
Title Guidelines for defining benchmark problems in Genetic Programming

Authors(s) Nicolau, Miguel, Agapitos, Alexandros, O'Neill, Michael, Brabazon, Anthony

Publication date 2015-05-28

Publication information Nicolau, Miguel, Alexandros Agapitos, Michael O’Neill, and Anthony Brabazon. “Guidelines for

Defining Benchmark Problems in Genetic Programming.” IEEE, 2015.

Conference details IEEE Congress on Evolutionary Computation, CEC 2015, Sendai, Japan, May 25-28, 2015,

Proceedings, Sendai, Japan, May, 2015

Publisher IEEE

Item record/more

information

http://hdl.handle.net/10197/8249

Publisher's statement © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained

for all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.

Publisher's version (DOI) 10.1109/CEC.2015.7257019

Downloaded 2024-04-16 16:14:07

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=Guidelines+for+defining+benchmark+pro...&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F8249

Guidelines for defining benchmark problems
in Genetic Programming

Miguel Nicolau and Alexandros Agapitos and Michael O’Neill and Anthony Brabazon
Natural Computing Research & Applications Group

Complex & Adaptive Systems Laboratory
University College Dublin, Ireland

Email: {miguel.nicolau, alexandros.agapitos, m.oneill, anthony.brabazon}@ucd.ie

Abstract—The field of Genetic Programming has recently
seen a surge of attention to the fact that benchmarking and
comparison of approaches is often done in non-standard ways,
using poorly designed comparison problems. We raise some
issues concerning the design of benchmarks, within the domain
of symbolic regression, through experimental evidence. A set
of guidelines is provided, aiming towards careful definition and
use of artificial functions as symbolic regression benchmarks.

I. INTRODUCTION

The Genetic Programming research community has re-
cently recognised the need for defining a suite of benchmark
problems. So far, the effort has focussed on surveying the
literature and choosing a set of problems depending on their
popularity and difficulty [1], [2]. Clearly, the definition of
a benchmark suite is an ongoing process – new problems
should gain traction and will be added to sets of benchmarks.
The aim of the present paper is to suggest guidelines for
generating synthetic problems for symbolic regression tasks.
Our work therefore has implications for the broader project
of defining a detailed framework for benchmark creation.

In a symbolic regression problem, one is given a set of N
training examples {(xi, yi)}N1 , where y ∈ R is the response
variable and x ∈ Rd is a vector of explanatory variables. The
goal is to find a function F ∗ : Rd → R, such that over the
joint distribution P (x, y) the expected value Ex,y of some
specified loss function L(y, F (x)) is minimised:

F ∗(x) = argmin
F (x)

Ex,y[L(y, F (x))] (1)

A typical loss function for such problems is squared error,
where L(y, F (x)) = (y − F (x))2.

The motivation for working towards a framework for
synthetic problem generation comes from the following ob-
servations of typical common practice:

1) The input range of synthetic functions is often
arbitrarily chosen.

2) The training sample size N is often arbitrarily
defined.

3) Function-set elements are often tailored for specific
problems.

4) Lack of predefined and available training/test sets,
which often hinders the reproducibility of results.

5) The lack of baselines for contrasting performance
of evolved models.

6) The lack of noisy versions of the problems (real-
world problems are inherently noisy).

7) In general, the constraint imposed by most learn-
ing algorithms can be described as smoothness
restrictions of one kind or another. This essentially
requires a regular behaviour of the underlying tar-
get function in small neighbourhoods of the input
space. That is, for all input points sufficiently close
to each other in some metric, the target function
exhibits some behaviour that may be approximated
using a constant, linear or low-order polynomial fit.

In this paper, we ran a set of experiments, to empirically
test the effect of these observations in the performance of
two typical Genetic Programming (GP) systems: Koza-like
tree-based GP [3] and Grammatical Evolution (GE) [4]. The
objective of these experiments is not to accurately measure
and compare both systems, but rather to highlight the effect
of neglecting some of the observations made above, when
designing benchmark tests.

The next section presents an analysis of steps required
when creating benchmarks. Section III presents the experi-
mental setup of the problems and algorithms used, which are
analysed in Section IV; finally, Section V draws conclusions
and future work directions.

II. CREATING BENCHMARKS

A. Generating Datasets

When designing a benchmark problem using a known
function, a dataset must be generated. This usually involves
designing a function, choosing the range of the inputs, and
generating a dataset.

Not all functions are suitable to be used as benchmarks,
however. As an experiment, we generated datasets from the
functions shown in Table I. Most of these were extracted
from seminal works [5], [6], [7], [8], [9], suggested in the
GP benchmarks effort [2]; functions F14, F16 and F20
were developed for this study. All functions were uniformly
sampled from the input range [−5 . . . 5] 1.

1This was done to deliberately highlight the problem of arbitrarily
choosing input ranges; when designing benchmarks, input range sampling
techniques (such as Latin Hypercube Sampling [10]) should be used.

TABLE I. SYMBOLIC REGRESSION PROBLEMS

F1 : f(x1, x2) = e−(x1−1)2

1.2+(x2−2.5)2

F2 : f(x1, x2) =

e−x1x3
1cos(x1)sin(x1)(cos(x1)sin

2x1 − 1)(x2 − 5)
F3 : f(x1, x2, x3, x4, x5) = 10

5+
∑5

i=1
(xi−3)2

F4 : f(x1, x2, x3) = 30
(x1−1)(x3−1)

x2
2(x1−10)

F5 : f(x1, x2) = 6sin(x1)cos(x2)
F6 : f(x1, x2) = (x1 − 3)(x2 − 3) + 2sin((x1 − 4)(x2 − 4))

F7 : f(x1, x2) =
(x1−3)4+(x2−3)3−(x2−3)

(x2−2)4+10

F8 : f(x1, x2) = 1

1+x
−4
1

+ 1

1+x
−4
2

F9 : f(x1, x2) = x1
4 − x1

3 + x2
2/2− x2

F10 : f(x1, x2) = 8
2+x1

2+x2
2

F11 f(x1, x2) = x1
3/5 + x2

3/2− x2 − x1

F12 : f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) =
x1x2 + x3x4 + x5x6 + x1x7x9 + x3x6x10

F13 : f(x1, x2, x3, x4, x5) = −5.41 + 4.9
x4−x1+x2/x5

3x4
F14 : f(x1, x2, x3, x4, x5, x6) = (x5x6)/(

x1
x2

x3
x4

)

F15 : f(x1, x2, x3, x4, x5) = 0.81 + 24.3
2x2+3x2

3
4x3

4+5x4
5

F16 : f(x1, x2, x3, x4, x5) = 32− 3
tan(x1)

tan(x2)

tan(x3)

tan(x4)

F17 : f(x1, x2, x3, x4, x5) = 22− 4.2(cos(x1)− tan(x2))(
tanh(x3)

sin(x4)
)

F18 : f(x1, x2, x3, x4, x5) = x1x2x3x4x5

F19 : f(x1, x2, x3, x4, x5) = 12− 6
tan(x1)

ex2 (x3 − tan(x4))

F20 : f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) =
∑5

i=1 1/xi

F21 : f(x1, x2, x3, x4, x5) = 2− 2.1cos(9.8x1)sin(1.3x5)

Although using inputs sampled from the same range, the
response variable for each function can have a completely
different distribution. Fig. 1 shows an histogram of the
response variable for each function defined in Table I, with
50000 samples drawn randomly from the input range spec-
ified. The responses were normalised to the range [0 . . . 1],
using the formula:

ri =
vi − vmin

vmax − vmin

where vi is a response value, vmin is the minimum response
observed, vmax is the maximum response observed, and ri is
the normalised response value.

The figure shows how varied the distribution of response
values can be. Some functions are evenly distributed over the
response domain, such as F5 or F21, while others present
more challenging skewed distributions, such as F8 or F9.
Other functions present very challenging distributions, such
as F18, with a tail of outlier values spread upwards and
downwards from the median, or even functions such as F16,
with only a handful of outliers, very distant and unevenly
distributed from the median.

The latter two types of response distributions are very
challenging as benchmarks, as they are very erratic, and
unlikely to be found in real-world problems. To model such
responses, a much larger sample set would be required
(50000 samples were used to plot each function). Further-
more, the use of MSE as an error measure (as in the majority
of evolutionary systems for symbolic regression) will result
in very large errors, due to the extreme values found in the
response variable. For example, the 50000 samples drawn
from function F16 have a median of 32.0, with an inter-
quartile range of 6.07, but minimum and maximum observed
samples of −6.527053E6 and 2.50911394E8 respectively.

Fig. 1. Normalised response variable distribution over 50000 samples, for
each function.

B. Sample Size

The distributions shown in Fig. 1 highlight how unevenly
distributed a response variable can be, over the chosen input
range. The size of the training and test samples must reflect
this, and be adjusted accordingly.

Fig. 2 shows data generated in the same way as in Fig. 1,
but with sample sizes of 50 (top) and 1000 (bottom), for
training purposes. These figures show how the sample size
can drastically affect the distribution of responses. Some
functions like F5 and F21 present essentially the same
distribution across the response range. Functions such as F11
and F12 show essentially the same distribution with different
sample sizes, but with a much higher density of outliers,
making them very challenging. Finally, functions such as
F13 to F20 show very radical changes in the distribution of
responses, an indication both of ruggedness and insuitable
small sample sizes.

C. Different Sample Sizes

The previous sections also highlight how the size of a
drawn sample can paint a different picture of the behaviour
of the underlying function. As such, when designing bench-
marks, different sample sizes can be used, to control the
difficulty of the problem. In this study, training sets of 50,
100, 500 and 1000 samples were used.

D. Using the same samples

The previous section also shows how different input
sample sets can have very different response distributions.
Depending on the ruggedness of the function, this can have
the effect of substantially altering the performance of the
learning method applied to a benchmark.

Fig. 2. Normalised response variable distribution over 50 (top) and 1000
(bottom) samples, for each function.

To exemplify this, 1000 sets of 50 samples each were
created for both F5 and F16. Fig. 3 shows boxplots of
the standard deviations of all 1000 sets, for both functions.
This figure highlights the range of standard deviations that
different samples can have; while most samples drawn from
F5 exhibit a similar range, samples for F16 show an extreme
variance in their range.

Optimally large sample sizes for each function can reduce
this effect, but can also be computationally infeasible. There-
fore different algorithms should be compared using the exact
same samples, both for training and for test performance

Fig. 3. Boxplots of distribution of standard deviation of response variable,
for 1000 sets of 50 random samples each.

measurement (data can be easily made available online).

E. Large Test Set

This analysis of the variability of the response within
small samples also raises questions about how to consistently
measure the performance of an algorithm on unseen data.
Based both on the range of the inputs and the variability of
the response, a suitably large set of unseen samples should
be used; in this study, a test set of 50000 unseen samples
was used. As mentioned in the previous section, this sample
should also always be the same, when comparing different
algorithms.

F. Artificial Noise

The objective behind benchmarking a modelling algo-
rithm is to simulate its application to real world data, which
is inherently noisy. As such, benchmarks should provide
datasets with noise added.

Given a synthetic function F(x), noisy datasets are gener-
ated according to yi = F (xi) + εi. We propose the addition
of normally-distributed errors. In this case, the error εi is
generated from a normal distribution with zero mean and
variance adjusted [11] so that

E|ε| = Ex|F (x)−medianxF (x)| (2)

giving a 1/1 signal-to-noise ratio. For that, we set the standard
deviation of our Gaussian noise σ as follows:

σ = Ex|F (x)−medianxF (x)|/
√
2.0/π (3)

Other types of error can be used, such as slash-distributed
errors [11]. In this case, εi = s · (u/v), where u ∼ N(0, 1)
(normal distribution with zero mean and unit standard de-
viation) and v ∼ U [0, 1] (uniform distribution in [0.0, 1.0]).
The scale factor is adjusted to give a 1/1 signal-to-noise ratio.
This is performed as follows. We first generate a number of
N ratios {r1, . . . , rN}, where ri = u/v. We then calculate
the standard deviation σr of the sample. Each εi is then set
as:

εi = ri · (Ex|F (x)−medianxF (x)|/σr) ·
√
π/2 (4)

The slash distribution has very thick tails and is often
used as extreme to test robustness.

G. Baselines

It is common practice in Evolutionary Computation to
compare results using a baseline system. In many publica-
tions, this is usually one of the earliest systems developed: a
simple GA [12] when using Genetic Algorithms, or Koza’s
original system [3] when using Genetic Programming.

This however is not enough. GP is known to some-
times severely underperform, even in symbolic regression
problems, and baselines such as a constant can sometimes
outperform it [13]. Therefore a significant gain in precision
when comparing to the original GA or GP systems is not
necessarily evidence of good performance.

In this study, two baselines were used. One is a constant,
which is just the average response observed in the training
set; another is a linear regression model, applied to the train-
ing set. The results section shows how these two baselines
can sometimes provide as good or better performance as GP.

III. EXPERIMENTS

A. Benchmark setup

Each of the functions listed in Table I was used, with
eight versions: 4 training set sizes (50, 100, 500, 1000), and
their equivalent with added noise, as discussed previously.

B. Run Parameters

We applied standard GP and GE systems to all bench-
marks, along with constant and linear regression baselines.
The experimental setup for GP and GE was very similar;
both are shown in Table II. These are typical setups as seen in
literature, consisting of the four arithmetic operators and five
unary functions. Sub-tree crossover was used with GP, along
with sub-tree mutation (sub-trees of depth d are replaced
with a random sub-tree of depth between 1 and d); with
GE, linear variable 1-point crossover was used, along with
integer mutation (with l being the length of the individual).
The constants used with GP were [−0.9..− 0.1]∪ [0.1..0.9],
in steps of 0.1 (18 constants total); in the case of GE,
digit concatenation [14] was used, such as in the following
grammar (for a three input function):

<e> ::= + <e> <e> | - <e> <e>
| * <e> <e> | / <e> <e>

TABLE II. EXPERIMENTAL SETUP

Parameter GP GE
Number of independent runs 100
Total number of generations 50
Population size 500
Initialisation tree depth 5
Maximum tree depth 10 unlimited
Tournament Size 4 5
Crossover rate .9 .5
Mutation rate .1 1/l
Number of elites 1 50
Function set +,-,*,/,ex,ln(x),

√
x,sin(x),tanh(x)

| exp <e> | ln <e> | sqrt <e>
| sin <e> | tanh <e>
| x\[0\] | x\[1\] | x\[2\]
| <nums>.<nums>

<nums>::= <nums>0 | <nums>1
| <nums>2 | <nums>3
| <nums>4 | <nums>5
| <nums>6 | <nums>7
| <nums>8 | <nums>9
| 0 | 1 | 2 | 3 | 4
| 5 | 6 | 7 | 8 | 9

The initial populations were initialised using well-known
techniques: ramped half-and-half for GP [3], and sensible
initialisation for GE [15]. No wrapping operator was used
with GE.

Some operators used protected versions. Division re-
turned 1 for x/y if y < 1e− 5; natural logarithm returned x
if x ≤ 0; and squared root returned x if x < 0.

IV. RESULTS AND ANALYSIS

A. Measuring test performance

GP systems tend to model input data quite well. This
sometimes leads to overfitting of the training data. For this
reason, training performance should never be reported as a
means to measure system performance 2.

In order to avoid overfitting the training data, some
approaches use various approaches, such as validation sets.
These should be drawn from the training data provided for
the benchmark, and never from the test data.

B. Expected performance

Measuring the test performance of stochastic algorithms
requires specific measurements. The GP community has
moved on from reporting the performance of a single run
of the system, and nowadays the mean best performance of
a minimum of 30 independent runs is usually reported. This
is done in order to measure the expected performance of an
algorithm, and to test its statistical significance with other
approaches.

Many publications report the performance of the model
achieved by the “best run”, however (e.g. to compare its
performance against other reported results). This is a mistake,
as to choose a best run requires a comparison between all
runs, making them no longer independent. If running GP to

2It can sometimes still be useful to report, however, to highlight the degree
of overfitting (or lack of) in the system.

achieve a good model requires n runs, then a minimum of
n× 30 runs should be done, for statistical purposes.

For this reason, in this study, the median performance
of all independent runs is reported, for GP and GE, in
the (previously unseen) test set. This performance is then
compared against the constant and linear regression models
(which, being deterministic, require only one run). As a
measure of variability of test performance between runs, the
inter-quartile range (iqr) of the set of 30 runs is also reported,
for GP and GE.

C. Results

Tables III to V show the results obtained. For each
benchmark setup, the performance of GP, GE, a constant and
Linear Regression are reported. The performance of GP and
GE is reported in several ways: the median test performance
of the models from all 100 runs, along with the iqr; the
percentage of such models returning an infinity value in at
least one test case; the median number of descents per run
(i.e. number of times the training performance of the best
model improved), along with the iqr; and the amount of
training error decrease by the best model of a run, when
compared to its initial population.

These results correlate quite well to the difficulty of the
benchmarks, as seen in Fig. 1. Functions F1, F3, and F13
to F20 are extremely hard to model, with the given input
range and training set sizes, and the test performance of all
approaches varies from 1.0E4 all the way to over 2.0E13.

For the other functions, the GP approach generally pro-
vides a better performing median model when compared to
the other methods, along with a smaller iqr than GE.

An interesting exception is F21 (also known as korns-12
[9]), which although well behaved in the response range,
proved to be a very hard function to model. The best
performance was achieved by both a constant and GE; an
analysis of the GE model revealed that a constant had been
evolved. Another challenging function was F3, for which
GP and GE achieved a relatively low test error, but a linear
regression model was a better choice 3.

Linear regression and constants are in fact occasionally as
good or better than the evolutionary models. Fig. 4 plots the
performance improvement of the median GP model over the
constant predictor, versus twice the standard deviation of the
response variable in the test set, for all 21 functions. There
is a clear relationship between variance of response variable
and GP performance improvement; a notable exception is
F2, a notoriously hard to model function.

In terms of training sample size, a larger sample almost
always leads to better test performance of the median model.
Training with noisy data also tends to produce less precise
models, as expected. Notable exceptions are the performance
of GP in F1, F5 and F8, where training with noisy data and
a large sample size produces better performing median mod-
els; a probable explanation is that noise helps in preventing
overfitting the training data.

3Note that both GP and GE achieved better performance than linear
regression for this problem in several runs, but not in their median run.

Fig. 4. GP performance difference to constant predictor versus double
standard deviation of response variable in test set, for all 21 functions.

V. CONCLUSIONS & FUTURE WORK

This paper presented an experimental analysis of the
difficulties in designing good benchmarks for Genetic Pro-
gramming and similar systems. Several points were identi-
fied as crucial in designing artificial datasets from known
functions, in the domain of symbolic regression. Crucially,
the “smoothness” of synthetic regression problems is seldom
studied in GP benchmarks, and the results obtained highlight
this, with some results worse than those obtained by simple
constant or linear scaling models. We do not imply that only
smooth functions should be used, but if a synthetic problem
is known to be highly non-smooth, it should be avoided.

This study is preliminary work, highlighting many of the
issues in designing regression benchmarks, adding to those
already raised previously [1]. Future work will continue this
effort, addressing the raised issues and designing benchmark
datasets, which will be available to the community. The issue
of which metrics to report in the context of benchmarking
will also be further investigated.

REFERENCES

[1] J. McDermott, D. R. White, S. Luke, L. Manzoni, M. Castelli,
L. Vanneschi, W. Jaskowski, K. Krawiec, R. Harper, K. D. Jong, and
U.-M. O’Reilly, “Genetic programming needs better benchmarks,” in
Genetic and Evolutionary Computation - GECCO 2012, Genetic and
Evolutionary Computation Conference, Philadelphia, USA, July 7-11,
2012, Proceedings, T. S. et al., Ed. ACM, 2012, pp. 791–798.

[2] D. R. White, J. McDermott, M. Castelli, L. Manzoni, B. W. Goldman,
G. Kronberger, W. Jakowski, U.-M. OReilly, and S. Luke, “Better
gp benchmarks: community survey results and proposals,” IEICE
Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, vol. 14, no. 1, pp. 3–29, 2013.

[3] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

TABLE III. RESULTS - PART 1

GENETIC PROGRAMMING GRAMMATICAL EVOLUTION CONST. L.R
Data setup Test MSE ∞ Descents Decrease Test MSE ∞ Descents Decrease

per run per run per run per run
Function 1
T1000 0.006 (0.003) 1% 20 (7) 59.18% (15.81) 0.009 (0.004) 0% 23 (6) 36.16% (27.05) 0.013 0.012
T500 0.006 (0.003) 1% 20 (5) 59.73% (16.42) 0.009 (0.005) 4% 24 (7) 33.41% (34.48) 0.013 0.012
T100 0.007 (0.030) 1% 19 (6) 69.02% (13.73) 0.009 (0.005) 4% 24 (7) 45.18% (33.10) 0.013 0.012
T50 0.023 (19.679) 2% 18 (5) 80.79% (12.29) 0.012 (0.007) 1% 24 (8) 45.86% (32.88) 0.013 0.012
T1000-N 0.005 (0.002) 0% 20 (6) 51.94% (15.48) 0.009 (0.005) 0% 23 (7) 28.53% (30.55) 0.013 0.012
T500-N 0.006 (0.003) 1% 18 (6) 49.53% (14.74) 0.009 (0.004) 1% 23 (7) 32.37% (25.99) 0.013 0.012
T100-N 0.007 (0.008) 2% 17 (6) 61.24% (11.28) 0.009 (0.006) 1% 24 (6) 41.60% (28.06) 0.013 0.012
T50-N 0.016 (5.124) 3% 18 (6) 68.93% (12.60) 0.013 (0.008) 0% 24 (7) 37.27% (27.88) 0.013 0.012
Function 2
T1000 2.1256E7 (1.02E4) 0% 17 (7) 7.87% (2.97) 2.1250E7 (2.85E3) 0% 19 (6) 3.70% (4.96) 2.13E7 2.13E7
T500 2.1267E7 (5.25E4) 4% 19 (7) 18.67% (6.82) 2.1262E7 (3.03E4) 0% 21 (6) 17.11% (7.50) 2.13E7 2.13E7
T100 2.1594E7 (4.80E5) 2% 19 (5) 67.78% (6.88) 2.1598E7 (4.90E5) 0% 19 (6) 66.20% (3.30) 2.12E7 2.13E7
T50 2.1726E7 (3.47E5) 1% 17 (7) 83.99% (7.94) 2.1721E7 (2.17E5) 0% 21 (5) 81.85% (4.41) 2.13E7 2.13E7
T1000-N 2.1257E7 (1.01E4) 0% 19 (6) 7.26% (2.56) 2.1251E7 (7.68E3) 0% 20 (5) 6.59% (6.44) 2.13E7 2.13E7
T500-N 2.1267E7 (6.49E4) 1% 19 (6) 14.29% (6.26) 2.1264E7 (2.96E4) 0% 23 (5) 13.89% (6.66) 2.13E7 2.13E7
T100-N 2.1594E7 (7.26E4) 1% 21 (6) 49.40% (5.32) 2.1594E7 (1.43E4) 0% 20 (6) 46.75% (7.36) 2.12E7 2.13E7
T50-N 2.1598E7 (3.15E4) 2% 18 (8) 66.18% (5.85) 2.1598E7 (3.51E4) 0% 14 (10) 62.35% (5.67) 2.12E7 2.13E7
Function 3
T1000 0.011 (0.004) 0% 16 (8) 44.91% (23.16) 0.013 (0.006) 0% 22 (6) 25.83% (34.88) 0.016 0.008
T500 0.012 (0.003) 0% 17 (7) 42.97% (30.90) 0.015 (0.005) 0% 20 (11) 18.53% (38.32) 0.016 0.008
T100 0.012 (0.006) 2% 17 (6) 50.75% (23.04) 0.016 (0.017) 0% 21 (8) 42.31% (38.19) 0.016 0.009
T50 0.014 (0.003) 1% 14 (7) 56.52% (36.79) 0.016 (0.003) 0% 19 (10) 25.68% (40.76) 0.016 0.009
T1000-N 0.012 (0.004) 0% 16 (7) 32.89% (25.04) 0.013 (0.006) 0% 21 (7) 18.61% (27.40) 0.016 0.008
T500-N 0.012 (0.003) 1% 16 (8) 30.31% (24.97) 0.014 (0.005) 0% 21 (8) 15.71% (25.18) 0.016 0.008
T100-N 0.013 (0.005) 2% 17 (8) 39.81% (23.02) 0.016 (0.002) 2% 23 (8) 26.05% (28.18) 0.016 0.009
T50-N 0.016 (0.002) 4% 12 (7) 34.54% (23.97) 0.016 (0.001) 0% 21 (9) 15.84% (21.25) 0.016 0.010
Function 4
T1000 2.0679E13 (7.87E8) 2% 21 (9) 26.92% (9.18) 2.0679E13 (1.83E5) 0% 18 (8) 24.51% (8.29) 2.07E13 2.07E13
T500 2.0679E13 (8.91E8) 3% 21 (7) 36.97% (17.06) 2.0679E13 (2.04E5) 0% 19 (7) 31.23% (8.26) 2.07E13 2.07E13
T100 2.0679E13 (3.84E8) 4% 21 (6) 49.97% (17.30) 2.0679E13 (4.43E5) 3% 19 (7) 31.66% (12.95) 2.07E13 2.07E13
T50 2.0679E13 (5.22E11) 7% 22 (7) 74.27% (12.50) 2.0679E13 (8.30E7) 5% 18 (7) 61.38% (16.46) 2.07E13 2.07E13
T1000-N 2.0679E13 (1.17E8) 4% 22 (6) 19.76% (8.76) 2.0679E13 (2.64E5) 0% 19 (7) 17.70% (6.21) 2.07E13 2.07E13
T500-N 2.0679E13 (5.70E8) 2% 20 (8) 27.23% (14.16) 2.0679E13 (6.70E8) 0% 18 (7) 26.19% (9.01) 2.07E13 2.07E13
T100-N 2.0679E13 (3.11E8) 4% 22 (6) 36.45% (12.11) 2.0679E13 (2.40E6) 0% 20 (7) 27.06% (9.60) 2.07E13 2.07E13
T50-N 2.0679E13 (2.31E12) 8% 23 (9) 54.94% (8.76) 2.0679E13 (1.42E9) 8% 18 (7) 39.70% (11.53) 2.07E13 2.07E13
Function 5
T1000 0.520 (3.053) 0% 15 (6) 92.51% (39.82) 3.490 (5.966) 0% 16 (7) 49.20% (71.67) 9.025 9.053
T500 0.544 (2.475) 0% 16 (6) 92.97% (34.73) 4.422 (5.317) 0% 18 (6) 48.67% (66.43) 9.026 9.094
T100 0.493 (2.382) 0% 17 (6) 94.04% (33.58) 3.559 (5.819) 0% 18 (5) 53.34% (73.19) 9.025 9.358
T50 0.284 (1.307) 0% 21 (5) 95.60% (14.95) 1.833 (5.766) 0% 19 (7) 74.83% (55.83) 9.202 9.859
T1000-N 0.386 (2.710) 0% 17 (6) 41.53% (15.81) 4.512 (6.090) 0% 14 (10) 19.88% (28.61) 9.026 9.021
T500-N 0.489 (2.046) 0% 17 (6) 43.45% (12.28) 5.719 (6.002) 0% 13 (13) 16.11% (32.07) 9.030 9.033
T100-N 2.496 (4.051) 2% 20 (6) 42.16% (14.54) 5.046 (5.185) 0% 20 (6) 25.46% (36.01) 9.027 9.206
T50-N 3.770 (5.562) 4% 19 (7) 43.79% (16.17) 6.457 (4.071) 0% 20 (7) 29.90% (34.81) 9.035 9.545
Function 6
T1000 8.122 (8.409) 0% 22 (7) 95.08% (5.46) 13.047 (19.963) 0% 23 (6) 92.43% (11.59) 2.19E2 71.170
T500 7.050 (11.760) 0% 22 (6) 96.16% (6.48) 13.528 (19.140) 0% 23 (6) 92.99% (10.18) 2.19E2 70.994
T100 7.843 (14.573) 2% 22 (6) 95.75% (6.90) 12.903 (16.934) 0% 24 (6) 92.76% (9.77) 2.19E2 71.989
T50 15.600 (19.304) 1% 21 (7) 94.15% (6.26) 21.291 (21.139) 0% 23 (5) 91.76% (7.81) 2.19E2 70.971
T1000-N 9.738 (11.531) 1% 22 (6) 47.57% (5.29) 5.437 (15.704) 0% 24 (5) 47.60% (5.60) 2.21E2 73.018
T500-N 10.957 (10.868) 2% 22 (6) 50.54% (6.13) 13.837 (17.580) 0% 24 (5) 49.71% (5.47) 2.20E2 73.367
T100-N 21.978 (21.309) 2% 23 (8) 52.51% (8.73) 16.865 (19.174) 0% 23 (5) 48.17% (6.00) 2.19E2 73.130
T50-N 3226.268 (532.102) 8% 24 (7) 58.09% (7.06) 37.411 (1.57E2) 0% 24 (6) 54.24% (6.32) 2.19E2 82.268
Function 7
T1000 1.220E3 (1.04E3) 1% 23 (8) 82.37% (10.79) 2.0080E3 (6.90E2) 0% 24 (4) 67.62% (17.09) 4.09E3 3.11E3
T500 1.249E3 (8.28E2) 0% 23 (7) 84.60% (8.68) 1.9719E3 (6.59E2) 0% 25 (4) 70.42% (12.09) 4.05E3 2.99E3
T100 2.204E3 (1.97E4) 0% 22 (8) 84.77% (9.67) 2.2378E3 (8.85E2) 0% 24 (6) 67.66% (15.87) 4.13E3 3.16E3
T50 2.811E4 (7.79E7) 7% 22 (8) 85.73% (9.09) 1.2862E4 (1.33E5) 1% 25 (6) 67.78% (19.13) 4.20E3 3.41E3
T1000-N 1.440E3 (9.12E2) 3% 23 (6) 59.21% (9.39) 1.9784E3 (6.15E2) 0% 24 (6) 49.59% (8.25) 4.08E3 3.10E3
T500-N 1.443E3 (7.73E2) 0% 22 (7) 64.43% (7.42) 1.8810E3 (4.81E2) 0% 24 (4) 55.49% (8.90) 4.04E3 2.98E3
T100-N 5.815E3 (3.47E4) 5% 22 (7) 61.04% (7.16) 2.1036E3 (9.53E2) 0% 23 (4) 47.15% (13.34) 4.16E3 3.19E3
T50-N 2.846E4 (1.22E6) 6% 21 (8) 64.13% (7.66) 3.1148E3 (2.89E4) 0% 24 (5) 48.20% (17.15) 4.15E3 3.24E3
Function 8
T1000 0.076 (0.049) 0% 14 (5) 71.89% (20.24) 0.099 (0.188) 0% 20 (7) 52.35% (81.37) 0.232 0.233
T500 0.069 (0.058) 0% 14 (7) 76.07% (22.86) 0.127 (0.188) 0% 18 (8) 48.63% (78.83) 0.232 0.234
T100 0.078 (0.087) 0% 15 (5) 78.28% (23.34) 0.139 (0.190) 0% 19 (8) 59.05% (81.38) 0.232 0.234
T50 0.063 (0.110) 1% 13 (6) 83.56% (21.60) 0.177 (0.117) 0% 19 (9) 44.93% (65.34) 0.255 0.255
T1000-N 0.049 (0.072) 0% 14 (4) 40.98% (11.76) 0.130 (0.158) 0% 18 (9) 25.87% (32.62) 0.233 0.233
T500-N 0.080 (0.063) 0% 14 (6) 34.77% (11.78) 0.137 (0.172) 0% 19 (8) 24.41% (32.49) 0.233 0.234
T100-N 0.103 (0.097) 2% 14 (7) 36.88% (11.62) 0.159 (0.132) 0% 18 (8) 23.76% (32.95) 0.236 0.239
T50-N 0.204 (0.121) 2% 14 (6) 37.88% (6.41) 0.263 (0.120) 0% 17 (7) 26.53% (32.14) 0.297 0.300

TABLE IV. RESULTS - PART 2

GENETIC PROGRAMMING GRAMMATICAL EVOLUTION CONST. L.R
Data setup Test MSE ∞ Descents Decrease Test MSE ∞ Descents Decrease

per run per run per run per run
Function 9
T1000 3.0582E2 (3.54E2) 1% 24 (7) 99.30% (0.86) 4.2984E2 (4.34E3) 0% 21 (6) 98.47% (14.05) 2.98E4 2.80E4
T500 2.7631E2 (5.33E2) 1% 25 (7) 99.18% (0.98) 2.3656E2 (2.09E3) 0% 21 (8) 98.74% (7.14) 2.98E4 2.81E4
T100 4.2077E2 (9.76E2) 4% 23 (7) 99.16% (1.29) 6.6300E2 (3.13E3) 0% 21 (9) 97.92% (8.54) 2.99E4 2.87E4
T50 6.9419E2 (8.67E3) 2% 25 (8) 99.33% (0.84) 1.0495E3 (9.06E3) 0% 22 (8) 97.84% (15.64) 2.98E4 3.09E4
T1000-N 5.1948E2 (2.09E3) 2% 24 (7) 62.18% (6.58) 1.6804E3 (6.90E3) 0% 21 (7) 56.31% (11.50) 2.98E4 2.80E4
T500-N 7.7476E2 (1.11E4) 0% 23 (8) 58.76% (6.27) 1.1827E3 (7.63E3) 0% 22 (7) 53.17% (10.97) 2.98E4 2.83E4
T100-N 6.3628E4 (1.63E6) 7% 24 (6) 61.31% (9.00) 3.0825E3 (4.23E4) 1% 22 (7) 55.29% (9.25) 3.00E4 2.89E4
T50-N 6.7189E5 (1.62E7) 9% 26 (7) 61.83% (8.22) 6.0710E3 (3.59E4) 0% 22 (5) 53.48% (8.78) 2.98E4 2.91E4
Function 10
T1000 0.279 (0.108) 0% 18 (5) 39.81% (27.14) 0.300 (0.035) 0% 20 (6) 31.56% (9.74) 0.447 0.447
T500 0.288 (0.076) 0% 17 (6) 35.70% (24.32) 0.301 (0.038) 0% 21 (7) 32.02% (12.25) 0.446 0.446
T100 2.372 (80.917) 2% 17 (7) 43.78% (34.05) 4.860 (65.325) 1% 19 (7) 35.59% (24.23) 0.449 0.454
T50 5.980 (95.050) 1% 15 (6) 53.14% (35.05) 8.567 (1.02E2) 0% 19 (6) 61.73% (24.36) 0.449 0.456
T1000-N 0.285 (0.078) 0% 17 (5) 24.76% (16.88) 0.297 (0.038) 0% 20 (6) 21.38% (5.28) 0.446 0.447
T500-N 0.290 (0.077) 1% 17 (5) 24.28% (13.98) 0.306 (0.033) 0% 20 (6) 19.58% (6.63) 0.446 0.447
T100-N 88.186 (312.320) 4% 16 (6) 27.91% (15.66) 89.678 (1.53E2) 3% 19 (5) 26.56% (13.14) 0.446 0.455
T50-N 130.474 (2372.416) 4% 16 (5) 50.26% (13.21) 1.0428E2 (4.42E2) 0% 20 (6) 48.03% (16.84) 0.470 0.477
Function 11
T1000 31.436 (19.868) 0% 25 (5) 88.20% (9.71) 60.983 (65.461) 0% 20 (7) 72.97% (21.66) 4.97E2 1.05E2
T500 28.217 (22.092) 0% 24 (6) 87.72% (9.29) 48.948 (43.434) 0% 20 (6) 78.40% (19.12) 4.97E2 1.05E2
T100 37.296 (40.815) 1% 26 (6) 88.03% (9.93) 51.005 (59.904) 0% 22 (6) 79.67% (19.41) 4.99E2 1.07E2
T50 39.613 (287.120) 1% 24 (6) 89.70% (5.77) 54.051 (55.370) 0% 21 (6) 78.84% (15.13) 4.99E2 1.09E2
T1000-N 34.865 (20.293) 1% 25 (7) 36.93% (8.84) 64.616 (48.583) 0% 20 (6) 28.11% (17.10) 4.98E2 1.07E2
T500-N 36.887 (28.726) 0% 25 (6) 32.93% (11.00) 50.474 (35.974) 0% 22 (6) 27.46% (14.71) 4.97E2 1.07E2
T100-N 132.679 (646.587) 3% 24 (6) 44.73% (7.94) 81.858 (82.513) 0% 21 (7) 34.85% (19.36) 4.97E2 1.11E2
T50-N 2643.213 (2064.343) 1% 24 (6) 37.93% (6.94) 97.679 (1.04E2) 0% 20 (8) 31.70% (11.32) 4.97E2 1.68E2
Function 12
T1000 6.753E2 (1.54E2) 1% 22 (7) 44.92% (12.37) 1.2088E3 (5.36E2) 0% 16 (8) 10.26% (33.59) 1.33E3 1.33E3
T500 6.965E2 (3.72E2) 1% 23 (7) 39.11% (16.78) 1.2647E3 (5.64E2) 0% 15 (6) 12.65% (26.55) 1.33E3 1.34E3
T100 4.470E3 (1.17E5) 4% 26 (7) 48.19% (21.46) 4.4063E3 (8.29E4) 0% 21 (10) 25.21% (15.45) 1.34E3 1.43E3
T50 1.317E4 (2.20E5) 6% 26 (5) 62.73% (10.38) 2.3144E4 (1.85E5) 0% 19 (8) 51.32% (13.55) 1.33E3 1.67E3
T1000-N 6.859E2 (3.25E2) 0% 22 (7) 23.36% (8.09) 7.5194E2 (5.75E2) 0% 16 (8) 18.22% (16.50) 1.33E3 1.33E3
T500-N 6.916E2 (5.71E2) 3% 23 (8) 19.91% (7.79) 7.8305E2 (6.21E2) 0% 16 (8) 14.86% (11.47) 1.33E3 1.34E3
T100-N 1.135E4 (3.53E5) 3% 27 (8) 32.95% (11.77) 9.7407E3 (1.24E5) 0% 19 (7) 21.57% (6.83) 1.33E3 1.47E3
T50-N 6.403E5 (3.32E6) 7% 28 (7) 52.09% (8.46) 1.0243E5 (1.93E6) 0% 22 (9) 40.79% (14.68) 1.37E3 1.65E3
Function 13
T1000 1.962763E13 (2.58E7) 0% 22 (6) 34.38% (9.11) 1.9628E13 (2.70E3) 0% 21 (6) 12.04% (8.05) 1.96E13 1.96E13
T500 1.962761E13 (7.34E7) 4% 22 (6) 39.16% (10.25) 1.9628E13 (5.15E4) 0% 20 (7) 11.23% (7.60) 1.96E13 1.96E13
T100 1.962761E13 (2.55E9) 13% 23 (6) 56.42% (10.29) 1.9628E13 (2.12E7) 0% 21 (6) 25.26% (19.97) 1.96E13 1.96E13
T50 1.962757E13 (6.60E8) 9% 24 (6) 70.10% (20.52) 1.9628E13 (7.70E7) 5% 23 (5) 42.67% (22.47) 1.96E13 1.96E13
T1000-N 1.962764E13 (1.43E7) 6% 22 (6) 23.57% (5.82) 1.9628E13 (5.25E4) 0% 19 (10) 8.46% (6.47) 1.96E13 1.96E13
T500-N 1.962763E13 (3.79E7) 11% 21 (7) 26.14% (7.95) 1.9628E13 (9.86E4) 0% 21 (7) 9.47% (6.07) 1.96E13 1.96E13
T100-N 1.962762E13 (2.58E9) 15% 22 (4) 40.40% (9.19) 1.9628E13 (1.97E7) 1% 23 (5) 18.70% (15.27) 1.96E13 1.96E13
T50-N 1.962757E13 (5.18E10) 14% 24 (4) 58.82% (9.87) 1.9628E13 (9.14E7) 0% 23 (5) 39.53% (15.80) 1.96E13 1.96E13
Function 14
T1000 1.163947E9 (2.54E4) 4% 16 (6) 3.74% (1.61) 1.1639E9 (7.49E4) 0% 17 (7) 2.84% (1.56) 1.16E9 1.16E9
T500 1.163954E9 (5.53E4) 8% 20 (6) 6.41% (2.24) 1.1640E9 (5.88E4) 0% 18 (6) 5.91% (1.94) 1.16E9 1.16E9
T100 1.164027E9 (8.45E5) 7% 23 (6) 27.94% (7.43) 1.1640E9 (7.96E5) 0% 19 (7) 21.35% (12.44) 1.16E9 1.16E9
T50 1.164175E9 (1.44E6) 3% 23 (6) 62.98% (7.29) 1.1639E9 (1.43E6) 4% 21 (8) 49.35% (11.82) 1.16E9 1.16E9
T1000-N 1.163953E9 (2.46E4) 5% 18 (6) 2.71% (1.23) 1.1639E9 (1.19E4) 0% 18 (7) 1.76% (1.27) 1.16E9 1.16E9
T500-N 1.163943E9 (4.89E4) 5% 18 (7) 4.63% (2.34) 1.1639E9 (4.93E4) 0% 18 (8) 4.03% (1.91) 1.16E9 1.16E9
T100-N 1.164657E9 (2.98E6) 3% 23 (6) 26.96% (6.79) 1.1640E9 (4.48E5) 0% 17 (7) 18.00% (9.75) 1.16E9 1.16E9
T50-N 1.164330E9 (1.82E6) 3% 24 (5) 57.96% (7.13) 1.1639E9 (1.43E6) 4% 21 (9) 49.43% (9.56) 1.16E9 1.16E9
Function 15
T1000 2.216200E9 (6.39E2) 1% 19 (5) 10.30% (5.45) 2.2162E9 (3.79E2) 3% 24 (6) 9.38% (5.10) 2.22E9 2.22E9
T500 2.216200E9 (5.87E2) 2% 19 (6) 12.31% (4.87) 2.2162E9 (1.86E2) 2% 24 (5) 10.58% (3.49) 2.22E9 2.22E9
T100 2.216201E9 (6.61E3) 8% 17 (8) 33.06% (17.37) 2.2162E9 (2.56E3) 5% 22 (6) 19.61% (21.08) 2.22E9 2.22E9
T50 2.216220E9 (3.79E4) 18% 16 (7) 51.57% (12.74) 2.2162E9 (1.21E5) 9% 21 (5) 44.81% (24.38) 2.22E9 2.22E9
T1000-N 2.216200E9 (6.08E2) 0% 20 (7) 8.15% (3.20) 2.2162E9 (4.32E2) 0% 23 (6) 6.42% (3.23) 2.22E9 2.22E9
T500-N 2.216199E9 (5.73E2) 2% 20 (6) 8.84% (3.94) 2.2162E9 (3.52E2) 1% 22 (5) 7.94% (3.65) 2.22E9 2.22E9
T100-N 2.216202E9 (4.95E5) 16% 19 (7) 30.85% (8.04) 2.2162E9 (1.77E3) 3% 23 (6) 19.90% (11.89) 2.22E9 2.22E9
T50-N 2.216250E9 (1.20E5) 16% 18 (7) 42.54% (9.87) 2.2162E9 (1.43E4) 11% 20 (7) 38.95% (12.18) 2.22E9 2.22E9
Function 16
T1000 9.308650E11 (1.37E4) 4% 15 (9) 69.77% (0.79) 9.3086E11 (0.000) 0% 20 (13) 0.28% (0.96) 9.31E11 9.31E11
T500 9.308650E11 (1.79E4) 2% 17 (8) 71.11% (1.49) 9.3086E11 (5.38E3) 0% 23 (7) 0.93% (3.23) 9.31E11 9.31E11
T100 9.308650E11 (4.15E4) 6% 17 (7) 86.09% (2.73) 9.3086E11 (1.41E3) 0% 18 (16) 5.15% (12.94) 9.31E11 9.31E11
T50 9.308650E11 (3.67E5) 15% 17 (9) 92.47% (1.87) 9.3086E11 (3.90E3) 1% 21 (7) 5.25% (21.15) 9.31E11 9.31E11
T1000-N 9.308650E11 (1.54E4) 1% 17 (7) 61.34% (1.51) 9.3086E11 (0.000) 0% 13 (13) 0.25% (1.06) 9.31E11 9.31E11
T500-N 9.308650E11 (2.79E4) 6% 16 (6) 62.71% (3.40) 9.3086E11 (1.67E4) 0% 20 (8) 0.70% (2.57) 9.31E11 9.31E11
T100-N 9.308650E11 (4.93E4) 8% 18 (7) 76.35% (3.48) 9.3086E11 (2.02E4) 0% 21 (10) 9.87% (13.71) 9.31E11 9.31E11
T50-N 9.308650E11 (1.34E5) 10% 18 (7) 79.69% (4.27) 9.3086E11 (3.65E4) 0% 22 (6) 18.47% (26.88) 9.31E11 9.31E11

TABLE V. RESULTS - PART 3

GENETIC PROGRAMMING GRAMMATICAL EVOLUTION CONST. L.R.
Data setup Test MSE ∞ Descents Decrease Test MSE ∞ Descents Decrease

per run per run per run per run
Function 17
T1000 5.808386E8 (1.31E3) 4% 17 (8) 19.94% (2.62) 5.8084E8 (4.51E2) 0% 22 (9) 1.70% (2.66) 5.81E8 5.81E8
T500 5.808392E8 (7.10E3) 7% 17 (10) 23.06% (3.74) 5.8084E8 (9.55E2) 0% 22 (5) 1.20% (5.36) 5.81E8 5.81E8
T100 5.808426E8 (2.34E6) 20% 17 (9) 34.12% (7.74) 5.8084E8 (1.19E4) 2% 22 (8) 10.54% (14.31) 5.81E8 5.81E8
T50 5.809396E8 (1.80E8) 48% 20 (9) 55.71% (13.24) 5.8086E8 (5.94E5) 5% 25 (7) 32.20% (23.02) 5.81E8 5.81E8
T1000-N 5.808385E8 (1.30E3) 3% 16 (7) 15.24% (2.89) 5.8084E8 (8.20E2) 0% 22 (6) 1.95% (1.47) 5.81E8 5.81E8
T500-N 5.808393E8 (4.56E3) 5% 17 (8) 18.49% (2.86) 5.8084E8 (2.55E3) 0% 23 (7) 3.26% (3.97) 5.81E8 5.81E8
T100-N 5.808417E8 (1.26E5) 8% 19 (8) 27.82% (5.68) 5.8084E8 (6.11E4) 0% 22 (6) 9.30% (13.93) 5.81E8 5.81E8
T50-N 5.849402E8 (7.45E5) 25% 22 (7) 45.35% (13.08) 5.8093E8 (1.37E6) 6% 25 (6) 28.39% (21.57) 5.81E8 5.81E8
Function 18
T1000 1.086989E4 (3.69E4) 1% 24 (8) 78.80% (89.13) 4.1258E4 (4.62E4) 0% 20 (8) 3.99% (82.03) 4.08E4 4.08E4
T500 2.459615E4 (5.93E4) 5% 26 (9) 56.89% (86.52) 4.2307E4 (3.49E4) 0% 20 (7) 5.40% (4.15) 4.08E4 4.10E4
T100 6.713410E4 (4.55E5) 3% 26 (8) 43.30% (49.03) 4.8814E4 (1.65E5) 1% 18 (8) 27.90% (15.63) 4.08E4 4.25E4
T50 5.094047E4 (1.62E6) 3% 24 (8) 55.28% (48.85) 4.9665E4 (3.76E5) 0% 20 (8) 42.94% (23.00) 4.09E4 4.13E4
T1000-N 1.373869E4 (4.01E4) 1% 25 (7) 46.65% (56.20) 4.1610E4 (5.55E4) 0% 18 (9) 3.28% (62.06) 4.08E4 4.08E4
T500-N 1.225567E4 (4.08E4) 2% 27 (8) 57.70% (50.54) 4.3329E4 (6.26E4) 0% 23 (6) 4.69% (2.52) 4.09E4 4.11E4
T100-N 6.779343E4 (4.16E5) 4% 26 (8) 32.99% (13.18) 5.1310E4 (8.09E4) 0% 19 (7) 23.76% (10.07) 4.08E4 4.30E4
T50-N 2.539613E5 (5.84E6) 7% 24 (8) 43.21% (12.03) 4.7245E4 (3.21E5) 1% 19 (7) 33.42% (17.93) 4.08E4 4.21E4
Function 19
T1000 8.072103E11 (3.25E5) 5% 22 (7) 4.46% (2.16) 8.0721E11 (1.62E5) 0% 24 (6) 3.04% (2.26) 8.07E11 8.07E11
T500 8.072103E11 (4.49E5) 5% 23 (7) 6.97% (1.85) 8.0721E11 (2.66E5) 0% 21 (7) 5.27% (2.06) 8.07E11 8.07E11
T100 8.072270E11 (2.43E8) 8% 23 (7) 23.64% (7.40) 8.0721E11 (1.24E8) 2% 19 (7) 15.75% (9.42) 8.07E11 8.07E11
T50 8.072174E11 (1.34E8) 11% 23 (6) 54.89% (9.31) 8.0721E11 (8.59E6) 4% 20 (8) 37.11% (22.43) 8.07E11 8.07E11
T1000-N 8.072102E11 (2.15E5) 4% 23 (6) 4.24% (1.64) 8.0721E11 (1.82E5) 0% 24 (5) 2.22% (1.45) 8.07E11 8.07E11
T500-N 8.072102E11 (3.72E5) 3% 23 (7) 5.48% (1.53) 8.0721E11 (1.36E5) 0% 22 (7) 3.69% (1.51) 8.07E11 8.07E11
T100-N 8.072162E11 (2.31E9) 9% 26 (7) 20.36% (5.84) 8.0721E11 (1.25E7) 7% 21 (10) 10.80% (7.64) 8.07E11 8.07E11
T50-N 8.072163E11 (2.71E7) 9% 25 (7) 44.05% (9.32) 8.0721E11 (6.99E6) 3% 20 (7) 26.73% (16.54) 8.07E11 8.07E11
Function 20
T1000 2.680063E7 (3.13E4) 5% 19 (11) 16.85% (20.19) 2.6810E7 (8.30E3) 0% 19 (13) 17.31% (12.98) 2.68E7 2.68E7
T500 2.680764E7 (5.65E3) 2% 18 (9) 23.91% (13.47) 2.6807E7 (3.11E3) 0% 18 (7) 16.70% (10.12) 2.68E7 2.68E7
T100 2.681777E7 (1.93E5) 7% 19 (8) 28.78% (12.93) 2.6814E7 (2.50E4) 0% 17 (8) 29.41% (13.02) 2.68E7 2.68E7
T50 2.682065E7 (8.78E4) 6% 19 (10) 47.87% (16.37) 2.6813E7 (1.08E5) 0% 14 (8) 44.38% (16.41) 2.68E7 2.68E7
T1000-N 2.680719E7 (2.66E4) 5% 19 (10) 17.58% (13.21) 2.6807E7 (3.81E3) 0% 20 (10) 10.96% (7.64) 2.68E7 2.68E7
T500-N 2.680746E7 (1.73E3) 2% 18 (8) 18.90% (7.76) 2.6807E7 (1.47E3) 0% 19 (7) 13.13% (7.69) 2.68E7 2.68E7
T100-N 2.682727E7 (8.35E5) 8% 19 (7) 26.73% (13.07) 2.6815E7 (4.69E4) 0% 17 (6) 26.83% (12.05) 2.68E7 2.68E7
T50-N 2.683119E7 (7.36E4) 7% 19 (5) 40.66% (18.47) 2.6843E7 (1.32E5) 0% 14 (7) 39.72% (23.96) 2.68E7 2.68E7
Function 21
T1000 1.074 (0.007) 0% 10 (5) 5.45% (13.34) 1.064 (0.000) 0% 14 (12) 0.06% (0.05) 1.064 1.071
T500 1.088 (0.024) 0% 11 (5) 4.63% (7.78) 1.066 (0.000) 0% 21 (7) 0.14% (0.34) 1.066 1.085
T100 1.204 (0.082) 1% 14 (5) 22.44% (10.15) 1.065 (0.000) 0% 15 (13) 0.08% (0.45) 1.065 1.099
T50 1.364 (0.155) 1% 16 (5) 39.92% (11.74) 1.110 (0.404) 4% 16 (10) 7.50% (22.33) 1.071 1.273
T1000-N 1.078 (0.012) 1% 11 (6) 2.86% (4.10) 1.064 (0.000) 0% 18 (12) 0.02% (0.03) 1.064 1.074
T500-N 1.111 (0.036) 1% 11 (6) 4.43% (4.12) 1.067 (0.000) 0% 20 (10) 0.03% (0.10) 1.067 1.084
T100-N 1.305 (0.192) 4% 14 (5) 17.64% (6.89) 1.064 (0.054) 0% 14 (12) 0.02% (3.89) 1.064 1.080
T50-N 1.509 (0.317) 8% 14 (5) 29.66% (5.82) 1.064 (0.513) 2% 20 (7) 0.36% (18.24) 1.064 1.320

[4] M. O’Neill and C. Ryan, Grammatical Evolution - Evolutionary
Automatic Programming in an Arbitrary Language, ser. Genetic
Programming. Kluwer Academic, 2003, vol. 4.

[5] E. J. Vladislavleva, G. F. Smits, and D. den Hertog, “Order of non-
linearity as a complexity measure for models generated by symbolic
regression via pareto genetic programming,” IEEE Transactions on
Evolutionary Computation, vol. 13, no. 2, pp. 333–349, 2009.

[6] L. Pagie and P. Hogeweg, “Evolutionary consequences of coevolving
targets,” Evolutionary Computation, vol. 5, no. 4, pp. 401–418, 1997.

[7] M. Keijzer, “Improving symbolic regression with interval arithmetic
and linear scaling,” in Genetic Programming, 6th European Confer-
ence, EuroGP 2003, Essex, UK, April 14-16, 2003, Proceedings, ser.
Lecture Notes in Computer Science, C. Ryan, T. Soule, M. Keijzer,
E. Tsang, R. Poli, and E. Costa, Eds., vol. 2610. Springer, 2003,
pp. 70–82.

[8] R. Poli, “A simple but theoretically-motivated method to control bloat
in genetic programming,” in Genetic Programming, 6th European
Conference, EuroGP 2003, Essex, UK, April 14-16, 2003, Proceed-
ings, ser. Lecture Notes in Computer Science, C. Ryan, T. Soule,
M. Keijzer, E. Tsang, R. Poli, and E. Costa, Eds., vol. 2610. Springer,
2003, pp. 204–217.

[9] M. F. Korns, “Accuracy in symbolic regression,” in Genetic Pro-
gramming Theory and Practice IX, ser. Genetic and Evolutionary
Computation, R. Riolo, E. Vladislavleva, and J. H. Moore, Eds. New
York: Springer, 2011, pp. 129–151.

[10] M. D. McKay, “Latin hypercube sampling as a tool in uncertainty
analysis of computer models,” in Winter Simulation, 24th Conference,
WSC 1992, Arlington, VA, USA, Proceedings, J. J. Swain, D. Golds-
man, R. C. Crain, and J. R. Wilson, Eds. ACM, 1992, pp. 557–564.

[11] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Annals of Statistics, vol. 29, no. 5, pp. 1189–1232, 2000.

[12] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning. Addison Wesley, 1989.

[13] J. McDermott. (2014, March) Genetic programming needs better
baselines. [Online]. Available: http://jmmcd.net/2013/12/19/gp-needs-
better-baselines.html

[14] M. Nicolau and I. Dempsey, “Introducing grammar based exten-
sions for grammatical evolution,” in IEEE Congress on Evolutionary
Computation, CEC 2006, Vancouver, BC, Canada, July 16-21, 2006,
Proceedings. IEEE Press, 2006, pp. 2663–2670.

[15] C. Ryan and A. Azad, “Sensible initialisation in grammatical evo-
lution,” in Genetic and Evolutionary Computation - GECCO 2003,
Genetic and Evolutionary Computation Conference, Chicago, IL,
USA, July 12-16, 2004, Workshops, Proceedings, E. Cantú-Paz, J. A.
Foster, K. Deb, L. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. K.
Standish, G. Kendall, S. W. Wilson, M. Harman, J. Wegener, D. Das-
gupta, M. A. Potter, A. C. Schultz, K. A. Dowsland, N. Jonoska, and
J. F. Miller, Eds. AAAI, 2003.

