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Sets of determination for the Nevanlinna class

Stephen J. Gardiner

Abstract
This paper characterizes the subsets E of the unit disc D with the

property that supE jf j = supD jf j for all functions f in the Nevanlinna
class.

1 Introduction

Let A be a collection of holomorphic functions on the unit disc D, and let
T denote the unit circle. A set E � D is called a set of determination
for A if supE jf j = supD jf j for all f 2 A. Brown, Shields and Zeller [3]
have shown that E is a set of determination for H1, the space of bounded
holomorphic functions on D, if and only if almost every point of T can be
approached nontangentially by a sequence of points in E. Massaneda and
Thomas [6] have observed that the same characterization remains valid when
A is the Smirnov class N+. However, the situation is more complicated for
the Nevanlinna class N , which consists of all holomorphic functions f on D
that satisfy

sup
0<r<1

Z 2�

0
log+

���f(rei�)��� d� <1:
This is the main focus of [6], where a variety of conditions are shown to be
either necessary or su¢ cient for E to be a set of determination for N , and
some illustrative special cases are examined. (See also Stray [7], p.256.) The
purpose of this paper is to give a complete characterization of such sets.

First we recall a related result of Hayman and Lyons [5] for the harmonic
Hardy space h1, which consists of those functions on D that can be expressed
as the di¤erence of two positive harmonic functions. For n 2 N and 0 �
m < 2n+4 let

zm;n = (1� 2�n) exp(2�im=2n+4)
and

Sm;n =

�
rei� : 2�n�1 � 1� r � 2�n and

2�m

2n+4
� � � 2�(m+ 1)

2n+4

�
;
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and let Em;n = E \ Sm;n. The Poisson kernel for D is given by

P (z; w) =
1� jzj2

jz � wj2
(z 2 D; w 2 T):

Theorem A [5] Let E � D. The following conditions are equivalent:
(a) supE h = supD h for all h 2 h1;
(b)

P
Em;n 6=;

2�nP (zm;n; w) =1 for every w 2 T.

For any set A which is contained in a disc of radius less than 1, and
any t � 0, we de�ne a capacity-related quantity Q(A; t) as follows. We put
Q(A; t) = 0 if either t = 0 or A = ;; otherwise,

Q(A; t) = minfk 2 N : 9�1; :::; �k 2 C such that
kX
j=1

log
1��z � �j�� � t (z 2 A)g:

Clearly Q(�; t) is translation-invariant and Q(f�g; �) = �(0;1) for any � 2 C.
Also,

Q(f�1; �2g; t) =

8<:
0 if t = 0
1 if j�1 � �2j � 2e�t and t > 0
2 otherwise

and, if A is a disc of radius of r < 1, then Q(A; t) is the least integer k satis-
fying k � t= log(1=r). We use [t] to denote the integer part of a non-negative
number t, and tA to denote the set ftz : z 2 Ag. Our characterization of
sets of determination for the Nevanlinna class is as follows.

Theorem 1 Let E � D. The following conditions are equivalent:
(a) supE jf j = supD jf j for all f 2 N ;
(b)

X
m;n

2�nQ (2nEm;n; [P (zm;n; w)]) =1 for every w 2 T.

Since

log
2�n

jz � zm;nj
� �1

2
log

 ��
8

�2
+

�
1

2

�2!
>
1

3
(z 2 Sm;n);

we have

3P (zm;n; w) log
2�n

jz � zm;nj
� P (zm;n; w) (z 2 Sm;n; w 2 T):

By separate consideration of the cases P (zm;n; w) � 1 and P (zm;n; w) < 1,
we see that

Q (2nEm;n; [P (zm;n; w)]) � 4P (zm;n; w): (1)
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Applying this inequality to terms where Em;n 6= ;, it is now clear that
condition (b) of Theorem 1 implies the corresponding condition of Theorem
A. It is not di¢ cult to check that condition (a) of Theorem 1 is equivalent
to the assertion that, if log jf j � h on E, where f 2 N and h 2 h1, then
log jf j � h on all of D (cf. [6]).

Examples Let U = fz :
��z � 1

2

�� < 1
2g and F = U \ fzm;ng.

(i) The set E = DnU is not a set of determination (for N ) because the series
in condition (b) of Theorem A then converges when w = 1 (cf. Example 6.2
in [5]).
(ii) Further, even E [ F is not a set of determination because each of the
sets Fm;n contains at most 5 points and soX

m;n

2�nQ (2nFm;n; [P (zm;n; 1)]) � 5
X

zm;n2F
2�n <1

(cf. Example 1 in [6]).
(iii) On the other hand, E [ [12 ; 1) is a set of determination since

Q
�
2n[1� 2�n; 1� 2�n�1]; [P (z0;n; 1)]

�
= Q

�
[0;
1

2
]; 2n

�
and infn 2�nQ

�
[0; 12 ]; 2

n
�
> 0 because [0; 12 ] is non-polar.

2 Proof of Theorem 1

Let GU (�; �) denote the Green function of an open set U , let

D�(z) = f� : j� � zj < �(1� jzj)g (z 2 D; 0 < � < 1);

and let A(g; z) denote the mean value of a function g over the disc D1=8(z).
For potential theoretic background we refer to the book [2].

Suppose �rstly that condition (b) of Theorem 1 holds and let f 2 N .
We will assume that supE jf j < 1, for otherwise it is trivially true that
supE jf j = supD jf j. Further, multiplication by a suitable constant enables
us to arrange that supE jf j 2 [0; 1]. Now let a 2 (�1; 0] be such that
a � log supE jf j. We can write

log jf j = h1 � h2 �GD�;

where h1 and h2 are positive harmonic functions and � is a sum of unit point
masses on D satisfying Z

(1� jzj)d�(z) <1:
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Further, by addition to both h1 and h2, we may assume that h1 � 1. By
the Riesz-Herglotz theorem there is a Borel measure �1 on T such that

h1(z) =

Z
P (z; w)d�1(w) (z 2 D):

We know that
h1 � a � h2 +GD� on E: (2)

Also,

GD(z; �)�A(GD(�; �); z) � GD1=8(z)(z; �)

= log
(1� jzj)=8
jz � �j (� 2 D1=8(z)) (3)

and GD(z; �)�A(GD(�; �); z) = 0 otherwise. Let " 2 (0; 1) and

I" = f(m;n) : GD� � A(GD�; �) + "h1 on Em;ng;

and let I 0" denote the complementary set of pairs (m;n). (We note that
(m;n) 2 I" whenever Em;n = ;:) If (m;n) 2 I", then we see from (3) that

"h1(z) � GD�(z)�A(GD�; z)

=

Z
D1=8(z)

(GD(z; �)�A(GD(�; �); z)) d�(�)

�
Z
Am;n

log
2�n

jz � �jd�(�) (z 2 Em;n);

where
Am;n = f� : dist(�; Sm;n) < 2�n�3g:

(Here we have used the fact that the diameter of 2nAm;n is less than 1.)
By Harnack�s inequalities there is an absolute constant c1 > 1 such that
h(�1) � c1h(�2) for any positive harmonic function h on D, any points
�1; �2 2 Sm;n, and any choice of (m;n). For any w 2 T we thus have

P (zm;n; w) �
c1

"h1(zm;n)
P (zm;n; w)

Z
Am;n

log
2�n

jz � �jd�(�) (z 2 Em;n);

and so

Q (2nEm;n; [P (zm;n; w)]) �
�

c1
"h1(zm;n)

P (zm;n; w) + 1

�
�(Am;n):

Integration of the above inequality with respect to d�1(w) yieldsZ
Q (2nEm;n; [P (zm;n; w)]) d�1(w) �

�c1
"
+ h1(0)

�
�(Am;n):
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Since no point of D can lie in more than 4 of the setsAm;n, and 1�jzj > 2�n�2
when z 2 Am;n, we see thatZ X

(m;n)2I"

2�nQ (2nEm;n; [P (zm;n; w)]) d�1(w)

� 24
�c1
"
+ h1(0)

�Z
(1� jzj)d�(z) <1;

so X
(m;n)2I"

2�nQ (2nEm;n; [P (zm;n; w)]) <1 for �1-almost every w 2 T;

and hence, by hypothesis,X
(m;n)2I0"

2�nQ (2nEm;n; [P (zm;n; w)]) =1 for �1-almost every w 2 T:

In view of (1) we now see thatX
(m;n)2I0"

2�2n jw � zm;nj�2 =1 for �1-almost every w 2 T: (4)

For each (m;n) 2 I 0" we can �nd �m;n 2 Em;n such that

GD�(�m;n) < A(GD�; �m;n) + "h1(�m;n):

Let F = f�m;n : (m;n) 2 I 0"g. Then

(1� ")h1 � a � h2 +A(GD�; �) on F; (5)

in view of (2). Also, by (4),Z
F�

jw � zj�2 d�(z) =1 (0 < � < 1) (6)

for �1-almost every w 2 T, where F� = [�2FD�(�) and � denotes area
measure. At this point we could invoke Theorem 2 of [4], but for the sake of
completeness we will extract the relevant reasoning in the next paragraph.

Let 0 < � < 1=8. If z0 2 D�(z), then by the mean value inequality

GD�(z
0) � 1

�(�+ 1=8)2(1� jzj)2
Z
f�:j��z0j<(�+1=8)(1�jzjg

GD�(�) d�(�)

� (1=8)2

(�+ 1=8)2
A(GD�; z);

and by Harnack�s inequalities

1� �
1 + �

hj(z) � hj(z0) �
1 + �

1� �hj(z) (j = 1; 2);
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so (5) yields

(1� ")1� �
1 + �

h1 � a �
1 + �

1� �h2 + (8�+ 1)
2GD� on F�: (7)

Condition (6) is known to ensure that the reduced function RF�P (�;w), where

R
F�
u = inf fv : v is positive and superharmonic on D and v � u on F�g ;

coincides with P (�; w) (see Corollary 7.4.6 in [1]). Since this condition holds
�1-almost everywhere on T, we have

R
F�
h1
=

Z
R
F�
P (�;w)d�1(w) =

Z
P (�; w)d�1(w) = h1:

Also, h1 � 1, so �1 majorizes normalized arclength measure on T, and we
similarly have RF�1 � 1. Hence, on taking reductions over F�, we see that
the inequality in (7) extends to all of D. (Recall that a � 0.) We can now
let � ! 0+ and " ! 0+ to see that log jf j � a on D. It is now clear that
(b) implies (a).

Next suppose that condition (b) of Theorem 1 fails. Then there exists
w0 2 T such thatX

m;n

2�nqm;n <1, where qm;n = Q (2nEm;n; [P (zm;n; w0)]) : (8)

For each m;n we can choose points �k;m;n (k = 1; :::; qm;n) such that

qm;nX
k=1

log
2�n��z � �k;m;n�� � P (zm;n; w0)� 1 (z 2 Em;n); (9)

and without loss of generality we can assume that �k;m;n lies in the convex
hull conv(Sm;n) of Sm;n. In view of (8), the Blaschke product

B(z) =
Y
k;m;n

���k;m;n��
�k;m;n

 
�k;m;n � z
1� z�k;m;n

!

converges on D. There is an absolute constant c2 > 0 such that

GD(z; �) � c2 log
2�n

j� � zj (z; � 2 conv(Sm;n))

for any pair (m;n). For a given pair (m0; n0) we thus have

� log jB(z)j =
X
k;m;n

GD(z; �k;m;n) �
qm0;n0X
k=1

GD(z; �k;m0;n0)

� c2

qm0;n0X
k=1

log
2�n0���k;m0;n0 � z

�� (z 2 Sm0;n0)
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so, by (9),

c2 � log jB(z)j � c2P (zm0;n0 ; w0) �
c2
c1
P (z; w0) (z 2 Em0;n0) : (10)

Let

f(z) = B(z) exp

�
c2
c1

�
w0 + z

w0 � z

��
(z 2 D):

Then log jf(z)j � (c2=c1)P (z; w0), so f 2 N , and certainly f is unbounded
on D. However, jf j � ec2 on E, by (10). Hence condition (a) of Theorem 1
also fails.
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