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Abstract

Despite their popularity as theoretical tools for illustrating the effects of nominal rigidi-

ties, some have questioned whether models based on Taylor-style staggered contracts

can match the persistence of the empirical inflation process. This paper presents some

general theoretical results about Taylor-style models. It is shown that these models do

not have a problem matching high autocorrelations for inflation. However, they fail to

explain a key feature of reduced-form Phillips-curve regressions: The positive depen-

dence of inflation on its own lags. It is shown that staggered price contracting models

instead predict that the coefficients on these lag terms should be negative.



1 Introduction

The staggered contracting specification introduced by John Taylor (1979) is commonly used

to illustrate the macroeconomic effects of nominal rigidities. Most macroeconomists agree

that nominal rigidities play an important role in influencing real-world pricing behavior, and

Taylor’s formulation of this idea is considered by many to be more realistic than some other

popular formulations such as Calvo pricing. There have, however, been questions about

the ability of models based on staggered price contracts to match important aspects of

macroeconomic data. Chari, Kehoe, and McGrattan (2000) have argued that such models

cannot resolve the “persistence problem” underlying empirical business cycle dynamics for

output. In addition, there has been some debate about whether staggered contracting

models can match the persistence of the empirical inflation process. In particular, Fuhrer

and Moore (1995) have questioned whether these models can match the observed high

autocorrelation of inflation.

This paper has two goals. The first is to establish some general theoretical results that

(to my knowledge) have not been presented before, concerning the dynamics of the relation-

ship between inflation and real activity under Taylor-style staggered pricing. The second

is to clarify the dimensions along which these models do and do not match the inflation

persistence seen in the data. It is shown that staggered price contracting can reproduce

high autocorrelations for inflation. However, it is argued that this is not a particularly

useful definition of inflation persistence. Conversely, staggered contracting models fail to

explain a statistical regularity that, it can reasonably be argued, provides a more useful

definition of inflation persistence: The positive dependence of inflation on its own lagged

values in reduced-form “Phillips curve” regressions. It is shown that, in general, these

models instead predict that these lagged dependent variable coefficients should be negative.

This result is particularly noteworthy given that Taylor-style contracts are commonly cited

as potentially providing an explanation for the empirical pattern of positive coefficients on

lagged inflation in Phillips curve regressions.1

The contents are as follows. Section 2 reports some facts about inflation autocorrelations

and reduced-form inflation regressions for the US and Euro area. Section 3 presents the

theoretical results for the standard staggered price contracting specification. It is shown

that inflation depends negatively on its own lagged values once one has conditioned on

economic fundamentals (i.e. past and expected future economic activity). Section 4 extends

1See, for instance, Dotsey (2002) or page 3 of Eller and Gordon (2003).
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these results to a framework incorporating a mixture of contract lengths.

Sections 5 and 6 then discuss various testable predictions of the staggered contracting

models based on different assumptions about the determination of output. Section 5 uses

a simple model with an exogenous output gap to illustrate how Taylor-style contracts can

match high autocorrelations while failing to match the evidence in reduced-form regressions.

Section 6 derives the solution for the reduced-form process for inflation for the standard

monetary model described in Chari, Kehoe, and McGrattan (2000) in which the output

gap is determined by real money balances and money growth follows an AR(1) process.

Finally, Section 7 discusses the models’ problems with matching the evidence on inflation

persistence in some more detail.

2 Evidence on Inflation Persistence

The concept of inflation persistence can be interpreted in different ways. However, prob-

ably the most common statistic cited to illustrate the persistence of inflation is the high

value of its first-order autocorrelation coefficient. Table 1 reports these autocorrelations for

quarterly GDP price inflation for the US and for the Euro Area.2 They show first-order au-

tocorrelations of almost 0.9 for both the US and the Euro area. Clearly, by this definition,

inflation is indeed a persistent series.

A question worth posing about this fact, however, is whether it is in any way surprising.

For instance, a wide range of theories about inflation, ranging from the simple to the

sophisticated, suppose that inflationary pressures are determined by measures of economic

slack such as the output gap or the unemployment rate. Table 1 shows that these measures

are also quite persistent, with both output gaps having first-order autocorrelations of about

0.85. Indeed, for both the US and the Euro Area, the unemployment rate has a far higher

autocorrelation coefficient than inflation.3 The table also reports autocorrelations for the

labor share: Gaĺı and Gertler (1999) have proposed this as an alternative driving variable

for inflation.4 Again, these series are more autocorrelated than the corresponding inflation

2The US GDP deflator was downloaded from the BEA’s website, and the sample used was 1960:Q1 to

2003:Q2. The Euro-Area data are taken from the ECB’s Area Wide Model database, described in Fagan,

Henry, and Mestre (2001) and the sample used for this series was 1970:Q2 to 2002:Q4.
3The output gaps are defined by applying a Hodrick-Prescott filter to the log of real GDP.
4For the US, the labor share series was downloaded from the BLS website (www.bls.gov). For the Euro

area, I follow Gaĺı, Gertler and Lopez-Salido (2001) in defining this series as the ratio of wage compensation

of employees to nominal GDP, where these variables are measured as WIN and YEN from the AWM
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series.

In light of these results, it is hardly surprising that inflation autocorrelations are quite

high, and matching this fact should not be considered too high a bar for a theoretical model.

Table 1, however, still leaves open the question of the source of the high autocorrelation

for inflation. Is this high autocorrelation simply driven by the autocorrelation imparted by

the underlying driving variables, or does the persistence have some independent source?

To address this question, Tables 2 and 3 report results for the US and Euro Area from

regressions of the form

πt = α+ ρ(1)πt−1 +
3
∑

k=1

ψk∆πt−k +
3
∑

k=0

γiyt−i + εt, (1)

where y is either the output gap, the unemployment rate or the labor share. If the persis-

tence of inflation came simply from the autocorrelations in the driving variables, then we

would expect to find a low value of the parameter ρ(1). However, these regressions each

report large and extremely statistically significant values of ρ(1) for both the US and Euro

area, and for each of the selected driving variables.

Some researchers, such as Cogley and Sargent (2001), have argued that the lagged

dependent variable effect has weakened over time in the US. This is verified to some extent

in Table 2, which shows that estimates of ρ(1) for the post-1983 sample are lower for each

of the specifications than for the previous period, and lower again for the sample beginning

in 1991. The Euro area results, in contrast, show little systematic tendency for lower values

of ρ(1) for the later samples, consistent with the results of O’Reilly and Whelan (2004).

The point relevant here for our analysis is merely that while there may be some evidence

for changes over time in the size of the lagged dependent variable effect, the effect is always

estimated to be positive and highly statistically significant.

These results show that inflation appears to have an intrinsic persistence or inertia that

would result in a pattern of highly positively autocorrelated inflation, even if its driving

variables were themselves only weakly autocorrelated. Indeed, one could argue that the

pattern of positive dependence of inflation on its own lags documented in these regressions

provides a useful definition of the concept of “inflation persistence” because it documents

a phenomenon that is specific to the behavior of inflation, and does not depend solely on

the exogenous deus ex machina of an autocorrelated driving variable.

database.
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The rest of this paper will show that models based on staggered price contracts, while

consistent with positively autocorrelated inflation, are completely inconsistent with the

pattern of intrinsic inflation persistence described by these reduced-form regressions.

3 Inflation Under Staggered Contracts: A General Solution

This section introduces a standard model of staggered price setting, derives a general an-

alytical solution for the form of the aggregate inflation process, and presents numerical

calculations for a four-period-contract example.

3.1 The Optimal Contract Price

Following standard practice in recent literature on the modelling of sticky prices, such as

Chari, Kehoe, and McGrattan (2000) and Woodford (2003), it is assumed that the economy

consists of imperfectly competitive firms who have demand functions derived from Dixit-

Stiglitz-style preferences. In other words, we assume an economy with n different types of

firms, such that firm i is assumed to have a demand function

Yit = Yt

(

Pit

Pt

)

−θ

, (2)

where Yt is total output, Pit is firm i’s price, and Pt is the aggregate price level defined as

Pt =

(

1

n

n
∑

i=0

P 1−θ
it

)
1

1−θ

. (3)

The staggering of price setting is assumed to take the standard form: All price contracts

last for n periods, and a fraction 1

n
of firms reset their price each period. Restricted by this

form of contracting, those firms that set a price at time t choose a price Xt to maximize

the discounted sum of expected profits over the life of the contract. Formally, this problem

consists of maximizing

Πt = Et

[

n−1
∑

k=0

βk
(

Yt+kP
θ
t+kX

1−θ
t − Ct+k

(

Yt+kP
θ
t+kX

−θ
t

))

]

, (4)

where β is the firm’s discount rate and Ct is its cost function at time t. Solving this problem

yields the following formula for the optimal contract price

Xt =
θ

θ − 1

Et

(

∑n−1

k=0
βkYt+kP

θ
t+kMCt+k

)

Et

(

∑n−1

k=0
βkYt+kP

θ
t+k

) . (5)
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where MCt stands for the firm’s marginal cost at time t. Log-linearizing this expression

around a constant output level and a zero inflation rate, and normalizing the desired markup

to one, this becomes

xt =
Et

[

∑n−1

k=0
βkmct+k

]

∑n−1

k=0
βk

(6)

where lower-case symbols corresponds to logged variables. Finally, defining real marginal

cost as

MCr
t =

MCt

Pt

, (7)

and assuming a simple relationship between the log of real marginal cost and the output

gap as derived, for instance, in Chapter 3 of Woodford (2003):

mcrt = γyt (8)

the optimal contract price becomes

xt =
Et

[

∑n−1

k=0
βk (pt+k + γyt+k)

]

∑n−1

k=0
βk

. (9)

Worth noting here is that, while this expression has been derived as the result of an

optimal price-setting procedure, if we set β = 1, then this equation has the same algebraic

format as the traditional Taylor (1979) staggered wage model. Taylor assumed that contract

prices were a fixed markup over wages, and interpreted equations of the form of (9) as being

the outcome of bargaining process in which workers were concerned about the expected real

wage over the life of the contract, with the outcome depending on expected labor market

conditions, represented here by the Etyt+k.

3.2 Solving for The Contract Price Process

The price level equation (3) can be log-linearized to give

pt =
1

n

n−1
∑

k=0

xt−k. (10)

One obvious point that can immediately be drawn from this equation is that aggregate

inflation is a moving average of the rate of change of the contract price:

πt =
1

n

n−1
∑

k=0

∆xt−k. (11)
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In light of this result, our strategy for deriving a solution for price inflation will involve first

characterizing the behavior of the contract price.

The first step in solving for the process for the contract price is to substitute out the

expected future price levels in terms of future and past contract prices to get

xt =
Et

[

∑n−1

k=0
βk
(

1

n

∑n−1
r=0 xt+k−r + γyt+k

)]

∑n−1

k=0
βk

. (12)

This is a 2 (n− 1)th-order stochastic difference equation in xt and the properties of its

solution underlie the properties of aggregate price inflation in this model. The equation

can be re-arranged to give

n

(

n−1
∑

k=0

βk

)

xt =
n−1
∑

k=0

βk
n−1
∑

r=0

Etxt+k−r + γnZt, (13)

where

Zt =
n−1
∑

k=0

βkEtyt+k. (14)

The form of this difference equation can be simplified somewhat by making use of the

following equality:

n−1
∑

k=0

βk
n−1
∑

r=0

Etxt+k−r =

(

n−1
∑

k=0

βk

)

xt +

(

n−2
∑

k=0

βk

)

(xt−1 + βEtxt+1) +

(

n−3
∑

k=0

βk

)

(

xt−2 + β2Etxt+2

)

+........ +
(

xt−n+1 + βn−1Etxt+n−1

)

.

In particular, defining the following polynomial

σ (x) =
n−1
∑

k=1

(

n−k−1
∑

m=0

βm

)

xk, (15)

the contract price process can be re-written in terms of lag and forward operators as

Et

[

σ (βF ) − (n− 1)

(

n−1
∑

k=0

βk

)

+ σ (L)

]

xt = −γnZt. (16)

The key properties of this process can be then derived from the following results.

Proposition: The 2(n− 1)th-order polynomial equation

[

σ(βλ) − (n− 1)

(

n−1
∑

k=0

βk

)

+ σ(λ−1)

]

λn−1 = 0 (17)

6



has the following properties

(a) If λi is a solution, then (βλi)
−1 is also a solution.

(b) One and β−1 are both solutions.

(c) The other 2(n− 2) solutions all have negative real components.

Proof: (a) The fact that all of the coefficients of the polynomial (including the intercept)

are positive rules out zero solutions. Equation (17) thus holds when the term inside the

square brackets in this equation is zero. The required result comes from noting that the

term inside the square brackets is unchanged when λ is replaced with (βλ)−1.

(b) Note from equation (13) that this polynomial can also be written as

[

n

(

n−1
∑

k=0

βk

)

λ−

n−1
∑

k=0

βk
n−1
∑

r=0

λk−r

]

λn−1 = 0 (18)

and λ = 1 is clearly a solution to this equation. That β−1 is also a root follows directly

from part (a).

(c) This property stems from Descartes’ Rule of Signs, which states that the maximum

number of roots of a polynomial with positive real components is given by the number

of sign changes in the coefficients of the polynomial as one goes up in order of ascending

power. Because each of the coefficients of σ are positive, there are two sign changes in this

equation. Thus, the equation has at most two roots with positive real components. The

previous result that one and β−1 are both roots thus ensures that there are no other roots

with positive real components. 2

As long as there are no complex roots with absolute value between one and β−1—and

numerical calculations with a range of values for β and n confirm that this case does not

arise—then part (a) of this proposition guarantees that the contract price process has a

unique non-explosive solution. To see this, first note that the proposition implies that the

polynomial has exactly n − 1 roots outside the unit circle, and another n − 1 roots on or

inside the unit circle. This comes from the fact that part (a) implies that any root λ on

or inside the unit circle has a corresponding root (βλ)−1 that is outside the unit circle. In

addition, for any root λ outside the unit circle with absolute value greater than or equal to

β−1, there is a corresponding root (βλ)−1 that is on or inside the unit circle.

That these properties guarantee the existence of a unique non-explosive solution can be

derived as follows. Let λ1, λ2, ...λn−2 represent the n− 2 roots on or inside the unit circle

7



in addition to one. The contract price process can now be written as

Et

[

βn−1(F − 1)(F − β−1)

{

n−2
∏

i=1

(F − λi) (F −

1

βλi

)

}

Ln−1xt

]

= −γnZt. (19)

Using the general principle of solving stable roots backwards and unstable roots forward,

we need to apply the n − 1 lag operators Ln−1 to the roots on or inside the unit circle

to leave only one possible non-explosive solution. Letting λn−1 = 1, this solution can be

written as:

βn−1

{

n−2
∏

i=1

(1 − λiL)

}

∆xt = −γnEt





{

n−1
∏

i=1

(F −

1

βλi

)

}−1

Zt



 . (20)

Note also that
1

F − (βλi)−1
= −

βλi

1 − βλiF
= −βλi

∞
∑

k=0

βkλk
i F

k. (21)

Thus, the contract price process is

{

n−2
∏

i=1

(1 − λiL)

}

∆xt = γnEt

[(

n−2
∏

i=1

(−λi)

)(

∞
∑

k=0

βkλk
1F

k

)

.....

(

∞
∑

k=0

βkλk
n−1F

k

)

Zt

]

. (22)

Letting

δ(L) =

{

n−2
∏

i=1

(1 − λiL)

}

, (23)

we obtain the solution for the rate of change of the new contract price as

δ(L)∆xt = γn
∞
∑

k=0

κkEtZt+k. (24)

3.3 Aggregate Price Inflation

Turning now from contract prices to the aggregate price level, let

α(L) =





n−1
∑

j=0

Lj



 , (25)

be the n-period moving sum operator. Aggregate price inflation can then be written as

πt =
1

n
α (L) ∆xt, (26)

8



and equation (24) can be re-written as

δ(L)α(L)∆xt = γnα(L)

[

∞
∑

k=0

κkEtZt+k

]

. (27)

This results in the following expression for price inflation:

δ(L)πt = γα(L)

[

∞
∑

k=0

κkEtZt+k

]

. (28)

Aggregate price inflation is a function of two factors. The first factor is current and

past expectations about the future paths of the driving variable yt. The second factor is

inflation’s own lagged values: From equation (23), we see that as long as contracts are longer

than two periods in length, (n > 2), then inflation will be directly affected by its own lags.

The following result shows also that our results concerning the roots of the contract price

equation pin down the nature of inflation’s dependence on its own lags.

Proposition: All of the coefficients in the lag polynomial, δ(L), defined in equation (23)

are positive.

Proof: Each of the terms λ1, λ2, ....., λn−2 have negative real components. Thus each of

the coefficients on L in the (1 − λiL) terms in δ(L) have positive real components. This

implies that each of the coefficients on the various powers of L in δ(L) must also all be

positive, which is the required result. 2

This result has an important implication. It implies that the inflation process can be

written as

πt = ψ(L)πt−1 + γα(L)
∞
∑

k=0

κkEtZt+k. (29)

where all of the coefficients in the lag polynomial ψ(L) are negative. In other words,

staggered price contracts imply that once we condition on the effects of fundamentals (ex-

pectations of real marginal cost in the model of Section 2; expected labor market conditions

in the traditional Taylor model), then either there is no intrinsic persistence (the case n = 2)

or there are lagged dependent variable effects with negative signs.

3.4 Example: Four-Period Contracts

To provide a concrete example of these results, consider the case in which β = 1 and each

firm in the economy sets fixed four-period contracts. This is an obvious benchmark case

9



because it is consistent with quarterly data and price contracts that last a year. It is also

consistent with firms marking up wages that are fixed for a year, as in Taylor’s original

formulation. In this case, the polynomial equation determining the roots of the contract

process is

λ6 + 2λ5 + 3λ4
− 12λ3 + 3λ2 + 2λ+ 1 = 0 (30)

The six roots of this equation are

λ1 = −0.214 − 0.272i

λ2 = −0.214 + 0.272i

λ3 = 1

and their inverses. These calculations imply the following lag polynomial

δ(L) = 1 + 0.43L + 0.12L2. (31)

Thus, four-period contracts imply an inflation process of the form

πt = −0.43πt−1 − 0.12πt−2 + γα(L)
∞
∑

k=0

κkEtZt+k. (32)

These calculations show that the prediction of negative coefficients on the lagged inflation

terms is not just a theoretical curiosity: A realistic calibration of the model predicts quite

large negative coefficients on the lagged inflation terms.

4 A Model with Multiple Contract Lengths

With an additional simplifying assumption, the results of the previous section can be ex-

tended to a case in which, instead of all firms having contracts of the same length, contracts

of different lengths exist. In other words, the results can be extended to an economy in

which there are different types of firms, with some having one-period contracts, some hav-

ing two-period contracts, and so on. This section derives this extension and presents a

numerical example.

4.1 Solution

We will denote the share of firms that set contracts of length k by θk, and as before a

fraction 1

k
of these firms reset their contracts each period. The maximum contract length

10



is assumed to be n periods. To keep the algebraic derivations as simple as possible, I will

restrict the analysis to the case of no discounting (β = 1). However, one can show that the

relevant results generalize to the discounting case exactly as in the previous section. With

this in mind, we assume that firms setting a k-period contract today set their price equal

to

xk
t =

1

k

n−1
∑

j=0

Etpt+j +
γ

k

n−1
∑

j=0

Etyt+j . (33)

Thus, the average contract price set in period t is given by

x̄t = θ1 (pt + γyt) +
θ2

2
[pt +Etpt+1 + γ (yt +Etyt+1)]

+......+
θn

n
[pt +Etpt+1 + ....+Etpt+n−1 + γ (yt +Etyt+1 +Etyt+n−1)] (34)

This can be expressed more compactly as

x̄t =
n−1
∑

k=0

fkEtpt+k + γ
n−1
∑

k=0

fkEtyt+k, (35)

where

fk =
n
∑

m=k+1

θm

m
. (36)

Note that the fk weights sum to one.

The aggregate price level in this economy is given by

pt = θ1x
1
t +

θ2

2

(

x2
t + x2

t−1

)

+ .....+
θn

n

(

xn
t + xn

t−1 + ...xn
t−n+1

)

. (37)

To obtain an analytical solution, we make a simplifying assumption and follow Taylor (1993)

in assuming that the price variations across each of the contracts set at date t are negligible,

i.e. that xk
t ≈ x̄t. In this case, the price equation becomes

pt = θ1x̄t +
θ2

2
(x̄t + x̄t−1) + ..... +

θn

n
(x̄t + x̄t−1 + ...x̄t−n+1) , (38)

which can re-written as

pt =
n−1
∑

k=0

fkx̄t−k, (39)

where the fk weights are the same as in equation (36). Thus, aggregate price inflation can

again be defined as a simple function of current and past rates of change of the average

new contract price. This can be expressed as

πt =
n−1
∑

k=0

fk∆x̄t−k, (40)

11



or, alternatively, defining

η(L) =
n−1
∑

k=0

fkL
k, (41)

we can write

πt = η(L)∆x̄t. (42)

The same solution method as before can be employed to solve for the aggregate inflation

process. Inserting equation (39) into equation (35), we get the following expression for the

process for the average contract price.

x̄t =
n−1
∑

i=0

fi

n−1
∑

k=0

fkEtx̄t+i−k + γ
n−1
∑

i=0

fiEtyt+i. (43)

One can now use the same arguments as in the previous section to show that this contract

price process also has the required characteristics to produce the same result as before,

namely that lagged inflation has a negative effect on current inflation as long as n > 2.

First, note that the coefficients of this difference equation display a symmetric pattern,

with the coefficients on xt−k and Etxt+k being the same. Specifically, the equation has the

form

(

1 − f2
0 − f2

1 − .... − f 2
n−1

)

xt = (f0fn−1) (xt−n+1 +Etxt+n−1)

+ (f0fn−2 + f1fn−1) (xt−n+2 +Etxt+n−2)

+....+ (f0f1 + f1f2 + .....+ fn−1fn−2) (xt−1 +Etxt+1)

+γ
n−1
∑

i=0

fiEtyt+i (44)

Letting

Z̃t =
n−1
∑

i=0

fiEtyt+i, (45)

the average contract price process can be written in terms of lag and forward operators as

Et

[{

ω(F ) −

(

1 −

n−1
∑

k=0

f2
k

)

+ ω(L)

}

x̄t

]

= −γZ̃t. (46)

where

ω(x) =
n−1
∑

k=0

(

k
∑

r=1

fr−1fn−k+r−1

)

xn−k. (47)
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Again the properties of the contract price process stem from the properties of this

polynomial equation.

Proposition: The 2(n− 1)th-order polynomial equation
[

ω(λ) −

(

1 −

n−1
∑

k=0

f2
k

)

+ ω(λ−1)

]

λn−1 = 0 (48)

where ω(x) is defined in equation (47), has the following properties

(a) If λi is a solution, then λ−1
i is also a solution.

(b) There are two unit root solutions.

(c) The other 2(n− 2) solutions all have negative real components.

Proof: (a) Again there are no zero solutions, and the term inside the bracket is unchanged

when λ is replaced with λ−1. This is sufficient to prove the result.

(b) Note from equation (43) that this polynomial can also be written as
[

λ−

n−1
∑

k=0

fk

n−1
∑

r=0

frλ
k−r

]

λn−1 = 0.

One is a solution to this equation because
∑n−1

k=0
fk = 1.

(c) Again, the required result is implied by Descartes’ Rule of Signs. Because each of the

fi terms are less than one, we have f 2
i < fi. Thus

n−1
∑

k=0

f2
k <

n−1
∑

k=0

fk = 1.

So, the middle term is negative and there are two sign changes. 2

As before, these properties are sufficient to ensure that the aggregate price inflation

process takes the form of equation (29) with the coefficients on lagged inflation being

negative. The only differences being the technicalities that α(L) is replaced by η(L) and

Zt is replaced by Z̃t.

4.2 Example: Mix of Contracts up to Four Periods

To illustrate these results, consider the case in which there is an equal mix of one, two,

three, and four-period contracts. In terms of the terminology above, this implies

θ1 = θ2 = θ3 = θ4 =
1

4
(49)
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while the weights that determine the contract price equation become

f0 =
1

4

(

1 +
1

2
+

1

3
+

1

4

)

=
25

48

f1 =
1

4

(

1

2
+

1

3
+

1

4

)

=
13

48

f2 =
1

4

(

1

3
+

1

4

)

=
7

48

f3 =
1

4

1

4
=

3

48

After some calculations, one can show that the polynomial equation associated with the

roots of this contract price process is

75λ6 + 214λ5 + 437λ4
− 1452λ3 + 437λ2 + 214λ+ 75 = 0 (50)

The six roots of this equation are

λ1 = −0.175 − 0.217i

λ2 = −0.175 + 0.217i

λ3 = 1

and their inverses. These calculations imply the following lag polynomial

δ (L) = 1 + 0.350L + 0.077L2. (51)

So, the process for inflation is of the form

πt = −0.35πt−1 − 0.08πt−2 + γη(L)
∞
∑

k=0

κkEtZ̃t+k. (52)

Again, the size of the negative lagged dependent variables effect is quite large.

5 Autocorrelations versus Intrinsic Persistence

In Section 2 we noted that, while related, there were conceptual differences between the

idea of inflation persistence as high autocorrelations and the idea of intrinsic persistence

generated by a positive lagged dependent variable effect. Here, we use a simple example to

illustrate how Taylor-style staggered contract models can match high autocorrelations for

inflation, while failing to match the empirical evidence on intrinsic persistence.

14



The example is based on the assumption that the output gap is determined by an AR(1)

process

yt = ρyt−1 + εt, (53)

where εt is assumed to be white noise. In the standard n-period contract model, this

assumption allows us to simplify the Zt variable to

Zt =
n−1
∑

k=0

βkEtyt+k =
1 − (βρ)n

1 − βρ
yt. (54)

In this case, all of the expectational variables, EtZt+k, reduce to being multiples of yt.

This simplification means that there is no connection between lags of inflation and the

expectational terms in equation (29), so that the coefficients on the lagged terms in the

reduced-form representation are the same as in the structural representation.

Calculations left to Appendix A show that for n = 4, β = 1, and ρ = 0.9, the standard

contracting model’s solution reduces to5

πt = −0.43πt−1 − 0.12πt−2 + 2.78γα (L) yt. (55)

Simulating this process, the first-order autocorrelation coefficient for inflation is 0.977.

Thus, the model produces an inflation series that is more autocorrelated than its driving

variable.6 This may be a little surprising given the negative coefficients on the lagged

dependent variables. This can be explained, however, by noting that the model predicts

inflation is an ARMA(2, 3) series, with driving variable yt. While, ceteris paribus, the AR

component acts to make πt less autocorrelated than yt, the MA component tends to make

it more so.

One formal way to explain this result is to compute the spectral properties of the filter

that transforms yt into πt. In other words, we can analyze how the application of the filter

f (L) =
(2.78) γ

(

1 + L+ L2 + L3
)

1 + 0.43L + 0.12L2
, (56)

tends to promote the role of certain frequencies over others. Normalizing γ as 1

2.78
for

convenience, the spectral transformation of yt implied by this filter is

f
(

eiω
)

f
(

e−iω
)

=
4 + 6 cosω + 4 cos 2ω + 2 cos 3ω

1.20 + 0.96 cosω + 0.12 cos 2ω
, (57)

5All of the examples of theoretical reduced-form processes reported in this paper were first calculated

using the analytical methods described in the appendix, and then checked using the numerical solution

algorithm for rational expectations models of Binder and Pesaran (1995).
6This result is not affected by the value of γ chosen.
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where the numerator here describes the effect of the MA component and the denominator

describes the effect of the AR component. As Figure 1 shows, on its own the effect of the

AR component of the filter is to increase the role of higher-frequency cycles (the left panel),

but the effect of the MA component is to increase the role of lower-frequency cycles (the

middle panel). When the two components are put together (the right panel), we see that the

combined effect produces a downward-sloping spectral transformation, implying that the

inflation series will exhibit more low-frequency variation, and thus higher autocorrelations,

than the driving variable.

These examples show that the Taylor-style staggered contracting does not have diffi-

culty generating high autocorrelations for inflation, in contrast to the claims of Fuhrer and

Moore (1995). Thus, these results support the findings of Guerrieri (2002) that this type of

contracting model can match the high inflation autocorrelations seen in the data. However,

at the same time, they also show that it is possible for the models to completely fail to

capture a key element of the empirical inflation process that perhaps better describes what

is meant by inflation persistence, i.e. the positive dependence of inflation on its own lagged

values.

6 A Simple Monetary Model of Output

6.1 From Structural-Form to Reduced-Forms Relationships

We have shown that Taylor-style models imply a structural relationship of the form

πt = ψ(L)πt−1 + γα(L)
∞
∑

k=0

κkEtZt+k.

in which the coefficients in the ψ(L) lag polynomial are all negative. On the face of it,

this seems to strongly contradict the evidence from the regressions reported in Section 2.

However, an important caveat to this interpretation is that the negative coefficients in this

representation depend on the inclusion of unobservable expectational variables, while the

evidence in Section 2 relates to reduced-form regressions relating inflation to its own lags

and to current and lagged values of the relevant driving variable.

The example of an autoregressive output gap in the previous section got around this

problem by assuming that lagged values of inflation contain no information about future

output beyond what is already contained in current or lagged values of output, i.e. that
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there was no Granger causality going from inflation to output. In this case, the reduced form

and structural coefficients on the lagged inflation terms are identical. In reality, however,

this lack of causality may not be a reasonable assumption.

This suggests one potential route for reconciling the contracting models with the evi-

dence in Section 2. If lags of inflation acted as positive leading indicators for the driving

variable yt, then this relationship could still potentially be consistent with positive coeffi-

cients on lagged inflation in a reduced-form regressions. Put formally, suppose this positive

leading indicator role took the form of

∞
∑

k=0

κkEtZt+k = υ (L) πt−1 + ζ (L) yt, (58)

where the coefficients in the υ (L) polynomial were positive. In this case, the reduced-form

relationship would be

πt = [ψ(L) + γα(L)υ (L)]πt−1 + γα(L)ζ (L) yt, (59)

and it is possible that the positive coefficients in the γα(L)υ (L) polynomial could suffi-

ciently outweigh the negative coefficients in the ψ(L) polynomial to produce the positive

coefficients seen in the estimated reduced-form relationships.

We now consider a standard monetary model with endogenously-determined output in

which this positive causality is present, and examine whether such a model is likely to be

consistent with the reduced-form evidence.

6.2 The Model

Here we consider the case in which the output gap is determined by real money balances

yt = mt − pt, (60)

and money growth evolves according to an AR(1) process:

∆mt = ρm∆mt−1 + εmt . (61)

These assumptions have previously been considered in conjunction with a staggered con-

tracting model in the work of Chari, Kehoe, and McGrattan (2000).7 Concerning the model

7Adding a positive intercept to the money growth equation so that inflation is positive on average does

not change the analysis here.
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of pricing, we will restrict ourselves here to examining the pure n-period contracting model.

Also, again for convenience we examine the case of the model with no discounting. How-

ever, all of the analytical results can be generalized to the case with discounting and the

numerical calculations reported here are little changed by allowing for non-unit values for

the discount parameter β.

Before deriving the implications for the reduced-form characterization of inflation in this

case, we first note that this model contains exactly the positive causality linkages that could,

potentially, imply positive coefficients on lagged inflation in a reduced-form regression. To

see this, note that output growth in this model is determined by

∆yt = ρm∆mt−1 − πt + εt. (62)

Substituting in ∆mt−1 = ∆yt−1 + πt−1 and equation (29)’s structural representation for

inflation, we obtain

∆yt = ρm∆yt−1 + (ρm − ψ(L)) πt−1 − γα(L)
∞
∑

k=0

κkEtZt+k. (63)

Because all of the coefficients in the ψ(L) polynomial are negative, this implies that there

will be positive causality from lagged inflation to output growth in this model: High lagged

inflation tends to reduce inflation today and thus boost real money growth. It turns out,

however, that this effect does not appear to be enough to reconcile this model with the

reduced-form evidence.

An analytical solution for the reduced-form inflation process for this model can be

obtained as follows. The contract price is set according to

xt =
1

n

n−1
∑

k=0

Etpt+k +
γ

n

n−1
∑

k=0

Et (mt+k − pt+k) . (64)

Applying the same techniques as before, it is shown in Appendix B that when money growth

follows an AR(1) process the contract price is

xt =
n−1
∑

k=1

µkxt−k +

(

1 −

n−1
∑

k=1

µk

)

mt + ϕ∆mt. (65)

where 0 <
∑n−1

k=1
µk < 1, the µk’s are independent of the value of ρ, while ϕ depends on

both ρ and γ. This implies a solution for the price level of form

pt =
n−1
∑

k=1

µkpt−k +

(

1 −

n−1
∑

k=1

µk

)

α(L)mt + ϕα(L)∆mt (66)

18



Finally, substituting mt = yt+pt and re-arranging, we obtain a reduced-form Phillips curve

in terms of inflation and the output gap of the form

πt =
n−1
∑

k=1

λkπt−k +
n
∑

k=0

δkyt+k (67)

In this reduced-form representation, the coefficients on lagged inflation are different

from those in the structural representation of the same model (that is, from the coefficients

in equation 29) and in theory they can be positive. However, numerical calculations show

that these theoretical reduced-form inflation processes do not come close to matching those

obtained from regressions.

For example, setting γ = 0.50, n = 4, and ρm = 0.66 (the value consistent with a

quarterly AR(1) regression for M1 growth), one obtains the following inflation process:8

πt = −0.50πt−1 − 0.08πt−2 + 0.28πt−3 + 0.58yt + 0.30 (yt−1 + yt−2 + yt−3) − 0.28yt−4 (68)

Though the sum of the lagged inflation coefficients in this case is slightly less negative

than in the structural representation for this model (-0.30 relative to -0.55), it is clear that

this process does not look anything like the pattern of large positive coefficients reported

in Section 2. Again, though, the model does succeed in generating an inflation series

that is autocorrelated, and more so than the output gap: In this case, inflation has an

autocorrelation coefficient of 0.88, compared with 0.83 for the output gap.

Table 4 reports the reduced-form lagged inflation coefficients obtained under a range

of different values of γ and ρm. The γ parameter in these calculations varies from 0.1 to

3.0, representing a range in which real marginal cost can be either far less variable or far

more variable than the output gap. Our estimate of the money growth autocorrelation

coefficient of 0.66 has a standard error of 0.056, so this suggests 0.5 to 0.8 as endpoints

of a wide range of reasonable values for this parameter. The results show that the sums

of the lag coefficients are almost all negative and none come close to matching even the

smallest of the values on Table 2. In addition, the first lag coefficients are always highly

negative, which fails to match the empirical pattern that this tends to be the most positive

coefficient. Consider, for example, the full-sample regression for US GDP price inflation

8This estimate of ρ is based on a sample of 1959:3 to 2004:2. The data were downloaded from the Federal

Reserve Board’s website. Chari, Kehoe, and McGrattan (2000) also estimate a regression for M1 growth

and report a similar coefficient value of 0.57.
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featuring the output gap. In this case, the sum of the coefficients is 0.94, and the first lag

coefficient is 0.51 with a standard error of 0.09.

In addition, calculations reported in Appendix B show that the reduced-form lagged

inflation coefficients reported here are not changed by generalizing the model by adding a

stochastic monetary velocity shock.

6.3 Estimates of Calvo-Style Models

The approach taken in this paper has been to compare the reduced-form inflation processes

implied by theoretical models with the evidence from empirical regressions for such speci-

fications. An advantage of this approach is that it provides a relatively transparent way to

illustrate the empirical shortcomings of Taylor-style contracting models. It is worth not-

ing, however, that some other recent papers have discussed the implications of Taylor-style

models for another type of regression estimation, namely GMM estimation of the so-called

“hybrid” Calvo model proposed by Gaĺı and Gertler (1999):

πt = γbπt−1 + γfEtπt−1 + ψyt. (69)

This equation is consistent with a Calvo-style model in which a fraction of firms adopt

backward-looking rules of thumb when setting prices. In the context of this model, positive

estimates of γb are considered evidence for the existence of backward-looking agents. How-

ever, using simulated data from variants on the Taylor-style specifications considered here,

Dotsey (2002) and Bakhshi, Burriel-Llombart, Khan, and Rudolf (2003) both show that one

can obtain positive values of γb from GMM estimation of this equation. Thus, they warn

against interpreting significant positive estimates of γb as evidence for backward-looking

price-setters, since the Taylor-style models do not incorporate such behavior.

The findings of Dotsey and Bakhshi et al can be replicated using our model. For

instance, simulating the model with γ = 0.50, n = 4, and ρ = 0.66 (the values that generate

inflation equation 68) and estimating the equation via GMM using four lags of both inflation

and the output gap, we obtain estimates of γ̂b = 0.48, γ̂f = 0.64, and ψ̂ = −0.05.9 These

estimates of γb and γf are close to those reported in a number of empirical studies, and the

finding of a negative coefficient on the driving variable is also reported by Bakhshi et al.

While the specific estimates obtained depend on the values of the underlying parameters

chosen, these exercises do invariably produce positive estimates for the γb coefficient.

9These estimates were based on taking the average of 10000 simulations, each based on a sample of 10000.
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These results confirm the cautionary warnings Dotsey and Bakhshi et al concerning

the interpetation of tests of the hybrid Calvo model. However, one should be cautious in

interpreting the estimates of γb generated by these simulated data as an important piece

of evidence in favor of the Taylor contracting approach. For example, in the case of the

estimates just reported, the behavior of inflation in the underlying model is fully described

by (68), and this equation’s implications for inflation dynamics are strongly contradicted

by the evidence from reduced-form regressions.

In addition, it is worth keeping in mind that the estimates of the hybrid Calvo equation

in these simulation exercises are driven purely by the fact that, in the simulated economies,

this equation badly mis-specifies the dynamics of inflation, so the estimated coefficients are

driven by the correlations with the omitted variables such as the additional lags of output

and inflation. And as one moves closer to the correct underlying specification of the model’s

dynamics, one can overturn the positive estimates on the lagged inflation term as well as

on the Etπt+1 term. For example, consider the case of GMM estimation of

πt = γbπt−1 + γfEtπt−1 +
4
∑

k=0

ψkyt−k. (70)

This specification adds in the additional lags of the output gap that belong in the correct

model specification. Again simulating the case with γ = 0.50, n = 4, and ρ = 0.66, and

estimating using (πt−1, πt−2, πt−3, πt−4, yt, yt−1, yt−2, yt−3, yt−4) as instruments, one now ob-

tains γ̂b = −0.95 and γ̂f = −2.66. Overall, it could be argued that the complex interpre-

tational issues raised by these exercises help to underscore the advantages of the simpler

assessment procedure adopted in this paper based on deriving predictions for the properties

of reduced-form equations.

7 Causality Tests

The results in the last section tell us that the causal linkages between inflation and out-

put in a standard monetary model do not lead to an overturning of the prediction that

Taylor contracting should imply negative coefficients on lagged inflation in reduced-form

regressions. However, this cannot rule out the possibility that, in reality, these linkages are

strong enough to overturn this prediction, and thus the theoretical results of the preced-

ing section are misleading. This suggests a final route to checking whether the contracting

models may be consistent with the evidence, which is to assess whether the relevant positive

Granger-causality patterns from inflation to output are evident in the data.
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From an a priori perspective it is, of course, also possible that the correct model implies

a negative causal relationship from inflation to the output gap, and—if Taylor contracting

were the correct model of pricing—then this would imply reduced-form lag coefficients

that should be more negative than those calculated in the Section 3. This point is worth

noting because realistic structural models embedding a staggered contracting specification

for pricing often contain a policy rule in which the central bank targets a particular value of

inflation. And a policy rule of this form implies that high values of inflation trigger higher

interest rates and thus will tend to dampen future output gaps, suggesting a Granger

causality relationship with the wrong sign for reconciling Taylor-style models with the

reduced-form evidence.

With these considerations in mind, one can see from the results reported on Tables

5 and 6 that the positive causality argument does not appear to work well in practice.

These tables report results from a series of Granger Causality tests, which test for causality

running from inflation to each of the three driving variables discussed earlier (the output

gap, the unemployment rate, and the labor share) for both the US and the Euro area.

These results show little evidence of causal relationships of the correct signs to allow for

reconciliation of the staggered contracting models with the reduced-form evidence.

First looking at the US results on Table 5, we see that the full-sample tests reject the hy-

pothesis that inflation Granger causes the output gap or the labor share. There is evidence

of causation running from inflation to the unemployment rate, but this relationship has

the wrong sign for reconciling the Taylor contracting models with the evidence: Inflation

appears to positively cause the unemployment rate, so a high lagged inflation rate should

have an even more negative effect on current inflation than is indicated by the negative

“intrinsic persistence” described by the ψ(L) polynomial. Because of the possible (or per-

haps likely) changes over time in the reduced-form relationships between inflation and other

macroeconomic variables, the table also reports results for the other samples reported for

the earlier reduced-form regressions. The findings of no causal relationships from inflation

to the output gap or labor share, and an incorrectly-signed relationship from inflation to

the unemployment rate, turn out to be robust across each of the sub-samples.

The results for the Euro area also point against the Granger causality argument. For the

output gap and the unemployment rate, the results always indicate either the non-existence

of a causal relationship running from inflation, or the existence of a relationship with the

wrong sign. For the full sample, the tests do point to inflation Granger causing the labor
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share, and with the correct sign. However, Table 3 shows that there is no evidence for a

statistically significant role for the labor share in reduced-form regressions for Euro area

inflation for this sample, so this is of little help in illustrating how the staggered contracting

approach could be reconciled with the widespread evidence of a positive lagged dependent

variable effect.

8 Conclusions

The staggered price contracting specification introduced by John Taylor (1979) is com-

monly used to illustrate the macroeconomic effects of nominal rigidities. This paper has

focused on the ability of this approach to match the empirical evidence on inflation persis-

tence. Some of the previous research on this issue has focused on whether the model can

capture the high autocorrelations seen in the inflation data. We have shown here that stag-

gered contracting models have no problem matching these autocorrelations: These models

generally produce an inflation series whose autocorrelations are higher than those of the

already-highly-autocorrelated driving variables, such as the output gap.

More importantly, though, the paper presents new results that illustrate staggered con-

tracting’s implications for an alternative aspect of inflation persistence or inertia, namely

the positive dependence of inflation on its own lags. This feature of inflation, while closely

related to high autocorrelations, represents a distinct definition of inflation persistence or

inertia, and it is possible for a model to match one version of inflation persistence and not

the other.

It is quite commonly assumed that staggered contracting models can provide a micro-

foundation for the type of inflation inertia implied by the positive dependence on lag terms

seen in inflation regressions. However, this paper shows that staggered contracting models

actually imply that these lag coefficients should be negative. This appears to present a

serious problem for matching the contracting approach with the data. For while there are

ongoing debates about the magnitude and stability of the lagged dependent variable effects

on inflation, there is no evidence in favor of the predictions derived here of a pattern of

negative coefficients on these variables.
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A Solution for AR(1) Model for y

This appendix derives the solution for the model discussed in Section 5 with four-period

contracts, no discounting (β = 1) and AR(1) output growth with autoregressive parameter

ρ = 0.9. Recall from Section 3.4, that the three non-explosive roots in this case are

λ1 = −0.21385 − 0.27202i

λ2 = −0.21385 + 0.27202i

λ3 = 1

The easiest route to a concrete solution here is to let a = −0.21385, b = 0.27202, and note

from equation (22) that the inflation process can be written as

δ(L)πt = γα(L)
1 − ρ4

1 − ρ
(a+ bi) (a− bi)Et

[(

∞
∑

k=0

(a+ bi)k F k

)(

∞
∑

k=0

(a− bi)k F k

)(

∞
∑

k=0

F k

)

yt

]

.

This can be combined with the fact that

EtF
kyt = ρkyt,

to give the solution

δ(L)πt = γα(L)
1 − ρ4

(1 − ρ)2
a2 + b2

(1 − ρ(a+ bi)) (1 − ρ(a− bi))
yt

= γα(L)

(

1 − ρ4
) (

a2 + b2
)

(1 − ρ)2
[

(1 − ρa)2 + (ρb)2
]yt.

For a value of ρ = 0.9, this implies

πt = −0.43πt−1 − 0.12πt−2 + 2.78γα (L) yt.

B Solution for Money Growth Model

Here, we derive the analytical solution for the money growth model discussed in Section 6.

In particular, the solution is derived for the more general case of the model in which, in

addition to the money growth shock, there is also a stochastic shock to monetary velocity:

yt = mt − pt + vt,

vt = ρvvt−1 + εvt ,

∆mt = ρm∆mt−1 + εmt .
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The contract price process for this model can be written as

xt =
1 − γ

n

n−1
∑

k=0

Etpt+k +
γ

n

n−1
∑

k=0

Et (mt+k + vt+k) .

Following the same substitutions as in Section 3, this becomes

Et

[{

η(F ) − n

(

n+ γ − 1

1 − γ

)

+ η(L)

}

xt

]

= −

nγ

1 − γ
(Xm

t +Xv
t ) ,

where

η(x) =
n−1
∑

k=1

(n− k)xk,

and

Xm
t =

n−1
∑

k=0

Etmt+k

Xv
t =

n−1
∑

k=0

Etvt+k

The characteristic equation for this process has n− 1 roots inside the unit circle, and n− 1

other roots that are the inverses of these stable roots. Letting λ1, λ2, ..., λn−1 represent the

n− 1 roots inside the unit circle, the solution can be re-written as

Et

[{

n−1
∏

i=1

(F − λi) (F −

1

λi

)

}

Ln−1xt

]

= −

nγ

1 − γ
Xt. (71)

Again, there is only one non-explosive solution and it takes the form

{

n−1
∏

i=1

(1 − λiL)

}

xt = −

nγ

1 − γ
Et





{

n−1
∏

i=1

(F −

1

λi

)

}−1

Xt



 ,

= −

nγ

1 − γ
Et

[(

n−1
∏

i=1

(−λi)

)(

∞
∑

k=0

λk
1F

k

)

.....

(

∞
∑

k=0

λk
n−1F

k

)

(Xm
t +Xv

t )

]

.

Note that the roots of the contract process polynomial—and thus the lag coefficients in the

contract price solution—are not affected by the parameters determining the two stochastic

shocks in the model, but depend only on n and γ.

The AR(1) process for velocity implies

Xv
t =

(

n−1
∑

k=0

ρk
v

)

vt =
1 − ρn

v

1 − ρv

vt.
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Thus, the velocity related expectational term is

−

nγ

1 − γ

(

n−1
∏

i=1

(−λi)

)

(

1 − ρn
v

1 − ρv

)

(

1
∏n−1

i=1
(1 − ρvλi)

)

vt = ψvt

An AR(1) process for money growth implies

Xm
t = nmt +

(

n−1
∑

k=1

(n− k)ρk
m

)

∆mt

In light of this calculation, the forward-looking component of the solution can be computed

by noting that

∞
∑

k=0

λkEtmt+k =
mt

1 − λ
+

1

1 − λ

∞
∑

k=1

λkEt∆mt+k

=
mt

1 − λ
+

1

1 − λ

ρmλ

1 − ρλ
∆mt,

and thus that one can calculate a discounted expected sum of any linear combination of mt

and ∆mt as follows

∞
∑

k=0

λkEt [amt+k + b∆mt+k] = a
∞
∑

k=0

λkEtmt+k + b
∞
∑

k=0

λkEt∆mt+k

=
a

1 − λ
mt +

[

a

1 − λ

ρmλ

1 − ρmλ
+

b

1 − λ

]

∆mt.

One can repeatedly apply these calculations to obtain a solution for the contract price

process of the form

xt =
n−1
∑

k=1

µkxt−k + νmt + ϕ∆mt + ψvt.

Finally, the coefficient on mt is pinned down by the fact that if the money supply were to

be constant at m∗, this economy must have xt = m∗ as its long-run steady-state solution

for the contract price. This requires that ν = 1−
∑n−1

k=1
µk. This implies the solution given

as equation (65) in the text.

xt =
n−1
∑

k=1

µkxt−k +

(

1 −

n−1
∑

k=1

µk

)

mt + ϕ∆mt + ψvt.

The lagged dependent variable coefficients in this specification depend on the roots of

the characteristic polynomial, which in turn depend only on the values of n and γ. For the
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case in which n = 4 and γ = 0.5 discussed in Section 6, the three roots inside the unit circle

are

λ1 = −0.16975 − 0.22434i

λ2 = −0.16975 + 0.22434i

λ3 = 0.46127

These values imply a contract price process of the form.

xt = .12xt−1 + .08xt−2 + .04xt−3 + .76mt + ϕ∆mt + ψvt

The value of ϕ depends on the money growth autocorrelation parameter. The value of

ρm = 0.66 used as the baseline in the text implies a contract price process of the form.

xt = .12xt−1 + .08xt−2 + .04xt−3 + .76mt + 0.71∆mt + ψvt

where ψ depends on the autocorrelation coefficient for velocity. These calculations were

arrived at by following the analytical steps described here and then checked using the

numerical solution method of Binder and Pesaran (1995).

Note also that following the same steps as in Section 6.2, one arrives at a reduced-form

inflation process of the form

πt =
n−1
∑

k=1

λkπt−k +
n
∑

k=0

δ
y
kyt+k +

n
∑

k=0

δv
kvt+k

where the reduced-form coefficients on inflation are the same whether the velocity shock is

included in the model are not.
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Table 1: First-Order Autocorrelations

United States Euro Area

Inflation 0.892 0.872

Output Gap 0.862 0.856

Unemployment Rate 0.975 0.998

Labor Share 0.912 0.993

Notes : Sample for US results in 1960:1-2003:2, for the Euro Area results is 1970:2-2002:4



Table 2: Reduced-Form Regressions for US GDP Price Inflation

Driving Variables

None Output Gap Unemployment Labor Share

1960:1-2003:2

Estimated ρ(1) 0.940 0.938 1.033 0.927

(0.046) (0.040) (0.045) (0.044)

Driving Variable p-value NA 0.000 0.000 0.040

1960:1-1983:4

Estimated ρ(1) 0.920 0.900 1.021 0.919

(0.051) (0.046) (0.049) (0.048)

Driving Variable p-value NA 0.000 0.000 0.049

1984:1-2003:2

Estimated ρ(1) 0.819 0.781 0.941 0.704

(0.092) (0.091) (0.117) (0.102)

Driving Variable p-value NA 0.042 0.047 0.010

1991:1-2003:2

Estimated ρ(1) 0.582 0.714 0.817 0.580

(0.165) (0.171) (0.242) (0.159)

Driving Variable p-value NA 0.014 0.516 0.501

Notes : These results relate to regressions of the form πt = α + ρ(1)πt−1 +
∑3

k=1
ψk∆πt−k +

∑

3

k=0
γiyt−k + εt, where yt is the driving variable listed in the column headings. Figures in brackets

are Newey-West standard errors.



Table 3: Reduced-Form Regressions for Euro Area GDP Price Inflation

Driving Variables

None Output Gap Unemployment Labor Share

1970:2-2002:4

Estimated ρ(1) 0.960 0.976 0.884 0.891

(0.038) (0.035) (0.066) (0.111)

Driving Variable p-value NA 0.000 0.038 0.502

1970:2-1983:4

Estimated ρ(1) 0.675 0.853 0.800 0.939

(0.156) (0.123) (0.147) (0.261)

Driving Variable p-value NA 0.000 0.333 0.174

1984:1-2002:4

Estimated ρ(1) 0.832 0.877 0.832 0.486

(0.062) (0.057) (0.077) (0.133)

Driving Variable p-value NA 0.180 0.078 0.010

1991:1-2002:4

Estimated ρ(1) 0.836 0.754 0.914 0.515

(0.131) (0.129) (0.198) (0.270)

Driving Variable p-value NA 0.067 0.130 0.012

Notes : These results relate to regressions of the form πt = α + ρ(1)πt−1 +
∑3

k=1
ψk∆πt−k +

∑

3

k=0
γiyt−k + εt, where yt is the driving variable listed in the column headings. Figures in brackets

are Newey-West standard errors.



Table 4: Reduced-Form Inflation Coefficients for Money Growth Model

λ1 λ2 λ3

∑

3
k=1 λk

γ = 0.1
ρm = 0.50 -0.48 -0.13 0.09 -0.52
ρm = 0.66 -0.45 -0.07 0.16 -0.36
ρm = 0.80 -0.40 0.02 0.27 -0.11

γ = 0.2
ρm = 0.50 -0.50 -0.14 0.12 -0.52
ρm = 0.66 -0.47 -0.07 0.20 -0.33
ρm = 0.80 -0.41 0.03 0.33 -0.04

γ = 0.3
ρm = 0.50 -0.52 -0.15 0.14 -0.53
ρm = 0.66 -0.48 -0.07 0.24 -0.31
ρm = 0.80 -0.42 0.03 0.38 -0.01

γ = 0.5
ρm = 0.50 -0.55 -0.16 0.17 -0.54
ρm = 0.66 -0.50 -0.08 0.28 -0.30
ρm = 0.80 -0.44 0.04 0.44 -0.03

γ = 1.0
ρm = 0.50 -0.59 -0.19 0.21 -0.56
ρm = 0.66 -0.55 -0.09 0.35 -0.29
ρm = 0.80 -0.49 0.02 0.54 -0.07

γ = 3.0
ρm = 0.50 -0.70 -0.27 0.31 -0.65
ρm = 0.66 -0.65 -0.16 0.50 -0.32
ρm = 0.80 -0.60 -0.03 0.72 0.10

Notes: Refers to coefficients in equation (67) for various values of γ (elasticity of real
marginal cost with respect to output) and ρm (autocorrelation of money growth).



Table 5: Granger Causality Tests for US GDP Price Inflation

Driving Variables:

Output Gap Unemployment Labor Share

1960:1-2003:2

Estimated β1 + β2 + β3 + β4 -0.021 0.031 0.024

(0.032) (0.011) (0.022)

p-value for H0 : β1 = β2 = β3 = β4 = 0 0.618 0.007 0.623

1960:1-1983:4

Estimated β1 + β2 + β3 + β4 -0.018 0.038 0.011

(0.039) (0.014) (0.024)

p-value for H0 : β1 = β2 = β3 = β4 = 0 0.569 0.011 0.773

1984:1-2003:2

Estimated β1 + β2 + β3 + β4 0.007 0.072 0.024

(0.063) (0.026) (0.076)

p-value for H0 : β1 = β2 = β3 = β4 = 0 0.952 0.039 0.958

1991:1-2003:2

Estimated β1 + β2 + β3 + β4 -0.198 0.111 -0.043

(0.108) (0.043) (0.093)

p-value for H0 : β1 = β2 = β3 = β4 = 0 0.249 0.018 0.938

Notes : These results relate to regressions of the form yt = α +
∑

4

k=1
ρkyt−k +

∑

4

k=1
βkπt−k + εt,

where yt is the driving variable listed in the column headings and πt is inflation. Figures in brackets

are Newey-West standard errors



Table 6: Granger Causality Tests for Euro Area GDP Price Inflation

Driving Variables:

Output Gap Unemployment Labor Share

1970:1-2002:4

Estimated β1 + β2 + β3 + β4 -0.006 0.012 0.105

(0.012) (0.005) (0.022)

p-value for H0 : β1 = β2 = β3 = β4 = 0 0.042 0.186 0.000

1970:1-1983:4

Estimated β1 + β2 + β3 + β4 -0.113 0.027 0.178

(0.041) (0.010) (0.037)

p-value for H0 : β1 = β2 = β3 = β4 = 0 0.000 0.063 0.000

1984:1-2002:4

Estimated β1 + β2 + β3 + β4 0.004 0.001 0.109

(0.033) (0.006) (0.040)

p-value for H0 : β1 = β2 = β3 = β4 = 0 0.176 0.610 0.063

1991:1-2002:4

Estimated β1 + β2 + β3 + β4 0.033 0.041 0.193

(0.065) (0.015) (0.071)

p-value for H0 : β1 = β2 = β3 = β4 = 0 0.495 0.040 0.104

Notes : These results relate to regressions of the form yt = α +
∑

4

k=1
ρkyt−k +

∑

4

k=1
βkπt−k + εt,

where yt is the driving variable listed in the column headings and πt is inflation. Figures in brackets

are Newey-West standard errors



Figure 1
Why Taylor Contract Inflation is More Autocorrelated Than Its Driving Variable
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