
Title Matrix Multiplication on Two Interconnected Processors

Authors(s) Becker, Brett A., Lastovetsky, Alexey

Publication date 2006-10

Publication information Becker, Brett A., and Alexey Lastovetsky. “Matrix Multiplication on Two Interconnected

Processors,” 2006.

Conference details Proceedings of the 8th IEEE International Conference on Cluster Computing (Cluster 2006),

October, 2006

Item record/more

information

http://hdl.handle.net/10197/8604

Publisher's version (DOI) 10.1109/CLUSTR.2006.311901

Downloaded 2024-03-29T04:02:15Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=Matrix+Multiplication+on+Two+Intercon...&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F8604

Matrix Multiplication on Two Interconnected Processors

Brett A. Becker
School of Computer Science and Informatics
University College Dublin (UCD), Belfield,

Dublin 4, Ireland
brett.becker@ucd.ie

Alexey Lastovetsky
School of Computer Science and Informatics
University College Dublin (UCD), Belfield,

Dublin 4, Ireland
alexey.lastovetsky@ucd.ie

Abstract

This paper presents a new partitioning algorithm to
perform matrix multiplication on two interconnected
heterogeneous processors. Data is partitioned in a way
which minimizes the total volume of communication
between the processors compared to more general
partitionings, resulting in a lower total execution time
whenever the power ratio between the processors is
greater than 3:1. The algorithm has interesting and
important applicability, particularly as the top-level
partitioning in a hierarchal algorithm that is to
perform matrix multiplication on two interconnected
clusters of computers.

1. Introduction

This paper presents a new algorithm specifically
designed to perform matrix multiplication on two
interconnected heterogeneous processors. Data is
partitioned in a way which minimizes the total volume
of communication between the processors resulting in
a lower execution time compared to more general
partitionings, whenever the power ratio between the
processors is greater than 3:1. A hybrid algorithm
utilizing an existing partitioning algorithm for ratios
less than 3:1 would guarantee performance equal to or
better than known partitionings. Minimizing the total
volume of communication is a natural goal as matrix
multiplication involves substantial communication
volumes and the link connecting the processors is a
possible bottleneck. This partitioning strategy could
also decrease the communication volume of other
linear algebra kernels and applications which are
communication intensive.

Our motivation stems from the fact that there are
many general algorithms which work well for several,
dozens, or even hundreds of nodes, but all result in a
straight-forward partitioning when applied to the

architecture of two interconnected processors.
Examples of these methods are explored in [2][3][5][7].
The same partitioning occurs when any single or
multidimensional partitioning strategy is applied to two
processors. The result sees the matrix partitioned into
two rectangular areas divided by a straight line, each
proportional in area to the computational power of the
processor which is to compute the partition. We refer
to this as a ‘straight-line’ partitioning.

Our algorithm differs in that the matrix is not
partitioned with a straight line. We create two
partitions, one partition is a square located in a corner
of the matrix, and the other partition is polygonal – the
rest of the matrix with the square removed from a
corner. This ‘square-corner’ partitioning has the effect
of lowering the total volume of inter-processor
communication and therefore the total execution time,
whenever the power ratio between the processors is
greater than 3:1.

As noted in [3], matrix multiplication is the
prototype for a group of tightly-coupled kernels that
should be efficiently solved on high performance
computing architectures. To our knowledge no
research has been conducted to optimize matrix
multiplication for the specific architecture of two
connected heterogeneous processors. The most related
work is [3], which used this architecture to test a more
general algorithm designed for any number of
processors including two.

This lack of research may be due to the fact that
developing special strategies to optimize particular
algorithms for two processors has historically not been
seen as worth the effort. Why run a parallel task on
only two machines when powerful computers are
relatively inexpensive and a general purpose parallel
algorithm will run on dozens or hundreds of nodes?
We point out that such “two-processor” algorithms can
have useful applicability. One such application is
performing the top-level partitioning between two
connected clusters – a natural architecture for high

performance computing. With such an architecture,
each cluster (containing any number of nodes
internally) can be of considerable computational power
and well worth using in parallel. At a high level such
collections of clusters can be viewed as a collection of
individual processors, and after an initial top-level
partition utilizing this new algorithm, each cluster can
then deal with its data partition using an algorithm that
will most efficiently exploit its particular local
architecture.

The rest of this paper is organized as follows.
Section 2 introduces related research involving matrix
multiplication on two processors. Section 3 introduces
our ‘square-corner’ partitioning algorithm and its
constraints, and proves its optimality amongst other
variants of the algorithm. We then theoretically
compare the square-corner algorithm with the ‘straight-
line’ partitioning which results when more general
algorithms are applied to the two-processor
architecture. We then show that the square-corner
algorithm minimizes the inter-processor volume of
communication when the processor power ratio is
greater than 3:1. We also compare this algorithm with
the lower bound presented in [3] and show that the
square-corner algorithm approaches that lower bound.
In Section 4 we provide results of MPI Experiments
running the square-corner algorithm on two processors
of varying power ratios and link bandwidths. Our
results demonstrate both a lower total volume of
communication and total execution time than the more
general straight-line algorithm in all cases where the
power ratio is greater than 3:1. In Section 5 we give
our concluding remarks and an indication of future
work. Section 6 includes acknowledgements.

2. Related Work

To date, very little research has been concentrated
on matrix multiplication on a two processor
architecture. In [3], Beaumont et al. target matrix
multiplication on heterogeneous platforms. A column
based partitioning based on that of [7] is introduced
which balances the workload between processors of
different speeds in an attempt to minimize the total
volume of communication. First the matrix is
partitioned into rectangles proportional in area to the
speed of each processor. These rectangles are then
arranged into columns in a defined manner. The total
volume of communication is proportional to the sum of
the half-perimeters s of each rectangle, given by (2.1),
where p is the number of processors, and hi and wi are
the height and width of the rectangle assigned to
processor i, respectively.

1
()

p

i i
i

s h w
=

= +∑ (2.1)

Since the perimeter of any rectangle enclosing a
given area is minimized when that rectangle is a square,
there is a natural lower bound l of (2.1), shown by (2.2),
where ai is the area of the partition belonging to
processor i.

1

2
p

i
i

l a
=

= ×∑ (2.2)

The authors then carry out a simulation which takes
a large number of randomly generated rectangular
partition areas and compare their partitioning
algorithm’s sum of half-perimeters with the lower
bound. They do this for a number of processors (and
therefore rectangles) ranging from one to 40. Their
partitioning algorithm performs well, with the worst
average sum of half-perimeter to lower bound ratio
being about 1.11, for the case of two processors.

The authors state that the lower bound can not
always be met and use the case of two processors as an
example. They ask the reader to consider the case of
two processors with relative speeds such that processor
1 receives a rectangle of area a1 = 1 – ε, and processor
2 receives a rectangle of area a2 = ε, where ε > 0, is an
arbitrarily small number. In order to partition the unit
matrix into two rectangles, a line of length 1 must
divide the matrix. Using (2.1), this results in a sum of
half-perimeters equal to 3, but (2.2) shows that the
lower bound can get arbitrarily close to 2. Substituting
N2 for 1 (generalizing on the unit square), we see that
in the case of two processors as ε → 0 the lower bound
gets arbitrarily close to 2×N, which is the half-
perimeter of the matrix itself.

3. Matrix Multiplication on Two
Heterogeneous Processors

3.1 Minimizing the Total Volume of
Communication

The main objective of our algorithm is to minimize
the total volume of communication between two
connected processors that are to in parallel perform
matrix multiplications. The simplest partitioning of a
matrix multiplication C = AB divides the C matrix in
half. On two homogeneous processors, this will
perfectly balance the load as each processor will
receive equal amounts of work and should finish their
respective jobs simultaneously. For two heterogeneous
processors, the C matrix is divided into two rectangles,
each having an area proportional to the speeds of the
nodes. Again, this theoretically results in a perfect load

balance. In both cases the total volume of
communication is N2, as each node needs the entire
data partition from the other node to compute its part
of the C matrix.

Figure 1 shows a one-dimensional partitioning
scheme that guarantees perfect load balancing between
four homogeneous processors. In order to compute its
partition of the C matrix, processor p1 needs to receive
p2, p3, and p4’s partitions of A. This results in a
volume of communication equal to 3×N2/4. All other
nodes similarly need every other node’s partition of A
to compute their partition’s product. Therefore the total
volume of communication is equal to 3×N2.

Figure 1. A one-dimensional homogeneous
partitioning scheme.

Figure 2 shows a two-dimensional partitioning for
the same problem and the same four homogeneous
processors as Figure 1. Each processor has a partition
of C proportional in area to its speed, but the two-
dimensional partitioning results in a lower total volume
of communication. In order to calculate its partition of
C, processor p1 needs to receive p2’s partition of A,
and p3’s partition of B. This is a volume of
communication equal to N2/2. Similarly, each other
processor needs to receive the equivalent partitions
from its neighboring processors, resulting in a total
volume of communication equal to 2×N2. Thus, the
two-dimensional partitioning reduces the total volume
of communication by 1/3.

Figure 2. A two-dimensional homogeneous
partitioning scheme.

The two-dimensional partitioning also reduces the
total volume of communication on heterogeneous
platforms, the difference being that the rectangles are

not of equal size, as the area of each partition must be
proportional to processor speed. For more information,
see [1].

Clearly a traditional two-dimensional partitioning
makes no sense on an architecture that is comprised of
only two processors. This does not mean that a simple
one-dimensional rectangular partitioning is optimal
however. Figure 3 shows the partitioning scheme used
by our ‘square-corner’ algorithm. The total volume of
communication can be reduced from that of the more
general straight-line partitioning by avoiding the use of
a straight line to partition the matrix. Instead the slower
processor is allocated a square partition of size q×q,
and the faster processor receives the balance of the
matrix. The size of q is dictated by the ratio of
processor powers r. We always normalize this ratio so
that the speed of the slower processor is equal to 1, so a
ratio of r is understood to be a ratio of r:1. Therefore q
is given by (3.1).

1
Nq
r

=
+

 (3.1)

Figure 3. The square-corner partitioning
and communication steps.

As shown in Figure 3, the necessary
communications involve processor 1 sending two
pieces of size q×(N-q) to processor 2, and processor 2
sending two pieces of size q×q to processor 1. This
results in the following equation for the total volume of
communication c.

 2c N q= × × (3.2)

The straight-line partitioning always results in a total
volume of communication equal to N2, regardless of
the power ratio.

The location of the square partition does not affect
the total volume of communication. A corner is chosen
to minimize the number of communication steps
necessary. As shown in Figure 3 this number is four.
Placing the square adjacent to an edge but not in a
corner requires five communication steps. This is
because the q×q square would interrupt either a set of

columns or rows of width or height q into two pieces,
each of which need to be communicated. Placing the
square inside the matrix, not adjacent to any edge
requires six communication steps. This is due to the
q×q square interrupting a set of columns of width q
into two pieces, and likewise for a set of rows of height
q.

Theorem: For all power ratios r greater than 3, the
square-corner total volume of communication, equal to
2×N×q, will be less than that of the straight-line
partitioning which is always equal to N2.

Proof: We start by stating that the square-corner
total volume of communication is less than that of the
straight-line partitioning: 2×N×q < N2 subject to the
conditions N, q > 0. Substituting equation (3.1), yields

2
22

1
N N

r
× <

+
 which simplifies to 2 1r< + , and

4 1r< + , and finally r > 3. □

Similar proofs show that for the power ratio r = 3
(3:1), the square-corner total volume of communication
is exactly equal to the straight-line total volume of
communication, and for ratios where r < 3, the square-
corner total volume of communication exceeds that of
the straight-line partitioning.

Figure 4 shows the total volume of communication
of the square-corner partitioning compared to that of
the straight-line partitioning. It is clear that for r = 3,
the values are equal. For r = 15, the square-corner total
volume of communication is exactly half that of the
straight-line algorithm.

An additional advantage to the square-corner
partitioning is that a large area of the matrix product
can be computed by processor 1 without any
communications taking place. This immediately
calculable area of size N-q × N-q can be seen at the top
left corner of processor 1’s C matrix in Figure 3. On
architectures with a dedicated communication
subsystem, this property could be exploited to overlap
some communication and computation which would
reduce the total execution time further.

Figure 4. Comparison of the total volume of
communication for the square-corner and

straight-line partitionings.

3.2 Optimality of the Square-Corner
Partitioning

In this section we prove that as presented, the
square-corner algorithm minimizes the total volume of
communication against variants of the algorithm.
Possible variants include assigning non-square
partitions to processor 2. This means relaxing the q×q
square partition of area Q in Figure 3, to become a
rectangle of width x, height y, and area Q.

We wish to minimize the total volume of
communication, c, which is equal to (3.3).

c x N y N= × + × (3.3)

With the restraints shown by (3.4).

x y Q× = , 0 x N< ≤ , 0 y N< ≤ (3.4)

Theorem: Subject to the constraints of (3.4),
c = x×N + y×N is minimized when x = y, and
therefore when the partition is a square.

Proof: We substitute y = Q/x from (3.4) into (3.3) to

get Q Nc x N
x
×= × + . We then set 2

c Q NN
x x

∂ ×= −
∂

equal to zero which results in 2Q x= , and therefore
x = y , i.e. the partition is square. The second

derivative of c,
2

2 32c Q NN
x x

∂ ×= + ×
∂

 is positive,

indicating that the zero of the first derivative is a
minimum and any other partition will result in an
increased total volume of communication. □

Note that even in its most extreme variation where x
or y = N, although the partitions of the square-corner
algorithm and that of the straight-line algorithm are
equal, the algorithms are still different. The square-
corner algorithm always involves four communications
(as long as the slower processor is allocated a partition
in a corner of the matrix), and the straight-line
algorithm always involves two. Thus one algorithm is
not a special case of the other.

3.3 Comparison with Beaumont et al. and the
Lower Bound

In section 2 we summarized the work of Beaumont
et al. [3], which presented a column-based algorithm
for partitioning a matrix into different sized rectangles
to load-balance the problem for a heterogeneous
architecture and minimize the total volume of
communication. For two nodes, this algorithm results
in a straight-line partitioning similar to Figure 1, with
two rectangles each proportional in area to the relative
powers of the nodes. The sum of half-perimeters s
which is proportional to the total volume of
communication was given by (2.1), and in the case of
two nodes, is equal to (3.5).

1
() 3

p
i i

i
s h w N

=
= + = ×∑ (3.5)

The lower bound of the sum of half perimeters l is
given by (2.2), and for the case of two processors is
equal to (3.6), where ai is the area of the partition
belonging to processor i.

1 2
1

2 2 ()
p

i
i

a a al
=

= × = × +∑ (3.6)

In the case of two nodes, the square-corner
partitioning has a sum of half perimeters equal to (3.7).

2 2 2 ()s N q N q= × + × = × + (3.7)

Equation (3.7) shows that for the square-corner
partitioning, as q → 0, s → 2×N, which is equal to the
lower bound that cannot be met by the straight-line
partitioning.

To compare the square-corner sum of half-
perimeters with that of the straight-line partitioning and
the lower bound, we adopted the same approach as in
[3]. We generated 2,000,000 random values for the
partition areas a1 and a2, and calculated values for the
sum of half-perimeters s and the lower bound l.
Additionally, we restricted a1 and a2 so that 3 < a1/a2 .
This is because we have already shown that the
straight-line partitioning has a lower sum of half-
perimeters (and therefore lower total volume of
communication) for a1/a2 < 3. The average sum of
half-perimeter to lower bound ratio for the straight-line
partitioning is 1.176, while that of the square-corner
partitioning is 1.054. Considering that 1.0 is the
optimum value, this is an improvement of 69%. The
minimum value for the sum of half-perimeter to lower
bound ratio for the straight-line partitioning is
1.098076, while that of the square-corner partitioning
is 1.000001, an improvement of well over 99%. This
demonstrates that the square-corner partitioning does
approach the lower bound which cannot be met by the
straight-line partitioning.

In generating 2,000,000 random areas, there are
bound to be many that are have very large ratios,
making them computationally unrealistic. Surely
nobody would use two processors in parallel if one of
them is slower than the other by an order of hundreds
or thousands or greater. We therefore impose the
tighter but more realistic restriction of 3 < a1/a2 ≤ 100.
Even with these much tighter restrictions, the average
sum of half-perimeter to lower bound ratio for the
straight-line partitioning is 1.169 while that of square-
corner partitioning is 1.056, an improvement of 67%.
The minimum is improved from 1.098 to 1.005, a gain
of 95%.

3.4 Worst case analysis

Since the ratio r plays an important role in the cost
of the worst case, Beaumont et al. analyzed the
maximum value of the sum of half-perimeter to lower
bound ratio for different values of r ranging from 2 to
∞, for two to 40 processors. This was done by
generating 10,000 values of ai and plotting the
maximum value of the sum of half-perimeter to lower
bound ratio. For two processors, this value ranged from
just under 1.1 for r = 2, to the theoretical upper limit of
1.5 for r = ∞.

Figure 5 shows the maximum values of the sum of
half-perimeter to lower bound ratio for values of r
ranging from 1 to 25.

Figure 5. Comparison of the maximum sum
of half-perimeter / lower bound values for the
square-corner and straight-line partitionings.

Similar to Figure 4, Figure 5 shows that for r = 3,
both the square-corner and straight-line partitionings
are equivalent in communication volume. Considering
that 1.0 is the optimal value, the square-corner
maximum ratio is an average of 84% lower than that of
the straight-line partitioning for the range 3 < r < 25.
As r → ∞ the maximum ratio for the square-corner
partitioning approaches the optimal value of 1.0, while
that of the straight-line partitioning approaches the
theoretical upper limit of 1.5.

4. MPI Experiments

To experimentally verify this new algorithm, we
implemented the square-corner algorithm and the
straight-line algorithm in Open-MPI [6]. Local matrix
multiplications utilize ATLAS [8]. The experiments
were carried out on two identical machines so that we
could focus only on the partitioning without worrying
about any contributions made by architectural
differences. The machines were connected with a
switch which allows the average bandwidth between
the nodes to be specified. Both algorithms carry out all
communications first, then all computations, hence
there is no communication/computation overlap.

The ratio of speeds between the two nodes was
varied by slowing down the CPU of one node using a
CPU limiting program as proposed in [4]. This
program supervises a specified processes and using the
/proc pseudo-filesystem, forces the process to sleep
when it has used more than a specified fraction of CPU

time. The process is then woken when enough idle
CPU time has elapsed for the process to resume.
Sampled frequently enough, this can provide a fine
level of control over the fraction of CPU time used by
the process. Comparison of the run-times of each node
confirmed that this method does result in the desired
ratios to within 2%.

4.1 Comparison of Communication Volumes

We ran the square-corner algorithm and the straight-
line algorithm for power ratios ranging from 1:1 to
1:25 and for ten bandwidth values ranging from
50Mb/s to 400Mb/s. For all cases other than ratios of
1:1, 1:2, and 1:3, the total communication time for the
square-corner algorithm was less than that of the
straight-line partitioning.

Figure 6 shows a plot of the communication times
for the square-corner partitioning and the straight-line
partitioning. The average bandwidth is 80Mb/s and the
power ratios range from 1:1 to 1:25. For ratios greater
than 1:3, the average communication time for the
square-corner partitioning is 45% lower than that of the
straight-line partitioning.

Figure 6. Comparison of the
communication times for the square-corner
and straight-line partitionings. The average

bandwidth is 80Mb/s.

Figure 7 shows the same plot but with an average
bandwidth of 380Mb/s. The average communication
time for the square-corner partitioning is 44% less than
the straight-line partitioning for ratios above 3:1.

The total communication time of the square-corner
algorithm can be calculated with (4.1),

2
comm

N q m
t

b

× × ×
= (4.1)

where m is the size in bits of the data type being
communicated and b is the average bandwidth of the
link in bits/second.

Figure 7. Comparison of the communication
times for the square-corner and the straight-
line partitionings. The average bandwidth is

380Mb/s.

4.2 Comparison of Total Execution Times

The square-corner algorithm is designed to reduce
the inter-processor communication time resulting in a
lower total execution time. Both algorithms should
have equal computation times as each processor
receives the same amount of work regardless of which
algorithm is used. The only difference is how the data
is partitioned. Since the total execution time is
dependent on communication and computation time,
any savings in total execution time will be dependent
on how dominant communication time is in the overall
execution time. As bandwidth increases,
communication time decreases, and the overall
contribution of communication in the total execution
time decreases.

Figure 8 shows a plot of the total execution times
for the square-corner partitioning and the straight-line
partitioning with an average bandwidth of 80Mb/s.

Figure 8. Comparison of the total execution
times for the square-corner and the straight-
line partitionings. The average bandwidth is

80Mb/s.

For all ratios above 3:1, the square-corner
partitioning has a lower total execution time compared
to the straight-line partitioning. On average, it is 14%
faster for these ratios. It is notable that at this
bandwidth, the straight-line partitioning results in a
total execution time greater than the sequential
execution time – the execution time achieved by
straight-forward matrix multiplication of the same
matrices on the faster of the two processors. However,
the square-corner partitioning results in total execution
times faster than the sequential.

Figure 9 shows a plot of the total execution times
with an average bandwidth of 380Mb/s. On average,
the total execution time for the square-corner algorithm
is 10% less than the straight-line partitioning for ratios
greater than 3:1. Additionally, the straight-line
algorithm exceeds the sequential time for ratios above
1:15, while the square-corner algorithm’s execution
time is less than that of the sequential through all ratios
tested.

Figure 9. Comparison of the total execution
times for the square-corner and the straight-
line partitionings. The average bandwidth is

380Mb/s.

The computation time for the faster processor can
be calculated by finding the size of a square matrix
equal in area to the polygonal partition and comparing
the work required to multiply two of these matrices to
that required to multiply two test matrices of size M×M.
This is given by equation (4.2).

32 2
1

3
()

comp
t N q

t
M

× −
= (4.2)

Where t1 is the time taken for the faster processor to
calculate the product of two test matrices of size M×M.
We found M = 1000 to be suitable. For the slower
processor, (4.2) reduces to equation (4.3).

3
2

3comp
t q

t
M

×
= (4.3)

Where t2 is the time taken for the slower processor
to calculate the product of two M×M test matrices.
Combining equations (4.1), (4.2), and (4.3), the total
execution time is equal to (4.4).

2 2 3 3
1 2

3 3
2 ()

max ,exe
N q m t N q t q

t
b M M

×× × × − ×
= +

(4.4)

4.3 “Real-World” Applicability

It has been proven that the square-corner algorithm
has a lower total volume of communication for all
power ratios greater than 1:3 compared to the straight-
line algorithm. Further, our research has shown that
this reduction in the total volume of communication
results in lower execution times compared to the
straight-line algorithm for the same ratios. A hybrid
algorithm which utilizes the straight-line algorithm for
power ratios less than 3:1, and the new square-corner
algorithm for greater ratios would always be equivalent
to or faster than the straight-line algorithm in all cases.

Additionally our research shows that for power
ratios greater than 3:1 and matrix sizes in the range of
N = 6500, two processors or clusters connected by a
single communication link would benefit from
parallelization utilizing this hybrid algorithm provided
the bandwidth is 60Mb/s or greater. Such an
architecture would not benefit from parallelizing the
same problem using just the straight-line algorithm
until the bandwidth reached 120Mb/s. Thus the square-
corner algorithm not only reduces the communication
volume and execution time, but reduces the bandwidth
necessary for parallelization to be profitable.

5. Conclusion and Future Work

This paper presented a new data partitioning
algorithm for matrix multiplication on two
heterogeneous interconnected processors. Compared to
more general algorithms which result in simple
‘straight-line’ rectangular partitions on a two-processor
architecture, this ‘square-corner’ algorithm is proven to
reduce the total volume of inter-processor
communication when the power ratio of the two
processors is greater than 3:1. This results in a lower
execution time for architectures with these ratios. MPI
experiments show average reductions in the total
communication time to be on the order of 45%.

This partitioning algorithm can be utilized as the
top-level partitioning of a hierarchal algorithm that is
to multiply matrices across two connected clusters. A
hybrid algorithm utilizing this new algorithm for power
ratios equal to or greater than 3:1, and the existing
straight-line partitioning for ratios of less than 3:1
guarantees that the total volume of communication will
be equal to or less than previously existing algorithms
for all ratios.

Our future work will include exploiting the
possibility of overlapping some communication and
computation as described in section 3.1, taking a
functional model of processor performance into
account when determining the size of the partitions,
and deploying the square-corner algorithm on two
heterogeneous clusters. We are also investigating the
possibility of extending the square-corner algorithm to
the architecture of three connected heterogeneous
processors.

6. Acknowledgements

This work was supported by the Science Foundation
Ireland

References

[1] Jorge G. Barbosa, João Tavares and Armando J. Padilha,
“Linear Algebra Algorithms in Heterogeneous Cluster of
Personal Computers”, Proceedings of the 9th Heterogeneous
Computing Workshop (HCW 2000), 2000.

[2] Olivier Beaumont, Vincent Boudet, Fabrice Rastello and
Yves Robert, “Partitioning a Square into Rectangles: NP-
Completeness and Approximation Algorithms”, Algorithmica,
2002, Vol.34, No.3, pp.217-239.

[3] Olivier Beaumont, Vincent Boudet, Fabrice Rastello and
Yves Robert, “Matrix-Matrix Multiplication on
Heterogeneous Platforms”, IEEE Transactions on Parallel
and Distributed Systems, 2001, Vol.12, No.10, pp.1033-1051.

[4] Louis-Claude Canon and Emmanuel Jeannot, “Wrekavoc:
a Tool for Emulating Heterogeneity”, Proceedings of the
International Parallel and Distributed Processing
Symposium (IPDPS 2006), 2006.

[5] Egor Dovolnov, Alexey Kalinov and Sergey Klimov,
“Natural Block Data Decomposition for Heterogeneous
Clusters”, Proceedings of the 17th International Parallel and
Distributed Processing Symposium (IPDPS 2003), 2003.

[6] Edgar Gabriel et al., “Open MPI: Goals, Concept, and
Design of a Next Generation MPI Implementation”,
Proceedings of the 11th European PVM/MPI Users' Group
Meeting,(Euro PVM/MPI 2004) 2004.

[7] Alexey Kalinov and Alexey Lastovetsky, "Heterogeneous
Distribution of Computations While Solving Linear Algebra
Problems on Networks of Heterogeneous Computers",
Proceedings of the 7th International Conference on High
Performance Computing and Networking Europe (HPCN`99),
1999.

[8] R. Clint Whaley and Jack Dongarra, “Automatically
Tuned Linear Algebra Software”, Ninth SIAM Conference on
Parallel Processing for Scientific Computing, 1999.

