

Research Repository UCD

Title	Sets of determination for the Nevanlinna class
Authors(s)	Gardiner, Stephen J.
Publication date	2010-11-06
Publication information	Gardiner, Stephen J. "Sets of Determination for the Nevanlinna Class" 42, no. 6 (November 6, 2010).
Publisher	London Mathematical Society
Item record/more information	http://hdl.handle.net/10197/2728
Publisher's version (DOI)	10.1112/blms/bdq073

Downloaded 2024-04-16 12:36:41

The UCD community has made this article openly available. Please share how this access benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

Sets of determination for the Nevanlinna class

Stephen J. Gardiner

Abstract

This paper characterizes the subsets E of the unit disc \mathbb{D} with the property that $\sup_E |f| = \sup_{\mathbb{D}} |f|$ for all functions f in the Nevanlinna class.

1 Introduction

Let \mathcal{A} be a collection of holomorphic functions on the unit disc \mathbb{D} , and let \mathbb{T} denote the unit circle. A set $E \subset \mathbb{D}$ is called a set of determination for \mathcal{A} if $\sup_E |f| = \sup_{\mathbb{D}} |f|$ for all $f \in \mathcal{A}$. Brown, Shields and Zeller [3] have shown that E is a set of determination for H^{∞} , the space of bounded holomorphic functions on \mathbb{D} , if and only if almost every point of \mathbb{T} can be approached nontangentially by a sequence of points in E. Massaneda and Thomas [6] have observed that the same characterization remains valid when \mathcal{A} is the Smirnov class \mathcal{N}^+ . However, the situation is more complicated for the Nevanlinna class \mathcal{N} , which consists of all holomorphic functions f on \mathbb{D} that satisfy

$$\sup_{0 < r < 1} \int_0^{2\pi} \log^+ \left| f(re^{i\theta}) \right| d\theta < \infty.$$

This is the main focus of [6], where a variety of conditions are shown to be either necessary or sufficient for E to be a set of determination for \mathcal{N} , and some illustrative special cases are examined. (See also Stray [7], p.256.) The purpose of this paper is to give a complete characterization of such sets.

First we recall a related result of Hayman and Lyons [5] for the harmonic Hardy space h^1 , which consists of those functions on \mathbb{D} that can be expressed as the difference of two positive harmonic functions. For $n \in \mathbb{N}$ and $0 \leq m < 2^{n+4}$ let

$$z_{m,n} = (1 - 2^{-n}) \exp(2\pi i m/2^{n+4})$$

and

$$S_{m,n} = \left\{ re^{i\theta} : 2^{-n-1} \le 1 - r \le 2^{-n} \text{ and } \frac{2\pi m}{2^{n+4}} \le \theta \le \frac{2\pi (m+1)}{2^{n+4}} \right\},\$$

⁰2000 Mathematics Subject Classification 30D50, 30C80, 31A15.

This research was supported by Science Foundation Ireland under Grant 09/RFP/MTH2149 and is also part of the programme of the ESF Network "Harmonic and Complex Analysis and Applications" (HCAA).

and let $E_{m,n} = E \cap S_{m,n}$. The Poisson kernel for \mathbb{D} is given by

$$P(z,w) = \frac{1-|z|^2}{|z-w|^2} \quad (z \in \mathbb{D}, w \in \mathbb{T}).$$

Theorem A [5] Let $E \subset \mathbb{D}$. The following conditions are equivalent: (a) $\sup_E h = \sup_{\mathbb{D}} h$ for all $h \in h^1$; (b) $\sum_{E_{m,n} \neq \emptyset} 2^{-n} P(z_{m,n}, w) = \infty$ for every $w \in \mathbb{T}$.

For any set A which is contained in a disc of radius less than 1, and any $t \ge 0$, we define a capacity-related quantity $\mathcal{Q}(A, t)$ as follows. We put $\mathcal{Q}(A, t) = 0$ if either t = 0 or $A = \emptyset$; otherwise,

$$\mathcal{Q}(A,t) = \min\{k \in \mathbb{N} : \exists \xi_1, ..., \xi_k \in \mathbb{C} \text{ such that } \sum_{j=1}^k \log \frac{1}{|z - \xi_j|} \ge t \ (z \in A)\}$$

Clearly $\mathcal{Q}(\cdot, t)$ is translation-invariant and $\mathcal{Q}(\{\zeta\}, \cdot) = \chi_{(0,\infty)}$ for any $\zeta \in \mathbb{C}$. Also,

$$\mathcal{Q}(\{\zeta_1,\zeta_2\},t) = \begin{cases} 0 & \text{if } t = 0\\ 1 & \text{if } |\zeta_1 - \zeta_2| \le 2e^{-t} \text{ and } t > 0\\ 2 & \text{otherwise} \end{cases}$$

and, if A is a disc of radius of r < 1, then $\mathcal{Q}(A, t)$ is the least integer k satisfying $k \ge t/\log(1/r)$. We use [t] to denote the integer part of a non-negative number t, and tA to denote the set $\{tz : z \in A\}$. Our characterization of sets of determination for the Nevanlinna class is as follows.

Theorem 1 Let $E \subset \mathbb{D}$. The following conditions are equivalent: (a) $\sup_E |f| = \sup_{\mathbb{D}} |f|$ for all $f \in \mathcal{N}$; (b) $\sum_{m,n} 2^{-n} \mathcal{Q} \left(2^n E_{m,n}, [P(z_{m,n}, w)] \right) = \infty$ for every $w \in \mathbb{T}$.

Since

$$\log \frac{2^{-n}}{|z - z_{m,n}|} \ge -\frac{1}{2} \log \left(\left(\frac{\pi}{8}\right)^2 + \left(\frac{1}{2}\right)^2 \right) > \frac{1}{3} \quad (z \in S_{m,n}),$$

we have

$$3P(z_{m,n},w)\log\frac{2^{-n}}{|z-z_{m,n}|} \ge P(z_{m,n},w) \quad (z \in S_{m,n}, w \in \mathbb{T}).$$

By separate consideration of the cases $P(z_{m,n}, w) \ge 1$ and $P(z_{m,n}, w) < 1$, we see that

$$Q(2^{n}E_{m,n}, [P(z_{m,n}, w)]) \le 4P(z_{m,n}, w).$$
 (1)

Applying this inequality to terms where $E_{m,n} \neq \emptyset$, it is now clear that condition (b) of Theorem 1 implies the corresponding condition of Theorem A. It is not difficult to check that condition (a) of Theorem 1 is equivalent to the assertion that, if $\log |f| \leq h$ on E, where $f \in \mathcal{N}$ and $h \in h^1$, then $\log |f| \leq h$ on all of \mathbb{D} (cf. [6]).

Examples Let $U = \{z : |z - \frac{1}{2}| < \frac{1}{2}\}$ and $F = U \cap \{z_{m,n}\}.$

(i) The set $E = \mathbb{D} \setminus U$ is not a set of determination (for \mathcal{N}) because the series in condition (b) of Theorem A then converges when w = 1 (cf. Example 6.2 in [5]).

(ii) Further, even $E \cup F$ is not a set of determination because each of the sets $F_{m,n}$ contains at most 5 points and so

$$\sum_{m,n} 2^{-n} \mathcal{Q} \left(2^n F_{m,n}, [P(z_{m,n}, 1)] \right) \le 5 \sum_{z_{m,n} \in F} 2^{-n} < \infty$$

- (cf. Example 1 in [6]).
- (iii) On the other hand, $E \cup [\frac{1}{2}, 1)$ is a set of determination since

$$\mathcal{Q}\left(2^{n}[1-2^{-n},1-2^{-n-1}],[P(z_{0,n},1)]\right) = \mathcal{Q}\left([0,\frac{1}{2}],2^{n}\right)$$

and $\inf_n 2^{-n} \mathcal{Q}\left([0, \frac{1}{2}], 2^n\right) > 0$ because $[0, \frac{1}{2}]$ is non-polar.

2 Proof of Theorem 1

Let $G_U(\cdot, \cdot)$ denote the Green function of an open set U, let

$$D_{\rho}(z) = \{ \zeta : |\zeta - z| < \rho(1 - |z|) \} \quad (z \in \mathbb{D}, 0 < \rho < 1),$$

and let $\mathcal{A}(g, z)$ denote the mean value of a function g over the disc $D_{1/8}(z)$. For potential theoretic background we refer to the book [2].

Suppose firstly that condition (b) of Theorem 1 holds and let $f \in \mathcal{N}$. We will assume that $\sup_E |f| < \infty$, for otherwise it is trivially true that $\sup_E |f| = \sup_{\mathbb{D}} |f|$. Further, multiplication by a suitable constant enables us to arrange that $\sup_E |f| \in [0, 1]$. Now let $a \in (-\infty, 0]$ be such that $a \ge \log \sup_E |f|$. We can write

$$\log|f| = h_1 - h_2 - G_{\mathbb{D}}\mu,$$

where h_1 and h_2 are positive harmonic functions and μ is a sum of unit point masses on \mathbb{D} satisfying

$$\int (1-|z|)d\mu(z) < \infty.$$

Further, by addition to both h_1 and h_2 , we may assume that $h_1 \ge 1$. By the Riesz-Herglotz theorem there is a Borel measure ν_1 on \mathbb{T} such that

$$h_1(z) = \int P(z, w) d\nu_1(w) \quad (z \in \mathbb{D}).$$

We know that

$$h_1 - a \le h_2 + G_{\mathbb{D}}\mu \quad \text{on } E.$$
(2)

Also,

$$G_{\mathbb{D}}(z,\xi) - \mathcal{A}(G_{\mathbb{D}}(\cdot,\xi),z) \leq G_{D_{1/8}(z)}(z,\xi) = \log \frac{(1-|z|)/8}{|z-\xi|} \quad (\xi \in D_{1/8}(z))$$
(3)

and $G_{\mathbb{D}}(z,\xi) - \mathcal{A}(G_{\mathbb{D}}(\cdot,\xi),z) = 0$ otherwise. Let $\varepsilon \in (0,1)$ and

$$I_{\varepsilon} = \{ (m, n) : G_{\mathbb{D}}\mu \ge \mathcal{A}(G_{\mathbb{D}}\mu, \cdot) + \varepsilon h_1 \text{ on } E_{m,n} \},\$$

and let I'_{ε} denote the complementary set of pairs (m, n). (We note that $(m, n) \in I_{\varepsilon}$ whenever $E_{m,n} = \emptyset$.) If $(m, n) \in I_{\varepsilon}$, then we see from (3) that

$$\varepsilon h_1(z) \leq G_{\mathbb{D}} \mu(z) - \mathcal{A}(G_{\mathbb{D}} \mu, z)$$

$$= \int_{D_{1/8}(z)} \left(G_{\mathbb{D}}(z,\xi) - \mathcal{A}(G_{\mathbb{D}}(\cdot,\xi),z) \right) d\mu(\xi)$$

$$\leq \int_{A_{m,n}} \log \frac{2^{-n}}{|z-\xi|} d\mu(\xi) \quad (z \in E_{m,n}),$$

where

$$A_{m,n} = \{\xi : \operatorname{dist}(\xi, S_{m,n}) < 2^{-n-3}\}.$$

(Here we have used the fact that the diameter of $2^n A_{m,n}$ is less than 1.) By Harnack's inequalities there is an absolute constant $c_1 > 1$ such that $h(\zeta_1) \leq c_1 h(\zeta_2)$ for any positive harmonic function h on \mathbb{D} , any points $\zeta_1, \zeta_2 \in S_{m,n}$, and any choice of (m, n). For any $w \in \mathbb{T}$ we thus have

$$P(z_{m,n},w) \le \frac{c_1}{\varepsilon h_1(z_{m,n})} P(z_{m,n},w) \int_{A_{m,n}} \log \frac{2^{-n}}{|z-\xi|} d\mu(\xi) \quad (z \in E_{m,n}),$$

and so

$$\mathcal{Q}\left(2^{n} E_{m,n}, \left[P(z_{m,n}, w)\right]\right) \leq \left(\frac{c_{1}}{\varepsilon h_{1}(z_{m,n})} P(z_{m,n}, w) + 1\right) \mu(A_{m,n}).$$

Integration of the above inequality with respect to $d\nu_1(w)$ yields

$$\int \mathcal{Q} \left(2^n E_{m,n}, [P(z_{m,n}, w)] \right) d\nu_1(w) \le \left(\frac{c_1}{\varepsilon} + h_1(0) \right) \mu(A_{m,n}).$$

Since no point of \mathbb{D} can lie in more than 4 of the sets $A_{m,n}$, and $1-|z| > 2^{-n-2}$ when $z \in A_{m,n}$, we see that

$$\int \sum_{(m,n)\in I_{\varepsilon}} 2^{-n} \mathcal{Q}\left(2^{n} E_{m,n}, \left[P(z_{m,n}, w)\right]\right) d\nu_{1}(w)$$
$$\leq 2^{4} \left(\frac{c_{1}}{\varepsilon} + h_{1}(0)\right) \int (1 - |z|) d\mu(z) < \infty,$$

 \mathbf{SO}

$$\sum_{(m,n)\in I_{\varepsilon}} 2^{-n} \mathcal{Q}\left(2^{n} E_{m,n}, [P(z_{m,n}, w)]\right) < \infty \text{ for } \nu_1\text{-almost every } w \in \mathbb{T},$$

and hence, by hypothesis,

$$\sum_{(m,n)\in I'_{\varepsilon}} 2^{-n} \mathcal{Q}\left(2^n E_{m,n}, [P(z_{m,n}, w)]\right) = \infty \text{ for } \nu_1\text{-almost every } w \in \mathbb{T}.$$

In view of (1) we now see that

$$\sum_{(m,n)\in I_{\varepsilon}'} 2^{-2n} |w - z_{m,n}|^{-2} = \infty \text{ for } \nu_1 \text{-almost every } w \in \mathbb{T}.$$
 (4)

For each $(m,n) \in I'_{\varepsilon}$ we can find $\zeta_{m,n} \in E_{m,n}$ such that

$$G_{\mathbb{D}}\mu(\zeta_{m,n}) < \mathcal{A}(G_{\mathbb{D}}\mu,\zeta_{m,n}) + \varepsilon h_1(\zeta_{m,n}).$$

Let $F = \{\zeta_{m,n} : (m,n) \in I'_{\varepsilon}\}$. Then

$$(1-\varepsilon)h_1 - a \le h_2 + \mathcal{A}(G_{\mathbb{D}}\mu, \cdot) \quad \text{on } F,$$
(5)

in view of (2). Also, by (4),

$$\int_{F_{\rho}} |w - z|^{-2} d\lambda(z) = \infty \quad (0 < \rho < 1)$$
(6)

for ν_1 -almost every $w \in \mathbb{T}$, where $F_{\rho} = \bigcup_{\zeta \in F} D_{\rho}(\zeta)$ and λ denotes area measure. At this point we could invoke Theorem 2 of [4], but for the sake of completeness we will extract the relevant reasoning in the next paragraph.

Let $0 < \rho < 1/8$. If $z' \in D_{\rho}(z)$, then by the mean value inequality

$$\begin{aligned} G_{\mathbb{D}}\mu(z') &\geq \frac{1}{\pi(\rho+1/8)^2(1-|z|)^2} \int_{\{\zeta:|\zeta-z'|<(\rho+1/8)(1-|z|\}} G_{\mathbb{D}}\mu(\zeta) \ d\lambda(\zeta) \\ &\geq \frac{(1/8)^2}{(\rho+1/8)^2} \mathcal{A}(G_{\mathbb{D}}\mu,z), \end{aligned}$$

and by Harnack's inequalities

$$\frac{1-\rho}{1+\rho}h_j(z) \le h_j(z') \le \frac{1+\rho}{1-\rho}h_j(z) \quad (j=1,2),$$

so (5) yields

$$(1-\varepsilon)\frac{1-\rho}{1+\rho}h_1 - a \le \frac{1+\rho}{1-\rho}h_2 + (8\rho+1)^2 G_{\mathbb{D}}\mu \quad \text{on } F_{\rho}.$$
 (7)

Condition (6) is known to ensure that the reduced function $R_{P(\cdot,w)}^{F_{\rho}}$, where

 $R_u^{F_\rho} = \inf \left\{ v : v \text{ is positive and superharmonic on } \mathbb{D} \text{ and } v \ge u \text{ on } F_\rho \right\},$

coincides with $P(\cdot, w)$ (see Corollary 7.4.6 in [1]). Since this condition holds ν_1 -almost everywhere on \mathbb{T} , we have

$$R_{h_1}^{F_{\rho}} = \int R_{P(\cdot,w)}^{F_{\rho}} d\nu_1(w) = \int P(\cdot,w) d\nu_1(w) = h_1$$

Also, $h_1 \geq 1$, so ν_1 majorizes normalized arclength measure on \mathbb{T} , and we similarly have $R_1^{F_{\rho}} \equiv 1$. Hence, on taking reductions over F_{ρ} , we see that the inequality in (7) extends to all of \mathbb{D} . (Recall that $a \leq 0$.) We can now let $\rho \to 0+$ and $\varepsilon \to 0+$ to see that $\log |f| \leq a$ on \mathbb{D} . It is now clear that (b) implies (a).

Next suppose that condition (b) of Theorem 1 fails. Then there exists $w_0 \in \mathbb{T}$ such that

$$\sum_{m,n} 2^{-n} q_{m,n} < \infty, \text{ where } q_{m,n} = \mathcal{Q}\left(2^n E_{m,n}, \left[P(z_{m,n}, w_0)\right]\right).$$
(8)

For each m, n we can choose points $\xi_{k,m,n}$ $(k = 1, ..., q_{m,n})$ such that

$$\sum_{k=1}^{q_{m,n}} \log \frac{2^{-n}}{|z - \xi_{k,m,n}|} \ge P(z_{m,n}, w_0) - 1 \quad (z \in E_{m,n}), \tag{9}$$

and without loss of generality we can assume that $\xi_{k,m,n}$ lies in the convex hull conv $(S_{m,n})$ of $S_{m,n}$. In view of (8), the Blaschke product

$$B(z) = \prod_{k,m,n} \frac{\left|\xi_{k,m,n}\right|}{\xi_{k,m,n}} \left(\frac{\xi_{k,m,n} - z}{1 - z\overline{\xi}_{k,m,n}}\right)$$

converges on \mathbb{D} . There is an absolute constant $c_2 > 0$ such that

$$G_{\mathbb{D}}(z,\xi) \ge c_2 \log \frac{2^{-n}}{|\xi-z|} \quad (z,\xi \in \operatorname{conv}(S_{m,n}))$$

for any pair (m, n). For a given pair (m_0, n_0) we thus have

$$\begin{aligned} -\log|B(z)| &= \sum_{k,m,n} G_{\mathbb{D}}(z,\xi_{k,m,n}) \ge \sum_{k=1}^{q_{m_0,n_0}} G_{\mathbb{D}}(z,\xi_{k,m_0,n_0}) \\ &\ge c_2 \sum_{k=1}^{q_{m_0,n_0}} \log \frac{2^{-n_0}}{\left|\xi_{k,m_0,n_0} - z\right|} \quad (z \in S_{m_0,n_0}) \end{aligned}$$

so, by (9),

$$c_2 - \log |B(z)| \ge c_2 P(z_{m_0, n_0}, w_0) \ge \frac{c_2}{c_1} P(z, w_0) \qquad (z \in E_{m_0, n_0}).$$
(10)

Let

$$f(z) = B(z) \exp\left(\frac{c_2}{c_1}\left(\frac{w_0+z}{w_0-z}\right)\right) \qquad (z \in \mathbb{D}).$$

Then $\log |f(z)| \leq (c_2/c_1)P(z, w_0)$, so $f \in \mathcal{N}$, and certainly f is unbounded on \mathbb{D} . However, $|f| \leq e^{c_2}$ on E, by (10). Hence condition (a) of Theorem 1 also fails.

References

- H. Aikawa and M. Essén, *Potential theory selected topics*. Lecture Notes in Math. 1633. Springer, Berlin, 1996.
- [2] D. H. Armitage and S. J. Gardiner, *Classical potential theory*. Springer, London, 2001.
- [3] L. Brown, A. Shields and K. Zeller, "On absolutely convergent exponential sums", *Trans. Amer. Math. Soc.* 96 (1960), 162-183.
- [4] S. J. Gardiner, "Sets of determination for harmonic functions", Trans. Amer. Math. Soc. 338 (1993), 233–243.
- [5] W. K. Hayman and T. J. Lyons, "Bases for positive continuous functions", J. London Math. Soc. (2) 42 (1990), 292-308.
- [6] X. Massaneda and P. J. Thomas, "Sampling sets for the Nevanlinna class", *Rev. Mat. Iberoam.* 24 (2008), 353-385.
- [7] A. Stray, "Simultaneous approximation in function spaces", in: Approximation, complex analysis, and potential theory (Montreal, QC, 2000), pp.239-261, Kluwer, Dordrecht, 2001.

School of Mathematical Sciences University College Dublin Dublin 4, Ireland.

e-mail: stephen.gardiner@ucd.ie