Research Repository UCD

Title	Sets of determination for the Nevanlinna class
Authors(s)	Gardiner, Stephen J.
Publication date	$2010-11-06$
Publication information	Gardiner, Stephen J. "Sets of Determination for the Nevanlinna Class" 42, no. 6 (November 6, 2010).
Publisher	London Mathematical Society
Item record/more information	http://hdl.handle.net/10197/2728
Publisher's version (DOI)	$10.1112 /$ blms/bdq073

Downloaded 2024-04-16 12:36:41

The UCD community has made this article openly available. Please share how this access benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

Sets of determination for the Nevanlinna class

Stephen J. Gardiner

Abstract

This paper characterizes the subsets E of the unit disc \mathbb{D} with the property that $\sup _{E}|f|=\sup _{\mathbb{D}}|f|$ for all functions f in the Nevanlinna class.

1 Introduction

Let \mathcal{A} be a collection of holomorphic functions on the unit disc \mathbb{D}, and let \mathbb{T} denote the unit circle. A set $E \subset \mathbb{D}$ is called a set of determination for \mathcal{A} if $\sup _{E}|f|=\sup _{\mathbb{D}}|f|$ for all $f \in \mathcal{A}$. Brown, Shields and Zeller [3] have shown that E is a set of determination for H^{∞}, the space of bounded holomorphic functions on \mathbb{D}, if and only if almost every point of \mathbb{T} can be approached nontangentially by a sequence of points in E. Massaneda and Thomas [6] have observed that the same characterization remains valid when \mathcal{A} is the Smirnov class \mathcal{N}^{+}. However, the situation is more complicated for the Nevanlinna class \mathcal{N}, which consists of all holomorphic functions f on \mathbb{D} that satisfy

$$
\sup _{0<r<1} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta<\infty
$$

This is the main focus of [6], where a variety of conditions are shown to be either necessary or sufficient for E to be a set of determination for \mathcal{N}, and some illustrative special cases are examined. (See also Stray [7], p.256.) The purpose of this paper is to give a complete characterization of such sets.

First we recall a related result of Hayman and Lyons [5] for the harmonic Hardy space h^{1}, which consists of those functions on \mathbb{D} that can be expressed as the difference of two positive harmonic functions. For $n \in \mathbb{N}$ and $0 \leq$ $m<2^{n+4}$ let

$$
z_{m, n}=\left(1-2^{-n}\right) \exp \left(2 \pi i m / 2^{n+4}\right)
$$

and

$$
S_{m, n}=\left\{r e^{i \theta}: 2^{-n-1} \leq 1-r \leq 2^{-n} \text { and } \frac{2 \pi m}{2^{n+4}} \leq \theta \leq \frac{2 \pi(m+1)}{2^{n+4}}\right\}
$$

[^0]and let $E_{m, n}=E \cap S_{m, n}$. The Poisson kernel for \mathbb{D} is given by
$$
P(z, w)=\frac{1-|z|^{2}}{|z-w|^{2}} \quad(z \in \mathbb{D}, w \in \mathbb{T})
$$

Theorem A [5] Let $E \subset \mathbb{D}$. The following conditions are equivalent:
(a) $\sup _{E} h=\sup _{\mathbb{D}} h$ for all $h \in h^{1}$;
(b) $\sum_{E_{m, n} \neq \emptyset} 2^{-n} P\left(z_{m, n}, w\right)=\infty$ for every $w \in \mathbb{T}$.

For any set A which is contained in a disc of radius less than 1 , and any $t \geq 0$, we define a capacity-related quantity $\mathcal{Q}(A, t)$ as follows. We put $\mathcal{Q}(A, t)=0$ if either $t=0$ or $A=\emptyset$; otherwise,
$\mathcal{Q}(A, t)=\min \left\{k \in \mathbb{N}: \exists \xi_{1}, \ldots, \xi_{k} \in \mathbb{C}\right.$ such that $\left.\sum_{j=1}^{k} \log \frac{1}{\left|z-\xi_{j}\right|} \geq t \quad(z \in A)\right\}$.
Clearly $\mathcal{Q}(\cdot, t)$ is translation-invariant and $\mathcal{Q}(\{\zeta\}, \cdot)=\chi_{(0, \infty)}$ for any $\zeta \in \mathbb{C}$. Also,

$$
\mathcal{Q}\left(\left\{\zeta_{1}, \zeta_{2}\right\}, t\right)=\left\{\begin{array}{lc}
0 & \text { if } t=0 \\
1 & \text { if }\left|\zeta_{1}-\zeta_{2}\right| \leq 2 e^{-t} \\
2 & \text { otherwise }
\end{array} \text { and } t>0\right.
$$

and, if A is a disc of radius of $r<1$, then $\mathcal{Q}(A, t)$ is the least integer k satisfying $k \geq t / \log (1 / r)$. We use $[t]$ to denote the integer part of a non-negative number t, and $t A$ to denote the set $\{t z: z \in A\}$. Our characterization of sets of determination for the Nevanlinna class is as follows.

Theorem 1 Let $E \subset \mathbb{D}$. The following conditions are equivalent:
(a) $\sup _{E}|f|=\sup _{\mathbb{D}}|f|$ for all $f \in \mathcal{N}$;
(b) $\sum_{m, n} 2^{-n} \mathcal{Q}\left(2^{n} E_{m, n},\left[P\left(z_{m, n}, w\right)\right]\right)=\infty$ for every $w \in \mathbb{T}$.

Since

$$
\log \frac{2^{-n}}{\left|z-z_{m, n}\right|} \geq-\frac{1}{2} \log \left(\left(\frac{\pi}{8}\right)^{2}+\left(\frac{1}{2}\right)^{2}\right)>\frac{1}{3} \quad\left(z \in S_{m, n}\right)
$$

we have

$$
3 P\left(z_{m, n}, w\right) \log \frac{2^{-n}}{\left|z-z_{m, n}\right|} \geq P\left(z_{m, n}, w\right) \quad\left(z \in S_{m, n}, w \in \mathbb{T}\right)
$$

By separate consideration of the cases $P\left(z_{m, n}, w\right) \geq 1$ and $P\left(z_{m, n}, w\right)<1$, we see that

$$
\begin{equation*}
\mathcal{Q}\left(2^{n} E_{m, n},\left[P\left(z_{m, n}, w\right)\right]\right) \leq 4 P\left(z_{m, n}, w\right) \tag{1}
\end{equation*}
$$

Applying this inequality to terms where $E_{m, n} \neq \emptyset$, it is now clear that condition (b) of Theorem 1 implies the corresponding condition of Theorem A. It is not difficult to check that condition (a) of Theorem 1 is equivalent to the assertion that, if $\log |f| \leq h$ on E, where $f \in \mathcal{N}$ and $h \in h^{1}$, then $\log |f| \leq h$ on all of \mathbb{D} (cf. [6]).

Examples Let $U=\left\{z:\left|z-\frac{1}{2}\right|<\frac{1}{2}\right\}$ and $F=U \cap\left\{z_{m, n}\right\}$.
(i) The set $E=\mathbb{D} \backslash U$ is not a set of determination (for \mathcal{N}) because the series in condition (b) of Theorem A then converges when $w=1$ (cf. Example 6.2 in [5]).
(ii) Further, even $E \cup F$ is not a set of determination because each of the sets $F_{m, n}$ contains at most 5 points and so

$$
\sum_{m, n} 2^{-n} \mathcal{Q}\left(2^{n} F_{m, n},\left[P\left(z_{m, n}, 1\right)\right]\right) \leq 5 \sum_{z_{m, n} \in F} 2^{-n}<\infty
$$

(cf. Example 1 in [6]).
(iii) On the other hand, $E \cup\left[\frac{1}{2}, 1\right)$ is a set of determination since

$$
\mathcal{Q}\left(2^{n}\left[1-2^{-n}, 1-2^{-n-1}\right],\left[P\left(z_{0, n}, 1\right)\right]\right)=\mathcal{Q}\left(\left[0, \frac{1}{2}\right], 2^{n}\right)
$$

and $\inf _{n} 2^{-n} \mathcal{Q}\left(\left[0, \frac{1}{2}\right], 2^{n}\right)>0$ because $\left[0, \frac{1}{2}\right]$ is non-polar.

2 Proof of Theorem 1

Let $G_{U}(\cdot, \cdot)$ denote the Green function of an open set U, let

$$
D_{\rho}(z)=\{\zeta:|\zeta-z|<\rho(1-|z|)\} \quad(z \in \mathbb{D}, 0<\rho<1),
$$

and let $\mathcal{A}(g, z)$ denote the mean value of a function g over the disc $D_{1 / 8}(z)$. For potential theoretic background we refer to the book [2].

Suppose firstly that condition (b) of Theorem 1 holds and let $f \in \mathcal{N}$. We will assume that $\sup _{E}|f|<\infty$, for otherwise it is trivially true that $\sup _{E}|f|=\sup _{\mathbb{D}}|f|$. Further, multiplication by a suitable constant enables us to arrange that $\sup _{E}|f| \in[0,1]$. Now let $a \in(-\infty, 0]$ be such that $a \geq \log \sup _{E}|f|$. We can write

$$
\log |f|=h_{1}-h_{2}-G_{\mathbb{D}} \mu,
$$

where h_{1} and h_{2} are positive harmonic functions and μ is a sum of unit point masses on \mathbb{D} satisfying

$$
\int(1-|z|) d \mu(z)<\infty
$$

Further, by addition to both h_{1} and h_{2}, we may assume that $h_{1} \geq 1$. By the Riesz-Herglotz theorem there is a Borel measure ν_{1} on \mathbb{T} such that

$$
h_{1}(z)=\int P(z, w) d \nu_{1}(w) \quad(z \in \mathbb{D})
$$

We know that

$$
\begin{equation*}
h_{1}-a \leq h_{2}+G_{\mathbb{D}} \mu \quad \text { on } E . \tag{2}
\end{equation*}
$$

Also,

$$
\begin{align*}
G_{\mathbb{D}}(z, \xi)-\mathcal{A}\left(G_{\mathbb{D}}(\cdot, \xi), z\right) & \leq G_{D_{1 / 8}(z)}(z, \xi) \\
& =\log \frac{(1-|z|) / 8}{|z-\xi|} \quad\left(\xi \in D_{1 / 8}(z)\right) \tag{3}
\end{align*}
$$

and $G_{\mathbb{D}}(z, \xi)-\mathcal{A}\left(G_{\mathbb{D}}(\cdot, \xi), z\right)=0$ otherwise. Let $\varepsilon \in(0,1)$ and

$$
I_{\varepsilon}=\left\{(m, n): G_{\mathbb{D}} \mu \geq \mathcal{A}\left(G_{\mathbb{D}} \mu, \cdot\right)+\varepsilon h_{1} \text { on } E_{m, n}\right\}
$$

and let I_{ε}^{\prime} denote the complementary set of pairs (m, n). (We note that $(m, n) \in I_{\varepsilon}$ whenever $E_{m, n}=\emptyset$.) If $(m, n) \in I_{\varepsilon}$, then we see from (3) that

$$
\begin{aligned}
\varepsilon h_{1}(z) & \leq G_{\mathbb{D}} \mu(z)-\mathcal{A}\left(G_{\mathbb{D}} \mu, z\right) \\
& =\int_{D_{1 / 8}(z)}\left(G_{\mathbb{D}}(z, \xi)-\mathcal{A}\left(G_{\mathbb{D}}(\cdot, \xi), z\right)\right) d \mu(\xi) \\
& \leq \int_{A_{m, n}} \log \frac{2^{-n}}{|z-\xi|} d \mu(\xi) \quad\left(z \in E_{m, n}\right),
\end{aligned}
$$

where

$$
A_{m, n}=\left\{\xi: \operatorname{dist}\left(\xi, S_{m, n}\right)<2^{-n-3}\right\}
$$

(Here we have used the fact that the diameter of $2^{n} A_{m, n}$ is less than 1.) By Harnack's inequalities there is an absolute constant $c_{1}>1$ such that $h\left(\zeta_{1}\right) \leq c_{1} h\left(\zeta_{2}\right)$ for any positive harmonic function h on \mathbb{D}, any points $\zeta_{1}, \zeta_{2} \in S_{m, n}$, and any choice of (m, n). For any $w \in \mathbb{T}$ we thus have

$$
P\left(z_{m, n}, w\right) \leq \frac{c_{1}}{\varepsilon h_{1}\left(z_{m, n}\right)} P\left(z_{m, n}, w\right) \int_{A_{m, n}} \log \frac{2^{-n}}{|z-\xi|} d \mu(\xi) \quad\left(z \in E_{m, n}\right)
$$

and so

$$
\mathcal{Q}\left(2^{n} E_{m, n},\left[P\left(z_{m, n}, w\right)\right]\right) \leq\left(\frac{c_{1}}{\varepsilon h_{1}\left(z_{m, n}\right)} P\left(z_{m, n}, w\right)+1\right) \mu\left(A_{m, n}\right)
$$

Integration of the above inequality with respect to $d \nu_{1}(w)$ yields

$$
\int \mathcal{Q}\left(2^{n} E_{m, n},\left[P\left(z_{m, n}, w\right)\right]\right) d \nu_{1}(w) \leq\left(\frac{c_{1}}{\varepsilon}+h_{1}(0)\right) \mu\left(A_{m, n}\right)
$$

Since no point of \mathbb{D} can lie in more than 4 of the sets $A_{m, n}$, and $1-|z|>2^{-n-2}$ when $z \in A_{m, n}$, we see that

$$
\begin{aligned}
& \int \sum_{(m, n) \in I_{\varepsilon}} 2^{-n} \mathcal{Q}\left(2^{n} E_{m, n},\left[P\left(z_{m, n}, w\right)\right]\right) d \nu_{1}(w) \\
& \leq 2^{4}\left(\frac{c_{1}}{\varepsilon}+h_{1}(0)\right) \int(1-|z|) d \mu(z)<\infty
\end{aligned}
$$

so

$$
\sum_{(m, n) \in I_{\varepsilon}} 2^{-n} \mathcal{Q}\left(2^{n} E_{m, n},\left[P\left(z_{m, n}, w\right)\right]\right)<\infty \text { for } \nu_{1} \text {-almost every } w \in \mathbb{T}
$$

and hence, by hypothesis,

$$
\sum_{(m, n) \in I_{\varepsilon}^{\prime}} 2^{-n} \mathcal{Q}\left(2^{n} E_{m, n},\left[P\left(z_{m, n}, w\right)\right]\right)=\infty \text { for } \nu_{1} \text {-almost every } w \in \mathbb{T} .
$$

In view of (1) we now see that

$$
\begin{equation*}
\sum_{(m, n) \in I_{\varepsilon}^{\prime}} 2^{-2 n}\left|w-z_{m, n}\right|^{-2}=\infty \text { for } \nu_{1} \text {-almost every } w \in \mathbb{T} \tag{4}
\end{equation*}
$$

For each $(m, n) \in I_{\varepsilon}^{\prime}$ we can find $\zeta_{m, n} \in E_{m, n}$ such that

$$
G_{\mathbb{D}} \mu\left(\zeta_{m, n}\right)<\mathcal{A}\left(G_{\mathbb{D}} \mu, \zeta_{m, n}\right)+\varepsilon h_{1}\left(\zeta_{m, n}\right)
$$

Let $F=\left\{\zeta_{m, n}:(m, n) \in I_{\varepsilon}^{\prime}\right\}$. Then

$$
\begin{equation*}
(1-\varepsilon) h_{1}-a \leq h_{2}+\mathcal{A}\left(G_{\mathbb{D}} \mu, \cdot\right) \quad \text { on } F, \tag{5}
\end{equation*}
$$

in view of (2). Also, by (4),

$$
\begin{equation*}
\int_{F_{\rho}}|w-z|^{-2} d \lambda(z)=\infty \quad(0<\rho<1) \tag{6}
\end{equation*}
$$

for ν_{1}-almost every $w \in \mathbb{T}$, where $F_{\rho}=\cup_{\zeta \in F} D_{\rho}(\zeta)$ and λ denotes area measure. At this point we could invoke Theorem 2 of [4], but for the sake of completeness we will extract the relevant reasoning in the next paragraph.

Let $0<\rho<1 / 8$. If $z^{\prime} \in D_{\rho}(z)$, then by the mean value inequality

$$
\begin{aligned}
G_{\mathbb{D}} \mu\left(z^{\prime}\right) & \geq \frac{1}{\pi(\rho+1 / 8)^{2}(1-|z|)^{2}} \int_{\left\{\zeta:\left|\zeta-z^{\prime}\right|<(\rho+1 / 8)(1-|z|\}\right.} G_{\mathbb{D}} \mu(\zeta) d \lambda(\zeta) \\
& \geq \frac{(1 / 8)^{2}}{(\rho+1 / 8)^{2}} \mathcal{A}\left(G_{\mathbb{D}} \mu, z\right)
\end{aligned}
$$

and by Harnack's inequalities

$$
\frac{1-\rho}{1+\rho} h_{j}(z) \leq h_{j}\left(z^{\prime}\right) \leq \frac{1+\rho}{1-\rho} h_{j}(z) \quad(j=1,2)
$$

so (5) yields

$$
\begin{equation*}
(1-\varepsilon) \frac{1-\rho}{1+\rho} h_{1}-a \leq \frac{1+\rho}{1-\rho} h_{2}+(8 \rho+1)^{2} G_{\mathbb{D}} \mu \quad \text { on } F_{\rho} . \tag{7}
\end{equation*}
$$

Condition (6) is known to ensure that the reduced function $R_{P(\cdot, w)}^{F_{\rho}}$, where

$$
R_{u}^{F_{\rho}}=\inf \left\{v: v \text { is positive and superharmonic on } \mathbb{D} \text { and } v \geq u \text { on } F_{\rho}\right\},
$$

coincides with $P(\cdot, w)$ (see Corollary 7.4.6 in [1]). Since this condition holds ν_{1}-almost everywhere on \mathbb{T}, we have

$$
R_{h_{1}}^{F_{\rho}}=\int R_{P(\cdot, w)}^{F_{\rho}} d \nu_{1}(w)=\int P(\cdot, w) d \nu_{1}(w)=h_{1} .
$$

Also, $h_{1} \geq 1$, so ν_{1} majorizes normalized arclength measure on \mathbb{T}, and we similarly have $R_{1}^{F_{\rho}} \equiv 1$. Hence, on taking reductions over F_{ρ}, we see that the inequality in (7) extends to all of \mathbb{D}. (Recall that $a \leq 0$.) We can now let $\rho \rightarrow 0+$ and $\varepsilon \rightarrow 0+$ to see that $\log |f| \leq a$ on \mathbb{D}. It is now clear that (b) implies (a).

Next suppose that condition (b) of Theorem 1 fails. Then there exists $w_{0} \in \mathbb{T}$ such that

$$
\begin{equation*}
\sum_{m, n} 2^{-n} q_{m, n}<\infty, \text { where } q_{m, n}=\mathcal{Q}\left(2^{n} E_{m, n},\left[P\left(z_{m, n}, w_{0}\right)\right]\right) . \tag{8}
\end{equation*}
$$

For each m, n we can choose points $\xi_{k, m, n}\left(k=1, \ldots, q_{m, n}\right)$ such that

$$
\begin{equation*}
\sum_{k=1}^{q_{m, n}} \log \frac{2^{-n}}{\left|z-\xi_{k, m, n}\right|} \geq P\left(z_{m, n}, w_{0}\right)-1 \quad\left(z \in E_{m, n}\right), \tag{9}
\end{equation*}
$$

and without loss of generality we can assume that $\xi_{k, m, n}$ lies in the convex hull $\operatorname{conv}\left(S_{m, n}\right)$ of $S_{m, n}$. In view of (8), the Blaschke product

$$
B(z)=\prod_{k, m, n} \frac{\left|\xi_{k, m, n}\right|}{\xi_{k, m, n}}\left(\frac{\xi_{k, m, n}-z}{1-z \bar{\xi}_{k, m, n}}\right)
$$

converges on \mathbb{D}. There is an absolute constant $c_{2}>0$ such that

$$
G_{\mathbb{D}}(z, \xi) \geq c_{2} \log \frac{2^{-n}}{|\xi-z|} \quad\left(z, \xi \in \operatorname{conv}\left(S_{m, n}\right)\right)
$$

for any pair (m, n). For a given pair $\left(m_{0}, n_{0}\right)$ we thus have

$$
\begin{aligned}
-\log |B(z)| & =\sum_{k, m, n} G_{\mathbb{D}}\left(z, \xi_{k, m, n}\right) \geq \sum_{k=1}^{q_{m_{0}, n_{0}}} G_{\mathbb{D}}\left(z, \xi_{k, m_{0}, n_{0}}\right) \\
& \geq c_{2} \sum_{k=1}^{q_{m_{0}, n_{0}}} \log \frac{2^{-n_{0}}}{\left|\xi_{k, m_{0}, n_{0}}-z\right|} \quad\left(z \in S_{m_{0}, n_{0}}\right)
\end{aligned}
$$

so, by (9),

$$
\begin{equation*}
c_{2}-\log |B(z)| \geq c_{2} P\left(z_{m_{0}, n_{0}}, w_{0}\right) \geq \frac{c_{2}}{c_{1}} P\left(z, w_{0}\right) \quad\left(z \in E_{m_{0}, n_{0}}\right) . \tag{10}
\end{equation*}
$$

Let

$$
f(z)=B(z) \exp \left(\frac{c_{2}}{c_{1}}\left(\frac{w_{0}+z}{w_{0}-z}\right)\right) \quad(z \in \mathbb{D}) .
$$

Then $\log |f(z)| \leq\left(c_{2} / c_{1}\right) P\left(z, w_{0}\right)$, so $f \in \mathcal{N}$, and certainly f is unbounded on \mathbb{D}. However, $|f| \leq e^{c_{2}}$ on E, by (10). Hence condition (a) of Theorem 1 also fails.

References

[1] H. Aikawa and M. Essén, Potential theory - selected topics. Lecture Notes in Math. 1633. Springer, Berlin, 1996.
[2] D. H. Armitage and S. J. Gardiner, Classical potential theory. Springer, London, 2001.
[3] L. Brown, A. Shields and K. Zeller, "On absolutely convergent exponential sums", Trans. Amer. Math. Soc. 96 (1960), 162-183.
[4] S. J. Gardiner, "Sets of determination for harmonic functions", Trans. Amer. Math. Soc. 338 (1993), 233-243.
[5] W. K. Hayman and T. J. Lyons, "Bases for positive continuous functions", J. London Math. Soc. (2) 42 (1990), 292-308.
[6] X. Massaneda and P. J. Thomas, "Sampling sets for the Nevanlinna class", Rev. Mat. Iberoam. 24 (2008), 353-385.
[7] A. Stray, "Simultaneous approximation in function spaces", in: Approximation, complex analysis, and potential theory (Montreal, QC, 2000), pp.239-261, Kluwer, Dordrecht, 2001.

School of Mathematical Sciences
University College Dublin
Dublin 4, Ireland.
e-mail: stephen.gardiner@ucd.ie

[^0]: ${ }^{0} 2000$ Mathematics Subject Classification 30D50, 30C80, 31A15.
 This research was supported by Science Foundation Ireland under Grant 09/RFP/MTH2149 and is also part of the programme of the ESF Network "Harmonic and Complex Analysis and Applications" (HCAA).

