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Abstract—The parallel external memory (PEM) model has
been used as a basis for the design and analysis of a wide
range of algorithms for private-cache multi-core architectures.
As a tool for developing geometric algorithms in this model,
a parallel version of the I/O-efficient distribution sweeping
framework was introduced recently, and a number of algo-
rithms for problems on axis-aligned objects were obtained
using this framework. The obtained algorithms were efficient
but not optimal. In this paper, we improve the framework
to obtain algorithms with the optimal I/O complexity of
O(sort𝑷 (𝑵) + 𝑲/𝑷𝑩) for a number of problems on axis-
aligned objects; 𝑷 denotes the number of cores/processors, 𝑩
denotes the number of elements that fit in a cache line, 𝑵
and 𝑲 denote the sizes of the input and output, respectively,
and sort𝑷 (𝑵) denotes the I/O complexity of sorting 𝑵 items
using 𝑷 processors in the PEM model.

To obtain the above improvement, we present a new one-
dimensional batched range counting algorithm on a sorted
list of ranges and points that achieves an I/O complexity of
O((𝑵 + 𝑲)/𝑷𝑩), where 𝑲 is the sum of the counts of all
the ranges. The key to achieving efficient load balancing among
the processors in this algorithm is a new method to count the
output without enumerating it, which might be of independent
interest.

Keywords-parallel external memory, PEM, multicore algo-
rithms, computational geometry, parallel distribution sweeping

I. INTRODUCTION

Multicore processors are becoming increasingly main-
stream. The average desktop computer today contains two
to four cores, but Intel announced a 48-core prototype
recently [1] and the number is projected to reach hundreds
of cores in the near future [2]–[4]. Thus, there is a need for
techniques for designing parallel algorithms that can fully
utilize these processors [5]. While parallel algorithms have
been studied intensively in the past, using very fine-grained
models, such as the PRAM model, or rather coarse-grained
models, such as the BSP model, none of these approaches
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seem perfectly suited for multicore processors. The reason
is the memory hierarchy of these processors. Even a sin-
gle core can process data faster than it can be retrieved
from main memory. To hide the latency of accessing main
memory, modern multicore processors equip each core with
a private low-latency cache that can be accessed quickly;
this architecture became commonly known as private-cache
chip multiprocessor (CMP). To benefit from these caches,
algorithms need to be designed so that most of the time
they access data in cache, just as in sequential I/O-efficient
algorithms. In this paper, we design cache-efficient parallel
algorithms for solving a number of fundamental geometric
problems on axis-aligned objects on a private-cache CMP.
We design our algorithms in the parallel external memory
(PEM) model. The remainder of this section reviews this
model, discusses previous work, and discusses our new
contributions in more detail.

A. Model of Computation and Previous Work

The parallel external memory (PEM) model by Arge
et al. [6] (see Figure 1) is a parallel extension of the
external memory model by Aggarwal and Vitter [7]. It
consists of 𝑃 processors, each with a cache of size 𝑀 .
These caches are private to the processors, that is, each
processor can access only its own cache. In addition, all
processors have access to a shared memory of conceptually
unlimited size, which simultaneously serves as a storage area
for data that does not fit in cache and as the only means of
exchanging information between processors. The processors
independently manipulate the data in their private caches. In

CPU P

M/B

B

B

CPU 1

M/B

CPU 2

M/B

CacheCache Cache

Shared Memory

Figure 1. The PEM model



order to manipulate a data item currently not in its cache, a
processor must first load the data item from shared memory.
To communicate with each other, the processors write data
from their private caches back to shared memory. This data
can then be read by other processors. Formally, data is
transferred between the shared memory and the caches by
means of input-output (I/O) operations. Each such operation
transfers one block of 𝐵 consecutive data elements between
each processor’s cache and shared memory. Different pro-
cessors can access different blocks of shared memory in the
same I/O operation. Thus, a single I/O operation can transfer
up to 𝑃 blocks between shared memory and the caches,
one block per processor. The measure of performance of an
algorithm in the PEM model is the number of such (parallel)
I/O operations it performs. Thus, when considering only
one processor, the PEM model becomes identical to the
sequential I/O model. An issue that does not arise in the
sequential case is how to resolve conflicts between different
processors trying to access the same shared memory block
in the same I/O operation. Just as in the PRAM model, we
can specify whether to allow or disallow such concurrent
read or write I/Os or to allow one but not the other. In this
paper, we allow any number of processors to concurrently
read the same block but disallow concurrent writes to the
same block. This is equivalent to the CREW (concurrent-
read-exclusive-write) regime of the PRAM model.

The PEM model is the simplest model of current multi-
core architectures, focusing on the challenges of combining
parallelism with the requirement for spatial locality for
efficient use of caches. A number of other, more complicated
models of multicore architectures have been proposed in the
literature. In [8], Bender et al. studied concurrent searching
and updating of cache-oblivious B-trees by multiple pro-
cessors. In [9]–[14] several different multicore models were
considered and cache- and processor-oblivious algorithms
were presented for fundamental combinatorial, graph, and
matrix-based problems. It remains to be seen which of
the different models provides the best trade-off between
accurately predicting the real performance of algorithms on
modern memory hierarchies and simplicity as an aid for
designing algorithms.

In the PEM model, a number of problems have been
studied so far. In their paper introducing the model [6],
Arge et al. studied a number of fundamental combinatorial
problems, such as computing prefix sums and sorting. They
showed that the cost of sorting 𝑁 elements in the PEM
model is sort𝑃 (𝑁) = O

(
𝑁
𝑃𝐵 log𝑀/𝐵

𝑁
𝐵

)
I/Os, provided

𝑃 ≤ 𝑁/𝐵2 and 𝑀 = 𝐵𝑂(1). In [15], solutions to a
number of fundamental graph problems, such as computing
the connected components or a minimum spanning tree,
were presented. Most recently, Ajwani et al. [16] presented
solutions to a number of geometric problems, including
convex hull computation and a number of problems on axis-

aligned objects, such as orthogonal line segment intersection.
To obtain solutions to orthogonal line segment intersection

and batched orthogonal range reporting, Ajwani et al. intro-
duced a parallel version of the distribution sweeping tech-
nique introduced in [17] as a tool for obtaining sequential
I/O-efficient solutions to these problems. The main challenge
in obtaining optimal solutions to these problems is that the
optimal I/O complexity is O(sort𝑃 (𝑁)+𝐾/𝑃𝐵), where 𝐾
is the size of the output. The sequential distribution sweeping
technique achieves this complexity for the case 𝑃 = 1 by
combining the distribution paradigm with the plane sweep
paradigm: each recursive call scans the data, and each data
access can be charged to an input element or an output
element. The same ideas extend to the sequential cache-
oblivious model [18], [19]. Existing solutions in the PRAM
model [20], [21] achieve the optimal I/O complexity for the
case 𝐵 = 1 using completely different techniques that ensure
that all processors produce roughly equal portions of the
output but rely on very fine-grained access to the shared
memory. Achieving the optimal complexity for the case
𝑃 > 1 and 𝐵 > 1 requires novel ideas that combine load
balancing with blockwise access to shared memory. Ajwani
et al. [16] presented a technique for determining the contri-
bution of each input element to the output size efficiently.
Using this technique, the data could then be distributed
across the processors to achieve good load balancing. They
presented two different solutions, both suboptimal. The first
one involved a counting step at each level of recursion
in the distribution sweep. Since there are log𝑑 𝑃 levels of
recursion, where 𝑑 := max(2,min(

√
𝑁/𝑃 ,𝑀/𝐵)), and

the counting step required sorting the input elements, this
resulted in an I/O complexity of O(sort𝑃 (𝑁) log𝑑 𝑃 +
𝐾/𝑃𝐵). The second solution avoided these counting steps
by deferring the reporting of intersections to the last level
of recursion. This, however, came at the cost of an increase
of the input size to the last level of recursion to O(𝑁 +𝐾),
which gives an I/O complexity of O(sort𝑃 (𝑁 +𝐾)) I/Os.

B. New Results

In this paper, we show how to implement the counting
step at each level of recursion in the distribution sweeping
framework of [16] without sorting. This reduces the cost of
each level of recursion to O((𝑁+𝐾𝑘)/𝑃𝐵) I/Os, where 𝐾𝑘

is the output size produced at this level of recursion, and thus
leads to solutions to batched range reporting and orthogonal
line segment intersection with an overall I/O complexity of
O(sort𝑃 (𝑁) +𝐾/𝑃𝐵) I/Os, which is optimal.

The key to achieving this is a new one-dimensional
batched range counting algorithm, which takes O((𝑁 +
𝐾)/𝑃𝐵) I/Os if the input points and ranges are sorted
(which is the case when using this algorithm as part of
the distribution sweeping technique), where 𝐾 is the sum
of all the range counts. While the equivalent bound of
O((𝑁 + 𝐾)/𝐵) I/Os can be achieved trivially in the



sequential external memory model by scanning the input
and enumerating the whole output, achieving this bound in
the PEM model is more challenging. The problem is that
(𝑁 + 𝐾)/𝑃 , the number of elements a single processor
is allowed to inspect in order to achieve the above I/O
complexity, may be less than the number of points in a given
range. Thus, to achieve the O((𝑁+𝐾)/𝑃𝐵) I/O complexity,
we need to count the output without enumerating it.

Unless stated otherwise, we assume that 𝑃 ≤ min{𝑁/𝐵2,
𝑁/(𝐵 log𝑁)} and 𝑀 = 𝐵O(1) throughout this paper.
The assumptions that 𝑃 ≤ 𝑁/𝐵2 and 𝑀 = 𝐵O(1) are
required for optimal sorting in the PEM model [6], while
𝑃 ≤ 𝑁/(𝐵 log𝑁) is required by the distribution sweeping
framework of [16].

The remainder of this paper is organized as follows. In
Section II, we introduce some notation used throughout the
paper and discuss some primitives we use repeatedly. In Sec-
tion III, we present our new 1-d range counting algorithm. In
Section IV, we review the distribution sweeping framework
of Ajwani et al. [16]. In Sections V and VI, finally, we
put everything together to obtain optimal algorithms for
orthogonal line segment intersection and related problems.
We give some concluding remarks in Section VII.

II. TOOLS AND NOTATION

In this section, we review a number of primitives we
use repeatedly throughout this paper. These primitives were
originally discussed in [6] and [16].

A. Prefix Sum and Compaction

Given an array 𝐴[1 . . 𝑁 ], the prefix sum problem is to
compute an array 𝑆[1 . . 𝑁 ] such that 𝑆[𝑖] =

∑𝑖
𝑗=1𝐴[𝑗].

Given a second Boolean array 𝑀 [1 . . 𝑁 ], the compaction
problem is to arrange all elements 𝐴[𝑖] such that𝑀 [𝑖] = true
consecutively at the beginning of 𝐴 without changing their
relative order. PEM algorithms for these problems with I/O
complexity O(𝑁/𝑃𝐵 + log𝑃 ) were presented in [6] (also
see [22]).

B. Sorting

Arge et al [6] showed that an array of 𝑁 elements can be
sorted using sort𝑃 (𝑁) := O

(
𝑁
𝑃𝐵 log𝑀/𝐵

𝑁
𝐵

)
I/Os.

C. Global Load Balancing

Let 𝐴1, 𝐴2, . . . , 𝐴𝑟 be a collection of arrays with 𝑟 =
O(𝑃 ) and

∑𝑟
𝑗=1 ∣𝐴𝑗 ∣ = 𝑁 , and assume each element 𝑥

has a positive weight 𝑤𝑥. Let 𝑤max := max𝑥 𝑤𝑥, 𝑊𝑗 :=∑
𝑥∈𝐴𝑗

𝑤𝑥 and 𝑊 :=
∑𝑟

𝑗=1𝑊𝑗 . A global load balancing
operation assigns contiguous subarrays of 𝐴1, 𝐴2, . . . , 𝐴𝑟

to processors so that only a constant number of subarrays
are assigned to each processor and the total weight of the
elements assigned to any processor is O(𝑊/𝑃+𝑤max). This
operation can be implemented by running a constant number
of prefix sum and compaction operations and, hence, takes

O(𝑁/𝑃𝐵 + log𝑃 ) I/Os. The details of the algorithm can
be found in [16] and, for the sake of completeness, are also
provided in Appendix A.

III. BATCHED 1-D RANGE COUNTING

Given a set 𝒫 of points on the real line and a set 𝒬 of
intervals over the real line, the batched 1-d range counting
problem asks to compute the number 𝑘𝑞 of points in 𝒫
contained in each interval 𝑞 ∈ 𝒬. In this section, we show
how to solve this problem efficiently, provided the points
and intervals are given in sorted order.

Theorem 1. The batched 1-d range counting prob-
lem can be solved using O((𝑁 + 𝐾)/𝑃𝐵 + log𝑃 )
I/Os, where 𝐾 =

∑
𝑞∈𝒬 𝑘𝑞 , provided the input is

given as a sorted list of points and interval end-
points and 𝑃 ≤ min(𝑁/(𝐵 log𝑁), 𝑁/𝐵2). For 𝑃 ≤
min(𝑁/(𝐵 log2𝑁), 𝑁/𝐵2), the I/O complexity of the al-
gorithm becomes O((𝑁 +𝐾)/𝑃𝐵).

The following corollary is an immediate consequence
of Theorem 1, as we can produce the sorted input list
required by Theorem 1 by replacing each interval with its
two endpoints and sorting the resulting list of points and
interval endpoints.

Corollary 1. The batched 1-d range counting problem can
be solved using O(sort𝑃 (𝑁) + 𝐾/𝑃𝐵) I/Os, where 𝐾 =∑

𝑞∈𝒬 𝑘𝑞 , provided 𝑃 ≤ min(𝑁/(𝐵 log𝑁), 𝑁/𝐵2).

We use 𝒰 to denote the sorted input list of points and
interval endpoints. For an interval 𝑞 ∈ 𝒬, we use 𝑞𝑙 and 𝑞𝑟
to denote its left and right endpoints, respectively. Our goal
is to annotate every left endpoint 𝑞𝑙 in 𝒰 with the number
𝑘𝑞 of points in 𝒫 contained in 𝑞. For an interval endpoint 𝑞′,
let ix(𝑞′) denote the number of points in 𝒫 that precede 𝑞′

in 𝒰 . We call ix(𝑞′) the index of 𝑞′ in 𝒫 . Since the elements
in 𝒰 are sorted, it is easy to see that 𝑘𝑞 = ix(𝑞𝑟) − ix(𝑞𝑙).
Thus, our task is to compute ix(𝑞𝑟) and ix(𝑞𝑙), for every
interval 𝑞 ∈ 𝑄, and store their difference with 𝑞𝑙.

A. Computing the Indices of Left Endpoints

The index of every interval endpoint can be computed
using a prefix sum computation on 𝒰 . First we assign weight
1 to every point 𝑝 ∈ 𝒫 and weight 0 to every interval
endpoint. The index of an interval endpoint 𝑞′ ∈ 𝒰 is the
prefix sum of 𝑞′ over these weights. Since a prefix sum
computation takes O(𝑁/𝑃𝐵+ log𝑃 ) I/Os (see Section II),
we can compute the indices of all interval endpoints us-
ing O(𝑁/𝑃𝐵 + log𝑃 ) I/Os. The batched range counting
algorithm of [16] computes the indices of left and right
interval endpoints in this manner and then sorts the list of
interval endpoints to store the left and right endpoints of each
interval consecutively, in order to computer the difference of
their indices. Here we use this strategy only to compute the
indices of all left endpoints using O(𝑁/𝑃𝐵 + log𝑃 ) I/Os.



Next we describe how to annotate every left endpoint 𝑞𝑙 with
the index ix(𝑞𝑟) of its corresponding right endpoint without
sorting the endpoints.

B. Computing the Indices of Right Endpoints

For the computation of right endpoint indices, we distin-
guish between light and heavy intervals in 𝒬. An interval
is light if it contains less than 𝑑𝐵 points, and heavy
otherwise. For the sake of simplicity, we also refer to the
endpoints of light or heavy intervals as light or heavy,
respectively. The basic idea of our solution is the following.
For light intervals, there are not too many points in 𝒫
between their left and right endpoints. Thus, after balancing
these points between processors, each processor can use the
trivial sequential range counting approach to determine the
indices of the light right endpoints it is in charge of. In
total, the indices of all light endpoints can be computed
using O(𝑁/𝑃𝐵 + log𝑃 ) I/Os. The number of heavy right
endpoints is at most 𝐾/𝑑𝐵. This allows us to allocate an
equal number of them to each processor; each processor
then performs a binary search on 𝒫 to determine the index
of each heavy right endpoint. By itself, this strategy is
too costly, as it would cost O((𝐾/𝑑𝑃𝐵) log𝑁) I/Os to
determine the indices of all heavy right endpoints. Instead,
we first limit the search for the index ix(𝑞𝑟) of each heavy
right endpoint 𝑞𝑟 to the interval between the ix(𝑞𝑙)th point
and the (ix(𝑞𝑙) + 𝑑2𝐵)th point in 𝒫 . This strategy finds the
indices of most heavy right endpoints and fails for at most
𝐾/𝑑2𝐵 heavy endpoints. For these endpoints, we widen
the search interval, allowing the search to succeed for all
but 𝐾/𝑑3𝐵 endpoints. We continue in this manner until all
indices have been computed, and we show that the total cost
of this parametric search is O(𝐾/𝑃𝐵) I/Os for all heavy
endpoints. By summing the costs of finding the indices of
light and heavy right endpoints, we obtain the desired bound
of O((𝑁 +𝐾)/𝑃𝐵+ log𝑃 ) I/Os. Next we discuss the two
phases in detail. We start by extracting the sorted lists 𝒫
and 𝒬𝑙 of points and left interval endpoints from 𝒰 . This
takes O(𝑁/𝑃𝐵 + log𝑃 ) I/Os by applying two compaction
operations to 𝒰 .

Computing indices of light right endpoints. Let
𝑞1,𝑙, 𝑞2,𝑙, . . . , 𝑞𝑡,𝑙 be the list of left endpoints as they are
stored in 𝒬𝑙. The procedure for computing the indices of
light right endpoints consists of two steps. In the first step,
we partition 𝒬𝑙 into 𝑃 contiguous sublists to be assigned to
each processor. In the second step, each processor computes
the indices of all light right endpoints corresponding to its
assigned left endpoints.

To partition 𝒬𝑙 into sublists, we assign a weight 𝑤𝑞𝑗,𝑙

to each such endpoint, which is defined as 𝑤𝑞𝑗,𝑙 :=
min(𝑑𝐵,max(1, ix(𝑞𝑗+1,𝑙) − ix(𝑞𝑗,𝑙))), for 1 ≤ 𝑗 < 𝑡, and
𝑤𝑞𝑡,𝑙 := min(𝑑𝐵,max(1, ∣𝒫∣ − ix(𝑞𝑡,𝑙))). Then we use the
global load balancing operation from Section II to partition
𝒬𝑙 into sublists according to these weights.

Now let 𝒬𝑙,𝑖 be the list of left endpoints assigned to
processor 𝑝𝑖. To determine the indices of all light right
endpoints corresponding to left endpoints in 𝒬𝑙,𝑖, processor
𝑝𝑖 scans 𝒬𝑙,𝑖. For every left endpoint 𝑞𝑙 ∈ 𝒬𝑙,𝑖, it loads
the subarray 𝒫[ix(𝑞𝑙) + 1 . . ix(𝑞𝑙) + 𝑑𝐵] into its cache.
Note that this subarray may overlap the subarray of points
loaded for 𝑞𝑙’s predecessor in 𝒬𝑙,𝑖. Then 𝑝𝑖 loads only the
portion of 𝑞𝑙’s subarray not already in its cache and evicts
the portion of the predecessor’s subarray not needed by 𝑞𝑙.
Since 𝑑 ≤𝑀/𝐵, 𝑑𝐵 points can be held in cache. Now, if 𝑞
is a light interval, the subarray 𝒫[ix(𝑞𝑙) + 1 . . ix(𝑞𝑙) + 𝑑𝐵]
contains all points in 𝑞, as well as at least one point not
in 𝑞. Thus, by inspecting this subarray in its cache, 𝑝𝑖 can
determine whether 𝑞 is light or heavy and, in the former
case, compute ix(𝑞𝑟) and store it with 𝑞𝑙.

Lemma 1. The indices of light right endpoints can be
computed using O(𝑁/𝑃𝐵 + log𝑃 ) I/Os, provided 𝑃 ≤
min(𝑁/(𝐵 log𝑁), 𝑁/𝐵2).

Proof: The weights of the left endpoints in 𝒬𝑙 can be
computed by distributing these endpoints evenly over the 𝑃
processors and having each processor scan its assigned list
of points. Thus, this takes O(𝑁/𝑃𝐵) I/Os. The global load
balancing based on these weights then takes O(𝑁/𝑃𝐵 +
log𝑃 ) I/Os, as discussed in Section II.

Let 𝑊 be the total weight of all points in 𝒬𝑙, and
let 𝑊𝑖 be the weight assigned to processor 𝑝𝑖. Since the
maximum weight of each element in 𝒬𝑙 is 𝑑𝐵, the global
load balancing operation ensures that 𝑊𝑖 ≤ 𝑊/𝑃 + 𝑑𝐵.
We prove that 𝑊 ≤ 𝑁 and that each processor performs
O(𝑊𝑖/𝐵 + 𝑑) I/Os to compute the indices of its assigned
light right endpoints. This shows that the cost of the second
step is O(𝑁/𝑃𝐵 + 𝑑) = O(𝑁/𝑃𝐵) I/Os. By adding the
costs of the two steps, we obtain the lemma.

To bound 𝑊 =
∑𝑡

𝑗=1 𝑤𝑞𝑗,𝑙 , let 𝑤′
𝑞𝑗,𝑙

:= 1 + ix(𝑞𝑗+1,𝑙)−
ix(𝑞𝑗,𝑙), for 1 ≤ 𝑗 < 𝑡, and 𝑤′

𝑞𝑡,𝑙
:= 1+ ∣𝒫∣ − ix(𝑞𝑡,𝑙). Then

𝑤𝑞𝑗,𝑙 ≤ 𝑤′
𝑞𝑗,𝑙

, for all 1 ≤ 𝑗 ≤ 𝑡, and hence 𝑊 ≤ 𝑊 ′ :=∑𝑡
𝑗=1 𝑤

′
𝑞𝑗,𝑙

. Now observe that a point 𝑝 ∈ 𝒫 contributes to
the weight 𝑤′

𝑞𝑗,𝑙
of a point 𝑞𝑗,𝑙 only if 𝑞𝑗,𝑙 ≤ 𝑝 ≤ 𝑞𝑗+1,𝑙 or

𝑗 = 𝑡 and 𝑞𝑗,𝑙 ≤ 𝑝. This immediately implies that every point
𝑝 ∈ 𝒫 contributes to the weight of at most one left interval
endpoint and, hence, that 𝑊 ≤𝑊 ′ ≤ ∣𝒬∣+ ∣𝒫∣ ≤ 𝑁 .

To bound the number of I/Os performed by each processor
𝑝𝑖, observe that, for two consecutive points 𝑞𝑗,𝑙 and 𝑞𝑗+1,𝑙 in
𝒬𝑙,𝑖, ix(𝑞𝑗,𝑙) ≤ ix(𝑞𝑗+1,𝑙). This implies that each processor
scans 𝒬𝑙,𝑖 and a portion of 𝒫 , possibly skipping elements
in 𝒫 if ix(𝑞𝑗+1,𝑙) > ix(𝑞𝑗,𝑙) + 𝑑𝐵, for some 𝑗. The cost
of scanning 𝒬𝑙,𝑖 is bounded by O(𝑊𝑖/𝐵) because each
element of 𝒬𝑙,𝑖 has weight at least 1. Now observe that
processor 𝑝𝑖 loads 𝑑𝐵 points from 𝒫 into its cache, for the
first endpoint in 𝒬𝑙,𝑖. For every subsequent point 𝑞𝑗,𝑙 ∈ 𝒬𝑙,𝑖,
the number of new points loaded into the cache is bounded
by 𝑤𝑞𝑗,𝑙 . Hence, the total number of points processor 𝑝𝑖
reads from 𝒫 is at most 𝑊𝑖 + 𝑑𝐵. These points are



read sequentially, except when skipping over points because
ix(𝑞𝑗+1,𝑙) > ix(𝑞𝑗,𝑙) + 𝑑𝐵. The cost of sequentially reading
𝑊𝑖 + 𝑑𝐵 elements is O(𝑊𝑖/𝐵 + 𝑑) I/Os. Skipping over
points incurs a random disk access. However, in this case
𝑑𝐵 new points are read from 𝒫 , which implies that the cost
of these random disk accesses is also bounded by O(𝑊𝑖/𝐵)
I/Os.

Computing the indices of heavy right endpoints. To
start the computation of the indices of heavy right endpoints,
we apply a compaction operation to 𝒬𝑙 to obtain the list
𝒬1

𝑙 of heavy left endpoints. We store with each endpoint
𝑞𝑙 ∈ 𝒬1

𝑙 its position in 𝒬𝑙, in order to be able to copy
the index of the corresponding right endpoint back to 𝒬𝑙

once it has been computed. Since, apart from computing
the indices of light right endpoints, the previous phase also
identified all heavy left endpoints, this compaction operation
takes O(𝑁/𝑃𝐵 + log𝑃 ) I/Os, as discussed in Section II.

Now the computation of the indices of heavy right end-
points proceeds in iterations. The ℎth iteration takes a list
𝒬ℎ

𝑙 of left endpoints as input. This list contains exactly those
left endpoints 𝑞𝑙 for which ix(𝑞𝑟)− ix(𝑞𝑙) ≥ 𝑑ℎ𝐵. Its output
is the list of indices of all heavy right endpoints 𝑞𝑟 with
ix(𝑞𝑟)− ix(𝑞𝑙) < 𝑑ℎ+1𝐵, as well as the list 𝒬ℎ+1

𝑙 that forms
the input to the next iteration.

In the ℎth iteration, we distribute the elements of 𝒬ℎ
𝑙

evenly across the 𝑃 processors. Let 𝒬ℎ
𝑙,𝑖 be the list allo-

cated to processor 𝑝𝑖. Then processor 𝑝𝑖 inspects each left
endpoint 𝑞𝑙 ∈ 𝒬ℎ

𝑙,𝑖 in turn and performs a binary search
on 𝒫[ix(𝑞𝑙) . . ix(𝑞𝑙) + 𝑑ℎ+1𝐵] to either determine ix(𝑞𝑟) or
decide that ix(𝑞𝑟) ≥ ix(𝑞𝑙) + 𝑑ℎ+1𝐵. In the former case,
it writes ix(𝑞𝑟) to the original position of 𝑞𝑙 in 𝒬𝑙 (which
is stored with 𝑞𝑙 in𝒬ℎ

𝑙,𝑖). In the latter case, it marks 𝑞𝑙 for
processing in the next iteration.

Once all processors have processed their allocated left
endpoints in 𝒬ℎ

𝑙 in this manner, we apply a compaction
operation to 𝒬ℎ

𝑙 to extract the list 𝒬ℎ+1
𝑙 for the next iteration.

This iterative procedure stops as soon as 𝒬ℎ+1
𝑙 is empty.

Lemma 2. The indices of heavy right endpoints can be
computed using O((𝑁 + 𝐾)/𝑃𝐵 + log𝑃 ) I/Os, provided
𝑃 ≤ min(𝑁/(𝐵 log𝑁), 𝑁/𝐵2).

Proof: The compaction performed in preparation for
the first iteration takes O(𝑁/𝑃𝐵 + log𝑃 ) I/Os because 𝒬𝑙

contains at most 𝑁 elements. Next we bound the cost of the
iterations by O((𝑁 +𝐾)/𝑃𝐵), which proves the lemma.

Consider the ℎth iteration. Each interval 𝑞 such that
𝑞𝑙 ∈ 𝒬ℎ

𝑙 contains at least 𝑑ℎ𝐵 points. Hence, the size of
𝒬ℎ

𝑙 is bounded by 𝐾/(𝑑ℎ𝐵), and each processor operates
on 𝐾/(𝑑ℎ𝑃𝐵) elements. For each element, the processor
performs a binary search of a subarray of 𝒫 of size 𝑑ℎ+1𝐵,
which costs O(log(𝑑ℎ+1𝐵) − log𝐵) = O((ℎ + 1) log 𝑑)
I/Os, as the last log𝐵 binary search steps remain within
two consecutive blocks of 𝒫 . Thus, the I/O complexity of
all binary searches in the ℎth iteration is O

(𝐾(ℎ+1) log 𝑑
𝑑ℎ𝑃𝐵

)
.

The compaction cost in the ℎth iteration is bounded by
O(𝐾/(𝑑ℎ𝑃𝐵) + log𝑃 ), as discussed in Section II.

Next we observe that the computation of right endpoint in-
dices terminates after at most log𝑑(𝑁/𝐵) iterations because,
for ℎ = log𝑑(𝑁/𝐵), we have 𝑑ℎ𝐵 = 𝑁 and, hence, the
ℎth iteration succeeds in determining the indices of all right
endpoints corresponding to left endpoints left in 𝒬ℎ

𝑙 . Thus,
omitting big-Oh notation for brevity, the cost of all iterations
needed to compute the indices of heavy right endpoints is
bounded by

log𝑑(𝑁/𝐵)∑
ℎ=1

(
𝐾(ℎ+ 1) log 𝑑

𝑑ℎ𝑃𝐵
+ log𝑃

)

≤ 𝐾 log 𝑑

𝑃𝐵

⎛
⎝log𝑑(𝑁/𝐵)∑

ℎ=1

ℎ+ 1

𝑑ℎ

⎞
⎠+ log𝑃 log𝑑

𝑁

𝐵

≤ 𝐾 log 𝑑

𝑃𝐵
⋅ 2𝑑− 1

(𝑑− 1)2
+ log𝑃 log𝑑

𝑁

𝐵

=
𝐾 log 𝑑

𝑃𝐵
⋅O

(
1

𝑑

)
+ log𝑃 log𝑑

𝑁

𝐵

= O

(
𝐾

𝑃𝐵
+ log𝑃 log𝑑

𝑁

𝐵

)
,

which is bounded by O((𝑁+𝐾)/𝑃𝐵), given the constraints
on 𝑃 .

Theorem 1 follows from Lemmas 1 and 2.

C. Multiple Instances of Batched 1-d Range Counting

When applying batched 1-d range counting in the context
of the distribution sweeping framework, we need to solve
several instances of batched 1-d range counting simulta-
neously at each level of recursion. The following result
generalizes Theorem 1 to solving up to 𝑃 instances simul-
taneously.

Theorem 2. Let 𝒰1,𝒰2, . . . ,𝒰𝑟 be sorted lists of points and
segment endpoints, each representing the input of a batched
1-d range counting instance, and let 𝑁 :=

∑𝑟
𝑖=1 ∣𝒰𝑖∣. If

𝑟 ≤ 𝑃 and 𝑃 ≤ min(𝑁/(𝐵 log𝑁), 𝑁/𝐵2), the 𝑟 range
counting instances represented by 𝒰1,𝒰2, . . . ,𝒰𝑟 can be
solved simultaneously using O((𝑁+𝐾)/𝑃𝐵+log𝑃 ) I/Os,
where 𝐾 :=

∑𝑟
𝑖=1

∑
𝑞∈𝒬𝑖

𝑘𝑞 and 𝒬𝑖 denotes the set of
intervals in the range counting instance represented by 𝒰𝑖.
For 𝑃 ≤ min(𝑁/(𝐵 log2𝑁), 𝑁/𝐵2), the I/O complexity of
the algorithm becomes O((𝑁 +𝐾)/𝑃𝐵).

Proof: The batched range counting algorithm relies on
a prefix sum computation and compaction operations on
each list 𝒰𝑖 and on using global load balancing to allocate
segments to processors. The prefix sum computation on
all lists 𝒰1,𝒰2, . . . ,𝒰𝑟 can be carried out by applying a
single segmented prefix sum operation to the concatenation
of these lists. (A segmented prefix sum operation does not
sum across the boundary between consecutive lists and can
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𝐼𝑘𝜎
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Figure 2. Invocation 𝐼𝑘𝜎 of the distribution sweeping framework. Given
the above segments, the lists generated at invocation 𝐼𝑘𝜎 look as follows:
𝑌 𝑘+1
𝜎1 = {ℎ2}, 𝑌 𝑘+1

𝜎2 = {𝑣1}, 𝑌 𝑘+1
𝜎3 = {ℎ3}, 𝑌 𝑘+1

𝜎4 = {𝑣2, ℎ2, ℎ3};
𝑅𝑘

𝜎2
= {𝑣1, ℎ2}, 𝑅𝑘

𝜎4
= {𝑣2}. The intermediate sets look as fol-

lows: 𝐸𝑘
𝜎1

= {ℎ2}, 𝐸𝑘
𝜎3

= {ℎ3}, 𝐸𝑘
𝜎4

= {ℎ2, ℎ3}; 𝑆𝑘
𝜎2

= {ℎ2};
𝑉 𝑘
𝜎2

= {𝑣1}, 𝑉 𝑘
𝜎4

= {𝑣2}. Note that the intersection between ℎ1 and
𝑣2 is reported at the parent invocation of 𝐼𝑘𝜎 : since ℎ1 spans the whole
slab 𝜎 = ∪4

𝑗=1𝜎𝑗 , it does not belong to 𝑌 𝑘
𝜎 . Also note that, although ℎ2

spans 𝜎3, it does not participate in an intersection in 𝜎3 and therefore does
not appear in 𝑆𝑘

𝜎3
nor in 𝑅𝑘

𝜎3
.

be implemented in the same complexity as a regular prefix
sum operation.)

The global load balancing operation also relies only on
prefix sum operations, which can be replaced with their seg-
mented version, in order to allocate portions of multiple lists
𝒰1,𝒰2, . . . ,𝒰𝑟 to the processors. In addition, it requires that
we allocate portions of no more than 𝑃 lists to processors,
which is guaranteed by the condition 𝑟 ≤ 𝑃 .

In summary, the cost of the batched 1-d range counting
procedure is not affected by operating on multiple instances
of total size 𝑁 simultaneously, as long as the total number
of instances does not exceed 𝑃 .

IV. PARALLEL DISTRIBUTION SWEEPING FRAMEWORK

In this section we review the parallel distribution sweep-
ing framework by Ajwani et al. [16], using orthogonal
line segment intersection as illustrating example. Parallel
distribution sweeping recursively divides the plane into
vertical slabs, starting with the entire plane as one slab
and in each recursive step dividing a given slab into 𝑑 :=
max(2,min(

√
𝑁/𝑃 ,𝑀/𝐵)) child slabs; refer to Figure 2.

This division is chosen so that each slab at a given level
of recursion contains roughly the same number of objects
(horizontal segment endpoints and vertical segments). The
lowest level of recursion divides the plane into 𝑃 slabs, each
containing Θ(𝑁/𝑃 ) objects. By viewing the recursion as a
rooted tree, we can naturally define leaf invocations, non-leaf
invocations, and children of non-leaf invocations. We denote
an invocation on a slab 𝜎 at the 𝑘th level of recursion by 𝐼𝑘𝜎 .

We process all invocations at the same level of recursion in
parallel.

Each invocation 𝐼𝑘𝜎 receives a 𝑦-sorted list 𝑌 𝑘
𝜎 as input;

this list contains all vertical segment endpoints in 𝜎, as well
as all horizontal segments with one endpoint in 𝜎. For the
root invocation 𝐼0

ℝ2 , 𝑌 0
ℝ2 is a 𝑦-sorted list of all vertical

segment endpoints and horizontal segments. We generate
this list before starting the framework by replacing each
vertical segment with its two endpoints and sorting the
resulting list of horizontal segments and vertical segment
endpoints.

For a non-leaf invocation 𝐼𝑘𝜎 , let 𝐼𝑘+1
𝜎1

, 𝐼𝑘+1
𝜎2

, . . . , 𝐼𝑘+1
𝜎𝑑

denote its child invocations. The task of this invocation
is to produce the input lists 𝑌 𝑘+1

𝜎1
, 𝑌 𝑘+1

𝜎2
, . . . , 𝑌 𝑘+1

𝜎𝑑
of its

child invocations and to report for each child slab 𝜎𝑖 the
intersections between vertical segments in 𝜎𝑖 and horizontal
segments completely spanning 𝜎𝑖. To achieve this, invoca-
tion 𝐼𝑘𝜎 generates a number of lists from 𝑌 𝑘

𝜎 . Let 𝐸𝑘
𝜎𝑗

be the
𝑦-sorted list of horizontal segments in 𝑌 𝑘

𝜎 with an endpoint
in 𝜎𝑗 , 𝑆𝑘

𝜎𝑗
the 𝑦-sorted list of horizontal segments in 𝑌 𝑘

𝜎

spanning 𝜎𝑗 and with an intersection in 𝜎𝑗 , and 𝑉 𝑘
𝜎𝑗

the
𝑦-sorted list of vertical segment endpoints in 𝑌 𝑘

𝜎 contained
in 𝜎𝑗 . For each child slab 𝜎𝑗 , we construct two 𝑦-sorted
lists 𝑅𝑘

𝜎𝑗
:= 𝑆𝑘

𝜎𝑗
∪ 𝑉 𝑘

𝜎𝑗
and 𝑌 𝑘+1

𝜎𝑗
:= 𝐸𝑘

𝜎𝑗
∪ 𝑉 𝑘

𝜎𝑗
. Then,

for each child slab 𝜎𝑗 , we report all intersections between
elements of 𝑅𝑘

𝜎𝑗
and recursively pass the list 𝑌 𝑘+1

𝜎𝑗
to the

child invocation 𝐼𝑘+1
𝜎𝑗

. The different lists are illustrated in
Figure 2.

The task of a leaf invocation 𝐼𝑘𝜎 is to report all intersec-
tions between the elements of 𝑌 𝑘

𝜎 without recursing further.
This is done using sequential I/O-efficient techniques after
allocating portions of the input lists of all leaf invocations to
processors so that each processor is responsible for reporting
roughly the same number of intersections.

In [16], Ajwani et al. discussed how to produce the
lists 𝑅𝑘

𝜎𝑗
and 𝑌 𝑘+1

𝜎𝑗
at each non-leaf invocation using

O(sort𝑃 (𝑁) + 𝐾/𝐷𝐵) I/Os in total for all invocations.
The reason why they did not achieve this I/O complex-
ity for the whole algorithm was the need to balance the
load of reporting intersections over all processors at each
level of recursion. To achieve this, it was necessary (a)
to ensure that no vertical segment participates in more
than max(𝑁/𝑃,𝐾/(𝑃 log𝑑 𝑃 )) intersections at each level
of recursion and (b) to count the number of intersections a
vertical segment participates in at each level of recursion.

To ensure that no segment is involved in too many inter-
sections at each level of recursion, Ajwani et al. presented
an approach of splitting vertical segments with too many
intersections at each level of recursion immediately before
reporting intersections at this level. The cost of this splitting
step was O(sort𝑃 (𝑁)) I/Os. Since this splitting step is per-
formed at each of log𝑑 𝑃 levels of recursion, this increased
the I/O complexity to O(sort𝑃 (𝑁) log𝑑 𝑃 +𝐾/𝑃𝐵).



As we discuss next, counting the number of intersections
of a vertical segment at each level of recursion amounts
to solving up to 𝑃 instances of batched range counting.
Recall that in invocation 𝐼𝑘𝜎 , we report intersections among
the segments in 𝑅𝑘

𝜎𝑗
= 𝑉 𝑘

𝜎𝑗
∪ 𝑆𝑘

𝜎𝑗
, for each of 𝑑 child

slabs 𝜎𝑗 of 𝜎. Also recall that the segments in 𝑆𝑘
𝜎𝑗

fully
span the slab 𝜎𝑗 . Thus, a vertical segment 𝑣 in 𝑅𝑘

𝜎𝑗
and

a horizontal segment ℎ in 𝑅𝑘
𝜎𝑗

intersect if and only if
ℎ’s 𝑦-coordinate is contained in the 𝑦-range of 𝑣, and the
problem of computing the intersection counts for the vertical
segments in 𝑅𝑘

𝜎𝑗
reduces to batched one-dimensional range

counting on 𝑅𝑘
𝜎𝑗

, treating vertical segments as intervals over
the 𝑦-axis and horizontal segments as points on the 𝑦-axis.
The total number of child slabs at each level of recursion
is bounded by the number of leaf invocations, which is
𝑃 . Thus, if the batched range counting algorithm supports
solving up to 𝑃 instances simultaneously, the batched range
counting problems at each level of recursion can be solved
in a single invocation of this algorithm. The batched range
counting algorithm presented in [16] takes O(sort𝑃 (𝑁))
I/Os. Since this algorithm is invoked once per level of
recursion, this adds another O(sort𝑃 (𝑁) log𝑑 𝑃 ) I/Os to the
total I/O complexity of the algorithm.

Next we discuss how to achieve the optimal I/O com-
plexity of O(sort𝑃 (𝑁) + 𝐾/𝑃𝐵) I/Os for the orthogonal
line segment intersection problem. We present this solu-
tion in two parts. In Section V, we present an algorithm
for splitting vertical segments with more than 𝐾 ′ :=
max(𝑁/𝑃,𝐾/(𝑃 log𝑑 𝑃 )) intersections into segments with
at most 𝐾 ′ intersections. This algorithm has I/O complexity
O(sort𝑃 (𝑁)) and produces a set of at most O(𝑁) segments.
In Section VI, we show how to achieve the optimal I/O
complexity of O(sort𝑃 (𝑁) + 𝐾/𝑃𝐵) I/Os, provided no
vertical segment is involved in more than 𝐾 ′ intersections.
To do this, we implement the batched range counting steps
at each level of recursion using our batched range counting
algorithm from Section III.

V. SPLITTING SEGMENTS WITH MANY INTERSECTIONS

Let us call a segment heavy if it participates in more than
𝐾 ′ := max{𝑁/𝑃,𝐾/(𝑃 log𝑑 𝑃 )} intersections, and light
otherwise. In this section, we discuss how to split the heavy
segments in a collection of 𝑁 horizontal and vertical seg-
ments so that the resulting collection of segments contains
only light segments and the total number of segments is
O(𝑁). We discuss how to split heavy horizontal segments
here. Heavy vertical segments can be split by exchanging
the roles of the coordinates.

We start by counting the number of intersections each hor-
izontal segment is involved in. This takes O(sort𝑃 (𝑁)) I/Os
using an algorithm of [16]. Using a compaction operation
(see Section II), we extract the list 𝐻𝑙 of heavy horizontal
segments. Let 𝑉 be the set of vertical segments.

The central part of our algorithm is to generate a list
𝐿ℎ of 𝑥-coordinates where to split each heavy segment
ℎ ∈ 𝐻𝑙. Our algorithm generates the elements of all these
lists 𝐿ℎ simultaneously, in no particular order. To distinguish
which list an 𝑥-coordinate 𝑥 belongs to, we represent an 𝑥-
coordinate in 𝐿ℎ as the pair (ℎ, 𝑥). To generate the light
subsegments of the segments in 𝐻𝑙, we sort the list 𝐿 of all
such pairs we generate primarily by the lists 𝐿ℎ they belong
to and secondarily by their 𝑥-coordinates. Given this sorted
list, the light subsegments of all heavy horizontal segments
can then be generated using a single parallel scan. We argue
below that the total number of pairs (ℎ, 𝑥) generated for all
heavy horizontal segments is O(𝑁). Thus, once these pairs
have been generated, the sorting and scanning steps needed
to generate the subsegments take O(sort𝑃 (𝑁)) I/Os.

To split a segment ℎ ∈ 𝐻𝑙, we intuitively add 𝑥-
coordinates to 𝐿ℎ such that there are 𝐾 ′ intersection points
between each pair of consecutive 𝑥-coordinates. Doing this
precisely is difficult. Instead, we allow these splitting coor-
dinates to deviate by up to 𝑁/𝑃 intersection points from
their ideal positions. This may increase the number of inter-
sections per generated subsegment to 𝐾 ′ +𝑁/𝑃 = O(𝐾 ′),
which is sufficient for our purposes.

The high-level procedure is as follows: We use the dis-
tribution sweeping framework, starting with a 𝑦-sorted list
𝑌 0
ℝ2 of vertical segment endpoints and horizontal segments

as the input to the root invocation 𝐼0
ℝ2 . For an invocation

𝐼𝑘𝜎 with input list 𝑌 𝑘
𝜎 , we send all the vertical segment

endpoints in 𝑌 𝑘
𝜎 to the appropriate child lists 𝑌 𝑘+1

𝜎𝑗
. We

add a horizontal segment to 𝑌 𝑘+1
𝜎𝑗

if it has an endpoint in
𝜎𝑗 or it should be split at an 𝑥-coordinate inside 𝜎𝑗 . We
determine the positions where to split a horizontal segment
ℎ as follows: Consider the first invocation 𝐼𝑘𝜎 such that ℎ
is completely contained in 𝜎 but spans at least one slab
boundary between child slabs of 𝜎. We define the leftmost
such intersection between ℎ and a slab boundary to be the
anchor of ℎ; see Figure 3. We split ℎ at its anchor. The
remaining split coordinates of ℎ are chosen by “walking”
left and right from the anchor and placing a split point each
time we pass 𝐾 ′ intersections points. These split coordinates
are ideal in the sense that they would guarantee exactly 𝐾 ′

intersection points per generated subsegment of ℎ, except
possibly for the two end pieces including the endpoints
of ℎ, which may have fewer than 𝐾 ′ intersections. When
this recursive process reaches the leaf level of recursion,
the input list of a leaf invocation 𝐼𝑘𝜎 contains exactly those
horizontal segments that have an endpoint in 𝜎 or should be
split at an 𝑥-coordinate inside 𝜎. Note that no segment in 𝐻𝑙

can be completely contained in such a leaf slab 𝜎 because 𝜎
contains only 𝑁/𝑃 vertical segments and, hence, a segment
contained in 𝜎 can have only 𝑁/𝑃 ≤ 𝐾 ′ intersections.
Thus, every segment in 𝑌 𝑘

𝜎 intersects at least one of the
boundaries of 𝜎. We split all segments intersecting the left



boundary of 𝜎 at this left boundary. (We do not need to
split segments at the right boundary because this is the left
boundary for the next slab to the right, and the segment will
be split in the corresponding invocation.) Note that, by doing
so, we do not necessarily split segments at their ideal split
coordinates. However, since 𝜎 contains only 𝑁/𝑃 vertical
segments, moving the ideal split point of a segment ℎ ∈ 𝑌 𝑘

𝜎

to the left boundary of 𝜎 adds at most 𝑁/𝑃 intersection
points to the subsegment of ℎ to the right of this split point.
Thus, each of the subsegments generated using these split
coordinates intersects at most 𝐾 ′ +𝑁/𝑃 vertical segments,
as desired.

It remains to discuss how to decide for a non-leaf invoca-
tion 𝐼𝑘𝜎 whether a horizontal segment ℎ ∈ 𝑌 𝑘

𝜎 has an ideal
split point inside a child slab 𝜎𝑗 of 𝜎, in order to add ℎ
to the input list 𝑌 𝑘+1

𝜎𝑗
of the corresponding child invocation

𝐼𝑘+1
𝜎𝑗

. As long as a horizontal segment ℎ has not reached an
invocation yet where it intersects a slab boundary, nothing
special needs to be done for this segment. Once we have
fixed the anchor of ℎ, we operate on the two subsegments
ℎ𝑙 and ℎ𝑟 left and right of the anchor independently. Here
we discuss how to handle the right subsegment ℎ𝑟; the left
subsegment can be handled symmetrically. As ℎ𝑟 moves
towards the leaf invocation corresponding to the leaf slab
containing its right endpoint, we maintain a weight 𝑤(ℎ𝑟)
of ℎ𝑟. When ℎ𝑟 is at an invocation 𝐼𝑘𝜎 , the weight of
ℎ𝑟 is the number of intersections ℎ𝑟 has between its left
endpoint (the anchor of ℎ) and the left boundary of 𝜎. For
the invocation 𝐼𝑘𝜎 that determines the anchor of ℎ, ℎ𝑟 is
completely contained in 𝜎. Hence, we initialize the weight
of ℎ𝑟 to 0. Then, for any invocation 𝐼𝑘𝜎 that processes ℎ𝑟,
we consider all child slabs 𝜎𝑖, 𝜎𝑖+1, . . . , 𝜎𝑗 of 𝜎 which
ℎ𝑟 spans completely. Let 𝛽𝑖, 𝛽𝑖+1, . . . , 𝛽𝑗+1 be the slab
boundaries defining these slabs, and let 𝑘𝑞 be the number of
intersections ℎ𝑟 has inside the slab 𝜎𝑞 , for 𝑖 ≤ 𝑞 ≤ 𝑗. We
define the rank of a slab boundary 𝛽𝑞 , for 𝑖 ≤ 𝑞 ≤ 𝑗 + 1,
as rankℎ𝑟

(𝛽𝑞) := 𝑤(ℎ𝑟) +
∑𝑞−1

𝑞′=𝑖 𝑘𝑞′ . It is not hard to see
that ℎ𝑟 has an ideal split coordinate in a child slab 𝜎𝑞 if
⌊rankℎ𝑟

(𝛽𝑞)/𝐾
′⌋ < ⌊rankℎ𝑟

(𝛽𝑞+1)/𝐾
′⌋. In this case, we

add ℎ𝑟 to the list 𝑌 𝑘+1
𝜎𝑞

. When adding ℎ𝑟 to such a list
𝑌 𝑘+1
𝜎𝑞

, we set its weight in 𝑌 𝑘+1
𝜎𝑞

to rankℎ𝑟
(𝛽𝑞).

The implementation of this procedure requires counting
for every horizontal segment the number of intersections it
has in each child slab it completely spans. In [16] it is shown
how do this using O(𝑁𝑘/𝑃𝐵) I/Os per level of recursion,
where 𝑁𝑘 is the input size to all invocations at level 𝑘. Next
we show that 𝑁𝑘 = O(𝑁), for all 𝑘, which implies that
the cost of this counting step and the cost of distributing
segments to the child lists at each level of recursion is
O(𝑁/𝑃𝐵) I/Os. By summing over all levels of recursion,
we obtain that the total cost of generating the input lists for
the leaf invocations is O((𝑁/𝑃𝐵) log𝑑 𝑃 ) = O(sort𝑃 (𝑁))
I/Os. We have already argued that the cost of generating the

anchor 𝑏ℎ

ℎ𝑙 ℎ𝑟

ℎ

Figure 3. An example of anchoring segment ℎ at 𝑏ℎ.

light subsegments from the input lists of the leaf invocations
takes O(sort𝑃 (𝑁)) I/Os. Hence, the total I/O complexity
of this procedure is O(sort𝑃 (𝑁)), and the total number of
segments we generate is bounded by the total input size of
all leaf invocations, which is O(𝑁).

The bound on 𝑁𝑘 follows if we can bound the total
number of ideal split coordinates by O(𝑁) because a
horizontal segment belongs to the input of an invocation
𝐼𝑘𝜎 only if it has an endpoint or an ideal split coordinate
inside 𝜎. However, since every two consecutive ideal split
coordinates of a segment have exactly 𝐾 ′ intersections
between them, the total number of ideal split coordinates is
at most 𝐾/𝐾 ′ ≤ 𝑃 log𝑑 𝑃 ≤ 𝑁 , where the latter inequality
follows from the bound 𝑃 ≤ 𝑁/(𝐵 log𝑁).

Theorem 3. A list of 𝑁 horizontal and vertical segments
can be replaced with a list of O(𝑁) horizontal and vertical
segments with the same intersection points and such that
each segment has at most 𝐾 ′ := max(𝑁/𝑃,𝐾/(𝑃 log𝑑 𝑃 ))
intersections. If 𝑃 ≤ min(𝑁/𝐵2, 𝑁/𝐵 log𝑁), the I/O
complexity of the algorithm to do this is O(sort𝑃 (𝑁)).

VI. OPTIMAL ORTHOGONAL LINE SEGMENT

INTERSECTION REPORTING

As discussed in Section IV, the orthogonal line segment
intersection algorithm of [16] achieves the optimal I/O
complexity of O(sort𝑃 (𝑁) + 𝐾/𝑃𝐵) I/Os, excluding the
cost of splitting heavy segments and the cost of counting the
number of intersections each vertical segment is involved in
at each level of recursion.

In Section V, we have shown how to split heavy segments
into light ones using O(sort𝑃 (𝑁)) I/Os and without increas-
ing the number of segments by more than a constant factor.
Thus, to achieve the optimal I/O complexity, it suffices to
show that we can count the number of intersections each
vertical segment is involved in at each level of recursion
using a total of at most O(sort𝑃 (𝑁) +𝐾/𝑃𝐵) I/Os for all
levels.

Let 𝐾𝑘 be the total number of intersections to be reported
at all invocations at the 𝑘th level of recursion, and let 𝑁𝑘

be the total size of the lists 𝑅𝑘
𝜎𝑗

constructed at this level
in order to report these intersections. Since a horizontal



segment belongs to such a list 𝑅𝑘
𝜎𝑗

if and only if it spans
𝜎𝑗 and has an intersection with a vertical segment in 𝜎𝑗 , it
follows that 𝑁𝑘 ≤ 𝑁 + 𝐾𝑘. Also, since all vertical and
horizontal segments appear at each level of recursion in
the slab containing their endpoints, 𝑁𝑘 ≥ 𝑁 . As argued
in Section IV, counting the number of intersections each
vertical segment is involved in at this level of recursion
amounts to batched 1-d range counting on all the lists 𝑅𝑘

𝜎𝑗

at this level. Since there are at most 𝑃 such lists 𝑅𝑘
𝜎𝑗

at
any level of recursion, Theorem 2 shows that we can solve
all these batched 1-d range counting problems simultane-
ously using O((𝑁𝑘 + 𝐾𝑘)/𝑃𝐵) = O((𝑁 + 𝐾𝑘)/𝑃𝐵)
I/Os, provided 𝑃 ≤ min(𝑁/(𝐵 log2𝑁), 𝑁/𝐵2). Since∑

𝑘𝐾𝑘 ≤ 𝐾 and there are log𝑑 𝑃 levels of recursion, the
total cost of all these batched range counting steps is there-
fore O((𝑁 log𝑑 𝑃 + 𝐾)/𝑃𝐵) = O(sort𝑃 (𝑁) + 𝐾/𝑃𝐵).
This proves the following theorem.

Theorem 4. Orthogonal line segment intersection reporting
can be solved using O(sort𝑃 (𝑁)+𝐾/𝑃𝐵) I/Os and O(𝑁+
𝐾) space, provided 𝑃 ≤ min(𝑁/(𝐵 log2𝑁), 𝑁/𝐵2).

Note that the permissible number of processors is no more
than 𝑁/(𝐵 log2𝑁), while the suboptimal solution in [16]
worked for up to min(𝑁/(𝐵 log𝑁), 𝑁/𝐵2) processors. We
can achieve the optimal I/O complexity in Theorem 4 also
for up to this number of processors, at the expense of using
more space.

Theorem 5. Orthogonal line segment intersection
reporting can be solved using O(sort𝑃 (𝑁) + 𝐾/𝑃𝐵)
I/Os and O(𝑁 log𝑑 𝑃 + 𝐾) space, where
𝑑 := max(2,min(

√
𝑁/𝑃 ,𝑀/𝐵)), provided

𝑃 ≤ min(𝑁/(𝐵 log𝑁), 𝑁/𝐵2).

Proof: The only part of our orthogonal line segment
intersection algorithm that relies on the assumption that
𝑃 ≤ 𝑁/(𝐵 log2𝑁) is the batched range counting algorithm.
For 𝑁/(𝐵 log2𝑁) < 𝑃 ≤ min(𝑁/(𝐵 log𝑁), 𝑁/𝐵2), the
cost of batched range counting becomes O((𝑁 +𝐾)/𝑃𝐵+
log𝑃 ) I/Os, which would increase the total cost of the
batched range counting steps over all levels of recursion to
O(sort𝑃 (𝑁) +𝐾/𝑃𝐵 + log𝑃 log𝑑 𝑃 ).

To avoid this blow-up of the range counting cost, we
first generate the lists 𝑅𝑘

𝜎𝑗
for all levels of recursion and

then run one batched range counting step on all these lists,
followed by reporting the intersections in all these lists.
This is possible because the total number of these lists
over all levels of recursion is still O(𝑃 ). As we have
argued above, the size of the lists 𝑅𝑘

𝜎𝑗
at one level of

recursion is O(𝑁 +𝐾𝑘). By summing this over all levels,
we obtain a total size of these lists of O(𝑁 log𝑑 𝑃 + 𝐾),
which gives the increased space bound in the theorem. The
cost of running batched range counting on these lists is
O((𝑁 log𝑑 𝑃 +𝐾)/𝑃𝐵+log𝑃 ) = O(sort𝑃 (𝑁)+𝐾/𝑃𝐵)
because 𝑃 ≤ 𝑁/(𝐵 log𝑁) implies that log𝑃 ≤ 𝑁/𝑃𝐵.

This gives the I/O complexity claimed in the theorem.

VII. DISCUSSION

This paper improves the parallel distribution sweeping
framework of [16] to obtain an optimal O(sort𝑃 (𝑁) +
𝐾/𝑃𝐵) I/Os orthogonal line segment intersection reporting
algorithm. In order to achieve this, we had to address two
challenges:

∙ Ensure that no vertical segment participates in more
than 𝐾 ′ = max{𝑁/𝑃,𝐾/(𝑃 log𝑑 𝑃 )} intersections at
each level of recursion.

∙ Count the number of intersections a vertical segment
participates in at each level of recursion within the
optimal I/O bound.

We achieved the first goal by splitting the segments in a
preprocessing step. To attain the second goal, we used our
O((𝑁+𝐾)/𝑃𝐵) I/O 1-d batched range counting algorithm.

It remains open whether similar results can be obtained
on hardware-oblivious models of private-cache chip multi-
processors. It would be particularly interesting to see if an
I/O-optimal low-depth cache-oblivious distribution sweeping
paradigm can be designed, along the lines of [14].
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APPENDIX A.
GLOBAL LOAD BALANCING

Let 𝐴1, 𝐴2, . . . , 𝐴𝑟 be arrays each of whose elements
𝑒 has a positive weight 𝑤𝑒. Assume further that 𝑟 ≤ 𝑃
and

∑𝑟
𝑖=1 ∣𝐴𝑖∣ = 𝑁 , and let 𝑊𝑖 :=

∑
𝑒∈𝐴𝑖

𝑤𝑒 be the
total weight of the elements in array 𝐴𝑖, 𝑊 :=

∑𝑟
𝑖=1𝑊𝑖,

and 𝑤max := max1≤𝑖≤𝑟 max𝑒∈𝐴𝑖
𝑤𝑒. The global load bal-

ancing problem is to assign contiguous chunks of arrays
𝐴1, 𝐴2, . . . , 𝐴𝑟 to processors so that each processor re-
ceives O(1) chunks and the total weight of the elements
assigned to each processor is O(𝑊/𝑃+𝑤max). In Section II,
we claimed that this operation can be implemented using
O(𝑁/𝑃𝐵+log𝑃 ) I/Os and gave a sketch of the algorithm.
Here we provide the details.

Without loss of generality, we assume that every array 𝐴𝑖

is aligned at a block boundary and its size is a multiple of 𝐵.
If that is not the case, we can pad each array with dummy
entries of weight 0 at the end and remove the padding after
the completion of the load balancing procedure. Note that
the padding does not asymptotically increase the total size
of the arrays because the padding is at most 𝐵−1 elements
for each array, 𝑟(𝐵− 1) ≤ 𝑃 (𝐵− 1) ≤ 𝑁 elements in total
because 𝑃 ≤ 𝑁/𝐵.

First we apply a prefix sum operation to the weights of
the elements in each array 𝐴𝑖. This can be implemented
using a single “segmented” prefix sum operation applied
to the concatenation 𝐴 of arrays 𝐴1, 𝐴2, . . . , 𝐴𝑟, which
does not sum across the boundary of two consecutive arrays
𝐴𝑖 and 𝐴𝑖+1. Thus, this step takes O(𝑁/𝑃𝐵 + log𝑃 )
I/Os. Next we divide 𝐴 into 𝑃 chunks of size ⌈𝑁/𝑃 ⌉
and assign one chunk to each processor. This can be done
using simple index arithmetic on 𝐴. Each processor inspects
every element 𝑒 in its assigned chunk and marks it if either
𝑒 is the first element of an array 𝐴𝑖 or the prefix sums
𝑊𝑒 and 𝑊𝑒′ of 𝑒 and its predecessor 𝑒′ in 𝐴𝑖 satisfy
⌊𝑃𝑊𝑒′/𝑊 ⌋ < ⌊𝑃𝑊𝑒/𝑊 ⌋. Next we apply a compaction
operation to 𝐴 to obtain the list of marked elements, each
annotated with the array 𝐴𝑖 it belongs to and its position
in 𝐴𝑖. These marked elements are the start elements of
the chunks we wanted to construct, and we assign two
consecutive chunks to each processor. The I/O complexity
of this procedure is easily seen to be O(𝑁/𝑃𝐵 + log𝑃 ),
as it involves a prefix sum and a compaction operation, plus
sequential processing of ⌈𝑁/𝑃𝐵⌉ blocks per processor and
one access to two consecutive elements per processor in the
array of marked elements. The constructed chunks have the
desired properties:

∙ Since the first element of every array 𝐴𝑖 is marked, ev-
ery chunk contains elements from exactly one array 𝐴𝑖.

∙ The number of chunks is at most 2𝑃 , that is, by
assigning two chunks to each processor, we do assign
all chunks to processors. To see this, observe that the
number of marked elements per array 𝐴𝑖 is at most
1+ ⌊𝑊𝑖𝑃/𝑊 ⌋, which implies that the total number of
marked elements, that is, the total number of chunks is
at most 𝑟 + 𝑃 ≤ 2𝑃 .

∙ Every chunk has total weight at most 𝑊/𝑃 + 𝑤max.
To see this, consider a chunk with first element 𝑒 and
last element 𝑒′, and let 𝑊𝑒 and 𝑊𝑒′ denote their prefix
sums. Then ⌊𝑃𝑊𝑒/𝑊 ⌋ = ⌊𝑃𝑊𝑒′/𝑊 ⌋, that is, the total
weight of the elements in the chunk, excluding 𝑒, is at
most 𝑊/𝑃 . Since 𝑒 has weight at most 𝑤max, the total
weight of the chunk is at most 𝑊/𝑃 + 𝑤max.


