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COMMUTANTS OF WEIGHTED SHIFT DIRECTED GRAPH

OPERATOR ALGEBRAS

DAVID W. KRIBS, RUPERT H. LEVENE, AND STEPHEN C. POWER

Abstract. We consider non-selfadjoint operator algebras L(G,λ) generated

by weighted creation operators on the Fock-Hilbert spaces of countable di-
rected graphs G. These algebras may be viewed as noncommutative general-
izations of weighted Bergman space algebras, or as weighted versions of the

free semigroupoid algebras of directed graphs. A complete description of the
commutant is obtained together with broad conditions that ensure the double
commutant property. It is also shown that the double commutant property
may fail for L(G,λ) in the case of the single vertex graph with two edges and

a suitable choice of left weight function λ.

1. Introduction

For over two decades, operator algebras associated with directed graphs and their
generalizations have received intense interest in the operator algebra and mathe-
matics community. This class of algebras includes many interesting examples, often
with connections to different areas, such as dynamical systems, and at the same
time is sufficiently broad that results for them have given insights to the general
theory of operator algebras. The most fundamental non-selfadjoint algebras in this
class are the tensor algebras [11, 13] and free semigroupoid algebras of directed
graphs [5, 8, 9], including free semigroup algebras [2, 6]. Each of these is generated
by creation operators on a Fock-type Hilbert space defined by the graph, and there
is now an extensive body of work for these algebras.

In this paper we consider weighted creation operator generalizations, in the weak
operator topology (WOT) closed setting, and we investigate their algebraic struc-
ture. The resulting weighted shift directed graph algebras L(G,λ) may be viewed
as the minimal generalization of two different classes of non-selfadjoint algebras:
the free semigroupoid algebras of directed graphs on the one hand, and on the
other, the classical unilateral weighted shift algebras associated with single variable
weighted Bergman spaces.

The paper is organized as follows. In the next section we introduce the notation
λ, ρ, for certain left and right weight functions for the path semigroupoid of a
directed graph G, and define their associated weighted creation operators (which
need not be bounded) and their respective operator algebras, L(G,λ) and R(G, ρ),
on the Fock space HG. In the subsequent section we investigate the structure of
the commutant algebra L(G,λ)′ and obtain its characterization under the natural
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condition (left-boundedness of λ) that all the weighted left creation operators are
bounded. In the proof we identify a simple commuting square condition that relates
the left weight λ to a particular right weight ρ which is relevant to the commutant,
and we exploit this to show that L(G,λ)′ = R(G, ρ) for this right weight. In the
fourth section we investigate the double commutant L(G,λ)′′ and obtain broad
conditions which ensure the double commutant property L(G,λ)′′ = L(G,λ).

A range of illuminating examples is also given. In particular, for the single
vertex graph with two edges it is shown that there exist left-bounded weights λ for
which L(G,λ)′′ = B(HG). On the other hand, for the directed 2-cycle graph, with
two vertices and two edges, necessary and sufficient conditions are obtained for the
double commutant property.

Our focus here is on the analysis of generalized weighted shifts and the non-
selfadjoint operator algebras they generate, in a setting that embraces both com-
mutative and non-commutative versions, and is built upon the contemporary di-
rected graph operator algebra framework. In fact the first foray in this direction
for single vertex directed graphs gave sufficient conditions for the determination
of the commutant and for reflexivity [7], the basic general goals being to extend
results from the single variable commutative case and to expose new phenomena
in the non-commutative directed graph setting. Our concern in the present paper
is to characterize commutants for the left and right algebras by identifying ex-
plicit conditions at the level of weighted graphs. It would be interesting to connect
this double commutant investigation with the recent work [10] on a general double
commutant theorem for non-selfadjoint algebras, and with recent work on weighted
Hardy algebras of correspondences [3, 12].

We leave the natural problems of invariant subspace structure and reflexivity for
these algebras for investigation elsewhere. It should be possible to identify a large
class of these algebras as being reflexive, and in doing so, extend results from the
case of weighted Bergman spaces [14] and partial results from the weighted free
semigroupoid algebra case [7]. Additionally, non-reflexive examples have not yet
been constructed in the non-commutative case. This should also be possible with
extended notions of strictly cyclic weighted shifts to our setting.

2. Weighted Shift Directed Graph Algebras

Let G be a countable directed graph with edge set E(G) = {e, f, . . .} and vertex
set V (G) = {x, y, . . .}. We will write G+ = {u, v, w, . . .} for the set of finite
paths in G, including the vertices regarded as paths of length 0. Note that if G
is finite (by which we mean that both V (G) and E(G) are finite), then the set
{w ∈ G+ : |w| < k} is finite for each k ≥ 1, where |w| denotes the length of a
path w. We write s(w) and r(w) for the source and range vertices of a path w;
in particular, if x ∈ V (G), then r(x) = x = s(x). We will also take a right to
left orientation for path products, so that w = r(w)ws(w) for all w ∈ G+, and for
v, w ∈ G+ we have wv ∈ G+ if and only if s(w) = r(v).

To each such graph G we associate the Hilbert space HG = `2(G+), called the
Fock space of G, with canonical orthonormal basis {ξv : v ∈ G+}. The vectors
ξx for x ∈ V (G) are called vacuum vectors. The left creation operators on HG

are the partial isometries defined as follows: Lwξv = ξwv whenever wv ∈ G+, and
Lwξv = 0 otherwise. (These operators may also be viewed as generated by the left
regular representation of the path semigroupoid of the graph.) Pictorially, as an
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accompaniment to the directed graph, one can view the actions of the generators
Le as tracing out downward tree structures that lay out the basis vectors for HG.
One tree is present for each vertex x in G, with the top tree vertex in each tree
corresponding to a vacuum vector ξx, and the tree edges corresponding to the basis
pairs (ξw, ξew).

We call a function λ : G+ ×G+ → [0,∞) a left weight on G if

(1) λ(v, w) > 0 ⇐⇒ wv ∈ G+; and
(2) λ satisfies the (left) cocycle condition:

λ(v, w2w1) = λ(w1v, w2)λ(v, w1)

for all v, w1, w2 ∈ G+ with w2w1v ∈ G+.

Note that if v ∈ G+, then r(v) ∈ V (G) satisfies r(v) = r(v)2, hence λ(v, r(v)) =
λ(v, r(v))2 and so λ(v, r(v)) = 1. In particular, for x ∈ V (G) we have x = s(x) =
r(x) and so λ(s(x), x) = λ(x, r(x)) = 1. Note also that the edge weights λ(v, e)
(where ev ∈ G+ and e ∈ E(G)) determine the entire function λ through the left
cocycle condition. Indeed, if we attach the weight λ(v, e) to the edge in the Fock
space tree corresponding to the move ξv 7→ ξev defined by Leξv = ξev, then we
can view λ(v, w) (when non-zero) as the product of the individual weights one
crosses when moving from ξv to ξwv in that tree. See subsequent sections for more
discussion on this “forest” perspective.

Given such a left weight λ, we define (by a mild abuse of notation)

λ(w) = sup
v∈G+

λ(v, w) ∈ [0,∞]

for each w ∈ G+. We say that λ is left-bounded at w if λ(w) < ∞, and that λ
is left-bounded if this condition holds for all w ∈ G+. The cocycle condition gives
λ(w2w1) ≤ λ(w2)λ(w1) whenever w2w1 ∈ G+, so λ is left-bounded if and only if λ
is left-bounded at every edge e ∈ E(G).

If λ is left-bounded at w, then we define the weighted left shift operator Lλ,w ∈
B(HG) to be the continuous linear extension of

Lλ,w ξv =

{
λ(v, w) ξwv if wv ∈ G+

0 otherwise.

Since λ(w) < ∞, it is easy to see that this gives a well-defined operator with
‖Lλ,w‖ = λ(w). Moreover, if λ is left-bounded, then by the cocycle condition we
see that w 7→ Lλ,w is a semigroupoid homomorphism:

Lλ,w2w1 = Lλ,w2Lλ,w1 whenever w2w1 ∈ G+.

We remark that one could also consider complex-valued left weight functions
rather than weights taking non-negative values only. However, the correspond-
ing weighted left shift operators would be jointly unitarily equivalent to weighted
shift operators defined by a non-negative weight function. To see this, consider a
complex-valued left weight µ : G+ × G+ → C, by which we mean that µ(v, w) 6=
0 ⇐⇒ wv ∈ G+ and µ satisfies the left cocycle condition. Define corresponding
weighted left shifts Lµ,w exactly as above, let λ : G+ × G+ → [0,∞) be the non-
negative left weight λ(v, w) = |µ(v, w)| and consider β : G+ × G+ → T, β(v, w) =
λ(v,w)
µ(v,w) when wv ∈ G+, and β(v, w) = 1 otherwise. Note that β then satisfies
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the left cocycle condition, so in particular we have β(s(v), wv) = β(v, w)β(s(v), v)
whenever wv ∈ G+. The unitary operator Uβ mapping ξv to β(s(v), v)ξv satisfies

UβLµ,wξv = µ(v, w)β(s(v), wv)ξwv = β(s(v), v)λ(v, w)ξwv = Lλ,wUβξv

whenever wv ∈ G+, hence UβLµ,w = Lλ,wUβ , i.e., Lµ,w = U∗
βLλ,wUβ .

Observe also that the requirement that λ(v, w) 6= 0 when wv ∈ G+ is equivalent
to requiring Lλ,w to be injective on the set {ξv : wv ∈ G+}, and is thus an assump-
tion we build into the weights to avoid degeneracies in the analysis. Finally note
that each operator Lλ,w factors as a product of Lw and a diagonal (with respect to
the standard basis) weight operator, just as in the single variable case of [14] which
is recovered when G consists of a single vertex with a single loop edge.

We now define the algebras L(G,λ) that we shall consider in the paper. In the
case of the single vertex, single loop edge graph, these algebras include classical
unilateral weighted shift algebras such as those associated with weighted Bergman
spaces; see the survey article [14] for an entrance point into the literature. The case
of a single vertex graph and multiple loop edges was first considered along with
some reflexivity type problems in [7].

Definition 2.1. If λ is a left weight on a directed graph G, then we write L(G,λ)
for the WOT-closed unital operator algebra generated by the family of weighted
left shift operators {Lλ,w : w ∈ G+, λ(w) < ∞}.

Remark 2.2. If (as is often the case below) λ is left-bounded, then the set

{Lλ,w : w ∈ V (G) ∪ E(G)}
also generates L(G,λ) as a WOT-closed unital operator algebra.

Let us call a strictly positive function α : G+ → (0,∞) with α(x) = 1 for all
x ∈ V (G) a path weight on G. For any such α, there is a corresponding left
weight λα on G given by

λα(v, w) =

{
α(wv)
α(v) if wv ∈ G+

0 otherwise.

Conversely, from any left weight λ, we obtain a corresponding path weight αλ : v 7→
λ(s(v), v), and these correspondences are inverses of one another. This observation
allows us to easily construct examples of left weights.

The left-handed notions above have right-handed counterparts which will play an
important role in describing commutants. A right weight on G is a function ρ : G+×
G+ → [0,∞) satisfying ρ(v, u) > 0 ⇐⇒ vu ∈ G+ and the (right) cocycle condition

ρ(v, u1u2) = ρ(vu1, u2)ρ(v, u1)

for all v, u1, u2 ∈ G+ with vu1u2 ∈ G+. We then have ρ(v, s(v)) = 1 for all v ∈ G+.
We write ρ(u) = supv ρ(v, u), and say ρ is right-bounded at u if ρ(u) < ∞. We may
then consider the weighted right shift operator Rρ,u ∈ B(HG) (with ‖Rρ,u‖ = ρ(u))
which satisfies the defining equation

Rρ,uξv =

{
ρ(v, u) ξvu if vu ∈ G+

0 otherwise.

We have ρ(u1u2) ≤ ρ(u2)ρ(u1), and Rρ,u1u2 = Rρ,u2Rρ,u1 whenever u1u2 ∈ G+

and ρ is right-bounded at u1 and at u2.



COMMUTANTS OF WEIGHTED SHIFT DIRECTED GRAPH ALGEBRAS 5

Definition 2.3. We write R(G, ρ) for the WOT-closed unital operator algebra
generated by {Rρ,u : u ∈ G+, ρ(u) < ∞}.

A right weight is right-bounded if it is right-bounded at every u ∈ G+. Finally,
we observe that

ρα(v, u) =

{
α(vu)
α(v) if vu ∈ G+

0 otherwise

defines a one-to-one correspondence between path weights α and right weights ρ =
ρα.

Remark 2.4. Each of these right-handed definitions may be derived by applying
the corresponding left-handed definition to the opposite graph of G, and making
appropriate identifications. Note that the suprema defining λ(u) and ρ(u) are
taken over the first argument, in λ(·, u) and ρ(·, u), and so in particular the notion
of right-boundedness for a left weight function does not arise. A path weight α,
on the other hand, may be said to be left (resp. right) bounded if the associated
map λα (resp. ρα) is left-bounded (resp. right-bounded).

Remark 2.5. The weighted shift creation operators Lλ,e for edges of e, and also
sums of these operators, are in fact special cases of a wide class of weighted shift
operators defined on general countable trees, rather than our graph generated trees.
The single operator theory for these general shifts, such as conditions for hyponor-
mality and p-hyponormality, is developed in the recent book of Jablonski, Jung,
and Stochel [4].

Remark 2.6. Muhly and Solel have recently defined weighted shift versions of
the Hardy algebras H∞(E) [12] that can be associated with a correspondence E
(a self-dual right Hilbert C∗-module) over a W ∗-algebra M . The Hardy algebras
A = H∞(E) in fact provide generalizations of the free semigroupoid graph algebras
in which the self-adjoint (diagonal) subalgebra A∩A∗ is no longer commutative. At
the expense of a much higher level of technicality, the weighted shift versions of these
Hardy algebras similarly extend the weighted shift directed graph algebras L(G,λ).

3. Commutant Structure

Let λ be a left weight on G, and let ρ be a right weight on G. We say that the
pair (λ, ρ) satisfies the commuting square condition at (w, u) ∈ G+ ×G+ if

ρ(wv, u)λ(v, w) = λ(vu,w)ρ(v, u)

for every v ∈ G+ with wvu ∈ G+. If λ is left-bounded at w and ρ is right-bounded
at u, then a simple computation shows that this condition holds if and only if

Rρ,uLλ,w = Lλ,wRρ,u.

Recall that associated with the left weight λ is a forest graph whose vertices
are labelled by the elements of G+ and whose edges (v, ev) are labelled by the
individual weights λ(v, e) for e ∈ E(G). We may now augment this λ-labelled
forest by additional ρ-edges (v, ve), which are labelled by the individual nonzero
weights ρ(v, e). The resulting labelled graph is the union of two labelled edge-
disjoint forests which share the same vertex set. The commuting square condition
can be viewed as a commuting square within this labelled graph, for the weights
indicated in Figure 1.
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v

wvu

vuwv

ρ(v, u)λ(v, w)

λ(vu,w)ρ(wv, u)

Figure 1. The commuting square condition. Solid lines are paths
made of edges labelled by λ-weights, and dashed lines are paths of
edges labelled by ρ-weights.

Definition 3.1. Let λ be a left weight on G. A right weight ρ on G is a right
companion to λ if (λ, ρ) satisfies the commuting square condition at every (w, u) ∈
G+ ×G+. We call a right companion ρ to λ canonical if ρ(r(e), e) = λ(s(e), e) for
all e ∈ E(G).

Proposition 3.2. For any left weight λ on G, there is a unique canonical right
companion ρ to λ, namely ρ = ρα where α is the path weight with λ = λα. Moreover,
if ρ1 and ρ2 are both right companions to λ, then R(G, ρ1) = R(G, ρ2).

Proof. Let α = αλ be the path weight given by α(v) = λ(s(v), v). Then λ = λα

and by an easy calculation, the right weight ρα (defined in the previous section) is
a canonical right companion to λ.

If ρ1 and ρ2 are both right companions to λ, then applying the commuting square

condition for ρ1 and ρ2 with v = r(u) = s(w) shows that q(u) := ρ2(r(u),u)
ρ1(r(u),u)

> 0

satisfies ρ2(w, u) = q(u)ρ1(w, u) for any w, u with wu ∈ G+. So ρ1 is right-bounded
at u if and only if ρ2 is right-bounded at u, and in this case Rρ1,u = q(u)Rρ2,u;
hence R(G, ρ1) = R(G, ρ2).

If ρ1 and ρ2 are both canonical right companions to λ, then q(e) = 1 for all
e ∈ E(G). Applying the cocycle condition for ρ1 and ρ2 to the relation ρ2 = q · ρ1
shows that q(u1u2) = q(u2)q(u1) whenever u1u2 ∈ G+; hence q(u) = 1 for all
u ∈ G+, so ρ1 = ρ2. �

For k ≥ 0, let Qk be the orthogonal projection of HG onto the closed linear span
of {ξv : |v| = k}. For j ∈ Z, define a complete contraction Φj : B(HG) → B(HG) by

Φj(X) =
∑

m≥max{0,−j}

QmXQm+j .

Also for k ∈ N, define Σk : B(HG) → B(HG) via the Cesaro-type sums

Σk(X) =
∑
|j|<k

(
1− |j|

k

)
Φj(X).

The following lemma is well-known. For completeness, we include a short proof.
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Lemma 3.3. For k ≥ 0 and X ∈ B(HG), we have ‖Σk(X)‖ ≤ ‖X‖, and Σk(X)
converges to X in the strong operator topology as k → ∞.

Proof. Let z ∈ T and let Uz be the diagonal unitary operator on HG for which
Uzξv = z|v|ξv for each v ∈ G+. Then UzQsXQtU

∗
z = zs−tQsXQt for any s, t ≥ 0.

Since
∑

`≥0 Q` = I, it follows that for j ∈ Z, we have

Φj(X) =

∫
|z|=1

zjUzXU∗
z dz.

Writing Fk(z) =
∑k

j=−k(1−
|j|
k+1 )z

j for the usual Fejér kernel, we see that

Σk(X) =

∫
|z|=1

Fk−1(z)UzXU∗
z dz.

Considering the scalars 〈Σk(X)ξ, ζ〉, for ξ, ζ ∈ HG, and the fact that ‖Fk−1‖L1(T) =
1, it follows that ‖Σk(X)‖ ≤ ‖X‖ for all k.

Let ξ ∈ HG. Then

‖(X − Σk(X))ξ‖ ≤
∫
|z|=1

Fk−1(z)‖(X − UzXU∗
z )ξ‖dz.

The operators Uz, U
∗
z converge to the identity operator in the strong operator topol-

ogy, as z tends to 1, and Fk tends weak star to the unit point mass measure at

z = 1 as k → ∞. It follows that Σk(X)ξ → Xξ as k → ∞, and so Σk(X)
sot→ X.

�

Lemma 3.4. Let ρ be a right weight on G and suppose that f : G+ → C has the
property that if f(u) 6= 0, then ρ(u) < ∞. Let H0 be the dense subspace of HG

spanned by {ξv : v ∈ G+}, and consider the sesquilinear form Af : H0 × H0 → C
with

Af (ξv, ξw) =

{
f(u)ρ(v, u) if w = vu for some u ∈ G+

0 otherwise.

If Af is bounded on H0 × H0, then the operator Xf ∈ B(HG) implementing the
continuous extension of Af to HG ×HG satisfies Xf ∈ R(G, ρ).

Proof. Let (G1, G2, . . . ) be a sequence of finite subgraphs of G which increases
to G; that is, V (Gn) and E(Gn) are finite sets for each n, and V (Gn) ↑ V (G)
and E(Gn) ↑ E(G). For n ≥ 1, let Pn be the projection onto the closure of the
subspace of HG spanned by {ξv : v ∈ G+

n }. For v, w ∈ G+, a calculation shows
that 〈PnΦj(Xf )Pnξv, ξw〉 = 0 unless v, w ∈ G+

n with w = vu for some u ∈ G+
n with

|u| = −j and ρ(u) < ∞; and that in the latter case,

〈PnΦj(Xf )Pnξv, ξw〉 = Af (ξv, ξw) = f(u)ρ(v, u).

It follows that PnΦj(Xf )Pn = PnFj,nPn where

Fj,n =
∑

u∈G+
n , |u|=−j,

ρ(u)<∞

f(u)Rρ,u.

(We have Fj,n = 0 if j > 0.) Since V (Gn) and E(Gn) are finite, Fj,n is a finite

linear combination of operators Rρ,u, so Fj,n ∈ R(G, ρ). Now Pn
sot→ I, so

Φj(Xf ) = sot-lim
n→∞

PnFj,nPn.
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In fact, we will shortly see that

Φj(Xf ) = wot-lim
n→∞

Fj,n.

From this, it follows that Φj(Xf ) ∈ R(G, ρ), so Σk(Xf ) ∈ R(G, ρ) for all k ≥ 1,
allowing us to conclude, by Lemma 3.3, that Xf = sot-limk→∞ Σk(Xf ) ∈ R(G, ρ)
as desired.

To see this, we will first show that {‖Fj,n‖ : n ≥ 1} is bounded. Note that for
any v ∈ G+, we have the norm-convergent sums

Xfξv =
∑

w∈G+

〈Xfξv, ξw〉ξw =
∑

w∈G+

Af (ξv, ξw)ξw =
∑

u∈G+

f(u)ρ(v, u)ξvu.

Moreover,

Fj,nξv =
∑

u∈G+
n , |u|=−j,

ρ(u)<∞

f(u)ρ(v, u)ξvu

so ‖Fj,nξv‖ ≤ ‖Xf‖. For i = 1, 2, if viui ∈ G+ and |u1| = |u2| = −j, then
v1 6= v2 =⇒ v1u1 6= v2u2. It follows that {Fj,nξv : v ∈ G+} is a pairwise

orthogonal family of vectors for each n ≥ 1, hence Fj,n =
∑⊕

v∈G+ Fj,nξvξ
∗
v and so

‖Fj,n‖ = sup
v∈G+

‖Fj,nξv‖ ≤ ‖Xf‖.

Now P⊥
n := I−Pn

sot→ 0 as n → ∞, so PnFj,nP
⊥
n

sot→ 0 and P⊥
n Fj,n

wot→ 0 as n → ∞.
Hence

Fj,n = PnFj,nPn + PnFj,nP
⊥
n + P⊥

n Fj,n
wot→ Φj(Xf ) as n → ∞,

which completes the proof. �

Remark 3.5. It is not difficult to see that if the function f in Lemma 3.4 has finite
support, then

Xf =
∑

u∈G+,
ρ(u)<∞

f(u)Rρ,u.

Heuristically, it is useful to think of Xf as the formal series given by this formula
even when the support of f is infinite.

Lemma 3.6. Let λ be a left-bounded left weight on G. If K ∈ L(G,λ)′ and Kξx = 0
for all x ∈ V (G), then K = 0.

Proof. Given w ∈ G+, consider x = s(w). We have Kξw = λ(x,w)−1KLλ,wξx =
λ(x,w)−1Lλ,xKξx = 0, so K = 0. �

We are now ready to prove our main result.

Theorem 3.7. If λ is a left-bounded left weight on G and ρ is its canonical right
companion, then the commutant of L(G,λ) coincides with R(G, ρ).

Proof. The observations at the start of this section show that Lλ,w commutes
with Rρ,u whenever w, u ∈ G+ and ρ(u) < ∞. Hence L(G,λ)′ contains R(G, ρ).

To prove the other inclusion, begin by fixing S ∈ L(G,λ)′. For u ∈ G+, consider
the coefficients au ∈ C defined by

au = 〈Sξr(u), ξu〉.
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Observe that for any x ∈ V (G), the operator Lλ,x = Lx is a projection with range
spanned by {ξu : u ∈ r−1(x)}, and LxSξx = SLxξx = Sξx. Hence

Sξx =
∑

u∈G+

〈Sξx, ξu〉ξu =
∑

u∈r−1(x)

auξu

with convergence in norm.
If v, w ∈ G+, then ξv = λ(s(v), v)−1Lλ,vξs(v) and [S,Lλ,v] = 0, and L∗

λ,vξw = 0

unless w = vu for some u ∈ G+, and L∗
λ,vξvu = λ(u, v)ξu. Now λ(u,v)

λ(s(v),v) =
ρ(v,u)

ρ(r(u),u)

by the commuting square condition, and it follows that

〈Sξv, ξw〉 =

{
ρ(v,u)

ρ(r(u),u)au if w = vu for some u ∈ G+

0 otherwise.

In particular, if au 6= 0, then ρ(u) < ∞ since

‖S‖ ≥ sup
{v∈G+ : vu∈G+}

|〈Sξv, ξvu〉| = sup
v∈G+

ρ(v, u)

ρ(r(u), u)
|au| =

ρ(u)

ρ(r(u), u)
|au|.

In view of this, if we define f : G+ → C by f(u) = auρ(r(u), u)
−1, then we may

legitimately consider the bilinear form Af : H0×H0 → C, defined as in Lemma 3.4.
Consider the operators Σk(S). If v, w ∈ G+ and

∣∣|w| − |v|
∣∣ < k, then

〈Σk(S)ξv, ξw〉 =
∑
|j|<k

(
1− |j|

k

) ∑
m≥max{0,−j}

〈SQm+jξv, Qmξw〉

=

(
1−

∣∣|w| − |v|
∣∣

k

)
〈Sξv, ξw〉

=

{(
1− |w|−|v|

k

)
f(u)ρ(v, u) if w = vu for some u ∈ G+

0 otherwise

=

(
1− |w| − |v|

k

)
Af (ξv, ξw).

Hence for any ξ, η ∈ H0, we have Af (ξ, η) = limk→∞〈Σk(S)ξ, η〉, so by Lemma 3.3,

|Af (ξ, η)| ≤ sup
k≥1

‖Σk(S)‖ ‖ξ‖ ‖η‖ ≤ ‖S‖ ‖ξ‖ ‖η‖.

Thus Af is bounded on H0 × H0. By Lemma 3.4, the bounded linear operator
X = Xf implementing Af is in R(G, ρ). So X ∈ L(G,λ)′, and (as above) we
conclude that for x ∈ V (G), the vector Xξx is in the closed subspace spanned by
{ξu : u ∈ r−1(x)}. Moreover, for any u ∈ r−1(x) we have

〈Xξx, ξu〉 = Af (ξx, ξu) = f(u)ρ(x, u) = au = 〈Sξx, ξu〉.
So Xξx = Sξx for all x ∈ V (G). Since X,S ∈ L(G,λ)′, we have K = X − S ∈
L(G,λ)′ and Kξx = 0 for all x ∈ V (G). Hence S = X by Lemma 3.6, and so
S ∈ R(G, ρ), which completes the proof. �

Remark 3.8. This result generalizes and improves on a few previous results.
The case of the single vertex and single edge graph yields classical single vari-
able weighted shift operators, and there, the notion of right-boundedness simply
corresponds to the weight sequence being bounded below. Hence this result gener-
alizes the fundamental commutant theorem for weighted Bergman spaces H∞(β)



10 D. W. KRIBS, R. H. LEVENE, AND S. C. POWER

[14]. In the case of a single vertex graph with n edges and unit weights this result
captures the commutant theorem for free semigroup algebras Ln [1], and it improves
on the commutant result of [7], which established a special case of the theorem in
the single vertex multi-edged weighted shift case. Finally, this result generalizes
the commutant theorem for free semigroupoid algebras [8] which are determined by
general unweighted directed graphs.

4. Double Commutant Theorems

When ρ is right-bounded, we obtain the following mirror image of Theorem 3.7
which may be established with a flipped version of the preceding proof. For brevity,
we will instead pass to the opposite graph Gt of G, which is essentially “G with the
edges reversed”. More formally, we set V (Gt) = V (G), E(Gt) = E(G) and (Gt)+ =

{vt : v ∈ G+}, where (wv)
t
= vtwt for wv ∈ G+, and ut = u for u ∈ V (G) ∪ E(G);

the source and range maps for Gt are given by st(vt) = r(v) and rt(vt) = s(v).

Theorem 4.1. If λ is a left weight on G whose canonical right companion ρ is
right-bounded, then the commutant of R(G, ρ) coincides with L(G,λ).

Proof. Let Gt be the opposite graph of G and let ρt(vt, ut) = ρ(v, u) for v, u ∈ G+;
since ρ is a right-bounded right weight on G, it follows that ρt is a left-bounded
left weight on Gt. A calculation using the path weight associated with λ and ρ
shows that the canonical right companion to ρt is the right weight λt on Gt given
by λt(vt, wt) = λ(v, w). Let U : HGt → HG be the unitary with Uξvt = ξv. For
u,w ∈ G+ with λ(w) < ∞, by checking values on basis vectors we see that

ULρt,utU∗ = Rρ,u and URλt,wtU∗ = Lλ,w,

so
UL(Gt, ρt)U∗ = R(G, ρ) and UR(Gt, λt)U∗ = L(G,λ).

By Theorem 3.7, L(Gt, ρt)′ = R(Gt, λt), hence

R(G, ρ)′ = (UL(Gt, ρt)U∗)′ = UL(Gt, ρt)′U∗ = UR(Gt, λt)U∗ = L(G,λ). �
Combining the previous two results leads us to the following double commutant

theorem.

Theorem 4.2. If λ is a left-bounded left weight on G whose canonical right com-
panion ρ is right-bounded, then L(G,λ) coincides with its double commutant:

L(G,λ)′′ = L(G,λ).

If α : G+ → (0,∞) is any path weight with supv α(v) < ∞ and infv α(v) >
0, then plainly λα is left-bounded and its canonical right companion ρα is right-
bounded, giving a large class of weights satisfying the hypotheses of this result.
In particular, if |G+| < ∞ (i.e., if G is a finite acyclic directed graph), then for
any left weight λ on G, we see that L(G,λ) is an algebra of n × n matrices with
L(G,λ)′′ = L(G,λ), where n = |G+|.

On the other hand, there are many weights which satisfy the hypotheses of
Theorem 4.2 but violate these boundedness conditions for the path weight α. For
example, if G+ contains paths of arbitrary length and α(v) = f(|v|) where f : N0 →
(0,∞) is any decreasing function with f(0) = 1 and f(k) → 0 as k → ∞, then λα

is left-bounded and ρα is right-bounded, but infv α(v) = 0.
We now show one way to weaken the hypotheses in Theorem 4.2, at least if G is

a finite directed graph. We first require a technical lemma.
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Lemma 4.3. Let ρ be a right weight on G and let u ∈ G+ with ρ(u) < ∞. Let
k ≥ 0 and let X ∈ B(HG). If [X,Rρ,u] = 0, then [Σk(X), Rρ,u] = 0.

Proof. By calculating values on canonical basis vectors, we observe that

QmRρ,u =

{
Rρ,uQm−|w| if m ≥ |u|
0 if 0 ≤ m < |u|.

So if [X,Rρ,u] = 0, then

Φj(X)Rρ,u =
∑

m≥max{|u|,|u|−j}

Rρ,uQm−|u|XQm+j−|u| = Rρ,uΦj(X).

Since Σk(X) is a linear combination of the operators Φj(X), which all commute
with Rρ,u, we see that Σk(X) commutes with Rρ,u. �

For any right weight ρ on G, let us write

G+
ρ = {u ∈ G+ : ρ(u) < ∞}.

Since ρ(x) = 1 for x ∈ V (G), we have V (G) ⊆ G+
ρ . Moreover, since ρ(vw) ≤

ρ(v)ρ(w) for any vw ∈ G+, we see that G+
ρ is a subsemigroupoid in G+.

Theorem 4.4. Let λ be a left-bounded left weight on a finite directed graph G, with
canonical right companion ρ. If

(1) ∀ v ∈ G+ ∃uv ∈ G+
ρ : vuv ∈ G+

ρ ,

then L(G,λ)′′ = L(G,λ).

Proof. It suffices to show that L(G,λ)′′ ⊆ L(G,λ); equivalently (by Theorem 3.7)
that R(G, ρ)′ ⊆ L(G,λ). Suppose that T ∈ R(G, ρ)′. If v ∈ G+, then Rρ,s(v) =
Rs(v) is a projection in R(G, ρ) with ξv = Rs(v)ξv and [T,Rs(v)] = 0, from which

it follows that Tξv ∈ Rs(v)HG. Moreover, if u ∈ G+
ρ , then the restriction of

R∗
ρ,uRρ,u to Rr(u)HG is an injective diagonal operator since it maps ξv to ρ(v, u)2ξv

if s(v) = r(u).
Now suppose K ∈ R(G, ρ)′ and Kξx = 0 for all x ∈ V (G); we claim that we

necessarily have K = 0. To see this, let v ∈ G+, let uv be as in Eq. (1) and note
that r(uv) = s(v), since vuv ∈ G+. Now

R∗
ρ,uv

Rρ,uv
Kξv = R∗

ρ,uv
KRρ,uv

ξv = ρ(v, uv)R
∗
ρ,uv

Kξvuv

= ρ(v, uv)ρ(r(v), vuv)
−1R∗

ρ,uv
Rρ,vuvKξr(v) = 0,

so Kξv = 0 by the observations of the previous paragraph, establishing the claim.
Now let T ∈ R(G, ρ)′ be arbitrary. Since G is finite, for each k ∈ N the set

{w ∈ G+ : |w| < k} is finite and we may consider the operator

pk(T ) =
∑

{w∈G+ : |w|<k}

(
1− |w|

k

)
awλ(s(w), w)

−1Lλ,w

where aw = 〈Tξs(w), ξw〉 for w ∈ G+. Clearly, pk(T ) ∈ L(G,λ). As observed above,
we have Tξx ∈ RxHG, so

Tξx =
∑

w∈s−1(x)

awξw.

By Lemma 4.3, the operators Σk(T ) are in R(G, ρ)′. Hence K = Σk(T )− pk(T ) ∈
R(G, ρ)′, and a calculation gives Kξx = 0 for all x ∈ V (G). Hence Σk(T ) =
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pk(T ) ∈ L(G,λ). Since L(G,λ) is strongly closed and Σk(T ) → T strongly, we
obtain T ∈ L(G,λ). Hence R(G, ρ)′ ⊆ L(G,λ) which completes the proof. �

We now give some examples illustrating this result. If u ∈ G+, it will be useful
to write G+u = {vu : v ∈ G+ and vu ∈ G+}.

Example 4.5. Let G be the directed graph with a single vertex φ and two loop
edges, e and f , so that G+ = {φ, e, f, ee = e2, ef, fe, f2, eee = e3, . . . } and s(w) =
r(w) = φ for every w ∈ G+ (see Figure 2). As indicated in Figure 3, we consider
the path weight α : G+ → (0,∞) given by α(v) = 2−|v| if v ∈ G+e, and α(v) = 1
otherwise, and let λ = λα. It is easy to check that the left weight λ is left-bounded
(in fact λ(w) ≤ 1 for all w ∈ G+); the canonical right companion of λ is ρ = ρα by
Proposition 3.2.

We claim that while ρ is not right-bounded, we have

G+
ρ = {φ} ∪G+e = G+ \G+f,

so that Eq. (1) holds with uv = e for all v ∈ G+, hence L(G,λ)′′ = L(G,λ).

Let us check that G+
ρ is indeed of this form. We have ρ(v, u) = α(vu)

α(v) for any

v, u ∈ G+. In particular, if u ∈ G+f , then α(vu) = 1 and so ρ(v, u) = 2|v| for
v ∈ G+e, so ρ(u) = ∞. On the other hand, if u ∈ G+ \G+f , then α(vu) = 2−|vu| ≤
α(v) for all v ∈ G+, so ρ(u) ≤ 1.

Example 4.6. Let G be the directed 2-cycle, so that V (G) = {x, y} and E(G) =
{e, f} where s(e) = r(f) = x and s(f) = r(e) = y (see Figure 4). For this
particular graph G, we will show that if λ is any left-bounded left weight on G with
right companion ρ, then L(G,λ)′′ = L(G,λ) if and only if G+

ρ satisfies Eq. (1).

Note that the edges in any path in G+ must alternate:

G+ = {x, y, e, f, ef, fe, efe, fef, efef, fefe, . . . }.
We first show that ef ∈ G+

ρ . Let v ∈ G+ \ V (G) with vef ∈ G+. Either v = (ef)k

or v = f(ef)k−1 = (fe)k−1f for some k ≥ 1. Let α : G+ → (0,∞) be the path
weight with λ = λα and ρ = ρα. Since (ef)kef = (ef)k+1 = ef(ef)k, we have

ρ((ef)k, ef) =
α((ef)k+1)

α((ef)k)
= λ((ef)k, ef) ≤ λ(ef) < ∞

and since f(ef)k−1ef = f(ef)k = (fe)kf , we have

ρ(f(ef)k−1, ef) =
α((fe)kf)

α((fe)k−1f)
= λ((fe)k−1f, fe) ≤ λ(fe) < ∞,

so ρ(ef) < ∞, i.e., ef ∈ G+
ρ . Similarly, fe ∈ G+

ρ . Since G+
ρ is a semigroupoid,

we have 〈ef, fe〉 ⊆ G+
ρ where 〈ef, fe〉 := V (G) ∪ {(ef)k, (fe)k : k ≥ 1}. If G+

ρ )
〈ef, fe〉, then G+

ρ contains an element of odd length. By symmetry, we may as-
sume this is of the form e(fe)n for some n ≥ 0. We then also have e(fe)m =
e(fe)n(fe)m−n ∈ G+

ρ for any m > n, so if we define uv for v ∈ G+ by

uv =


s(v) if v ∈ 〈ef, fe〉
(fe)n if v = e(fe)k for some k ≥ 0

e(fe)n if v = f(ef)k for some k ≥ 0,

then uv ∈ G+
ρ and vuv ∈ G+

ρ for all v ∈ G+, so Eq. (1) holds and so L(G,λ)′′ =
L(G,λ) by Theorem 4.4.
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Figure 2. G and G+ in Examples 4.5 and 4.7
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1

1 1

1
2 1 1 1

2

1
4

1
2

1
2 1 1 1

2
1
2

1
4

Figure 5. The path weight α considered in Example 4.7
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On the other hand, if G+
ρ = 〈ef, fe〉, then Eq. (1) does not hold, since if |v| is

odd and u ∈ G+
ρ with vu ∈ G+, then |vu| is also odd, so vu 6∈ G+

ρ . In this case,
it is not difficult to see that the orthogonal projection P onto the closed linear
span of {ξv : v = x or v = (fe)k, k ≥ 1} commutes with Rρ,u for u ∈ {x, y, ef, fe},
hence P ∈ R(G, ρ)′ = L(G,λ)′′. If T ∈ L(G,λ), then 〈Tξx, ξx〉 = 〈Tξf , ξf 〉. Since
Pξx = ξx and Pξf = 0, we have P 6∈ L(G,λ). So L(G,λ)′′ 6= L(G,λ).

We note that it is indeed possible for Eq. (1) to fail for this graph G. For
example, let α : G+ → (0,∞) with α(v) = 1 for all v ∈ s−1(x), and α(v) = 2f(|v|)

for v ∈ s−1(y) where f : N0 → Z is a function with f(0) = 0, and f(n + 1) ∈
{f(n)− 1, f(n) + 1} for all n ∈ N0 and with supn f(n) = ∞ and infn f(n) = −∞.
One may then check that the left weight λα is left-bounded, and that its canonical
right companion ρ satisfies G+

ρ = 〈ef, fe〉, so Eq. (1) fails.

Example 4.7. For a general left-bounded weight λ, the double commutant prop-
erty for L(G,λ) can fail very badly. For example, let G again be the directed graph
with a single vertex φ and two loop edges e and f , and let us now define a path
weight α : G+ → (0,∞) recursively by setting α(φ) = α(e) = α(f) = 1, and

α(ewe) = 1
2α(we), α(fwf) = 1

2α(wf), α(ewf) = α(wf), α(fwe) = α(we).

This is illustrated in Figures 2 and 5. Take λ = λα and ρ = ρα. Observe that λ
is a left-bounded left weight since α(wv) ≤ α(v) for all w, v ∈ G+. For any k ∈ N
and w ∈ G+,

ρ(we) ≥ ρ(fk, we) =
α(fkwe)

α(fk)
= 2k−1α(we) → ∞ as k → ∞,

hence ρ(we) = ∞; by symmetry, ρ(wf) = ∞. Hence G+
ρ = {φ}. Since Rρ,φ =

Rφ = I, we have R(G, ρ) = CI and so L(G,λ)′′ = R(G, ρ)′ = B(HG) 6= L(G,λ).

The commutant result yields other structural results on the algebras, such as the
following.

Corollary 4.8. Let λ be a left-bounded left weight on G with canonical right com-
panion ρ. If either ρ is right-bounded, or G is finite and G+

ρ satisfies Eq. (1), then
L(G,λ) is inverse closed.

Proof. This is a well-known property of commutants: if A ∈ L(G,λ) = R(G, ρ)′ is
invertible in B(HG), then for all R ∈ R(G, ρ), A−1R = A−1RAA−1 = RA−1, and
hence A−1 ∈ R(G, ρ)′ = L(G,λ). �

Corollary 4.9. If λ is a left-bounded left weight on G whose canonical right com-
panion ρ is right-bounded, then every normal element of L(G,λ) lies in the SOT-
closure of the linear span of the projections Lλ,x for x ∈ V (G).

Proof. Let N be a normal element of L(G,λ). Set ax = 〈Nξx, ξx〉 for x ∈ V (G)
and let M be the SOT-convergent sum M =

∑
x∈V (G) axLλ,x. Observe that each

ξx is an eigenvector for L(G,λ)∗, as for all u ∈ G+ \ {x} and A ∈ L(G,λ), we have

〈A∗ξx, ξu〉 = 1
ρ(r(u),u) 〈ξx, ARρ,uξr(u)〉 = 1

ρ(r(u),u) 〈R
∗
ρ,uξx, Aξr(u)〉 = 0.

Thus N∗ξx = axξx, and by normality Nξx = axξx. Hence for all u ∈ G+,

Nξu = 1
ρ(r(u),u)NRρ,uξr(u) =

1
ρ(r(u),u)Rρ,uNξr(u) = ar(u)ξu = Mξu,

so N = M . �
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Remark 4.10. Building on Theorems 4.2 and 4.4, a natural open problem is to de-
termine weighted graph conditions that fully characterize when the algebra L(G,λ)
and its double commutant L(G,λ)′′ coincide.
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