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Abstract 

This paper presents a new partitioning algorithm to 
perform matrix multiplication on two interconnected 
heterogeneous processors. Data is partitioned in a way 
which minimizes the total volume of communication 
between the processors compared to more general 
partitionings, resulting in a lower total execution time 
whenever the power ratio between the processors is 
greater than 3:1. The algorithm has interesting and 
important applicability, particularly as the top-level 
partitioning in a hierarchal algorithm that is to 
perform matrix multiplication on two interconnected 
clusters of computers. 

1. Introduction

This paper presents a new algorithm specifically
designed to perform matrix multiplication on two 
interconnected heterogeneous processors. Data is 
partitioned in a way which minimizes the total volume 
of communication between the processors resulting in 
a lower execution time compared to more general 
partitionings, whenever the power ratio between the 
processors is greater than 3:1. A hybrid algorithm 
utilizing an existing partitioning algorithm for ratios 
less than 3:1 would guarantee performance equal to or 
better than known partitionings. Minimizing the total 
volume of communication is a natural goal as matrix 
multiplication involves substantial communication 
volumes and the link connecting the processors is a 
possible bottleneck. This partitioning strategy could 
also decrease the communication volume of other 
linear algebra kernels and applications which are 
communication intensive.  

Our motivation stems from the fact that there are 
many general algorithms which work well for several, 
dozens, or even hundreds of nodes, but all result in a 
straight-forward partitioning when applied to the 

architecture of two interconnected processors. 
Examples of these methods are explored in [2][3][5][7]. 
The same partitioning occurs when any single or 
multidimensional partitioning strategy is applied to two 
processors. The result sees the matrix partitioned into 
two rectangular areas divided by a straight line, each 
proportional in area to the computational power of the 
processor which is to compute the partition. We refer 
to this as a ‘straight-line’ partitioning.  

Our algorithm differs in that the matrix is not 
partitioned with a straight line. We create two 
partitions, one partition is a square located in a corner 
of the matrix, and the other partition is polygonal – the 
rest of the matrix with the square removed from a 
corner. This ‘square-corner’ partitioning has the effect 
of lowering the total volume of inter-processor 
communication and therefore the total execution time, 
whenever the power ratio between the processors is 
greater than 3:1.  

As noted in [3], matrix multiplication is the 
prototype for a group of tightly-coupled kernels that 
should be efficiently solved on high performance 
computing architectures. To our knowledge no 
research has been conducted to optimize matrix 
multiplication for the specific architecture of two 
connected heterogeneous processors. The most related 
work is [3], which used this architecture to test a more 
general algorithm designed for any number of 
processors including two. 

This lack of research may be due to the fact that 
developing special strategies to optimize particular 
algorithms for two processors has historically not been 
seen as worth the effort. Why run a parallel task on 
only two machines when powerful computers are 
relatively inexpensive and a general purpose parallel 
algorithm will run on dozens or hundreds of nodes? 
We point out that such “two-processor” algorithms can 
have useful applicability. One such application is 
performing the top-level partitioning between two 
connected clusters – a natural architecture for high 



performance computing. With such an architecture, 
each cluster (containing any number of nodes 
internally) can be of considerable computational power 
and well worth using in parallel. At a high level such 
collections of clusters can be viewed as a collection of 
individual processors, and after an initial top-level 
partition utilizing this new algorithm, each cluster can 
then deal with its data partition using an algorithm that 
will most efficiently exploit its particular local 
architecture.  

The rest of this paper is organized as follows. 
Section 2 introduces related research involving matrix 
multiplication on two processors. Section 3 introduces 
our ‘square-corner’ partitioning algorithm and its 
constraints, and proves its optimality amongst other 
variants of the algorithm. We then theoretically 
compare the square-corner algorithm with the ‘straight-
line’ partitioning which results when more general 
algorithms are applied to the two-processor 
architecture. We then show that the square-corner 
algorithm minimizes the inter-processor volume of 
communication when the processor power ratio is 
greater than 3:1. We also compare this algorithm with 
the lower bound presented in [3] and show that the 
square-corner algorithm approaches that lower bound. 
In Section 4 we provide results of MPI Experiments 
running the square-corner algorithm on two processors 
of varying power ratios and link bandwidths. Our 
results demonstrate both a lower total volume of 
communication and total execution time than the more 
general straight-line algorithm in all cases where the 
power ratio is greater than 3:1. In Section 5 we give 
our concluding remarks and an indication of future 
work. Section 6 includes acknowledgements. 

2. Related Work

To date, very little research has been concentrated 
on matrix multiplication on a two processor 
architecture. In [3], Beaumont et al. target matrix 
multiplication on heterogeneous platforms. A column 
based partitioning based on that of [7] is introduced 
which balances the workload between processors of 
different speeds in an attempt to minimize the total 
volume of communication. First the matrix is 
partitioned into rectangles proportional in area to the 
speed of each processor. These rectangles are then 
arranged into columns in a defined manner. The total 
volume of communication is proportional to the sum of 
the half-perimeters s of each rectangle, given by (2.1), 
where p is the number of processors, and hi and wi are 
the height and width of the rectangle assigned to 
processor i, respectively. 
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Since the perimeter of any rectangle enclosing a 
given area is minimized when that rectangle is a square, 
there is a natural lower bound l of (2.1), shown by (2.2), 
where ai is the area of the partition belonging to 
processor i.  
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The authors then carry out a simulation which takes 
a large number of randomly generated rectangular 
partition areas and compare their partitioning 
algorithm’s sum of half-perimeters with the lower 
bound. They do this for a number of processors (and 
therefore rectangles) ranging from one to 40. Their 
partitioning algorithm performs well, with the worst 
average sum of half-perimeter to lower bound ratio 
being about 1.11, for the case of two processors.  

The authors state that the lower bound can not 
always be met and use the case of two processors as an 
example. They ask the reader to consider the case of 
two processors with relative speeds such that processor 
1 receives a rectangle of area a1 = 1 – ε, and processor 
2 receives a rectangle of area a2 = ε, where ε > 0, is an 
arbitrarily small number. In order to partition the unit 
matrix into two rectangles, a line of length 1 must 
divide the matrix. Using (2.1), this results in a sum of 
half-perimeters equal to 3, but (2.2) shows that the 
lower bound can get arbitrarily close to 2. Substituting 
N2 for 1 (generalizing on the unit square), we see that 
in the case of two processors as ε → 0 the lower bound 
gets arbitrarily close to 2×N, which is the half-
perimeter of the matrix itself.   

3. Matrix Multiplication on Two
Heterogeneous Processors 

3.1 Minimizing the Total Volume of 
Communication 

The main objective of our algorithm is to minimize 
the total volume of communication between two 
connected processors that are to in parallel perform 
matrix multiplications. The simplest partitioning of a 
matrix multiplication C = AB divides the C matrix in 
half. On two homogeneous processors, this will 
perfectly balance the load as each processor will 
receive equal amounts of work and should finish their 
respective jobs simultaneously. For two heterogeneous 
processors, the C matrix is divided into two rectangles, 
each having an area proportional to the speeds of the 
nodes. Again, this theoretically results in a perfect load 



balance. In both cases the total volume of 
communication is N2, as each node needs the entire 
data partition from the other node to compute its part 
of the C matrix.  

Figure 1 shows a one-dimensional partitioning 
scheme that guarantees perfect load balancing between 
four homogeneous processors. In order to compute its 
partition of the C matrix, processor p1 needs to receive 
p2, p3, and p4’s partitions of A. This results in a 
volume of communication equal to 3×N2/4. All other 
nodes similarly need every other node’s partition of A 
to compute their partition’s product. Therefore the total 
volume of communication is equal to 3×N2. 

Figure 1.  A one-dimensional homogeneous 
partitioning scheme. 

Figure 2 shows a two-dimensional partitioning for 
the same problem and the same four homogeneous 
processors as Figure 1. Each processor has a partition 
of C proportional in area to its speed, but the two-
dimensional partitioning results in a lower total volume 
of communication. In order to calculate its partition of 
C, processor p1 needs to receive p2’s partition of A, 
and p3’s partition of B. This is a volume of 
communication equal to N2/2. Similarly, each other 
processor needs to receive the equivalent partitions 
from its neighboring processors, resulting in a total 
volume of communication equal to 2×N2. Thus, the 
two-dimensional partitioning reduces the total volume 
of communication by 1/3.  

Figure 2.  A two-dimensional homogeneous 
partitioning scheme. 

The two-dimensional partitioning also reduces the 
total volume of communication on heterogeneous 
platforms, the difference being that the rectangles are 

not of equal size, as the area of each partition must be 
proportional to processor speed. For more information, 
see [1]. 

Clearly a traditional two-dimensional partitioning 
makes no sense on an architecture that is comprised of 
only two processors. This does not mean that a simple 
one-dimensional rectangular partitioning is optimal 
however. Figure 3 shows the partitioning scheme used 
by our ‘square-corner’ algorithm. The total volume of 
communication can be reduced from that of the more 
general straight-line partitioning by avoiding the use of 
a straight line to partition the matrix. Instead the slower 
processor is allocated a square partition of size q×q, 
and the faster processor receives the balance of the 
matrix. The size of q is dictated by the ratio of 
processor powers r. We always normalize this ratio so 
that the speed of the slower processor is equal to 1, so a 
ratio of r is understood to be a ratio of r:1. Therefore q 
is given by (3.1).  

1
Nq
r

=
+

  (3.1) 

Figure 3.  The square-corner partitioning 
and communication steps. 

As shown in Figure 3, the necessary 
communications involve processor 1 sending two 
pieces of size q×(N-q) to processor 2, and processor 2 
sending two pieces of size q×q to processor 1. This 
results in the following equation for the total volume of 
communication c. 

  2c N q= × ×   (3.2) 

The straight-line partitioning always results in a total 
volume of communication equal to N2, regardless of 
the power ratio. 

The location of the square partition does not affect 
the total volume of communication. A corner is chosen 
to minimize the number of communication steps 
necessary. As shown in Figure 3 this number is four. 
Placing the square adjacent to an edge but not in a 
corner requires five communication steps. This is 
because the q×q square would interrupt either a set of 



columns or rows of width or height q into two pieces, 
each of which need to be communicated. Placing the 
square inside the matrix, not adjacent to any edge 
requires six communication steps. This is due to the 
q×q square interrupting a set of columns of width q 
into two pieces, and likewise for a set of rows of height 
q.  

Theorem: For all power ratios r greater than 3, the 
square-corner total volume of communication, equal to 
2×N×q, will be less than that of the straight-line 
partitioning which is always equal to N2. 

Proof: We start by stating that the square-corner 
total volume of communication is less than that of the 
straight-line partitioning: 2×N×q < N2 subject to the 
conditions N, q > 0. Substituting equation (3.1), yields 

2
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+
 which simplifies to 2 1r< + , and 

4 1r< + , and finally r > 3.   □ 

Similar proofs show that for the power ratio r = 3 
(3:1), the square-corner total volume of communication 
is exactly equal to the straight-line total volume of 
communication, and for ratios where r < 3, the square-
corner total volume of communication exceeds that of 
the straight-line partitioning.  

Figure 4 shows the total volume of communication 
of the square-corner partitioning compared to that of 
the straight-line partitioning. It is clear that for r = 3, 
the values are equal. For r = 15, the square-corner total 
volume of communication is exactly half that of the 
straight-line algorithm.  

An additional advantage to the square-corner 
partitioning is that a large area of the matrix product 
can be computed by processor 1 without any 
communications taking place. This immediately 
calculable area of size N-q × N-q can be seen at the top 
left corner of processor 1’s C matrix in Figure 3. On 
architectures with a dedicated communication 
subsystem, this property could be exploited to overlap 
some communication and computation which would 
reduce the total execution time further.  

Figure 4. Comparison of the total volume of 
communication for the square-corner and 

straight-line partitionings. 

3.2 Optimality of the Square-Corner 
Partitioning  

In this section we prove that as presented, the 
square-corner algorithm minimizes the total volume of 
communication against variants of the algorithm. 
Possible variants include assigning non-square 
partitions to processor 2. This means relaxing the q×q 
square partition of area Q in Figure 3, to become a 
rectangle of width x, height y, and area Q. 

We wish to minimize the total volume of 
communication, c, which is equal to (3.3). 

c x N y N= × + ×    (3.3) 

With the restraints shown by (3.4). 

x y Q× = , 0 x N< ≤ , 0 y N< ≤    (3.4) 

Theorem: Subject to the constraints of (3.4), 
c = x×N + y×N  is minimized when x = y, and 
therefore when the partition is a square. 

Proof: We substitute y = Q/x from (3.4) into (3.3) to 

get Q Nc x N
x
×= × + . We then set 2

c Q NN
x x

∂ ×= −
∂

equal to zero which results in 2Q x= , and therefore  
x = y , i.e. the partition is square. The second 



derivative of c, 
2

2 32c Q NN
x x

∂ ×= + ×
∂

 is positive, 

indicating that the zero of the first derivative is a 
minimum and any other partition will result in an 
increased total volume of communication.                   □  

Note that even in its most extreme variation where x 
or y = N, although the partitions of the square-corner 
algorithm and that of the straight-line algorithm are 
equal, the algorithms are still different. The square-
corner algorithm always involves four communications 
(as long as the slower processor is allocated a partition 
in a corner of the matrix), and the straight-line 
algorithm always involves two. Thus one algorithm is 
not a special case of the other.  

3.3 Comparison with Beaumont et al. and the 
Lower Bound 

In section 2 we summarized the work of Beaumont 
et al. [3], which presented a column-based algorithm 
for partitioning a matrix into different sized rectangles 
to load-balance the problem for a heterogeneous 
architecture and minimize the total volume of 
communication. For two nodes, this algorithm results 
in a straight-line partitioning similar to Figure 1, with 
two rectangles each proportional in area to the relative 
powers of the nodes. The sum of half-perimeters s 
which is proportional to the total volume of 
communication was given by (2.1), and in the case of 
two nodes, is equal to (3.5). 
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The lower bound of the sum of half perimeters l is 
given by (2.2), and for the case of two processors is 
equal to (3.6), where ai is the area of the partition 
belonging to processor i. 
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In the case of two nodes, the square-corner 
partitioning has a sum of half perimeters equal to (3.7). 

2 2 2 ( )s N q N q= × + × = × +    (3.7) 

Equation (3.7) shows that for the square-corner 
partitioning, as q → 0, s → 2×N, which is equal to the 
lower bound that cannot be met by the straight-line 
partitioning.   

To compare the square-corner sum of half-
perimeters with that of the straight-line partitioning and 
the lower bound, we adopted the same approach as in 
[3]. We generated 2,000,000 random values for the 
partition areas a1 and a2, and calculated values for the 
sum of half-perimeters s and the lower bound l. 
Additionally, we restricted a1 and a2 so that 3 < a1/a2 . 
This is because we have already shown that the 
straight-line partitioning has a lower sum of half-
perimeters (and therefore lower total volume of 
communication) for a1/a2 < 3. The average sum of 
half-perimeter to lower bound ratio for the straight-line 
partitioning is 1.176, while that of the square-corner 
partitioning is 1.054. Considering that 1.0 is the 
optimum value, this is an improvement of 69%. The 
minimum value for the sum of half-perimeter to lower 
bound ratio for the straight-line partitioning is 
1.098076, while that of the square-corner partitioning 
is 1.000001, an improvement of well over 99%. This 
demonstrates that the square-corner partitioning does 
approach the lower bound which cannot be met by the 
straight-line partitioning. 

In generating 2,000,000 random areas, there are 
bound to be many that are have very large ratios, 
making them computationally unrealistic. Surely 
nobody would use two processors in parallel if one of 
them is slower than the other by an order of hundreds 
or thousands or greater. We therefore impose the 
tighter but more realistic restriction of 3 < a1/a2 ≤ 100. 
Even with these much tighter restrictions, the average 
sum of half-perimeter to lower bound ratio for the 
straight-line partitioning is 1.169 while that of square-
corner partitioning is 1.056, an improvement of 67%. 
The minimum is improved from 1.098 to 1.005, a gain 
of 95%. 

3.4 Worst case analysis 

Since the ratio r plays an important role in the cost 
of the worst case, Beaumont et al. analyzed the 
maximum value of the sum of half-perimeter to lower 
bound ratio for different values of r ranging from 2 to 
∞, for two to 40 processors. This was done by 
generating 10,000 values of ai and plotting the 
maximum value of the sum of half-perimeter to lower 
bound ratio. For two processors, this value ranged from 
just under 1.1 for r = 2, to the theoretical upper limit of 
1.5 for r = ∞.  

Figure 5 shows the maximum values of the sum of 
half-perimeter to lower bound ratio for values of r 
ranging from 1 to 25.  



Figure 5. Comparison of the maximum sum 
of half-perimeter / lower bound values for the 
square-corner and straight-line partitionings. 

Similar to Figure 4, Figure 5 shows that for r = 3, 
both the square-corner and straight-line partitionings 
are equivalent in communication volume. Considering 
that 1.0 is the optimal value, the square-corner 
maximum ratio is an average of 84% lower than that of 
the straight-line partitioning for the range 3 < r < 25. 
As r → ∞  the maximum ratio for the square-corner 
partitioning approaches the optimal value of 1.0, while 
that of the straight-line partitioning approaches the 
theoretical upper limit of 1.5. 

4. MPI Experiments

To experimentally verify this new algorithm, we 
implemented the square-corner algorithm and the 
straight-line algorithm in Open-MPI [6]. Local matrix 
multiplications utilize ATLAS [8]. The experiments 
were carried out on two identical machines so that we 
could focus only on the partitioning without worrying 
about any contributions made by architectural 
differences. The machines were connected with a 
switch which allows the average bandwidth between 
the nodes to be specified. Both algorithms carry out all 
communications first, then all computations, hence 
there is no communication/computation overlap.  

The ratio of speeds between the two nodes was 
varied by slowing down the CPU of one node using a 
CPU limiting program as proposed in [4]. This 
program supervises a specified processes and using the 
/proc pseudo-filesystem, forces the process to sleep 
when it has used more than a specified fraction of CPU 

time. The process is then woken when enough idle 
CPU time has elapsed for the process to resume. 
Sampled frequently enough, this can provide a fine 
level of control over the fraction of CPU time used by 
the process. Comparison of the run-times of each node 
confirmed that this method does result in the desired 
ratios to within 2%.  

4.1 Comparison of Communication Volumes 

We ran the square-corner algorithm and the straight-
line algorithm for power ratios ranging from 1:1 to 
1:25 and for ten bandwidth values ranging from 
50Mb/s to 400Mb/s. For all cases other than ratios of 
1:1, 1:2, and 1:3, the total communication time for the 
square-corner algorithm was less than that of the 
straight-line partitioning. 

Figure 6 shows a plot of the communication times 
for the square-corner partitioning and the straight-line 
partitioning. The average bandwidth is 80Mb/s and the 
power ratios range from 1:1 to 1:25. For ratios greater 
than 1:3, the average communication time for the 
square-corner partitioning is 45% lower than that of the 
straight-line partitioning.  

Figure 6.  Comparison of the 
communication times for the square-corner 
and straight-line partitionings. The average 

bandwidth is 80Mb/s. 

Figure 7 shows the same plot but with an average 
bandwidth of 380Mb/s. The average communication 
time for the square-corner partitioning is 44% less than 
the straight-line partitioning for ratios above 3:1. 

The total communication time of the square-corner 
algorithm can be calculated with (4.1), 

2
comm

N q m
t

b

× × ×
=  (4.1) 

where m is the size in bits of the data type being 
communicated and b is the average bandwidth of the 
link in bits/second.  



Figure 7.  Comparison of the communication 
times for the square-corner and the straight-
line partitionings. The average bandwidth is 

380Mb/s. 

4.2 Comparison of Total Execution Times 

The square-corner algorithm is designed to reduce 
the inter-processor communication time resulting in a 
lower total execution time. Both algorithms should 
have equal computation times as each processor 
receives the same amount of work regardless of which 
algorithm is used. The only difference is how the data 
is partitioned. Since the total execution time is 
dependent on communication and computation time, 
any savings in total execution time will be dependent 
on how dominant communication time is in the overall 
execution time. As bandwidth increases, 
communication time decreases, and the overall 
contribution of communication in the total execution 
time decreases.  

Figure 8 shows a plot of the total execution times 
for the square-corner partitioning and the straight-line 
partitioning with an average bandwidth of 80Mb/s.  

Figure 8.  Comparison of the total execution 
times for the square-corner and the straight-
line partitionings. The average bandwidth is 

80Mb/s. 

For all ratios above 3:1, the square-corner 
partitioning has a lower total execution time compared 
to the straight-line partitioning. On average, it is 14% 
faster for these ratios. It is notable that at this 
bandwidth, the straight-line partitioning results in a 
total execution time greater than the sequential 
execution time – the execution time achieved by 
straight-forward matrix multiplication of the same 
matrices on the faster of the two processors. However, 
the square-corner partitioning results in total execution 
times faster than the sequential.  

Figure 9 shows a plot of the total execution times 
with an average bandwidth of 380Mb/s. On average, 
the total execution time for the square-corner algorithm 
is 10% less than the straight-line partitioning for ratios 
greater than 3:1. Additionally, the straight-line 
algorithm exceeds the sequential time for ratios above 
1:15, while the square-corner algorithm’s execution 
time is less than that of the sequential through all ratios 
tested.  

Figure 9.  Comparison of the total execution 
times for the square-corner and the straight-
line partitionings. The average bandwidth is 

380Mb/s. 

The computation time for the faster processor can 
be calculated by finding the size of a square matrix 
equal in area to the polygonal partition and comparing 
the work required to multiply two of these matrices to 
that required to multiply two test matrices of size M×M. 
This is given by equation (4.2). 
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Where t1 is the time taken for the faster processor to 
calculate the product of two test matrices of size M×M. 
We found M = 1000 to be suitable. For the slower 
processor, (4.2) reduces to equation (4.3). 
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Where t2 is the time taken for the slower processor 
to calculate the product of two M×M test matrices. 
Combining equations (4.1), (4.2), and (4.3), the total 
execution time is equal to (4.4). 
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4.3 “Real-World” Applicability 

It has been proven that the square-corner algorithm 
has a lower total volume of communication for all 
power ratios greater than 1:3 compared to the straight-
line algorithm. Further, our research has shown that 
this reduction in the total volume of communication 
results in lower execution times compared to the 
straight-line algorithm for the same ratios. A hybrid 
algorithm which utilizes the straight-line algorithm for 
power ratios less than 3:1, and the new square-corner 
algorithm for greater ratios would always be equivalent 
to or faster than the straight-line algorithm in all cases.  

Additionally our research shows that for power 
ratios greater than 3:1 and matrix sizes in the range of 
N = 6500, two processors or clusters connected by a 
single communication link would benefit from 
parallelization utilizing this hybrid algorithm provided 
the bandwidth is 60Mb/s or greater. Such an 
architecture would not benefit from parallelizing the 
same problem using just the straight-line algorithm 
until the bandwidth reached 120Mb/s. Thus the square-
corner algorithm not only reduces the communication 
volume and execution time, but reduces the bandwidth 
necessary for parallelization to be profitable.    

5. Conclusion and Future Work

This paper presented a new data partitioning 
algorithm for matrix multiplication on two 
heterogeneous interconnected processors. Compared to 
more general algorithms which result in simple 
‘straight-line’ rectangular partitions on a two-processor 
architecture, this ‘square-corner’ algorithm is proven to 
reduce the total volume of inter-processor 
communication when the power ratio of the two 
processors is greater than 3:1. This results in a lower 
execution time for architectures with these ratios. MPI 
experiments show average reductions in the total 
communication time to be on the order of 45%.  

This partitioning algorithm can be utilized as the 
top-level partitioning of a hierarchal algorithm that is 
to multiply matrices across two connected clusters. A 
hybrid algorithm utilizing this new algorithm for power 
ratios equal to or greater than 3:1, and the existing 
straight-line partitioning for ratios of  less than 3:1 
guarantees that the total volume of communication will 
be equal to or less than previously existing algorithms 
for all ratios.   

Our future work will include exploiting the 
possibility of overlapping some communication and 
computation as described in section 3.1, taking a 
functional model of processor performance into 
account when determining the size of the partitions, 
and deploying the square-corner algorithm on two 
heterogeneous clusters. We are also investigating the 
possibility of extending the square-corner algorithm to 
the architecture of three connected heterogeneous 
processors. 
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