DCOs used
on ASICs. On an FPGA, the lack of precise control over
the layout of blocks, means the exact value of the delay is
uncertain and may vary noticeably from one implementation
to another, however, this misalignment and the asynchronous
behaviour stemming from the lack of an FPGA driven clock,
increase the similarity between this design and an ASIC. The
period is set by the number of inverters at 2×(num inverters)×
(delay), and is varied by adding or removing a pair of inverters
for every control code increment. This design works best when
the desired period is within a couple orders of magnitude of
the delay through each pair of inverters, beyond this point,
the number of look-up tables and routing resources required
to implement the design becomes unsustainable.
A third potential design exists, similar to Oscillator 1 in which
the control code varies the reload value of the accumulator at
overflow, however, this design will not be discussed in this
paper.

C. Phase Detectors on an FPGA

The two options for replicating the behaviour of a phase
detector also employ the same two design principles, with the
option better suited to lower frequency signals once again,
being driven by the clock generated by the FPGA and an
inverter based design better suiting higher frequency systems,
where the greater resolution offered is beneficial.
A Sign-Number (SigNum) detector is a common method
of performing phase-frequency detection in an ADPLL and
is the method that will be discussed in this paper. As the
name suggests, this design constitutes two sections, with one
determining the sign of the phase difference and the other, its
magnitude. The first issue with implementing a phase detector
on an FPGA is the issue of metastability, where the output of
a circuit element is at an undetermined level, which can occur
if both signals were to have edges within a short time of one
another or the set-up/hold times of a register are violated. This
issue is easily addressed in an ASIC with an arbiter, however,
an arbiter is a mixed signal circuit that is not synthesisable on
an FPGA.

Design A: The first potential design uses a Finite State
Machine (FSM) to determine which edge has occurred first and

thus the sign, and a counter that computes the time difference
between each rising edge of each signal. This counter is
clocked by the FPGA clock, thus giving the system a time
resolution of 1

FFPGA
. As with the FPGA driven oscillator, this

results in a design that is only suitable when the frequency
of operation is well below that of the FPGA clock due
to resolution constraints. In order to avoid the problem of
metastability, the incoming waveforms can be synchronised
to the clock of the FPGA for no penalty beyond the extra
clock cycle taken, as this synchronisation performs the same
quantisation that would otherwise have occurred in the counter
measuring the time difference. This design is better suited
for use with the accumulator based oscillators due to the
overlapping suitable frequency ranges, however, it can also
be used in conjunction with an inverter ring.

Design B: Better suited for use with the inverter based
oscillator, is a system that mimics the behaviour of a tapped
delay line, working asynchronously to the FPGA clock. As the
FPGA clock is not used, and that of the ADPLL cannot be
used to measure itself, an unclocked sign detection circuit is
required, an example of which can be seen in Figure 3. This is
nearly identical to sign detection methods used on an ASIC,
with the arbitration circuit replaced by a second SR Latch,
which alleviates the issue of metastability.
A tapped delay line can be emulated on an FPGA through
the use of inverter pairs, due to their short and approximately
known delay placed between each tap. The resolution then is
the propagation time through the pair, although this will once
again depend on the layout specifics, which was approximately
600 picoseconds on an Artix-7. This is significantly lower than
the 4 nanoseconds achieved using the previous design and thus
more suitable for use with an inverter ring oscillator, as this
resolution is better than the time resolution of the oscillator.
Figure 4 illustrates the configuration of the circuit used to
emulate the function of a delay line that will be used in this
paper.

D Q

clk rst

D Q

clk rst

S Q

R

S Q

R

D Q

clk rst

1

1

ref

div

arbitration metastability

sign
sign_buff

done

count

done

done

done

Figure 3: Design B Sign Detection RTL Diagram.

D Q

clk nrst

1

D Q

clk rst

done
count

error_tap[0]

error_tap_buff[0]

D Q

clk nrst

1

D Q

clk rst

error_tap[1]

error_tap_buff[1]

D Q

clk nrst

1

D Q

clk rst

error_tap[N]

error_tap_buff[N]

Figure 4: Tapped Delay Line Emulation RTL Diagram.
IV. COMPARISON OF DESIGNS

This paper will now examine the performance of a number
of combinations of these blocks and the performance thereof,

specifically oscillator 1 with phase detector A and oscillator 2
with detectors A & B. For each test there were four ADPLLs
on the FPGA arranged in a Cartesian Grid and as such each
ADPLL will be referred to using matrix indexing correspond-
ing to their grid location. For each configuration three different
modes of operation were examined: Each ADPLL locked to
the same 5 MHz external reference, each ADPLL connected
to the left and above neighbours in a “uni-directional” network
and finally a true ADPLL network where all neighbours are
connected. For comparison, each configuration uses loop filter
gains which had previously been determined to provide the
best jitter performance. The data was captured using an Agilent
MSO7054-A oscilloscope at 4 GSa/s. Each point of data is
the mean of five 200 microsecond long captures which were
then analysed in Matlab, Table I displays the results of this
analysis. The first columns of the table relate to the cycle-to-
cycle jitter of the system, the difference between sequential
rising edges, and the second portion gives the Time Interval
Error, the difference between the actual timing of the edge and
the “ideal” time as set by the reference. This combination of
measurements will show how well each design performs the
task of staying consistent from cycle to cycle both in relation
to itself and the system at large.

Jitter Standard Deviation (ns) Max. Time Interval Error. (ns)

PLL 11 PLL 12 PLL 22 PLL 11 PLL 12 PLL 22

Osc 1, PDET A - - - - - -

Free PLLs 1.4377 1.4714 1.4217 6.1910 6.3667 6.8052

Uni-dir. 0.91589 1.0993 1.0875 8.3619 8.9768 10.974

Bi-dir. 1.0470 1.0979 1.0306 24.998 33.767 33.204

Osc 2, PDET A - - - - - -

Free PLLs 0.56222 0.49224 0.64124 5.3039 7.8626 5.4634

Uni-dir. 0.55040 0.51284 0.62796 5.5312 7.5359 7.9697

Bi-dir. 0.57056 0.50403 0.61644 11.515 15.943 17.428

Osc 2, PDET B - - - - - -

Free PLLs 0.66757 0.84477 0.71308 5.9142 6.1353 5.3939

Uni-dir. 0.66934 0.83894 0.71271 5.8779 7.1746 6.8914

Bi-dir. 0.68372 0.83193 0.68570 7.5705 9.6292 9.7715

Table I: ADPLL Performance Comparison.
From the table it is apparent that the coarser period and

detection steps of Design “1A” (3.875 nanoseconds as at
greater clock frequencies timing violations would occur) can-
not deliver the same jitter performance as the inverter ring
driven designs. Looking at the two subsequent designs their
lesser flexibility is made up for by their more realistic jitter
behaviour. As would be expected best performance occurs
when the network is in PLL mode and as the quality of the
reference degrades as the network is connected up performance
becomes worse. In terms of cycle-to-cycle jitter the best
performing design is that of “2A”, however, its time interval
error is significantly worse especially in bilateral network
mode. This more aggressive degradation as the network is
linked up can be attributed to the worse detection resolution
of the FPGA clocked phase detector, four times worse than
the 1.2 nanosecond step of the entirely inverter based Design
“2B”.
The further a PLL is away from the reference feeding AD-
PLL 11 the worse performance is, peaking furthest from the
reference in ADPLL 22. The lesser cycle-to-cycle of Design
“2A” follows from the implementation independent design of

the phase detector. Unlike the inverter based design where the
implementation may result in the propagation delay between
taps on the delay line changing, from both tap to tap in
the same detector and the same tap in different detectors,
the clocked design has identical detection resolutions as each
register is driven by the FPGA clock. This can be highlighted
in the more easily demonstrable case of the clocked and
inverter based oscillators.
Figure 5 paints a picture of the unrealistic nature of the FPGA

(a) Inverter Based Design. (b) FPGA Clocked Design.

Figure 5: Example Distribution of Periods.
clocked design in comparison to its inverter based counterpart,
each oscillator will have identical intrinsic period steps thus
eliminating any jitter that maybe be seen in the system due to
misalignment. This effects the suitability of the FPGA clocked
designs for the improvement of simulation models, or the
examination of how a novel block may impact the behaviour
of the network.

CONCLUSION

An FPGA is a suitable environment for the prototyping of
ADPLL networks and can fill a number of roles depending on
the designer’s requirements. However, the designer should bear
in mind the platform’s limitations, especially when attempting
to use a frequency that is not orders of magnitude lower
than the maximum clock available from the FPGA’s clock
manager. Inverter based and FPGA clocked designs, both have
a niche in which they are the preferred option, with the clocked
design better suiting replication of an existing design at scaled-
down frequencies and the inverter based designs better in the
modelling and analysis of ADPLL network behaviour.

REFERENCES

[1] E. Zianbetov, “Distributed clocking for synchronous soc,” Ph.D. disserta-
tion, Doctoral School of Informatics, Telecommunications and Electron-
ics, UPMC, 4 Place Jussieu, 75005 Paris, France, 3 2013.

[2] C. Shan, “Distributed clocking for large synchronous soc,” Ph.D. disserta-
tion, Doctoral School of Informatics, Telecommunications and Electron-
ics, UPMC, 4 Place Jussieu, 75005 Paris, France, 10 2014.

[3] E. Koskin, P. Bisiaux, D. Galayko, and E. Blokhina, “All-digital phase-
locked loop arrays: Investigation of synchronisation and jitter performance
through fpga prototyping,” submitted.

[4] G. A. Pratt and J. Nguyen, “Distributed synchronous clocking,” IEEE
transactions on parallel and distributed systems, vol. 6, no. 3, pp. 314–
328, 1995.

[5] V. Gutnik and A. Chandrakasan, “Active ghz clock network using distrib-
uted plls,” in Solid-State Circuits Conference, 2000. Digest of Technical
Papers. ISSCC. 2000 IEEE International. IEEE, 2000, pp. 174–175.

[6] M. Javidan, E. Zianbetov, F. Anceau, D. Galayko, A. Korniienko,
E. Colinet, G. Scorletti, J.-M. Akre, and J. Juillard, “All-digital pll array
provides reliable distributed clock for socs,” in 2011 IEEE International
Symposium of Circuits and Systems (ISCAS). IEEE, 2011, pp. 2589–
2592.

