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ABSTRACT 
 

Recent interest in cooling towers as a mechanism for producing chilled water, together with the evolutionof radiant 
cooling, have prompted a review of evaporative cooling in temperate maritime climates. The thermal efficiency of 
such systems is a key parameter, as a measure of the degree to which the system has succeeded in exploiting the 
cooling potential of the ambient air. The feasibility of this concept depends largely however, on achieving low 
approach water temperatures within an appropriate cooling tower, at acceptable levels of energy performance. 
Previous experimental work for a full scale evaporative cooling system has shown that it is possible to produce 
cooling water at low process approach conditions (1-3 K), at the higher temperatures required in radiant and 
displacement systems (14-18°C), with varying levels of annual availability in different temperate climate locations. 
For such conditions, evaporative cooling has the potential to offer an alternative approach for producing chilled 
water, particularly in temperate climates, where conventional mechanical air-conditioning systems can, for certain 
buildings, be considered to be an over engineered solution but where passive cooling is insufficient to offset cooling 
loads. The current paper describes the development of a mathematical model which analysesthe behavior of a low 
approach open evaporative cooling tower. The model is used to carry out a series of sensitivity studies assessing the 
performance of the cooling tower subject to various weather and climatic boundary conditions. 

 
 

1. INTRODUCTION 
 

More than 40% of energy consumption in commercial buildings, especially in offices, can be attributed to HVAC 
systems. This figure varies fordifferent countries and different types of commercial buildings, for instance energy 
consumption of HVAC systems in offices in the UK and the US accounting for 55% and 48%, respectively (Eicker 
2009, Pérez-Lombard et al. 2008, Novoselac and Srebric 2002). Moreover, the rapidly growing use of air-
conditioning systems in temperature climates as a major contributortoelectrical energy consumption has lead to 
increased concerns in this matter. In the European Union (EU), for instance, it is reported the growth in central air-
conditioning floor area has increased by 200% from 1990 to 2002 and this trend is predicted to continue by 60% to 
2020 (Adnot 2002).Current predictions estimate that electricity consumption associated with the conditioning of 
buildings in the EU will increase to 50% by 2020 (Eicker 2009). On the other hand, the increased probability of 
higher ambient temperatures in the future due to global warming, leading towards hotter summers,is likely to lead 
togreater cooling demands in buildings inhitherto temperature climates(Poirrit et al. 2012, Smith et al. 2011). 
Consequently providingmore effective cooling systemsis crucialforreduction of energy consumption and life-cost of 
buildings.  
 
Recent interest in radiant cooling systems and displacement ventilation, as a means of building cooling in temperate 
climates, has prompted renewed interest in evaporative cooling systems or cooling towers for generating cooling 
water (Dieckmann et al. 2009, Olesen 2008, Harvey 2006, Strand 2003). Evaporative cooling has the potential to 
offer an efficient approach for producing chilled water for such systems, particularly in temperate climates, where 
conventional mechanical air-conditioning systems are, for certain buildings, sometimes considered to be an over 
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Strand2003).Water-side evaporative cooling systemsare most effectively utilized when integrated with either a 
chilled floor or ceiling systems and in certain cases a displacement ventilation system, due to the higher cooling 
water temperatures (14-18˚C) associated with these systems(Costelloe and Finn2003). 
 
In the current paper, sensitivity studies utilizing a mathematical model of an open cooling tower are described. The 
model is based on theε-NTUmethod for modeling tower heat and mass transfer, but also takes into account the water 
loss due to evaporation in the tower. Themathematical model is evaluated against experimental data taken from an 
open tower (Costelloe and Finn2009, Simpson and Sherwood 1946) and is described in detail elsewhere (Nasrabadi 
et al. 2012). The sensitivity studies are aimed at assessing the performance of the cooling tower subject to different 
weather boundary, thereby examining its performance subject to different weather and climatic conditions. 
 
 

2. LITERATURE REVIEW 
 

There are various well-known methods for modeling the heat and mass transfer processes associated with wet 
cooling towers including: the Merkel method, the Poppe method and the effectiveness–NTU method (Jaber and 
Webb 1989, Kloppers and Kroger 2005). The earliest practical use of differential equations to describe the heat and 
mass transfer within cooling towers was presented by Merkel (Kloppers and Kroger 2005). The Merkel method 
makes use of some important assumptions (Kloppers and Kroger 2005, Khan and Zubair 2003) including: assuming 
that the Lewis factoris equal to unity, assuming that the air exiting from the tower is saturated, neglecting the 
reduction of water flow rate due to evaporation in the tower water mass balance and assuming that the specific heat 
capacity of air-stream mixture at constant pressure is same as that of the dry air. 
 
Although the effectiveness-NTU relied on the same simplifying assumptions as outlined in the Merkel method, the 
Poppe model, developed by Poppe and Rogener (1991), does not use these assumptions (Kloppers and Kroger 
2005). In Poppe method, the Lewis factor estimated according to the Bosnjakovic relation and then by using a fourth 
order Runge-Kutta approach water outlet temperature and heat transfer calculated (Kloppers and Kroger 2003). It is 
shown that the results of Poppe method are better than the Merkel or ε-NTU method for high temperature heat 
rejection applications (Kloppers and Kroger2003 & 2005). 
 
Khan and Zubair (2003)investigated the effect of the ratio of mass flow rate of water to mass flow rate of moist air 
(𝑚!/𝑚!"#$%  !"#)on the performance of a wet cooling tower. The tower, which had a Lewis factor equal to 0.9 and 
where itsNTU was estimated by means of an empirical equation based on the measurements of Simpson and 
Sherwood (1946). Boundary conditions included inlet air dry bulb and wet bulb temperatures of 29°C and 21.1°C, 
respectively and the inlet water temperature was 28.7°C (Khan and Zubair2003). It is shown in different values of 
mass flow rate ratio, latent heat transfer or evaporation dominated the total heat rejection and this factor increased as 
𝑚!/𝑚!"#$%  !"# ≥ 1(Khan and Zubair2003). 
 
A full scale evaporative cooling system including: an open counter flow cooling tower, a primary and secondary 
circuit with an intermediate heat exchanger (Fig. 1) was designed by Costelloe and Finn (2003). It is shown this 
system can successfully deliver high temperature (14-18°C) chilled water for radiant cooling or chilled ceiling 
cooling systems which are used in temperate climate such as Dublin, Ireland (Costelloe and Finn 2003). The 
performance of this system on different water flow rate is investigated and it is indicated the COP of the cooling 
tower varied between 6 and 16, which are better than the average COP of standard air cooled machines (Costelloe 
and Finn 2007). 
 
 

3. MATHEMATICAL MODEL 
 

The mathematical model used to carry out the sensitivity studies described in the current paper is outlined in detail 
elsewhere (Nasrabadi et al. 2012). Briefly, the model is based on a mechanical draft counter-flow cooling tower, as 
shown in Fig. 1, using a corrected effectiveness-NTUapproach.In this method, the Lewis factor is assumed to unity 
and the exiting air is considered saturated, but in contrast to standard effectiveness-NTU method (Kloppersand 
Kroger 2003)or the Merkel method (Kloppersand Kroger 2003), the change in tower water mass flow rate due to 
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estimated in each step of the numerical calculation. 
 

 

Figure 1: Schematic of an indirect evaporative cooling system and the associated cooling tower (Costelloe, 2009) 

 
Equation 1, which is used to determine the heat transfer rate in the Merkel and ε-NTU methods,can be written as 
follows: 

𝑄 = 𝑚!𝑐!"(𝑇!" − 𝑇!")(1) 

As can be seen in equation (1), the loss of water mass flow rate is ignored and thus in contrast to Poppe method, the 
Merkel and ε-NTU methods predict lower heat rejection rate (Kroger 2004). In order to correct for the Merkel 
assumption that ignores the evaporation of cooling tower water, the mass flow rate due to evaporation is calculated 
as follows: 

mevap=  ma× ωo-­‐ωi  (2) 

Using Equation 2, Equation 1 can be modified to account for tower evaporation, as follows: 

𝑄 = 𝑚!"𝑐!"𝑇!" − (𝑚!" −𝑚!"#$)𝐶!"𝑇!"(3) 

When Equation (3) is used for the calculation of heat transfer, estimates by the improved Merkel method and Poppe 
method are quite similar (Kloppersand Kroger 2003). 
 
The wet cooling tower coefficient or the Merkel number (𝑀𝑒) is an important factor for calculation of the number of 
transfer units in cooling towers. Various researchers have examined this issue, including Khan and Zubair (2001). 
Khan and Zubair showedthat the cooling tower coefficient can be calculated by: 

𝑀𝑒 = 𝐾𝑎𝑉/𝐿 = 𝑐× !!
!!

!
                                                      (4) 

wherec and n are empirical constants.Costelloe and Finn (2009) developed an empirical relation for thewet cooling 
tower coefficient or the Merkel number and for the open cooling tower described in Fig. 1. It was found to be:   

𝑀𝑒 = 1.3×(!!
!!
)!!.!!(5) 

When the inlet conditions, including the mass flow rate of water and air, the dry bulb and wet bulb temperatures of 
inlet air and the inlet water temperature are known, the outlet water temperature and the outlet air temperature can 
be calculated, thereby allowing the effectiveness and heat transfer for the cooling tower to be determined.   
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mechanical draft tower, as shown in Figure 1 and is described elsewhere by Costelloe and Finn (2009). Using the 
data from Table 1, a comparison between the calculated outlet water temperatures and the experimental data is 
presented in Figure2. The largest difference in calculation of water temperatures can be seen to be 0.28 K (Table 1), 
equivalent to an error of less than ±2.5% (as per Figure2), referenced with respect to 0oC. 

Table 1: Comparison between the results of model and experimental data (Costelloeand Finn,2009) 

Measured data by Costello & Finn (2009) Results from current model 
Test 
No 

DBT 
(ᵒC) 

RH 
(%) 

Water Inlet 
Temp(ᵒC) 

Water Outlet 
Temp. (ᵒC) 

Water Outlet 
Temp. (ᵒC) 

Water Outlet Temp. 
Difference 

1 14.09 57.69 15.06 12.89 12.82 -0.07 
2 15.36 51.61 16.21 13.37 13.24 -0.13 
3 14.99 60.18 14.61 12.69 12.89 0.20 
4 14.98 60.95 14.93 12.70 12.86 0.16 
5 15.86 57.0 15.30 13.00 13.28 0.28 
6 13.95 66.67 15.11 12.35 12.23 -0.12 
7 14.26 64.31 15.16 12.36 12.42 0.06 
8 14.76 62.93 15.55 12.35 12.37 0.02 
9 14.91 59.80 15.97 11.91 11.92 0.01 

Table 2 presents measured data for alternative high temperature heat rejection applications in a cooling tower 
analysedby Simpson and Sherwood (1946). In this table, a comparison between air and water outlet temperature are 
shown. The largest discrepancy for air and water are 0.83 and 0.57 K respectively, which is equivalent to less than 
±2.4% (Figure2). 

Table 2: Comparison between current model and measured data (Simpson and Sherwood, 1946) 

Measured data by Simpson and Sherwood (1946) Results from current model 

Case 𝐦𝐚,𝐢𝐧 
(kg/s) 

𝐦𝐰,𝐢𝐧 
(kg/s) 

𝐓𝐝𝐛,𝐢𝐧 
(ᵒC ) 

𝐓𝐰𝐛,𝐢𝐧 
(ᵒC ) 

𝐓𝐰,𝐢𝐧 
(ᵒC ) 

𝐓𝐰,𝐨𝐮𝐭 
(ᵒC ) 

𝐓𝐰𝐛,𝐨𝐮𝐭 
(ᵒC ) 

𝐓𝐰,𝐨𝐮𝐭 
(ᵒC ) 

Temp. 
Dif. 

𝐓𝐰𝐛,𝐨𝐮𝐭 
(ᵒC ) 

Temp. 
Dif. 

1 1.158 0.754 34.11 21.11 41.44 26 31.16 26.29 0.29 30.49 -0.67 
2 1.187 1.259 29 21.11 28.72 24.22 26.17 24.78 0.56 25.59 -0.58 
3 1.187 1.259 30.50 21.11 34.50 26.22 29.90 26.61 0.39 29.32 -0.58 
4 1.2653 1.008 35 26.67 38.78 29.33 32.89 29.87 0.54 32.45 -0.44 
5 1.250 1.008 35 26.67 38.78 29.33 32.89 29.90 0.57 32.49 -0.40 
6 1.1871 1.0088 28.83 21.11 33.22 25.50 28.44 25.26 -0.24 27.97 -0.47 
7 1.1653 1.0088 31.78 26.67 34.39 29 31.22 28.95 -0.05 30.69 -0.53 
8 1.1584 0.7548 35 23.89 43.61 27.89 32.78 28.24 0.35 32.48 -0.3 
9 1.2653 1.0088 35 26.67 38.78 29.33 33.28 29.87 0.54 32.45 -0.83 

10 1.1566 0.7548 35.72 26.67 43.06 29.72 33.89 29.93 0.21 33.46 -0.43 
 
 

 
 

4. SENSITIVITY STUDIES 
 
The mathematical model described in Section 3 was used for a series of sensitivity studies aimed at examining the 
performance of the cooling tower for different climatic design conditions that could be expected for temperate 
climates. In order to study the performance of such a low temperature cooling tower subject to different ambient 
conditions, the necessary boundary conditions should first be determined. A control volume of cooling tower with 
boundary conditions is shown in Figure 3. Applying the first law of thermodynamicsto the tower under conditions of 
steady state steady flow (SSSF), the following expression can be written: 
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Figure2:Comparison oftower water outlet temperature against experimentaldata (Costelloe and Finn 2009, Simpson 
and Sherwood 1946) 

 
𝑚!×𝑖!"#$%_!" +𝑚!"#_!"×𝑖!"#_!" = 𝑚!"#_!" +𝑚!"#$ ×𝑖!"#_!"# + 𝑚! −𝑚!"#$ ×𝑖!"#$%_!"#(6) 

where𝑚!"# and𝑖!"# are the mass flow rate and enthalpy of air-water vapor mixture respectively. 

Equation (6) can be rewritten as: 

𝑚!×𝑖!"#$%_!" − 𝑚! −𝑚!"#$ ×𝑖!"#$%_!"# = 𝑚!"#_!" +𝑚!"#$ ×𝑖!"#_!"# −𝑚!"#_!"×𝑖!"#_!"(7) 
 
where𝑚!"# = (1 + 𝜔)  ×𝑚!(8) 
and𝑚! is mass flow rate of dry air and 𝜔 is humidity ratio. 
 

 
Figure 3: Cooling tower control volume with water and air flow boundary conditions. 

 
The enthalpy of the air-water vapor mixture is defined as follows: 

      𝑖!"# = {𝐶!"×𝑇 + 𝜔 𝑖!"#$ + 𝐶!"×𝑇 }/(1 + 𝜔)                                  (9) 

where C!" and C!" are the specific heat capacities of dry air and saturated water vapour respectively and i!"#$ is the 
latent heat of water at 0°C. 
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𝑖!!"# = 𝐶!"×𝑇 + 𝜔[𝑖!"#$ + 𝐶!"×𝑇](10) 

The sensible and latent heat transfer associated with the air in the tower can estimated as follows: 
 

𝑄!"#_!"#!$%&" = 𝑚!×(𝐶!" + 𝜔×𝐶!")!"#×𝑇!"#_!"# −𝑚!×(𝐶!" + 𝜔×𝐶!")!"×𝑇!"#_!"(11) 

𝑄!"#_!"#$%# = 𝑚!×𝑖!"#$×𝜔!"# −𝑚!×𝑖!"#$×𝜔!"(12) 

Using the above equations, the performance of the cooling tower as a function of different weather design ambient 
conditions is considered in the following sections. 
 
4.1Constant Humidity Ratio 
Figures 4 and 5 show cooling tower performance as a function of ambient dry bulb temperature for three different 
humidity ratios. The humidity ratios can be considered to be representative of the range of design conditions that 
could be expected for different temperate climates, from dry conditions (low humidity ratio, ω = 4 g/kg) to more 
humid conditions (high humidity ratio, ω = 12 g/kg). Variation of the dry bulb temperature at constant humidity 
ratio can be considered to approximate a 24 hour diurnal variation between day and night conditions. Examining 
Figure 4, it can be seen that the tower chilled water outlet temperature tracks the wet bulb temperature closely, 
thereby ensuring that the primary approach temperature is almost constant, although it can be observed to decrease 
slightly with increasing wet bulb temperature. For drier conditions, a larger approach is evident (5K), with a small 
approach (1K) evident for conditions where higher humidity ratios are present. It can also be observed that for a  
humidity ratio of ω = 12 g/kg and associated high wet bulb temperature conditions, the primary approach reaches 
zero, as the wet bulb temperature converges withthe tower entry water temperature, underwhich conditions the tower 
cooling capacity declines to zero. 
 

 
Figure 4: Predicted tower water outlet temperature as a function of ambient air temperature at different humidity 
ratios (ṁair= 3.3 kg·s-1,  ṁwater= 2.4 kg·s-1, tower water inlet temperature = 22°C).  
 
Referring to Figure 5, it can be seen that for most conditions, the majority of cooling tower heat transfer can be 
attributed to latent heat transfer. Latent heat transfer is observed to decrease significantly with increasing humidity 
ratio as well as increasing dry and wet bulb temperature. Sensible heat transfer plays a less significant role relative 
to latent heat transfer, but asambient air temperatures approaches and exceeds the tower water entry temperature, 
sensible heat transfer can be observed to be negative, thereby acting to decrease the overall capacity of the tower.  
Finally, it can be observed at warm, humid conditions that the tower overall capacity tends to zero. 
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Figure 5: Predicted tower heat transfer as a function of ambient air temperature at different humidity ratios  
(ṁair= 3.3 kg·s-1,  ṁwater= 2.4 kg·s-1, tower water inlet temperature = 22°C).  

 
4.2 Constant Ambient Temperature 
Using three different dry bulb conditions (10oC, 20oC and 30oC) as a function of relative humidity, Figures 6 and 7 
present tower performance data, which could be considered akin to considering threegeographical locations, where 
conditions can vary from relatively dry to relatively humid. Examining Figure 6, it can be observed, in all cases, that 
the water outlet temperature increases and the approach decreases as the relative humidity increases.  

 
Figure 6: Predicted tower water outlet temperature as a function of relative humidity at different ambient 
temperatures (ṁair= 3.3 kg·s-1,  ṁwater= 2.4 kg·s-1, tower water inlet temperature = 22°C).  
 
Considering Figure 7, the overall cooling performance of the tower can be seen to heavily influenced by its latent 
heat transfer capabilities. Of particular interest is the case for an ambient temperature of 30°C, where for RH values 
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temperature. This is also evident in Figure 7, where total heat transfer is zero for RH values above 40%. 
 

 
Figure 7: Predicted tower heat transfer as a function of relative humidity at different ambient temperatures  
(ṁair= 3.3 kg·s-1,  ṁwater= 2.4 kg·s-1, tower water inlet temperature = 22°C).  
 
4.3 Constant relative humidity  
To examinethe effect of relative humidity, the performance of the cooling tower at different relative humidity values 
(low, medium and high) for a range of ambient temperatures from 10oC to 30oC is shown in Figures 8 and 9. It can 
be seen that the ability to produce chilled water decreases as relative humidity increases. It can also be seen that 
when the relative humidity is approximately 50%, the tower can only produce chilled water at 20°C for ambient 
temperatures less than 25°C.   
 

 
Figure 8: Predicted tower water outlet temperature as a function of ambient air temperature at different relative 
humidity (ṁair= 3.3 kg·s-1,  ṁwater= 2.4 kg·s-1, tower water inlet temperature = 22°C). 
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temperature is greater than 25°C. Referring to Figure 9, it can be seen that total heat transfer tends to zero for high 
level of relative humidity,where the ambient temperature is more than 25°C.  
 

 
Figure 9: Predicted tower heat transfer as a function of ambient air temperature at different relative humidity (ṁair= 
3.3 kg·s-1,  ṁwater= 2.4 kg·s-1, tower water inlet temperature = 22°C).  
 
 

6. CONCLUSIONS  
 

Sensitivity studies using a mathematical model of a low approach open evaporative cooling tower for the production 
of high temperature indirect cooling water (14-16°C) are described. The performance of the tower is examined in 
terms of a number of its operational parameters including: tower water outlet temperature, tower approach 
temperature, tower total heat transfer, sensible heat transfer and latent heat transfer. Overall tower heat transfer is 
primarily by latent cooling, with cooling capabilities constrained by increasing humidity of the air. Likewise, the 
ability of the cooling tower to produce chilled water is also strongly dictated by the state of the ambient air, being 
constrained by increasing moisture content of the air. 

NOMENCLATURE 

𝐴 area (m2)                                        𝑎surface area per unit volume, m!! 
𝑐! specific heat capacity (J·kg-1K-1) Cheat capacity rate, m𝐶!(W·K-1)          
𝑖 specificor latent heat of enthalpy (J·kga+v

-1)𝑖!enthalpy of dry air(J·kga
-1) 

𝐾 mass transfer coefficient (kg·m-2s-1)                𝐿water mass flow rate (kg·s-1)                            𝑀𝑒 Merkel 
number                          𝑚 mass flow rate, (kg·s-1)                                             𝑄 heat transfer rate (W)                
𝑇temperature (ᵒC)𝑉 volume of tower (m!)𝜔humidity ratio (kgv·kga

-1) 
 
Subscripts 
𝑎dryair or ambient conditions𝑒𝑣𝑎𝑝evaporated                                                                 
fg latent heat of vapourisation𝑖            inlet                                                             𝑜outlet                    𝑣            
vapour                                                               
𝑤 water 
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