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Abstract

Many recent approaches to modeling social networks havesgszrl on embed-
ding the actors in a latent “social space”. Links are moreljikor actors that are
close in social space than for actors that are distant irakspace. In particular,
the Latent Position Cluster Model (LPCM) [1] allows for eiqil modelling of
the clustering that is exhibited in many network datasetswéVer, inference for
the LPCM model via MCMC is cumbersome and scaling of this mhoaléarge
or even medium size networks with many interacting nodescisadlenge. Vari-
ational Bayesian methods offer one solution to this problekn approximate,
closed form posterior is formed, with unknown variationargmeters. These
parameters are tuned to minimize the Kullback-Leibler djeace between the
approximate variational posterior and the true postewbich known only up to
proportionality. The variational Bayesian approach isvahdo give a computa-
tionally efficient way of fitting the LPCM. The approach is demstrated on a
number of data sets and it is shown to give a good fit.

1 The Latent Position Cluster Model

Handcock et al. [1] developed the Latent Position Clusted®@LPCM) for social network data.
The model involves locating each actor in a latent sociatsmauch that actors who are close in
social space have a higher probability to form links tharséhdistant in the social space. This
model extended the Latent Space Model (LSM) [2] by incorpiogaa Gaussian mixture model
structure for the latent positions of actors in social spa@@ccommodate the clustering of nodes
in the network. Therefore clusters are included expliditlthe model rather that found by post-hoc
analysis of the network model. A strength of the latent d®pace model is that it automatically
represents link transitivity.

We develop a variational Bayesian inference procedure fipraximating the posterior distribu-
tion of the parameters in the LPCM. This approach providesmdational tools to facilitate the
application of the LPCM to larger networks than is currembssible using the existing MCMC
methodology for model fitting.

In the LPCM, a binary interactions data matdixis modelled using logistic regression in which
the probability of a link between two nodes depends on thiwdéig between the nodes in the latent
space:

log-oddsy; ; = 1|z, 25, 8) = 5 — |z — 2 (1)
where( is an intercept parameter afd — z;| is the Euclidean distance between the latent positions

of nodes: andj. In addition, the links are assumed to be independent donditon the latent
positions of the actors in the latent space.



To represent the clustering, the latent positichsre modeled as coming from a mixture Gf
multivariate normal distributions:

G
zi~ > AgMVN (g, 0210) )

g=1

where)\, is the probability that actarbelongs to theg/*" group, so that, > 0,{g =1,...G} and
Zle Ag = 1, and/, is thed x d identity matrix.

The parameter8, \, o andu are also given prior distributions. The full set of hierdeet priors is:

G
zio~ > AMVNG(pg, 07 1y) ©)
g=1
A~ Dirichlet(v) (4)
B ~ Normalg,y?) 5)
tg ~ MVN4(0,w?1,) (6)
03 ~ oglnv — 2 (7

The posterior is then given by:

p = p(Z,A,ﬂ,,U,,CTﬂY)
= Cp(YM))?Z)p(ZP‘v/J'vJQId)
PA)p(BI€, ¥*)p(u]0, w* Ia)p(o?|og, ) ®)

The constan€ is unknown so that the posterior is only known up to propodidy. ¢, 1%, v, 03, o
andw? are fixed hyperparameters.

1.1 MCMC Based Inference

To facilitate MCMC based inference, latent indicator vesti, , Ko, ..., Ky are introduced; there
is one such vector per actor, with each element of the veetioglzero, except for a one in the entry
corresponding to the group to which that actor belongs. ©hm of the latent vector& therefore
K; ~ Multinomial(1, \) fori =1,2,..., N.

In this augmented setup, sampled positighare therefore “hard clustered” to the groups. Samples
of {Z, K, \, 3, u,0} are drawn from the posterior from Equation (8) using Markdwai@ Monte
Carlo; for details see [1, 3].

This approach to fitting the LPCM is computationally very erpive. Using the R packadptent-
net [3], for even the very small example of Sampson’s monks de8anpdes; see Section 3.2) the
package requires over a minute to generate just 4,000 sarftpha the posterior. Convergence is
difficult to assess and mixing is difficult to optimise as thedal involves many strongly dependent
terms. The computational overhead scale©é&?) so that MCMC based inference on large net-
works is extremely expensive in terms of computation. Alidpolatentnet works well with small
networks, modelling networks with more than a couple of maddhodes is impractical.

2 Variational Bayesian Inference

We loosely follow the method of [4] who use a variational apgmation to fit a mixed-membership
stochastic blockmodel; however we find a variational apjpnaxion for the LPCM. In fact, this work
is prompted in that paper when the authors state “It wouldnberésting to develop a variational
algorithm for the latent space models”.

A closed form distributiong(Z, A, 3, 1, 0%|Y") is formed, with unknown variational parameters.
These parameters are then optimised by minimization of thiéb&ck-Leibler divergence from
to the true posterigp given in Equation (8), which is known only up to proportiabal



This minimization is achieved via an iterative search dthar that is similar to the Expectation-
Maximisation (EM) algorithm. The computational overheaduired to find the optimal variational
posterior is far less than for sampling based methods likeVMi@CThis variational posterior is a
closed-form approximation to the true posterior and candeel fior subsequent inference for model
parameters.

The Kullback-Leibler divergencey{ L) is defined by
KL = Eqy[log(q)] — Eq[log(p)]- ©)

Minimization of K L does not require knowledge of the normalization constattie@frue posterior
becausd,[log(p/C)] = E4llog(p)] — log C for all C' > 0.

2.1 Specification of the Variational Model

Using the restricted or quasi variational Bayesian apgroae propose a variational posterior in
the same form as the prior, but with unknown variational peeters. We distinguish the variational
parameters with by putting a tilde over them. The variatigaterior is of the form:

q = q(Z?AaﬂmuﬂUQ‘Y)
a(Z|Z,5%)q(K|Na(\|P)q(BI€, ¥?)
q(ul7l, %)q(0|a). (10)

Note that the above form afis fully factorized and this is also known as a mean-field apijpna-
tion. Such a model allows for analytical integrations to bef@grmed in computing the expectations
required when evaluating the Kullback-Leibler divergemcEquation (9).

A more obvious variational posterior would comprise onlgtdbutions on the latent positioris,

the cluster membership indicatdisand the intercept termfi. However, we wish to capture as much

of the detail in the original MCMC posterior as possible, tethe need for the inclusion of the other

terms. Without these, our variational posterior would méoim us on the size and location of the

groups/clusters. Equation (10) represents a fully Bayegiaiational posterior. As a general result,

the factorised variational posterior gives an approxiorato the true posterior that has support that
is too compact [5, Section 10.1.2].

2.2 Updating the Variational Parameters

The variational parameters are tuned to minimise the KakHzeibler divergence from to p. The

KL divergence is computed and then differentiated with eespo each of the variational parame-
ters. An initial configuration of the variational parameterchosen (see Section 4.1). The algorithm
then iterates around each set of variational parametersiin Within each set the algorithm runs
randomly through the sequence of variational parametetsv@nimises the Kullback-Leibler di-
vergence. In each case, all other variational parameterfied fixed and the Kullback-Leibler
divergence is optimised with respect to the variationahpaater being updated. Convergence to a
steady state (local minimum on the KL surface) is reachest afinumber of iterations, depending
on the convergence criterion used.

For the variational parameteks7), @2, a closed form update equation was found. For all other vari-
ational parameters, numerical optimisation was requitefdist bracketing-and-bisection algorithm
was used to find the minimum KL divergence in each case. Theal@révative of the KL divergence
as a function of each variational parameter was computedrendgalue of the parameter for which
this function is zero gives the updated estimate. Howetherbracketing and bisection algorithm
was found to be unstable for the latent positighand the intercept parametertherefore a slower,
but more robust, quasi-Newton method was employed.

2.2.1 Algorithm

The variational inference algorithm proceeds as outlireddva. The analytical updates are available
when the partial derivative of Kullback-Leibler divergene.r.t the term being updated as set equal
to zero is re-expressible with the updated term only on ode. sDtherwise, a more complicated



equation with multiple instances of the updated term is band numerical optimisation must be
used. In cases where the term being updated is a vector orix thatentries are cycled through in

arandom order.

1. initialize 2,62, \g,7,& 0% 0,02, 6, for all ig.
2. repeat in a random zed order
3. updat e g Vi a quasi - Newt on.
4. updat e %2 via bisection.
5. update Z via quasi - Newt o
6. updat e q via anal yti cal funct i on.
7. updat e via bisection. )
8. updat e >\ via anal ytical function.
9. update @ via analytical function.
10. update & via bjisection.
11. update » via bisection.
12. until convergence

2.3 Expectation of the Log-Likelihood

A tractable approximation of the expected log-likelihosddierived by using a first order Taylor
expansion three times to get:

E,[log(p(Y[5,2))]

1

1

1

3 Examples

3.1 Simulated Data
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Application of the variational inference method was apptesimulated data composed of 3 groups
in a 2-D social space. The binary interactions matfiwas simulated in the following manner:
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fori,7 = 1,..., N and with K constructed such that it assigns (approximate§f} of the actors
each to groups 1 and 2 and the rest to group 3; this corresgonsistting\ = [A1, A2, A3] =
[0.25,0.25,0.50].

The advantage of using simulated data is that the grount islinown; however we are simulating
from the exact model that we are then fitting to the data. Wecoampare results obtained using our
variational method to the values used in generating thelaten data. Over repeated experiments,
our method performs very well at recovering the data geimgrahechanism. Again, the caveat is
that we are fitting the exact model that was used to generatddta. We also use this dataset to
explore the impact of the initialization procedure on parfance in Section 4.1.

3.2 Sampson’s Monks Data

The much analysed Sampson’s monks dataset [6] serves agdiarféasting ground for our inference
methodology. Eighteen monks in a cloister were each askeidrsetric questions. As per [1], we
focus on the relationship “liking”. The data are Bhx 18 matrix with ones corresponding to a links
and zeros corresponding to non-links.

We compare our variational results with the MCMC result ot#td vialatentnet. Figure 1 shows
the default posterior plot generated uslatentnet along with our variational equivalent. The plot
depicts the posterior modal positions with a pie chart famhemonk depicting the posterior prob-
ability of that monk belonging to each of the three groupse Tihks between monks are depicted
with grey arrows. The group standard deviations in the taspace are indicated with a coloured
circle, centred on the group mean posterior position, whs¢hdicated with a coloured cross.

It is clear that our approximate method has captured thengabkstructure of the MCMC posterior.
A posteriori, the monks are grouped into the same clusters and the ladsitiops have a similar
pattern in the social space. The key differences to notehatethhe variational inference clusters
are not as far apart and that the membership probabilityovgetre closer to a hard clustering. In
fact, these two variations from the MCMC result appear @tittory and are possible due to the
factorised structure of the variational approximation.

Latentnet Solution Variational-Bayes Solution
Samplke - lateni(d=2, G =3)
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Figure 1: Posterior Positions of Sampson’s monks datasieiy MCMC and the Variational method.
The latter is rotated via a Procrustes transformation tiitiae comparison with the former. The
initialization method used in the variational algorithmsathe Fruchterman-Reingold method (see
Section 4.1).

3.3 An Egocentric Facebook Network

We examine an egocentric network in which the actors are meesrdf the social networking web-
site Facebook. The egocentric network for a single actora(ghor of this paper) comprises the
81 “Facebook friends” with which the actor is linked. We remdhis central actor and explore



the structure of the links between the remaining nodes. Tues cluster nicely into several so-
cial groups which have a clear intuitive interpretation.e®ix groups are: school (black), college
(green), former housemates (dark blue), partners frieligist plue), family (red) and Norwegians

(purple).

The groups interact a varying amount with all groups exceposl interacting heavily with a

central figure (the author’s partner). The Norwegians atkeonly with each other and this cen-
tral actor. A single actor (author’s brother) joins familgdaschool, with school otherwise dis-
connected from the rest. The data was generated using adeédcapplication that is available

at http://apps.facebook. com mynet phaseone/ MCMC and variational results are
compared in Figure 2.

Latentnet Solution Variational-Bayes Solution
¥ ~lateni(G =6, 4= 2)
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Figure 2: Posterior Positions of a Facebook dataset, usialyil and the Variational method. The
latter is rotated via a Procrustes transformation to fatéi comparison with the former. MCMC
inference took approximately 28 minutes; the variationgbathm converged in just over 2.5 min-
utes.

4 Assessing the Variational Approximation

4.1 Impact of Initialization Method

Good initialization of the variational parameters is caldb the method because the Kullback-
Leibler divergence to the true posterior may contain mamgalleninima. Starting the algorithm
at different values for the variational parameters and tipggSection 2.2) demonstrates that the
algorithm can converge to different minima given differstarting values. There are two desirable
criteria for the initial configuration: the initializatioprocedure should be fast and the resultant
configuration should be as close as possible to the globatmm; this should minimise the chances
of the iterative updates becoming stuck in a local minimum.

We experimented with four options for the initial configuoat (1) The ground truth, when available
(2) Estimating positions via multidimensional scaling bétinteractions matrix, then clustering
usingmclust [7]. (3) Positions via the Fruchterman-Reingold [8] methtitecnmclust clustering
(4) Positions and clustering via output frdatentnet.

Method (1) is available only when exploring simulated date(Section 3.1). The main advantage
of method (2) is that there is no randomness involved; i.e ntiethod delivers the same initial
configuration under multiple re-runs. Results for the lag@ositions are similar to thiatentnet
MCMC posterior. Method (3) initializes the positions in awally pleasing configuration. Method
(4) serves only for comparison with the existing MCMC inface and is impractical; if MCMC
inference has already been performed then our variatiqgm@aioaimation has little extra to offer.
The use of the MCMC modal output to initialize our variatibrreethod reveals that our method is
highly susceptible to convergence to a local minimum. Whennionks example was initialized



Table 1: Means and standard deviations for the expectetideliaood under multiple simulations
given various initialization techniques.
Ground truth| MDS FR
mean -10.06 | -20.87 | -11.73
sd 0.58| 4.44| 0.86

Table 2: The multi-run parameter mean and standard denifdiomean-squared-errors given vari-
ous initialization techniques. Ground truth is startinghathe true values used to generate the data,
MDS is multidimensional scaling with clustering and FR isi€literman-Reingold with clustering.

Ground truth MDS FR
MSE MSE MSE
mean sd mean sd mean sd
Z 1 0.1159 6.198 x 1072 | 1.664 0.567 1.496 0.748
B |4.690 x 1072 8.642 x 10~° | 0.335 0.136 6.672 x 1072 1.779 x 1072
| 7.545x 1072 0.344 2.478 1.966 0.402 0.346
02 [ 1.161 x 1072 3.804 x 1075 | 1.168 x 1072 1.369 x 10~* | 1.162 x 102 2.584 x 10~?
A 4025 x10°% 7921 x10°6 | 7282 x 107% 1.741 x 1073 | 3.846 x 10-* 1.378 x 1073

using thdatentnet MCMC posterior, the variational result was closer to the MCkésult than that
depicted in Figure 1.

We performed re-runs of the simulated data example with 8gg@nd 20 actors and computed the
approximate expected log-likelihod L L] (Equation (11)) for the first three initialization options
(ground truth, multidimensional scaling (MDS), and Friechtan-Reingold (FR)). Crude initializa-
tion using completely random values for the variationalapagters invariably led to convergence
to markedly different configurations, with far low&{LL] values. We compare the more useful
initialization procedures with initialization using theogind truth. The mean and standard deviation
of the expected log-likelihoods over 100 runs using theowariinitialization methods is given in
Table 1. The mean and standard deviations for the mean sheaes of the latent positior’s and
model parameter§3, 1, 2, \) are given in Table 2.

In our experience with the various initialization methotte Fruchterman-Reingold method leads
to good parameter estimates and prediction of both linksnamdlinks (see Section 4.3). The mul-
tidimensional scaling method leads to a small improvemeptédicting the non-links and a loss in
predictive performance for the links.

4.2 Scalability and Speed

As with MCMC, our algorithm scales &(N?). However, the variational method is far quicker than
MCMC, involving fewer computations as it is not sampling é&ésConvergence of the variational
algorithm for the monks dataset took approximately 2 sesamda machine that runs tketentnet
MCMC version with 4000 iterations (the default number) ingg&¢onds. For the Facebook data, the
times were 156 seconds and 1697 seconds respectively.

For a simulated dataset involving 300 nodes and 9 groupslgarithm performed 100 variational
update iterations in around 700 seconds on a standard P@g the criterion that a parameter is
deemed to have converged to an optimal value when the changelated parameters falls below
10719, the variational algorithm converged in 54 iterations. €hde is written in C and called from
R. The MCMC version ofatentnet was impractical for this size of network.

4.3 Predictive Probability of a Link

Model fit was assessed by splitting the data into links andlimis and plotting the posterior predic-
tive probability of a link between actors for both the linksdanon-links. This provided an intuitive
technique for assessing the model fit. If the zeros in theaot®ns data matri¥” are associated
with posterior predictive probabilities that are distiieth close to zero then the model is doing a



good job of modelling the non-links. The converse is alse fiar the links. Figure 3 shows the
posterior predictive fits to the Facebook dataset.

This figure, along with Figures 1 and 2, suggest that the tianal method returns results that are
closer to the MCMC posterior for highé¥.

MCMC Predict Fit Variational Predict Fit

o

o
W

o

Predicted probability of a link Predicted probability of a link

Figure 3: Smoothed density plots of the posterior predégtikobability of a link, for the Facebook
dataset. The left side plot was obtained using MCMC and tjiet side plot using the variational
method. The posterior predictive probabilities are sgltading to whether the data shows a link
(red density) or not (black density). The faster variationathod performs almost identically to the
MCMC method.

5 Discussion

We have presented a variational inference routine to tabldecomputational problems associated
with Bayesian analysis of social networks using the Latesitibn Cluster Model (LPCM). Al-
though our method is approximate but it captures the esdgiofi the current standard methodology
with much less computational burden.

However, our algorithm converges in a short number of fasattons compared to sampling based
methods, so we can analyse larger graphs than are possitge thhe MCMC method. Our con-
tribution is to the inference methodology for the LPCM rattiean development of a new model
for network data. Therefore, we have only presented resaltgparing our variational method to
MCMC. Also for this reason - and for brevity - we do not presertdel choice diagnostics. Al-
though we have only discussed our method in terms of binakydata, our method extends readily
to other network data types.

We experimented with various initialization techniquestfte variational parameters. Good initial
values are crucial as the method is prone to convergencetabrhinimum of the Kullback-Leibler
divergence. In a simulation study, we compare two competiitglization methods with each
other and with initialization to the ground truth valuesdisegenerate the data. Based on the mean-
squared error diagnostics in Table (2) We find that the Faraiin-Reingold method performs
better than the multidimensional scaling technique.

The variational inference methodology can be extended ¢owatt for other network link types,
the inclusion of covariate data on the nodes and richer spdath as those including sender and
receiver effects. We have stated that our method is pronerteetgence to local minima of the
Kullback-Leibler divergence; a test for convergence todlmbal minimum is not straightforward
but would present a significant advancement of the methggoldMore sophisticated and compu-
tationally efficient initialization methods would be berwéi. Parallelization of the C code written
to implement our method may increase the practical applicabf our method to very large net-
works. We envisage building a publicly available R packageedrform the variational inference
method outlined herein.
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