
Title Agent-based coordination for the sensor web

Authors(s) Tynan, Richard, O'Hare, G. M. P. (Greg M. P.), O'Grady, Michael J.

Publication date 2010-03-26

Publication information Tynan, Richard, G. M. P. (Greg M. P.) O’Hare, and Michael J. O’Grady. “Agent-Based

Coordination for the Sensor Web.” ACM, 2010.

Conference details Presented at the 25th annual ACM Symposium on Applied Computing (SAC'10), Sierre,

Switzerland, March 22-26 2010

Publisher ACM

Item record/more

information

http://hdl.handle.net/10197/1923

Publisher's statement ACM, 2010. This is the author's version of the work. It is posted here by permission of ACM for

your personal use. Not for redistribution.

Publisher's version (DOI) 10.1145/1774088.1774512

Downloaded 2024-03-29T04:02:15Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A978-1-60558-639-7&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F1923

Agent-Based Coordination for the Sensor Web

Conor Muldoon
CLARITY: The Centre for

Sensor Web Technologies,
School of Computer Science
and Informatics, University

College Dublin,
Belfield, D4, Ireland

conor.muldoon@ucd.ie

Richard Tynan
CLARITY: The Centre for

Sensor Web Technologies,
School of Computer Science
and Informatics, University

College Dublin,
Belfield, D4, Ireland

richard.tynan@ucd.ie

Gregory M. P. O Hare
CLARITY: The Centre for

Sensor Web Technologies,
School of Computer Science
and Informatics, University

College Dublin,
Belfield, D4, Ireland

gregory.ohare@ucd.ie
Michael J. O Grady

CLARITY: The Centre for
Sensor Web Technologies,

School of Computer Science
and Informatics, University

College Dublin,
Belfield, D4, Ireland

michael.j.ogrady@ucd.ie

ABSTRACT
This paper addresses the problem of coordination within
the Sensor Web, where the Sensor Web is defined as an
amorphous network of spatially distributed nodes that sense
various phenomena in the environment, that are battery
powered, and that communicate and coordinate wirelessly.
The approach described advocates the use of a multi-agent
system, and specifically the use of multi-agent distributed
constraint optimisation algorithms. Developing software for
low powered sensing devices introduces several problems to
be addressed; the most obvious being the limited computa-
tional resources available. In this paper we discuss an im-
plementation of ADOPT, a pre-existing algorithm for dis-
tributed constraint optimisation, and describe how it has
been integrated with a reflective agent platform developed
for resource constrained devices, namely Agent Factory Mi-
cro Edition (AFME). The usefulness of this work is illus-
trated through the canonical multi-agent coordination prob-
lem, namely graph colouring.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

Keywords
Multi-Agent Systems, Distributed Constraint Optimisation,
Wireless Sensor Networks

1. INTRODUCTION
Wireless Sensor Networks (WSNs) have received consid-

erable research interest of late; within a WSN, the goal is
to enable resource constrained battery powered devices to
autonomously monitor phenomena, such as light, tempera-
ture, and sound, and to transmit the sensed data wirelessly
to some repository or base station. This paper is concerned
with the Sensor Web, whereby collaboration and coordina-
tion are key facets. Although all WSNs are collaborative in
a loose sense, how to achieve collaborative behaviour opti-
mally and ensure resources are managed effectively remains
an open question and is one of the main objectives of the
Sensor Web.

In this paper, we advocate the use of ADOPT [8, 9], a pre-
existing algorithm for distributed constraint optimisation, to
address coordination problems. With distributed constraint
optimisation algorithms, the goal is to answer the following
question: “How do a set of agents optimise over a set of
constraints such that a solution is found with some degree
of global quality?”. The constraint optimisation problem
in general is known to be NP hard. Thus, it is necessary
to use approximate approaches for large problem instances.
ADOPT provides one such approach, however, the current
reference implementation [7] has been developed as a simu-
lator and for standard Java. The implementation discussed
in this article has been developed for Java Micro Edition
(JME) and has been tested on Sun SPOT motes. One of
the main advantages of ADOPT is that it provides a the-
oretical or analytical bounded error on the approximation.
This bounded error can be increased or decreased by varying
a threshold value. It provides a principled approach in the
trade-off between solution accuracy and resource consump-
tion.

The work described in this paper, builds upon prior re-

UCD Library
Text Box
© ACM, 2010. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.The definitive version is be published in SAC '10 Proceedings of the 2010 ACM Symposium on Applied Computing, available athttp://dx.doi.org/10.1145/1774088.1774512

search on the development of agent based technologies for
the Sensor Web, namely AFME (Agent Factory Micro Edi-
tion) [10, 11]. AFME is a reflective agent platform and is
loosely based on the BDI model of agency [12]. The BDI
model, however, is not really sufficient to truly model col-
laborative behaviour in a practical sense. It is primarily
concerned with the development of agents from an individ-
ual perspective. That is, when the developer is writing agent
code, the code is written on a per agent basis. Although col-
laborative behaviour ultimately comes down to the decisions
made by individuals, lest we contravene the notions of au-
tonomy and rationality, from a practical perspective, it will
often be better to encode common goals in some form of
group setting or formalism. Distributed constraint optimi-
sation provides one such approach. In this paper, we discuss
how ADOPT is incorporated into the AFME infrastructure
as an agent platform service.

This work is concerned with the development of Java-
based agents. The ongoing improvement in WSN node tech-
nology has lead to the emergence of Java Micro Edition
(JME) enabled devices such as the iMote2 and Sun SPOT
running the SQUAWK JVM. Such developments pave the
way for the porting of existing Java based agent environ-
ments to the field of WSNs. The system discussed here is
based on the CLDC subset of the JME specifications.

2. AGENT FACTORY MICRO EDITION
In the paper, we advocate the use of computationally re-

flective or intelligent agents. Computational reflection is one
of the most import areas of artificial intelligence; it is a tech-
nique that enables a system to maintain meta-information
about itself and use this information to change its behaviour
or, in other words, to adapt. In the agent community par-
lance, this meta-information is commonly referred to as an
agent’s belief set or an agent’s model or the world. The
behaviour of intelligent agents is typically represented using
declarative antecedent-consequence rules, somewhat similar
to those of rule-based expert systems.

Intelligent agents symbolically model their environment
and manipulate these symbols in order to act. To model in-
tentional agency, an abstraction level is chosen for the sym-
bols such that they represent mental attitudes. Agent ori-
ented programming is a paradigm for directly programming
the behaviour of agents using languages whose semantics
capture a theory of rational agency. Agents often have a
set of beliefs, desires, and intentions and an interpreter that
determines how the agents should achieve their goals within
the environment.

Agents typically make the closed world assumption and
maintain a simple cache of information believed to be true.
With the closed world assumption, that which the agent
does not have a belief about is taken to be false, or in other
words, its negation is taken to be true.

We shall now discuss a minimised footprint embedded re-
flective agent platform, namely Agent Factory Micro Edition
(AFME) [8, 9]. AFME is based on Agent Factory [3], a pre-
existing agent platform for desktop environments. AFME
expresses an agent’s internal state through the mentalistic
notions of belief and commitment. In AFME, as with many
other intelligent agent platforms, system functionality is de-
livered through a combination of imperative and declara-
tive code. The imperative functionality is in the form of
a set of perceptors and actuators. Perceptors generate be-

liefs about the agent’s state and its environment. Actua-
tors enable agents to affect their environment; they provide
the imperative functionality for primitive or atomic actions.
Rules that define the conditions under which commitments
are adopted are used to encode an agent’s behaviour in an
agent programming language. In short, perceptors generate
meta-information (beliefs) about the system state and the
environment. Using this information and its internal declar-
ative rule set, the agent will decide on the plans or actions
that need to be performed.

Perceptors, actuators, and rules within AFME are taken
to be nondeterministic. By this, we mean that the devel-
oper should not program agents on the basis that there is
a temporal ordering among perceptors, among actuators, or
among rules in terms of their execution time. In this way,
the various components are viewed as being independent or
atomic. For instance, it is possible to use an actuator de-
veloped for one application, within a different application,
without including other actuators that it depends upon to
change system state or perform some action before it exe-
cutes. If such a temporal ordering is required, it is encoded
explicitly within an explicit plan.

AFME agents follow a sense-deliberate-act cycle. The
agents are executed at periodic intervals. Four functions are
performed when an agent is executed. First, the perceptors
are fired and beliefs are updated. Second, the agent’s desires
are identified through the use of resolution based reasoning.
Third, the agent’s intentions are identified. Typically, the
agent’s desires will be its intentions, but in certain circum-
stances a knapsack procedure will be invoked. Fourth, de-
pending on the nature of the commitments adopted, various
actuators are fired.

3. DISTRIBUTED CONSTRAINT OPTIMI-
SATION

With the BDI model of agency, reasoning and resource
management is primarily viewed from the point of view of
the individual. In this section, the focus is on collaborative
behaviour concerning a team of agents. It should be noted,
however, that in any collaborative activity, the behaviour
and performance of the team ultimately comes down to the
decisions made by the individual team members. Nonethe-
less, in situations where agents do decide to collaborate, it
is essential that we have practical algorithms to facilitate
colloaborative decision making and enable multiple agents
to coordinate their behaviour. Distributed constraint opti-
misation provides one such approach.

A Distributed Constraint Optimization Problem (DCOP)
is a constraint optimization problem that is solved in a dis-
tributed manner by a group of collaborating agents. The
agents share a common goal of choosing values for a set of
variables such that the cost of a set of constraints over the
variables is either minimized or maximized. A DCOP is
defined as a tuple 〈A, V,D, f, α, σ〉, where:

A is a set of agents;
V is a set of variables, {v1, v2, . . . , v|V |};
D is a set of domains, {D1, D2, . . . , D|V |}, where each D ∈
D is a finite set containing the values to which its associated
variable are assigned;
f is a function f :

⋃
S∈P(V)

∏
vi∈S ({vi} ×Di)→ N∪{∞}

that maps variable assignments to costs;
α is a function α : V → A that maps variables to agents.

α(vi) 7→ aj implies that agent aj assigns the value of variable
vi;
σ is an operator that aggregates the individual f costs for

the variable assignments. This is accomplished as follows:
σ(f) 7→

∑
s∈

⋃
S∈P(V)

∏
vi∈S({vi}×Di)

f(s).

The purpose of a DCOP algorithm is to enable each agent
to assign values to their variables in order to either minimize
or maximize σ(f) for a given assignment. In Section 4, we
discuss the graph colouring problem, which can be solved
using a DCOP algorithm.

3.1 ADOPT Algorithm
In this section, we provide a high level and slightly sim-

plified overview of the ADOPT algorithm, which is used
to solve DCOPs. This will be sufficient for our purposes.
An in depth discussion of the technical details of the algo-
rithm goes beyond the scope of this article, but the inter-
ested reader is directed towards the preexisting literature [9]
and the original ADOPT paper [8].

Initially in the ADOPT algorithm there is a preprocessing
step. Within this step the constraint graph is converted
into a constraint tree. The tree is constructed in such a
manner that there are constraints only between a vertex
and its ancestors or descendents.

As the algorithm is executing, every vertex of the con-
straint graph maintains (1) its current value, which is cho-
sen from its domain, and (2) the values of its connected
ancestors in the constraint tree, which are referred to as its
current context. These values represent a partial solution of
the DCOP. The vertices maintain for each value, the lower
bounds on the cost of the solution that is consistent with
the value and its current context. The lower bounds are ini-
tialized with the summation of the costs of the constraints
between the connected ancestors. It is possible to determine
these costs as the current context is known.

The vertices maintain an upper bound on the cost of the
solution that is consistent with their current context. The
upper bound is initialised to infinity when the algorithm
begins to operate. The lower bound of the current value of a
vertex is referred to as its current lower bound. The smallest
lower bound of all values is referred to as the best lower
bound. The value associated with the best lower bound is
referred to as the best value. When the algorithm begins to
operate, the initial current value chosen by a vertex is the
best value. The vertices also maintain a threshold value,
which is initialised to zero. ADOPT maintains the following
invariant in relation to the threshold: If it is lower than the
best lower bound, it is increased to the best lower bound. If
it is larger than the upper bound, it is reduced to the upper
bound.

As the algorithm executes, if the current lower bound of
a vertex is greater than the threshold, the current value is
changed to the best value. Otherwise, the vertex keeps its
current value. If the current value is changed, the vertex’s
connected descendents in the constraint tree are informed of
its new value. The descendants perform similar computa-
tions; enabling the vertex to decrease its upper bound and
increase its current lower bound. When the threshold of
the root vertex of the tree is equal to its upper bound, the
algorithm terminates.

As mentioned earlier if the current lower bound of the
vertex is greater than the threshold, it changes its current
value to its best value. There are two possible scenarios

when this occurs:

1. If there are values whose lower bounds are less than
the threshold, the best value is taken on and is kept
until the lower bound of that value increases above
the threshold. This process is repeated until all lower
bounds are greater than or equal to the threshold. If
this is the case, then the algorithm has reached the
second possible scenario. It should be noted that dur-
ing this first scenario, each value is only taken on once,
provided the ancestors do not switch values. The value
is kept so long as the lower bound of the value is
less than the threshold, even if a different value has
a smaller lower bound. This effectively represents a
depth-first search.

2. If all lower bounds are greater than or equal to the
threshold, the vertex increases the threshold to the
best lower bound and then takes on its best value un-
til the lower bound of that value increases. The proce-
dure is then repeated. It should be noted that within
this second scenario, the algorithm cannot return to
the first scenario, provided the vertex’s ancestors do
not switch values. In the second scenario, the algo-
rithm always chooses the best value first; this proce-
dure therefore represents a best-first search strategy.

3.2 CLDC Implementation
The current reference implementation of ADOPT [7] has

been developed for simulation and within standard Java. In
this section, an implementation of ADOPT that has been
designed for the Constrained Limited Device Configuration
(CLDC) subset of Java Micro Edition (JME) is discussed.
CLDC is an extremely limited version of Java. It supports
a very small subset of the standard Java classes along with
some additional classes (such as those that form the Generic
Connection Framework). CLDC is the most widely used
version of Java on mobile phones and WSN motes, such as
the Sun SPOT and the Sentilla.

There are two reasons why the CLDC implementation of
ADOPT was developed. (1) The current reference imple-
mentation has been designed for simulation. In this article,
we consider the use of the algorithm for a real Sun SPOT
WSN node deployment. (2) The current reference imple-
mentation has been designed for standard Java rather than
CLDC. It therefore could not be used for the vast majority
of mobile phones and Java-based WSN motes.

With the development of the CLDC implementation of
ADOPT, a number of custom classes were created. The rea-
son for this is that the reference implementation of ADOPT
has dependencies on standard Java classes that are not avail-
able in CLDC. For instance, it uses the generic linked list
class of Java. Creating customised classes provides a means
to reduce the footprint and improve the maintainability of
the software in that they need only meet the exact require-
ments of the problem to be addressed rather than provide
a generic solution that can be used in a number of differ-
ent cases. For example, methods return a specific class type
rather than a generic object. This removes the need for
casting.

In addition to re-implementing the algorithm such that it
was compliant with CLDC, it was necessary to create classes
that enable the nodes to communicate with each other over
the radio channel. This functionality was implemented us-

ing the Sun SPOTs radio gram protocol, which facilitates
datagram-based packet exchange.

The design of CLDC implementation of ADOPT, in terms
of the object-oriented components of the system, differs sig-
nificantly from the original implementation. The design has
been strongly influence by the ‘Law of Demeter’ (LoD) [6]
or the principle of least knowledge. This specifies the cod-
ing guideline ‘only talk to your immediate friends, not to
strangers’. It requires that a method M of an object O only
invokes the methods of the following objects: O itself, the
parameters of M, and objects created or instantiated within
M, and O’s direct component objects. Developing code that
conforms to the law tends improve the maintainability of
the software and reduce the footprint by minimising code
duplication [13, 2].

The CLDC implementation of ADOPT has been designed
to be capable of operating in conjunction with AFME. As
mentioned earlier, AFME is a reflective agent platform that
has been designed for use with resource constrained devices.
The idea is that AFME agents would use ADOPT to facili-
tate collaborative behaviour in situations where a particular
problem has been formalised as a DCOP1. In such cases,
AFME agents use ADOPT as a discrete collaborative ac-
tion that is performed at a procedural level2. AFME agents
use ADOPT by incorporating it as a service on the local
platform. Although the ADOPT implementation has been
designed to be compatible with AFME, it is quite possible
to use ADOPT independently. This is useful in situations
when there are not enough resources to operate both AFME
and ADOPT. For instance, when using very low specifica-
tion devices.

4. GRAPH COLOURING
ADOPT, and DCOP algorithms in general, are designed

to optimise multiple constraints in a distributed manner and
can be used to solve the most important multi-agent coordi-
nation problem, namely graph colouring. Graph colouring
is concerned with the assignment of labels (numbers), which
are referred to as colours, to elements of a graph subject to
certain constraints. The graph colouring problem is compu-
tationally hard. In its simplest form, it is a way of assigning
numbers to the nodes of a network such that no two adja-
cent nodes are assigned the same number; this is commonly
referred to as vertex colouring. Similarly, an edge colour-
ing assigns a colour or number to each edge so that no two
adjacent edges share the same value.

Graph colouring has several real world applications, such
as scheduling and task allocation. Consider the situation in
which there are a number of atomic tasks to be performed
and each task must be assigned to a specific time slot. Each
task takes one unit of time to complete and the tasks can be
performed in any order. There are conflicts amongst tasks in
that some of the tasks cannot be performed at the sme time
(this will occur if two or more takes require unilateral access
to a common resource at the same). This is an example of
a graph colouring problem where there is a vertex for each
task and an edge for conflicting tasks. Algorithms, such

1In this type of scenario, it is assumed that the DCOP is
only part of the problem in that if it were the entire problem
there would be no need for the AFME infrastructure.
2ADOPT is implemented at an imperative rather than
declarative level.

as ADOPT, enable graph colouring to be performed in a
distriubted manner.

Consider the situation in which there are a number of
moving targets within a WSN environment. The nodes are
heterogeneous in the sense that they have differeing sensing
capabilites along with differing coverage and transmission
ranges or areas. In this example, each target represents a
sensing source, for instance, some targets with emit light,
others temperature, etc. Not all of the nodes will be capa-
ble of detecting all of the sources because (1) a source will be
out of range or (2) it will not have the appropriate sensing
capability on board, for instance, some nodes will have tem-
perature sensors but not accostic sensors. In this scenario,
the nodes periodically check their sensors to see if a target
is in range. This effectively determines the colours that the
node can take on. For example, a node could potentially
be assigned to monitor temperature or sound. In this ex-
ample, we assume that there is a certain amount of overlap
within the coverage areas of the sensors. If two nodes nodes
have overlaping coverage areas and can detect the same phe-
nomenon, their will be an edge between the two nodes. Once
the graph has been constructed, the nodes are coloured us-
ing the ADOPT algorithm. Subsequently, no two adjacent
nodes will be assigned the same sensing task and the mobile
targets will be resonably well covered.

Some of the advantages of using ADOPT, along with de-
tails of experiments performed using the CLDC implemen-
tation, are discussed in Section 5.1.

5. RELATED WORK AND DISCUSSION
The application of agent technologies within WSNs has

been increasing over the last number of years. In partic-
ular, the underlying agent support frameworks for WSNs.
The Mobile Agent Platform for Sun SPOTs (MAPS) is a
Java-based framework for wireless sensor networks based on
Sun SPOT technology [1]. MAPS uses components that
interact through events. Each component offers a set of ser-
vices to mobile agents that are modeled as multi-plane state
machines driven by event condition action rules. These ser-
vices include message transmission, agent creation, agent
cloning, agent migration, timer handling, along with sup-
port to access sensor node resources. Agilla [4] is a mid-
dleware platform for deploying mobile agents; essentially
mobile code. The agent architecture is tailored toward the
computational constraints typical of WSN nodes. It allows
for multiple agents to exist on a single sensing node and
provides methods for the reliable movement of agents be-
tween nodes. Sensing platforms provide context to an agent
through tuples (a set of predefined descriptors about the
node) in a tuple-space. The tuple-space also serves as the
communication forum between agents on a node. Mate [5]
allows WSN programs to be written in TinyScript, a script-
ing language that is compiled into executable bytecodes for
an application-specific virtual machine. Allowing the virtual
machine to be application-specific means that the programs
for it can be clear and concise and thus less prone to failure,
but this approach reduces compatibility of agents across dif-
ferent platforms. The bytecodes are less like mobile agents,
but rather are like intentional viruses. Once a single instance
of a bytecode program is introduced to the network, it au-
tomatically spreads by controlled flooding until all nodes of
the network have a copy of the program.

The work discussed in this paper differs from other agent-

based approaches in a number of ways. This paper de-
tailed the development of the CLDC implemenation of the
ADOPT algorithm for coordination and constraint optimisa-
tion and its integration with AFME, a preexisting platform
for resrouce constrained devices. Distributed constraint op-
timisation is an NP hard problem. As discussed in Section
4, we use ADOPT to address the graph colouring problem.
ADOPT is the first ever distributed, asynchronous, optimal
algorithm for DCOP. The algorithm only requires polyno-
mial space at each agent. One of the primary advantages of
using ADOPT is that it contains an in built bounded error
approximation mechanism. As the algorithm operates, the
upper and lower bounds converge towards a solution. The
algorithm need not continue operating until the threshold of
the root vertex of the tree is equal to its upper bound, but
when it is within a specific range. This provides a princi-
pled approach in the tradeoff between solution quality and
resource usage.

5.1 Experimentation
In order to test the CLDC implementation of ADOPT,

we replicated experiments developed for the reference im-
plementation using the data set from [14]. The experiments
were performed using both the reference implementation and
the CLDC implementation 3. As expected, the CLDC im-
plementation provided the same results. From a practical
perspective, however, the footprint of the CLDC version will
be lower.

When considering the footprint of the software, we must
also consider the footprint of other components it requires to
execute. The current reference implementation of ADOPT
was developed for standard Java. The footprint of CLDC
is considerably less that standard Java. This comes at a
cost in terms of flexibility, however. For instance, the JVM
of CLDC does not facilitate the dynamic loading of foreign
objects. The reason for this is that within CLDC code must
be preverified. This improves the performance of the JVM.
The ADOPT algorithm does not require this functionality,
thus this in no way inhibits its execution.

6. CONCLUSION
We discussed how to faciliate coordination amongst intel-

ligent agents for the Sensor Web using a compibination of
AFME and a new implementaiton of ADOPT for the JME
CLDC environment. The ADOPT algorithm is useful for
solving distriubted constraint optimisation problems. With
this approach, at various stages through execution AFME
reflective agents identify situations whereby coordination is
necessary. They subsequently use ADOPT to assign nodes
to different sensing modalities. Constraint optimisation is
general is known to be NP Hard. ADOPT provides a prin-
cipled bounded error approach that enables the tradeoffs
between solution quality and resource consumption to be
managed effectively. The current reference implementation
of ADOPT is intended for simulation and has been designed
for standard Java. The implementation discussed in this ar-
ticle has been developed for CLDC and has been tested on
Sun SPOT motes.

7. ACKNOWLEDGMENTS
3These experiments were conducted on a desktop machine.

This material is based on works supported by the Science
Foundation Ireland under Grant No. 07/CE/I1147. Conor
Muldoon would like to acknowledge the support of The Irish
Research Council for Science, Engineering and Technology
(IRCSET) and the People Marie Curie Actions.

8. REFERENCES
[1] F. Aiello, R. Gravina, A. Guerrieri, and G. Fortino.

MAPS: A Mobile Agent Platform for WSNs based on
Java Sun Spots. Proceedings of the third international
workshop on Agent Technology for Sensor Networks
(ATSN), 2009.

[2] G. Booch. Object-oriented Analysis and Design, 2nd
edition. Addison Wesley, 1994.

[3] R. W. Collier, G. M. P. O Hare, T. Lowen, and
C. Rooney. Beyond prototyping in the factory of the
agents. 3rd Central and Eastern European Conference
on Multi-Agent Systems (CEEMAS’03), Lecture Notes
in Computer Science (LNCS), 2691, 2003.

[4] C.-L. Fok, G.-C. Roman, and C. Lu. Mobile agent
middleware for sensor networks: An application case
study. In Proc. of the 4th Int. Conf. on Information
Processing in Sensor Networks (IPSN’05), pages
382–387. IEEE, April 2005.

[5] P. Levis and D. Culler. Maté : a virtual machine for
tiny networked sensors. ASPLOS, October 2002.

[6] K. Lieberherr, I. Holland, and A. Riel. Object-oriented
programming: An objective sense of style. in Object
Oriented Programming Systems, Languages and
Applications Conference, in special issue of SIGPLAN
notices, pages 323–334, 1988.

[7] P. Modi. USC DCOP repository
http://teamcore.usc.edu/dcop (2/11/2009).

[8] P. Modi, W. Shen, M. Tambe, and M. Yokoo. An
asynchronous complete method for distributed
constraint optimization. Proceedings of Autonomous
Agents and Multi-Agent Systems, 2003.

[9] P. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt:
Asynchronous distributed constraint optimization
with quality guarantees. Artificial Intelligence,
161(1-2):149–180, 2006.

[10] C. Muldoon, G. M. P. O Hare, and J. F. Bradley.
Towards Reflective Mobile Agents for Resource
Constrained Mobile Devices. In AAMAS 07:
Proceedings of the Sixth International Joint conference
on Autonomous Agents and Multiagent Systems,
Honolulu, Hawai’i, May 14-18 2007. ACM.

[11] C. Muldoon, G. M. P. O Hare, R. W. Collier, and
M. J. O Grady. Multi-Agent Programming: Languages,
Platforms and Applications, chapter Towards
Pervasive Intelligence: Reflections on the Evolution of
the Agent Factory Framework, pages 187–210.
Springer-Verlag Publishers, 2009.

[12] A. S. Rao and M. P. Georgeff. BDI Agents: from
theory to practice. Proceedings of the First
International Conference on Multi-Agent Systems
(ICMAS’95), pages 312–319, June 1995.

[13] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen. Object Oriented Modeling and Design.
Prentice Hall, 1991.

[14] Z. Yin. USC DCOP repository
http://teamcore.usc.edu/dcop (2/11/2009).

