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ABSTRACT: This paper investigates the use of Bayesian updating to improve estimates of characteristic bridge traffic loading. 

Over recent years the use Weigh-In-Motion technologies has increased hugely. Large Weigh-In-Motion databases are now 

available for multiple sites on many road networks. The objective of this work is to use data gathered throughout a road network 

to improve site-specific estimates of bridge loading at a specific Weigh-In-Motion site on the network. Bayesian updating is a 

mathematical framework for combining prior knowledge with new sample data. The approach is applied here to bridge loading 

using a database of 81.6 million truck records, gathered at 19 sites in the US. The database represents the prior knowledge of 

loading throughout the road network and a new site on the network is simulated. The Bayesian approach is compared with a 

non-Bayesian approach, which uses only the site-specific data, and the results compared. It is found that the Bayesian approach 

significantly improves the accuracy of estimates of 75-year loading and, in particular, considerably reduces the standard 

deviation of the error. With the proposed approach less site-specific WIM data is required to obtain an accurate estimate of 

loading. This is particularly useful where there is concern over an existing bridge and accurate estimates of loading are required 

as a matter of urgency. 

KEY WORDS: Bayesian; Updating; Bridge; Characteristic; Traffic; Load; Modelling. 

1 INTRODUCTION 

Accurate modelling of bridge traffic loading is critically 

important in bridge engineering. At the design stage it allows 

the design of bridges which are fit for purpose, while reducing 

the waste associated with overdesign. In the assessment of 

existing structures, estimates of traffic loading are possibly 

more important. Where there is concern over an existing 

bridge, this information will determine whether a bridge needs 

to be repaired or replaced. If a bridge is saved as a result, 

significant cost savings can be made. 

The most accurate method for modelling bridge traffic 

loading is to use Weigh-In-Motion (WIM) data. WIM systems 

measure truck weights and axle configurations as they pass 

along a road at normal highway speeds [1]. Statistical 

methods are generally used to extrapolate from the relatively 

short WIM measurement period to the return period used for 

bridge design/assessment. Return periods of 75 years [2] or 

1000 years [3] are commonly used. 

A common extrapolation approach is to fit a statistical 

distribution to the measured data and to extrapolate to the 

required return period. The generalized extreme value 

distribution is a popular choice in the literature. This 

distribution can be separated into a family of three extreme 

value distributions, comprising of the Gumbel (type I), 

Fréchet (type II) and Weibull (type III) distributions. The type 

I Gumbel distribution is used by some authors [4], [5] but the 

type III Weibull distribution is perhaps the most common [6–

9]. These extreme value distributions must be fitted to block 

maxima, with maximum daily or weekly values often used.  

As an alternative to direct extrapolation from WIM data, 

Monte Carlo simulations can also be used. With these 

simulations, statistical distributions are fitted to the properties 

of the measured traffic and a new stream of traffic is 

simulated [10–12]. Hundreds or thousands of years of traffic 

can be simulated in this way and the characteristic load effects 

can be obtained directly from the simulated traffic, without 

the need for extrapolation. These long run simulations are 

time consuming but they allow for loading scenarios, such as 

truck meeting or overtaking events, which did not occur 

during the WIM measuring period. 

WIM data is becoming increasingly more common and this 

is reflected in recent bridge loading literature. Enright et al. 

[13] used 21 million trucks from 11 sites to examine long span 

bridge loading in Alabama. Nowak & Rakoczy [14] simulated 

bridge loading using 35 million truck records from 32 sites in 

the US and Fu & You [15] examine multi-truck loading 

events using 63 million truck records gathered in New York.  

This paper develops a method for using the large amounts 

of data which are now available for many road networks to 

help estimate loading at a new site on the same network. 

Bayesian updating is used as it provides a mathematical 

framework for combining prior knowledge about a certain 

statistical property with new sample data [16]. This is useful 

in engineering where data from various sources must be 

combined in the decision-making process and has been used 

for many civil engineering applications. For example, Hong 

and Prozzi [17] use this approach to update the parameter 

distributions for a pavement performance model. Enright and 

Frangopol [18] use it to predict the deterioration of concrete 

bridges as it allows the results of bridge inspections to be 

combined with prior information to obtain improved 

predictions. Other studies [19], [20] also apply a Bayesian 

approach to improve the accuracy of structural engineering 

models. 
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In this work 81.6 million trucks from 19 sites in the US are 

used to test the approach. These truck records provide the 

prior knowledge about loading in the US. This prior data is 

then combined with new site-specific data, using the Bayesian 

approach, in order to obtain improved estimates of 

characteristic loading at the new site. The Bayesian approach 

is compared with a Weibull extrapolation approach, which 

uses only site-specific data, and the improvements in accuracy 

examined. The proposed approach reduces the amount of 

WIM data required to make accurate estimates of loading. 

This is very useful where there is concern over the safety of 

an existing bridge and an estimate of loading is required in 

order to make a prompt decision about the future of the 

bridge. 

2 METHODOLOGY 

2.1 Bayesian updating 

A random variable (maximum weekly GVW) is described by 

a parameter vector θ (e.g. for a Weibull distribution with three 

parameters,          ). However, these parameters are 

themselves random variables due to the uncertainty associated 

with parameter estimation. These random variables have an 

assumed ‘prior’ distribution  '(θ). When a new set of sample 

data, x, is acquired this prior distribution can be updated to 

obtain the ‘posterior’ distribution  ''(θ). The posterior 

distribution is calculated as: 
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where       ) = conditional probability, or likelihood     , 

of the new data x, given θ. 

 

The denominator is a normalising constant which ensures that 

        is a complete probability density function (PDF). As a 

result Eq. (1) can be rewritten as: 
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This is the approach used here as it avoids the 

computationally intensive calculation of the denominator 

              
 

  
. The likelihood function is calculated for 

the new set of data as: 
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The posterior        is often used to obtain the expected value 

of θ, which gives a point estimator of the parameter vector. 

However the approach used in this work includes the 

uncertainty associated with estimating the value of θ. The 

posterior distribution of the parameter vector can be used to 

calculate the cumulative distribution function (cdf) for the 

underlying random variable X (in this case the maximum 

weekly GVW), and this cdf can be used to calculate 

characteristic values: 
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The prior distribution of the parameter vector is obtained by 

fitting a Weibull distribution to each site-year of prior data. 

The data from the Colorado site is used to simulate the new 

site-specific data and is not included in the prior data. This 

new site-specific data is modelled by randomly sampling 25 

non-consecutive weeks of data from the Colorado site. 

Bayesian updating is then used obtain the posterior 

distribution of the parameter vector and hence the cdf for 

loading at that site. For the Bayesian approach, the Weibull 

distribution must be fitted to the entire distribution, rather than 

the  tail of the maximum daily values, which is commonly 

used [8], [21], [22]. With the aim of examining the trend in 

this tail region, the Weibull distribution is fitted to maximum 

weekly GVWs, rather than maximum daily. GVW is used 

here to assess the proposed method but the same approach 

could easily be applied to bridge load effects required for 

assessment.  

 

The Generalized Extreme Value (GEV) distribution is given 

by: 
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defined on {x : 1 + ξ(x - μ)/σ > 0}, where:  

 

 μ = location parameter, -∞ < μ < ∞ 

 σ = scale parameter, σ > 0 

 ξ = shape parameter 

 

The Weibull distribution is a subset of the GEV distribution, 

where the shape parameter ξ is negative. The location and 

scale parameters are similar to mean and standard deviation 

and the shape parameter describes the behaviour in the tail of 

the distribution. 

 

2.2 WIM Data 

The prior data used here is WIM data from the United States 

Federal Highway Administration’s Long-Term Pavement 

Performance (LTPP) Program. Initially the LTPP collected 

WIM data with inconsistent quality control measures [23]. In 

1999 a plan was developed which, among other things, 

improved and centralised quality control. This led to a 

significant improvement in WIM data reliability and since 

2003 ‘research quality’ WIM data is being collected at 28 of 

the Specific Pavement Studies LTPP sites. The 81.6 million 

truck records were collected over the period 2005-2012 and 

are detailed in Table 1.  

 



Table 1. WIM Data 

  
Years of Trucks/ MMW 

Site State Data Weekday GVW
2
 

1 Arizona 5.7 575 63 

2 Arizona 5.7 4,988 93 

3 Arkansas 6.0 5,526 100 

4 California 5.0 5,939 68 

5
1 

Colorado 6.5
 

1,473 73 

6 Delaware 5.5 930 66 

7 Illinois 7.4
 

3,139 98 

8 Indiana 4.5 1,489 69 

9 Kansas 6.6
 

1,851 81 

10 Louisiana 4.9 506 77 

11 Maine 4.4 835 67 

12 Maryland 6.8
 

1,030 51 

13 Minnesota 6.2 316 67 

14 New Mexico 4.7 716 61 

15 New Mexico 4.7 2,934 89 

16 Pennsylvania 5.6 5,315 90 

17 Tennessee 5.6 5,474 89 

18 Virginia 6.0 1,082 63 

19 Wisconsin 5.3 987 73 
1
Site used to test the Bayesian approach 

2
 MMW GVW: mean maximum weekly gross vehicle weight 

(a good measure of intensity of loading at a site [24]) 

 

Bridges in the US are designed and assessed using the HL-93 

load model [2], [25]. This model applies to “normal vehicular 

use” (all legal trucks, illegal overloads and un-analysed 

routine permits) and does not include special permit vehicles. 

In order to describe a methodology which can be used to 

examine “normal vehicular use”, special permit vehicles are 

removed from the database. These vehicles are identified in 

the WIM data using filtering rules, as described by Leahy 

[26]. 

2.3 Estimating the prior distribution using kernel density 
estimators (KDE) 

The Colorado site is used as the test data for the Bayesian 

approach. The other 18 sites are used as the prior data. Four 

years of data are used from each site as this amount is 

available for each site and gives each site an equal weighting. 

A Weibull distribution is fitted to the maximum weekly 

GVWs for each site-year of prior data – see Figure 1. This 

gives 72 sets of Weibull parameters (     ). These parameter 

values are shown in Figure 2. In this figure, values of σ are 

plotted against μ for different ranges of the shape factor, ξ. 

Figure 1 also shows the Colorado site used to test the 

Bayesian approach. It can be seen that the loading at the 

Colorado site agrees well with the general trend of the prior 

data. As a result it is expected that the proposed method will 

perform well with this test site. 

 

 
 

Figure 1. Weibull distributions of the prior data alongside the 

Illinois site used to test the proposed approach. 

 

 
Figure 2. Prior data used with kernel density estimated 

distribution for different ranges of shape parameter ξ. 

 

A continuous distribution, rather than discrete points, is 

needed for the prior distribution. In order to fit a distribution 

to the 72 data points, kerned density estimators (KDEs) are 

used. With the KDE method, each data point is replaced with 

a component density. These densities are known as kernel 

functions and are added to obtain an estimate of the overall 

distribution. Any distribution can be used for the kernel 

functions but the normal distribution is a popular choice and is 

used here. The product kernel method, as described by Scott 

[27], is used. The kernel function is essentially a trivariate 

normal distribution where all variables are independent. The 

estimated distribution is shown in Figure 2. For visualisation 

purposes, the distribution is plotted for different ranges of the 

shape parameter ξ. 
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In the Bayesian calculations, the weighting of the prior data, 

with respect to the new data, is determined by the bandwidth 

of the kernel function. The bandwidth, in this case, refers to 

the variance of the trivariate normal distribution, where each 

of the three variables has its own independent standard 

deviation. If the bandwidth is too large, oversmoothing will 

occur and the trends in the prior data will be lost. On the other 

hand, if the bandwidth is too small the posterior distribution 

will be restricted to match very closely to the prior data. 

Optimal bandwidths exist for sample data which matches a 

certain theoretical distribution, but this is not the case here. In 

this work a trial and error approach, as recommended by 

Silverman [28], is used and an optimal value selected by 

visual inspection of the marginal distributions – see Figure 3. 

Bandwidth values of three tonnes, one tonne and 0.04 are used 

for μ, σ and ξ, respectively. The selection of these values is 

somewhat subjective but when applying this approach 

bandwidth selection should be carefully considered as it does 

influence the results. 

 

 

 
(a) Location parameter 

 
(b) Scale parameter 

 
(c) Shape parameter 

Figure 3. Histograms of marginal distributions of prior data 

with the kernel density estimated distribution. 

2.4 Assessing accuracy of proposed Bayesian approach 

The Bayesian approach is assessed to determine its accuracy 

in estimating the 75-year load. 75 years is the design life used 

in US bridge design [2]. The benchmark 75-year load is first 

calculated by fitting a Weibull distribution to all the data 

available at the Colorado site (6.5 years) and extrapolating to 

the 75-year load – see Figure 4. This approach assumes that 

this extrapolation from 6.5 year of data represents the true 75-

year loading. 

The accuracy of the method is assessed by randomly 

selecting 25 non-consecutive maximum weekly values from 

the Colorado data. The Bayesian approach, using the prior 

data, is then applied to this sample dataset and the 75-year 

load estimated. The accuracy of the estimate is then 

determined by comparison with the benchmark.  

A non-Bayesian approach, where no prior data is used, is 

then applied to the same sample data. A Weibull distribution 

is fitted directly to the 25-week sample. The accuracy in 

estimating the 75-year value can then be compared with the 

Bayesian approach – see Figure 4. This process is then 

repeated for 100 different random datasets in order to assess 

the standard deviation of the error. 

 

 
 

Figure 4. Example of the Bayesian and Weibull approach 

applied to a 25-week sample from the Colorado site (“Site 

data” includes the weekly maxima from 6.5 years of 

measurements at the site). 



3 RESULTS 

The errors for both the Bayesian and non-Bayesian 

approaches are shown in Figure 5 and Table 2. A mean error 

of zero with a small standard deviation is preferable. It can be 

seen for the non-Bayesian approach, where no prior data is 

used, that there is large variation in the errors. This variation 

is not desirable when estimating characteristic loading on 

bridges as it may result in an estimate of loading which is 

significantly greater or less than the true value. This variation 

is significantly reduced with the Bayesian approach, with the 

standard deviation reducing from 19.3% to 4.4%. The mean 

error is also improved from 7.8% to 2.3%.  

 

 

Figure 5. Errors in estimating 75-year load for the Bayesian 

and non-Bayesian approaches, for 100 sample datasets. 

 

Table 2. Error with Bayesian and non-Bayesian approaches 

 Mean Standard Deviation 

Bayesian 2.3% 4.4% 

Non-Bayesian 7.8% 19.3% 

 

4 CONCLUSION 

A Bayesian methodology is proposed for obtaining additional 

value from the large amount of WIM data which are available 

for multiple sites on many road networks. The approach uses 

this existing, or ‘prior’, network data to help predict site-

specific loading at a new site on the network. The prior data 

used here is from 18 WIM sites in the US. This WIM data is 

used to determine the prior distribution of the parameters of a 

Weibull distribution and this prior distribution is updated 

using the new site-specific data. The Bayesian approach is 

compared with the alternative of fitting a Weibull distribution 

directly to the site-specific data without using any prior data. 

The errors in estimating characteristic loading are compared 

for the proposed Bayesian approach and the non-Bayesian 

approach. The Bayesian approach achieves significant 

reductions in the variation of the error while also improving 

the mean of the error. The proposed method allows accurate 

estimates of loading to be achieved with less site-specific 

WIM data. This is particularly useful where there is concern 

over the safety of an existing bridge and accurate estimates of 

loading are required to make a prompt decision about the 

future of the bridge. 

The method performs well with the Colorado site used to 

test it. However, this site has similar loading to the general 

trend in the prior data. It is possible that the Bayesian 

approach may not perform as well at a site with unusually low 

or high levels of loading as the method may tend to push 

estimates of loading closer to that of an average site. 

The proposed Bayesian approach examined here used a 

large WIM database as the prior data. The WIM 

measurements were gathered at 18 WIM sites which were 

subject to strict quality control measures. The results of the 

method depend on the extent of good quality prior data which 

is available. It is acknowledged such a large database of good 

quality prior data may often not be available when assessing 

bridge traffic loading and that the improvement in accuracy 

may not be as significant if less prior data is available. 
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