
Title Variable selection and updating in model-based discriminant analysis for high dimensional data 

with food authenticity applications

Authors(s) Murphy, Thomas Brendan, Dean, Nema, Raftery, Adrian E.

Publication date 2010-03

Publication information Murphy, Thomas Brendan, Nema Dean, and Adrian E. Raftery. “Variable Selection and Updating 

in Model-Based Discriminant Analysis for High Dimensional Data with Food Authenticity 

Applications” 4, no. 1 (March, 2010).

Publisher Institute of Mathematical Statistics

Item record/more 

information

http://hdl.handle.net/10197/2884

Publisher's version (DOI) 10.1214/09-AOAS279

Downloaded 2024-04-17 02:44:55

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=Variable+selection+and+updating+in+mo...&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F2884


Submitted to the Annals of Applied Statistics

VARIABLE SELECTION AND UPDATING IN
MODEL-BASED DISCRIMINANT ANALYSIS FOR HIGH

DIMENSIONAL DATA WITH FOOD AUTHENTICITY
APPLICATIONS

By Thomas Brendan Murphy∗,‡, Nema Dean‡ and Adrian E.
Raftery†,‡

University College Dublin, University of Glasgow and University of
Washington, Seattle

Food authenticity studies are concerned with determining if food
samples have been correctly labelled or not. Discriminant analysis
methods are an integral part of the methodology for food authenti-
cation. Motivated by food authenticity applications, a model-based
discriminant analysis method that includes variable selection is pre-
sented. The discriminant analysis model is fitted in a semi-supervised
manner using both labeled and unlabeled data. The method is shown
to give excellent classification performance on several high-dimensional
multiclass food authenticity datasets with more variables than ob-
servations. The variables selected by the proposed method provide
information about which variables are meaningful for classification
purposes. A headlong search strategy for variable selection is shown
to be efficient in terms of computation and achieves excellent clas-
sification performance. In applications to several food authenticity
datasets, our proposed method outperformed default implementa-
tions of Random Forests, AdaBoost, transductive SVMs and Bayesian
Multinomial Regression by substantial margins.

1. Introduction. Foods that are expensive are subject to potential
fraud where rogue suppliers may attempt to provide a cheaper inauthentic
alternative in place of the more expensive authentic food. Food authentic-
ity studies are concerned with assessing the veracity of the labeling of food
samples. Discriminant analysis methods are of prime importance in food
authenticity studies where samples whose authenticity is being assessed are
classified using a discriminant analysis method and the labeling and clas-
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sification are compared. Samples determined to have potentially inaccurate
labeling can be sent for further testing to determine if fraudulent labeling
has been used.

Model-based discriminant analysis (Bensmail and Celeux, 1996; Fraley
and Raftery, 2002) provides a framework for discriminant analysis based on
parsimonious normal mixture models. This approach to discriminant analy-
sis has been shown to be effective in practice and being based on a statistical
model it allows for uncertainty to be treated appropriately.

In many applications, only a subset of the variables in a discriminant
analysis contain any group membership information and including variables
which have no group information increases the complexity of the analysis,
potentially degrading the classification performance. Therefore, there is a
need for including variable selection as part of any discriminant analysis
procedure. Additionally, if a subset of variables is found to be important
for classification purposes, then it suggests the potential for collecting a
smaller subset of variables using inexpensive methods rather than the full
high dimensional data.

Variable selection can be completed as a preprocessing step prior to dis-
criminant analysis (a filtering approach) or as part of the analysis procedure
(a wrapper approach). Completing variable selection prior to the discrimi-
nant analysis can lead to variables that have weak individual classification
performance being omitted from the subsequent analysis. However, such
variables could be important for classification purposes when jointly con-
sidered with others. Hence, performing variable selection as part of the dis-
criminant analysis procedure is preferred.

Combining variable selection and linear or quadratic discriminant anal-
ysis has been considered previously in the literature; see McLachlan (1992,
Chapter 12) for a review. Many of these methods are based on measuring
the Mahalanobis distance between groups before and after the inclusion of a
variable into the discriminant analysis model. In the machine learning liter-
ature, Kohavi and John (1997) developed a wrapper approach for combining
variable selection in supervised learning, of which discriminant analysis is a
special case.

Variable selection is of particular importance in situations where there are
more variables than observations available; that is, large p, small n (n ≪
p) problems (West, 2003). These situations arise with increasing frequency
in statistical applications, including genetics, proteomics, image processing
and food science. The two food science applications considered in Section 2
involve data sets with many more variables than observations.

In this paper, a version of model-based discriminant analysis is developed
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by adapting the model-based clustering with variable selection method of
Raftery and Dean (2006). This method of discriminant analysis builds a
discriminant rule in a stepwise manner by considering the inclusion of extra
variables into the model and also considering removing existing variables
from the model based on their importance. The stepwise selection procedure
is iterated until convergence.

A brief review of model-based clustering and discriminant analysis is given
in Section 3. The underlying model for model-based clustering with variable
selection is reviewed in Section 3.1 and this model is extended to model-
based discriminant analysis with variable selection in Section 3.2. In Sec-
tion 3.3, the fitting of the discriminant analysis model is extended to in-
corporate semi-supervised updating using both the labeled and unlabeled
observations (Dean, Murphy and Downey, 2006) in order to improve the
classification performance.

Search strategies for selecting the variables for inclusion and exclusion
are discussed in Section 3.4. A headlong search strategy is proposed that
combines good classification performance and computational efficiency. The
proposed methodology is applied to the high dimensional datasets in Sec-
tion 4 and the methodology and results are discussed in Section 5.

2. Data.

2.1. Food Authenticity & Near Infrared Spectroscopy. An authentic food
is one that is what it claims to be. Important aspects of food description
include its process history, geographic origin, species/variety and purity.
Food producers, regulators, retailers and consumers need to be assured of
the authenticity of food products.

Food authenticity studies are concerned with establishing whether foods
are authentic or not. Many analytical chemistry techniques are used in
food authenticity studies, including gas chromatography, mass spectroscopy,
and vibrational spectroscopic techniques (Raman, ultraviolet, mid-infrared,
near-infrared and visible). All of these techniques have been shown to be ca-
pable of discriminating between certain sets of similar biological materials.
Downey (1996) and Reid, O’Donnell and Downey (2006) provide reviews
of food authenticity studies with an emphasis on spectroscopic methods.
Near infrared (NIR) spectroscopy provides a quick and efficient method of
collecting data for use in food authenticity studies (Downey, 1996). It is
particularly useful because it requires very little sample preparation and is
non-destructive to the samples being tested.

We consider two food authenticity data sets which consist of combined
visible and near-infrared spectroscopic measurements from food samples of
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different types. The aim of the food authenticity study is to classify the
food samples into known groups. The two studies are outlined in detail in
Sections 2.2 and 2.3:

• Classifying meats into species (Beef, Chicken, Lamb, Pork, Turkey)
• Classifying olive oils into geographic origin (Crete, Peloponese, Other).

In both studies, combined visible and near infrared spectra were collected
in reflectance mode using an NIRSystems 6500 instrument over the wave-
length range 400–2498 nm at 2 nm intervals. The visible portion of the
spectrum is the range 400–800 nm and the near-infrared region is the range
800–2498 nm. Hence, the values collected for each food sample consist of
1050 reflectance values taken at 2 nm intervals (see, for example, Figure 1).
For the meat samples, twenty five separate scans were collected during a
single passage of the spectrophotometer and averaged, after which the mean
spectrum of a reference ceramic tile (16 scans) was recorded and subtracted
from the mean spectrum. A similar process was used for the olive oil data,
but fewer scans were used. Full details of the spectral data collection process
are given in McElhinney, Downey and Fearn (1999) and Downey, McIntyre
and Davies (2003).

The reflectance values in the visible and near-infrared region are produced
by vibrations in the chemical bonds in the substance being analyzed. The
data are highly correlated due to the presence of a large number of over-
lapping broad peaks in this region of the electromagnetic spectrum and the
presence of combinations and overtones. As a result, even though the data
are very highly correlated, the reflectance values at adjacent wavelengths can
have different sources and reflectance values at very different wavelengths
can have the same source. So, the information encoded in each spectrum
is recorded in a complex manner and spread over a range of locations. Os-
borne, Fearn and Hindle (1993) provide an extensive review of the chemical
and technological aspects of near-infrared spectroscopy and its application.
Further information on the combined spectra and their structure is given in
Section 4 where the results of the analysis of the data are given.

Because of the complex nature of the combined spectroscopic data, there
is interest in determining if a small subset of reflectance values contain as
much information for authentication purposes as the whole spectrum does. If
a small number of variables contain sufficient information for authentication
purposes, then this indicates the possibility of developing portable sensors
for food authenticity studies that are more rapid and have a lower cost than
recording the combined visible and near-infrared spectrum. In fact, portable
sensors have been developed on a commercial basis for the authentication of



VARIABLE SELECTION AND UPDATING IN DISCRIMINANT ANALYSIS 5

500 1000 1500 2000 2500

0.
8

1.
0

1.
2

1.
4

1.
6

Wavelength (nm)

lo
g(

1/
R

)

Fig 1. The near-infrared spectra recorded for three examples of each meat species in the
study. The discontinuity at 1100 nm is due to a sensor change at that value. The samples
are colored as Beef=red, Lamb=green, Pork=blue, Turkey=orange, Chicken=yellow.

Scotish whiskys (Connolly, 2006) using ultraviolet spectroscopic technology.
Hence, there are motivations for incorporating feature selection in the classi-
fication methods used on these data from the application and the modeling
viewpoints.

The problem of feature selection is especially difficult because the number
of possible subsets of wavelengths that could be selected in this problem is
21050. So, efficient search strategies need to be used so that a good set of
features can be selected without searching over all possible subsets.

2.2. Homogenized Meat Data. McElhinney, Downey and Fearn (1999)
constructed a collection of combined visible and near-infrared spectra from
231 homogenized meat samples in order to assess the effectiveness of visible
and near-infrared spectroscopy as a tool for determining the correct species
of the samples. The samples collected for this study consist of 55 Chicken, 55
Turkey, 55 Pork, 32 Beef and 34 Lamb samples. The samples were collected
over an extended period of time and from a number of sources in order to
ensure a representative sample of meats.

For each sample, a spectrum consisting of 1050 reflectance measurements
was recorded (as outlined in Section 2.1). A plot of all of the spectra is shown
in Figure 1. We can see that there is a discrimination between the red meats
(beef and lamb) and the white meats (chicken, turkey and pork) over some
of the visible region (400–800 nm), but discrimination within meat colors is
less clear.

2.3. Greek Olive Oils Data. Downey, McIntyre and Davies (2003) recorded
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Fig 2. Regions of Greece where the olive oil samples were collected.

near-infrared spectra from a total of 65 extra virgin olive oil samples that
were collected from three different regions in Greece (18 Crete, 28 Pelo-
ponese, 19 Other). Each data value consists of 1050 reflectance values over
the visible and near-infrared range. The aim of their study was to assess the
effectiveness of near-infrared spectroscopy in determining the geographical
origin (see Figure 2) of the oils.

3. Model-based Clustering and Discriminant Analysis. Model-
based clustering (Banfield and Raftery, 1993; Fraley and Raftery, 1998, 2002;
McLachlan and Peel, 2000) uses mixture models as a framework for clus-
ter analysis. The underlying model in model-based clustering is a normal
mixture model with G components, that is,

f(x) =
G∑

g=1

τgf(x|µg, Σg),

where f(·|µg, Σg) is a multivariate normal density with mean µg and covari-
ance Σg.

A central idea in model-based clustering is the use of constraints on the
group covariance matrices Σg; these constraints use the eigenvalue decompo-
sition of the covariance matrices to impose shape restrictions on the groups.
The decomposition is of the form, Σg = λgDgAgD

T
g , where λg is the largest

eigenvalue, Dg is an orthonormal matrix of eigenvectors, and Ag is a diag-
onal matrix of scaled eigenvalues. Interpretations for the parameters in the
covariance decomposition are: λg= Volume; Ag= Shape; Dg= Orientation.
These parameters can be constrained in various ways to be equal or variable
across groups. Additionally, the shape and orientation matrices can be set
equal to the identity matrix.
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Table 1
Constrained covariance structures in model-based clustering as implemented in the

mclust package for R.

ModelID Volume Shape Orientation Covariance (Σg)

EII Equal Equal Spherical NA λI
VII Variable Equal Spherical NA λgI
EEI Equal Equal Axis Aligned λA
VEI Variable Equal Axis Aligned λgA
EVI Equal Variable Axis Aligned λAg

VVI Variable Variable Axis Aligned λgAg

EEE Equal Equal Equal λDADT

EEV Equal Equal Variable λDgADT
g

VEV Variable Equal Variable λgDgADT
g

VVV Variable Variable Variable λgDgAgDT
g

Bensmail and Celeux (1996) developed model-based discriminant analysis
methods using the same covariance decomposition. An extension of model-
based discriminant analysis that allows for updating of the classification
rule using the unlabeled data was developed by Dean, Murphy and Downey
(2006) and will be described in more detail in Section 3.3. Model-based
clustering and discriminant analysis can be implemented in the statistics
package R (R Development Core Team, 2007) using the mclust package
(Fraley and Raftery, 1999, 2003, 2007).

3.1. Model-based Clustering with Variable selection. We argue that vari-
able selection needs to be part of the discriminant analysis procedure, be-
cause completing variable selection prior to discriminant analysis may lose
important grouping information. This argument is supported by the result
of Chang (1983), who showed that the principal components corresponding
to the larger eigenvalues do not necessarily contain information about group
structure. This suggests that the commonly used filter approach of select-
ing the first few principal components to explain a minimum percentage of
variation can be suboptimal. A similar argument can be made that select-
ing discriminating variables without reference to the grouping variable may
miss important variables. In addition, some variables may contain strong
group information when used in combination with other variables, but not
on their own. Another critique of completing a variable (or feature) selec-
tion step before supervised learning (filtering) is given by Kohavi and John
(1997, Section 2.4).

Raftery and Dean (2006) developed a stepwise variable selection wrapper
for model-based clustering. With their method, variables are selected in a
stepwise manner. Their method involves the stages:
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• A variable is proposed for addition to the set of selected clustering
variables. The Bayesian Information Criterion (BIC) is used to com-
pare a model in which the variable contains extra information about
the clustering beyond the information in the already selected variables
versus a model where the variable doesn’t contain additional infor-
mation about the clustering beyond the information in the already
selected variables. The variable with the greatest positive BIC differ-
ence is added to the model. If proposed variable has a positive BIC
difference, then no variable is added.

• BIC is used to consider whether a variable should be removed from
the model; This step is the reverse of the variable addition step. If all
of the selected variables contain clustering information, then none is
removed from the set of selected clustering variables.

This process is iterated until no further variables are added or removed. This
approach, that combines variable selection and cluster analysis, avoids the
problems of completing variable selection independently of the clustering.
While the stepwise variable selection wrapper proposed in Raftery and Dean
(2006) and other wrapper approaches can give excellent clustering results,
there is a considerable computational burden with wrapper approaches when
compared to filtering approaches; this is because the model needs to be fitted
each time a variable is added or removed from the set of selected clustering
variables.

3.2. Model-based Discriminant Analysis With Variable Selection. We adapt
the ideas of Raftery and Dean (2006) to produce a discriminant analysis tech-
nique that includes a stepwise variable selection wrapper. This discriminant
analysis method uses a stepwise variable selection procedure to find a subset
of variables that gives good classification results.

Each stage of the algorithm involves two steps:

• Determine if a variable (not already selected) would contribute to the
discriminant analysis model. In order to do this, a model comparison
using BIC is used to compare a discriminant analysis model where
the variable contains group information beyond the information in
the already selected variables versus a model where the variable does
not contain group information beyond the information in the already
selected variables. Variables where the BIC different is positive are
candidates for addition to the set of selected variables; the procedure
for searching for variables to add to the model is given in Section 3.4

• Determine if any selected variables should be removed from the dis-
criminant analysis model. This step is the reverse of the variable ad-
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Fig 3. A graphical model representation of the Grouping and the No Grouping models.

dition step. Variables where the BIC model comparison suggests that
the variable does not contain group information are candidates for re-
moving from the set of selected variables; the procedure for searching
for variables to remove from the model is outlined in Section 3.4.

Let (x1,x2, . . . ,xn) be the observed data values and let (l1, l2, . . . , ln)
be the group indicator variables for these observations where lig = 1 if
observation i belongs to group g and lig = 0 otherwise.

Suppose that the observation xi is partitioned into three parts: x(c)
i are

the variables already chosen; x(p)
i is the variable being proposed; x(o)

i are
the remaining variables. The decision on whether to include or exclude a
proposed variable is based on the comparison of two models:

• Grouping: p(xi|li) = p(x(c)
i ,x(p)

i ,x(o)
i |li) = p(x(o)

i |x(p)
i ,x(c)

i )p(x(p)
i ,x(c)

i |li).
• No Grouping: p(xi|li) = p(x(c)

i ,x(p)
i ,x(o)

i |li) = p(x(o)
i |x(p)

i ,x(c)
i )p(x(p)

i |x(c)
i )p(x(c)

i |li).

Figure 3 shows the difference between the “Grouping” and “No Grouping”
models for xi. If the Grouping model holds, x(p)

i provides information about
which group the data value belongs to beyond that provided by x(c)

i , while
if the No Grouping model holds, x(p)

i provides no extra information.
The Grouping and No Grouping models are specified as follows:

• Grouping: We let p(x(p)
i ,x(c)

i |li) be a normal density with parsimonious
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covariance structure as described in Table 1. That is,

(x(p)
i ,x(c)

i )|(lig = 1) ∼ N(µ(p,c)
g , Σ(p,c)

g ),
li ∼ Multinomial(1, τ),

where τ = (τ1, τ2, . . . , τG).
• No Grouping: We let p(x(c)

i |li) be a normal density with parsimonious
covariance structure. In addition, p(x(p)

i |x(c)
i ) is assumed to have a

linear regression model structure. That is,

x(c)
i |(lig = 1) ∼ N(µ(c)

g , Σ(c)
g ),

li ∼ Multinomial(1, τ),

x(p)
i |x(c)

i ∼ N(α + βTx(c)
i , σ2),

where τ = (τ1, τ2, . . . , τG).

The same model structure is assumed for p(x(o)
i |x(c)

i ,x(p)
i ) in the Grouping

model as in the No Grouping model. Therefore, this part of the model does
not influence the choice to include x(p)

i in the model or not.
The decision as to whether the Grouping or No Grouping model is ap-

propriate is made using the BIC approximation of the log Bayes factor. The
logarithm of the Bayes factor is

(3.1) log (Bayes Factor) = log
p(xi|MG)

p(xi|MNG)
,

where MG is the Grouping model, MNG is the No Grouping model and

p(xi|Mk) =
∫

p(xi|θk,Mk)p(θk|Mk)dθk

is the integrated likelihood of model Mk. We use the BIC approximation of
the integrated likelihood in the form

BIC = 2 × log maximized likelihood − d log(n),

where d is the number of parameters in the model and n is the sample size
(Schwarz, 1978). Following Raftery and Dean (2006), the log Bayes factor
(3.1) can be reduced to

log (Bayes Factor) = log
p(x(p)

i ,x(c)
i |MG)

p(x(p)
i |x(c)

i ,MNG)p(x(c)
i |MNG)

≈ 1
2

[BIC(Grouping)-BIC(No Grouping)] ,(3.2)
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which only involves (x(c)
i ,x(p)

i ) and not x(o)
i . Variables with a positive differ-

ence in BIC(Grouping)-BIC(No Grouping) are candidates for being added
to the model.

At each variable addition stage, the BIC of the grouping model is calcu-
lated using each of the ten covariance structures given in Table 1 and the
model with the highest BIC is selected for the Grouping model for model
comparison purposes.

At each stage, we also check if an already chosen variable should be re-
moved from the model. This decision is made on the basis of the BIC dif-
ference in a similar way to previously. In this case, x(p)

i takes the role of the
variable to be dropped, x(c)

i takes the role of the remaining chosen variables
and x(o)

i are the other variables. The variables with a positive difference
in BIC(No Grouping)-BIC(Grouping) are candidates for removal from the
model; in this case, the BIC for the no grouping models are computed for
all covariance structures from Table 1 and the model with the highest BIC
is selected as the No Grouping model.

3.3. Discriminant Analysis with Updating. In standard discriminant anal-
ysis, the unlabeled data are not used in the model fitting procedure. How-
ever, these data contain information that is potentially important, especially
when very few labeled data values are available. We can model both the la-
beled and unlabeled data as coming from the same model, but where the
unlabeled data is missing the labeling variable; this leads to a mixture model
for the unlabeled data. Hence, the unlabeled data can then be used to help
fit a model to the data. This idea has been investigated by many authors
including Ganesalingam and McLachlan (1978) and O’Neill (1978) and more
recently by Dean, Murphy and Downey (2006), (2006), Toher, Downey and
Murphy (2007) and Liang, Mukherjee and West (2007).

Let (x1, l1), (x2, l2), . . . , (xN , lN ) be the labeled data and y1,y2, . . . ,yM

be the unlabeled data. We let z = (z1, z2, . . . , zM ) be the unobserved (miss-
ing) labels for the unlabeled data. In this framework, the Grouping and No
Grouping models for the observed data are of the form:

• Grouping: We let p(x(p)
i ,x(c)

i |li) be a normal density with parsimonious
covariance structure as described in Table 1, namely

(x(p)
i ,x(c)

i )|(lig = 1) ∼ N(µ(p,c)
g , Σ(p,c)

g ),
li ∼ Multinomial(1, τ).

Also, p(y(p)
j ,y(c)

j ) is a mixture of normals with parsimonious covariance
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structures, namely

(y(p)
j ,y(c)

j ) ∼
G∑

g=1

τgN(µ(p,c)
g ,Σ(p,c)

g )

• No Grouping: We let p(x(c)
i |li) be a normal density with parsimonious

covariance structure, namely

x(c)
i |(lig = 1) ∼ N(µ(c)

g , Σ(c)
g ),

li ∼ Multinomial(1, τ).

We also let p(y(c)
j ) be a mixture of normal densities with parsimonious

covariance structure, namely

y(c)
j ∼

G∑
g=1

τgN(µ(c)
g , Σ(c)

g ).

In addition, we assume a linear regression model for p(x(p)
i |x(c)

i ) and
p(y(p)

j |y(c)
j ), namely

x(p)
i |x(c)

i ∼ N(α + βTx(c)
i , σ2) and y(p)

j |y(c)
j ∼ N(α + βTy(c)

j , σ2).

In both models, we assume an identical model structure for p(x(o)
i |x(c)

i ,x(p)
i )

and p(y(o)
j |y(c)

j ,y(p)
j ), and this doesn’t affect the choice to include a variable

in the model or not.
This model can be fitted using the EM algorithm (Dempster, Laird and

Rubin, 1977) by introducing the missing labels z into the model. The cal-
culations involved in fitting the model including the labeled and unlabeled
data follow those outlined in Dean, Murphy and Downey (2006). The max-
imum likelihood estimates for the regression part of the model correspond
to least squares estimates of the regression parameters.

The final estimates of the posterior probability of group memberships pro-
duced by the EM algorithm are used to classify the unlabeled observations.
Thus each observation j is classified into the group g that maximizes ẑjg

over g, where

ẑjg =
τ̂gp(y(c)

j |µ̂(c)
g , Σ̂(c)

g )∑G
g′=1 τ̂g′p(y(c)

j |µ̂(c)
g′ , Σ̂(c)

g′ )
,

y(c)
j is the set of chosen variables, and {(τ̂g, µ̂

(c)
g , Σ̂(c)

g ) : g = 1, 2, . . . , G} are
the maximum likelihood estimates for the unknown model parameters for
this set of chosen variables.
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3.3.1. Example. An illustrative example of the BIC calculations when
the proposed algorithm is applied to the meat spectroscopy data is shown in
Figures 4–6; half the data of each type were randomly selected as training
data in this example.

The variable selection algorithm begins by selecting 626 nm as the wave-
length with the greatest difference between the Grouping and No Grouping
models (Figure 4) and the E covariance structure was chosen. It is worth
noting that wavelengths close to 626 nm still have strong evidence of group-
ing even though the spectra are smoothly varying. This phenomenon is due
to the fact that the spectrum consists of a number of overlapping peaks and
the reflectances at adjacent locations can have different sources. As a result
extra grouping information can be available at wavelengths that are very
close.

Subsequently, the 814 nm wavelength is added to the model (Figure 5)
and the EEV covariance structure was chosen. At the third stage, the 774 nm
wavelength is selected (Figure 6) and the VEV covariance structure was cho-
sen. The procedure continues until thirteen wavelengths are selected (details
of the iterations are given in Table 2) and the VEV covariance structure is
chosen at all subsequent stages.

Interestingly, many of the chosen wavelengths are in the visible range
(400–800 nm) of the spectrum indicating that color is important when sep-
arating the meat samples. The closest two wavelengths that were selected
were 2310 nm and 2316 nm and a number of wavelengths that were selected
are approximately 20 nm apart. In summary, the selected wavelengths are
spread out mainly in the visible region but some wavelengths were selected
in the near-infrared region.

3.4. Headlong Model Search Strategy. The variable selection algorithm
demonstrated in Section 3.3.1 is a greedy search strategy. At the variable ad-
dition stages of the algorithm, the variable with the greatest BIC difference
is added and at variable removal stages the variable with the greatest BIC
difference is removed. The process of finding the variable with the greatest
BIC difference involves calculating the BIC difference for all variables un-
der consideration; for the spectroscopic data there are typically just under
1050 variables under consideration at the variable addition stages. Hence,
this search strategy is computationally demanding; this feature is shared by
other wrapper variable selection methods too.

A less computationally expensive alternative is to use a headlong search
strategy (Badsberg, 1992). The variable added or removed in the headlong
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Fig 4. A plot of the BIC difference for each wavelength. The wavelength with the greatest
BIC difference is 626 nm.
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Fig 5. A plot of the BIC difference for each wavelength given that wavelength 626 nm is
already accepted. The wavelength with the greatest BIC difference is 814 nm. Note that
wavelengths close to 626 nm still have positive BIC difference values.
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Fig 6. A plot of the BIC difference for each wavelength given that the first two wavelengths
chosen (626 nm and 814 nm) are already accepted. The wavelength with the greatest BIC
difference is 774 nm.

Table 2
A full example of the variable selection procedure used to classify the meat samples into

five types. The updating procedure was used in this example.

Iteration Proposal BIC Diff. Decision Proposal BIC Diff. Decision

1 Add 626 nm 425.4 Accepted
2 Add 814 nm 274.1 Accepted
3 Add 774 nm 427.4 Accepted Remove 774 nm -427.4 Rejected
4 Add 664 nm 142.6 Accepted Remove 626 nm -120.1 Rejected
5 Add 680 nm 220.1 Accepted Remove 774 nm -78.8 Rejected
6 Add 864 nm 165.2 Accepted Remove 774 nm -91.7 Rejected
7 Add 602 nm 118.9 Accepted Remove 774 nm -26.3 Rejected
8 Add 794 nm 118.3 Accepted Remove 774 nm -86.2 Rejected
9 Add 702 nm 178.6 Accepted Remove 774 nm -127.5 Rejected

10 Add 1996 nm 127.5 Accepted Remove 1996 nm -127.5 Rejected
11 Add 644 nm 76.6 Accepted Remove 644 nm -76.6 Rejected
12 Add 2316 nm 24.1 Accepted Remove 2316 nm -24.1 Rejected
13 Add 2310 nm 103.2 Accepted Remove 702 nm -26.1 Rejected
14 Add 1936 nm 10.8 Accepted Remove 702 nm 4.4 Accepted
15 Add 704 nm -3.7 Rejected Remove 1936 nm -41.3 Rejected
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search strategy need not be the best in terms of having the greatest BIC dif-
ference; it merely needs to be the first variable considered whose difference
is greater than some pre-specified value (here min.evidence). We found that
min.evidence = 0 gave good results for the applications in this paper. The
headlong strategy has close connections to the “first-improvement” moves
used in local search algorithms (eg, Hoos and Stützle, 2005, Chapter 2.1).
This means that instead of adding the variable with the greatest evidence
for Grouping versus No Grouping, the first variable found to have a cer-
tain amount of evidence for Grouping versus No Grouping would be added.
At the variable addition stages of the algorithm, the remaining variables
are examined in turn from an ordered list. The initial order of the list is
based on the variables’ original BIC differences at the univariate addition
stage; this ordering was used in a similar context in Yeung, Bumgarner and
Raftery (2005). We experimented with the initial ordering and also tried
using increasing wavelength and decreasing wavelength. The classification
performance was not sensitive to the initial ordering but the selected vari-
ables did depend on the ordering. In the context of increasing and decreasing
wavelength there was a bias towards selecting low and high wavelengths, re-
spectively.

Here is a summary of the algorithm.

1. Select the first variable that is added to be the one that has the most
evidence for Grouping versus No Grouping in terms of greatest BIC
difference (the same as the first step of the greedy search algorithm).
Create a list of the remaining variables in decreasing order of BIC
differences.

2. Select the second variable that is added to be the first variable in
the list of remaining variables with BIC difference for Grouping ver-
sus No Grouping, including the first variable selected, greater than
min.evidence. Any variable checked and not used at this stage is
placed at the end of the list of remaining variables.

3. Select the next variable that is added to be the first variable in the
list of remaining variables with BIC difference for Grouping versus
No Grouping, including the previous variables selected, greater than
min.evidence. If no variable has BIC difference greater than min.evidence
then no variable is added at this stage. Any variable checked and not
used at this stage is placed, in turn, at the end of the list of remaining
variables.

4. Check in turn each variable currently selected (in reverse order of
inclusion) for evidence of No Grouping (versus Grouping), including
the other selected variables, and remove the first variable with BIC
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difference greater than min.evidence. If no variable has BIC difference
greater than min.evidence then no variable is removed at this stage.
The removed variable is placed at the end of the list of other remaining
variables.

5. Iterate steps 3 and 4 until two consecutive steps have been rejected,
then stop.

4. Results. The proposed methodology was applied to the two food
authenticity data sets outlined in Section 2.1. In each case, the data were
split so that 50% of the data were used as labeled data and 50% as unlabeled.
The methodology was applied to 50 random splits of labeled and unlabeled
data and the mean and standard deviation of the classification rate were
computed.

The results were compared to previously reported performance results for
these data and several widely used alternative techniques: Random Forests
(Breiman, 2001), AdaBoost (Freund and Schapire, 1997), Bayesian Multi-
nomial Regression (Madigan et al., 2005), and Transductive Support Vector
Machines (Vapnik, 1995; Joachims, 1999; Collobert et al., 2006).

We used the default settings in the R (R Development Core Team, 2007)
implementations of Random Forests (randomForest version 4.5-30) (Liaw
and Wiener, 2002) and AdaBoost (adabag version 1.1) (Cortés, Mart́ınez
and Rubio, 2007). The use of various parameter settings was explored but
the results did not vary to a large extent with respect to the choice of
parameter values. For Bayesian Multinomial Regression we used cross val-
idation to choose between the choice of prior variance values {10p : p =
−4,−3,−2,−1, 0, 1, 2, 3, 4} as suggested in Genkin, Lewis and Madigan (2005).
For the Transductive SVM analysis we used the UniverSVM software version
1.1 (Sinz and Roffilli, 2007) with a linear kernel and parameters (c, s, z) =
(100,−0.3, 0.1); other parameter values were considered but the values re-
ported yielded the best classifications.

4.1. Meats Data. The results achieved on the homogenized meat data
(Section 2.2) are reported in Table 3. These results show that the vari-
able selection and updating method gives comparable or better performance
than previous analyses of these data; an improved classification rate has
been achieved relative to those achieved by McElhinney, Downey and Fearn
(1999) who used factorial discriminant analysis (FDA), k-nearest neighbors
(kNN), discriminant partial least squares regression (PLS) and soft inde-
pendent modeling of class analogy (SIMCA). Furthermore, a comparable
classification performance has been achieved relative to Dean, Murphy and
Downey (2006) who used model-based discriminant analysis with updating
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Table 3
Classification performance on the Meats data for the variable selection algorithm with

updating and for previous analyses of these data. Mean classification performance for the
50 random splits of the data are reported with standard deviations in parentheses.

Method Misclassification Rate

Variable Selection and Updating 6.1% (3.5)
Variable Selection (Greedy) and Updating 5.1% (1.9)
Variable Selection Only 9.3% (3.6)
Dean, Murphy and Downey (2006) 5.6% (2.0)
McElhinney, Downey and Fearn (1999) 7.3–13.9%
Transductive SVMs 42.6% (5.7)
Random Forests 20.1% (3.8)
AdaBoost.M1 20.3% (4.8)
Bayesian Multinomial Regression 34.2% (5.8)

Table 4
Average classification results for the different meat types for the Variable Selection and

Updating classification method.

Predicted

Truth Beef Lamb Pork Turkey Chicken

Beef 98.6 1.4 0.0 0.0 0.0
Lamb 1.4 98.6 0.0 0.0 0.0

Pork 0.0 0.0 99.2 0.5 0.3
Turkey 0.0 0.0 0.0 88.2 11.8
Chicken 0.0 0.0 0.0 11.1 88.9

on a reduced form of the data derived from wavelet thresholding. The vari-
able selection and updating procedure gave substantially better performance
than other competing methods for classification.

An examination of the misclassification table (Table 4) for the variable se-
lection and updating method shows that many of the misclassifications were
due to the difficulty in separating the chicken and turkey groups. Interest-
ingly, no misclassifications were made between the red and white meats.

The chosen wavelengths show us which parts of the spectrum are of im-
portance when classifying samples into different species. We recorded the
chosen wavelengths for each of the 50 sets of results and these are shown
in Figure 7. We can see that a large proportion (51%) of the chosen wave-
lengths are in the visible region (400 nm–800 nm) but some regions in the
near-infrared spectrum are also chosen. Liu and Chen (2000a, Table 1) assign
many of the spectral features in the visible part of the spectrum to different
forms of myoglobin such as deoxymyoglobin (430, 440, 445 nm), oxymyo-
globin (545, 560, 575, 585 nm), metmyoglobin (485, 495, 500, 505 nm) and



VARIABLE SELECTION AND UPDATING IN DISCRIMINANT ANALYSIS 19

500 1000 1500 2000 2500

0
5

10
15

20
25

30
35

Wavelength (nm)

N
um

be
r 

of
 T

im
es

 C
ho

se
n 

(/
50

)

Fig 7. Wavelengths chosen in the five meat classification problem for the variable selection
and updating method. The height of the bars shows how many times the wavelength was
chosen in 50 random splits of the data.

sulfmyoglobin (635 nm). Sulfmyoglobin is a product of the reaction of myo-
globin with H2S generated by bacteria, and Arnalds et al. (2004) found the
region of the spectrum close to 635 nm to be important when separating
the red and white meat samples. The peak at 1100 nm is the wavelength
where the sensor changes in the near-infrared spectrometer and the peak at
1068 nm can be attributed to third overtones of C-H stretch mode and C-H
combination bonds from meat constituents other than oxymyoglobin (Liu,
Chen and Ozaki, 2000b). The near infrared region consisting of wavelengths
near 1510 nm has been attributed to protein, and a cluster of chosen wave-
lengths is close to this region. In all cases, between 13 and 19 wavelengths
were chosen for classification purposes.

Following McElhinney, Downey and Fearn (1999) and Dean, Murphy and
Downey (2006), we combined the chicken and turkey groups into a poultry
group to determine how well we can classify the homogenized meat samples
into four types. The classification results are reported in Table 5 and the mis-
classifications from the variable selection method with updating are shown
in Table 6. There is a significant improvement in classification performance
from all of the methods. Again, the white and red meats are separated with
zero error.

The wavelengths chosen for the four group classification problem (Fig-
ure 8) still have a substantial proportion chosen from the visible part of the
spectrum (52%). In this application, between 13 and 21 wavelengths were
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Table 5
Classification performance on the Meats data for the variable selection algorithm with

updating and for previous analyses of these data after combining the chicken and turkey
into a poultry group. Mean classification performance for the 50 random splits of the

data are reported with standard deviations in parentheses.

Method Misclassification Rate

Variable Selection and Updating 0.8% (1.3)
Variable Selection (Greedy) and Updating 0.7% (0.7)
Variable Selection Only 1.8% (3.2)
Dean, Murphy and Downey (2006) 1.0% (0.9)
McElhinney, Downey and Fearn (1999) 2.6–4.3%
Transductive SVMs 20.9% (8.0)
Random Forests 10.5% (3.3)
AdaBoost.M1 14.7% (3.7)
Bayesian Multinomial Regression 17.2% (4.9)

Table 6
Average classification results for the different meat types after combining the chicken and
turkey into a poultry group. The results shown are for the variable selection and updating

method.

Predicted

Truth Beef Lamb Pork Poultry

Beef 98.2 1.8 0.0 0.0
Lamb 2.7 97.3 0.0 0.0

Pork 0.0 0.0 99.1 0.9
Poultry 0.0 0.0 0.0 100.0
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Fig 8. Wavelengths chosen in the four meat classification problem for the variable selection
and updating method.

chosen for classification purposes. The VEV covariance structure was chosen
in almost every run as the final model for both the four and five group meat
classification problems.

4.2. Greek Olive Oil Data. The methods were applied to the Greek olive
oil data (Section 2.3) with 50% of the data being treated as training data
and 50% as test data. Fifty random splits of training and test data were
used. The misclassification rates achieved on these data are reported in Ta-
ble 7. Variable selection and updating provides one of the best classification
rates for these data. Downey, McIntyre and Davies (2003) did report a better
misclassification rate (6.1%) using factorial discriminant analysis (FDA) but
the choice of a subset of wavelengths, data pre-processing method and clas-
sification method (from partial least squares, factorial discriminant analysis
and k-nearest neighbors) was made with reference to the test data classifi-
cation performance. In contrast, our model selection was done without any
reference to the test data classification performance.

A cross tabulation of the classifications with the true origin of the olive
oils (Table 8) reveals the difficulty in classifying the oils.

In contrast to the meat classification problem, the chosen wavelengths for
this problem (Figure 9) are concentrated in the near-infrared region (800–
2498 nm) but some wavelengths in the visible region are also selected. The
most commonly chosen wavelength is 2080 nm which has been attributed
to an O-H stretching/O-H bend combination (Osborne et al., 1984). Wave-
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Table 7
Classification performance on the Olive Oil data for the variable selection algorithm with
updating and for previous analyses of these data. Mean classification performance for the
50 random splits of the data are reported with standard deviations in parentheses. For the

Variable Selection Only results, the maximum number of selected wavelengths was
restricted to be six to avoid degeneracies.

Method Misclassification Rate

Variable Selection and Updating 6.9% (5.4)
Variable Selection (Greedy) and Updating 16.6% (11.3)
Variable Selection Only 17.9% (10.9)
Dean, Murphy and Downey (2006) 11.9% (6.3)
Downey, McIntyre and Davies (2003) 6.1–19.0%
Transductive SVMs 12.4% (7.5)
Random Forests 19.3% (6.5)
AdaBoost.M1 34.1% (9.3)
Bayesian Multinomial Regression 57.0% (1.2)

Table 8
Average classification results for the olive oil groups. The results shown are for the

variable selection and updating method.

Predicted

Truth Crete Peleponese Other

Crete 90.0 8.7 1.3
Peleponese 1.0 92.9 6.1

Other 0.0 3.8 96.2
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Fig 9. Wavelengths chosen in the olive oil classification problem using variable selection
and updating method. The height of the bars shows how many times the wavelength was
chosen in 50 random splits of the data.

lengths near 2310, 2346 and 2386 nm are due to C-H stretching vibrations
and other vibrational modes. In particular, wavelengths in the 2310 nm re-
gion have previously been assigned to fat content. In all cases, between 6 and
29 wavelengths were selected with a mean of 15 wavelengths being chosen.
The EEE covariance structure was chosen for every final model for the olive
oil classification problem.

4.3. Sensitivity to Spectral Resolution. In order to determine the sensi-
tivity of the selected wavelengths to the resolution of the spectrometer used
in this study, we investigated the effect of reducing the number of reflectance
values by computing the mean reflectance value over sets of adjacent wave-
lengths and using these as inputs into the variable selection model. The
results of this analysis are outlined for the olive oil authentication problem,
and similar results were found for the meat species authenticity study.

We found that the classification error of the olive oil samples increases
slightly as soon as any adjacent wavelengths are aggregated (Table 9). How-
ever, once the wavelengths are aggregated, the classification error remained
steady for aggregating between 2 and 30 adjacent wavelengths. Thereafter,
there was a serious deterioration in the classification performance when more
than 30 adjacent wavelengths were aggregated. This suggests that a consider-
able amount of the group information is maintained at even low resolutions,
but that there is more information in the raw data themselves.

The spectral regions selected when analyzing the data in aggregated form
were found to be stable. In both applications, the selected regions were very
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Table 9
The change in classification performance for the variable selection and updating method

as the number of adjacent wavelengths being aggregated increases.

Aggregation Level Classification Error

1 6.9%
2 9.7%
3 7.6%
5 7.9%
10 9.9%
15 8.5%
30 9.1%
50 13.2%
70 28.7%

similar for the aggregated data, but fewer variables tended to be selected
because of the aggregation process. Figure 10 shows the chosen wavelengths
when the raw spectra, two adjacent wavelengths and three adjacent wave-
lengths are aggregated and then analyzed for the olive oil classification prob-
lem. This shows that the selection procedure chooses very specific spectral
regions on both the raw and aggregated scale.

Wavelength

500 1000 1500 2000 2500

Raw Spectrum

Aggregate=2

Aggregate=3

Fig 10. The chosen wavelengths when the raw olive oil spectra are analyzed and when
adjacent wavelengths are aggregated.
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5. Discussion. The discriminant analysis method presented in this pa-
per gave much better results than those given by popular statistical and
machine learning techniques such as Random Forests (Breiman, 2001), Ad-
aBoost (Freund and Schapire, 1997) and Bayesian Multinomial Regression
(Genkin, Lewis and Madigan, 2005; Madigan et al., 2005) and Transductive
SVMs (Vapnik, 1995; Joachims, 1999) for the high-dimensional food authen-
ticity datasets analysed here. This improvement is further enhanced by the
addition of the updating procedure for including the unlabeled data in the
estimation method. The results show that the headlong search method for
variable selection is an efficient method for selecting wavelengths.

In addition to the improvement in classification results in the example
data sets given, the number of variables needed for classification was sub-
stantially reduced from 1050 to less than thirty. The variable selection results
in the food authenticity application suggest the possibility of developing au-
thenticity sensors that only use reflectance values over a carefully selected
subset of the near-infrared and visible spectral range. The regions of the
spectrum selected by the method can be interpreted in terms of the under-
lying chemical properties of the foods under analysis.

We have compared our method with four established leading classification
methods from statistics and machine learning for which standard software
implementations are available. One of these, AdaBoost, was identified by
Leo Breiman as “the best off-the-shelf classifier in the world” (Hastie, Tib-
shirani and Friedman, 2001). It is possible that the large improvement in
performance of our method relative to the established methods we have com-
pared it with is due to the fact that our data have many variables of which
only a very small proportion (1-3%) are useful. The variables that are not
useful may introduce a great deal of noise and degrade performance, and so
other methods that do not reduce the number of variables may suffer from
this.

Although the methods were developed for the food authenticity applica-
tion outlined herein, the method could be applied in contexts such as the
analysis of gene expression data and document classification. The results of
the variable selection procedure could mean a substantial savings in terms
of time for data collection and space for future data storage.

A range of recent approaches to variable selection in a classification con-
text include the DALASS approach of Trendafilov and Jolliffe (2007), vari-
able selection for kernel Fisher discriminant analysis (Louw and Steep, 2006),
the stepwise stopping rule approach of Munita, Barroso and Oliveira (2006).
A number of different search algorithms (proposed as alternatives to back-
ward/forward/stepwise search) wrapped around different discriminant func-
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tions are compared by Pacheco et al. (2006), and genetic search algorithms
wrapped around Fisher discriminant analysis are considered by Chiang and
Pell (2004). Another example of variable selection methods in the context of
classification using spectroscopic data is given by Indahl and Naes (2004).

In terms of other approaches to variable selection, a good review of re-
cent work on the problem of variable or feature selection in classification was
given by Guyon and Elisseeff (2003) from a machine learning perspective. A
good review of methods involving Support Vector Machines (SVMs) (along
with a proposed criterion for exhaustive variable selection) is given by Mary-
Huard, Robin and Daudin (2007). An extension allowing variable selection
for the multiclass problem using SVMs is given by Wang and Xiatong (2007).
An alternative approach for combining pairwise classifiers, based on Hastie
and Tishirani (1998), is given by Szepannek and Weihs (2006) . Greenshtein
(2006) looks at theoretical aspects of the n ≪ p classification and variable
selection problem in terms of empirical risk minimization subject to l1 con-
straints. Finally an alternative to single subset variable selection through
Bayesian Model Averaging (Madigan and Raftery, 1994) is given by Dash
and Cooper (2004).
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SUPPLEMENTARY MATERIAL

Supplement A: Data used in “Variable Selection and Updat-
ing In Model-Based Discriminant Analysis for High Dimensional
Data with Food Authenticity Applications” (Murphy, Dean and
Raftery, 2009)
(doi: ???). This zipfile contains the data sets used in this paper. The original
data source information and conditions for the use of the data are outlined
in this file.
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