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Abstract

A common task in many domains with a temporal aspect involves identifying
and tracking clusters over time. Often dynamic data will have a feature-based
representation. In some cases, a direct mapping will exist for both objects and
features over time. But in many scenarios, smaller subsets of objects or features
alone will persist across successive time periods. To address this issue, we propose
a dynamic spectral co-clustering algorithm for simultaneously clustering objects
and features over time, as represented by a set of related bipartite graphs. We
evaluate the algorithm on several synthetic datasets, a benchmark text corpus, and
social bookmarking data.

1 Introduction

In many domains, where the data has a temporal aspect, it will be useful to analyse the formation and
evolution of patterns in the data over time. For instance, researchers may be interested in tracking
evolving communities of social network users, such as clusters of frequently interacting authors in
the blogosphere, or circles of users with shared interests on social media sites. In bibliometrics,
this may include the analysis of the evolution of research communities within and across academic
disciplines. In the case of online news sources, producing large volumes of articles on a daily basis,
it will often be useful to chart the development of individual news stories over time.

For many of these problems it may be of interest to simultaneously identify clusters of both data
objects and features. This task, often referred to as co-clustering, has been formulated as the problem
of partitioning a bipartite graph, where the two types of nodes correspond to objects and features
(Dhillon, 2001). This work has been almost entirely limited to static data exploration applications,
where temporal information is unavailable or has been disregarded.

A popular recent approach to the problem of clustering dynamic data has been to use a step-based
strategy, where the dynamic data is divided into discrete time steps of fixed duration. Sets of step
clusters are identified on the individual time step datasets using a suitable clustering algorithm, and
these step clusters are associated with one another over successive time steps (Tantipathananandh
et al., 2007). However, clusters may change considerably between time steps. This can be problem-
atic, both for the purpose of matching clusters between time steps, and for supporting users to follow
and understand how groups are changing over time. To address this problem, both current and his-
toric information can be incorporated into the objective of the clustering process (Chakrabarti et al.,
2006). Benefits of this approach include increasing the smoothness of transitions between cluster-
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Figure 1: A dynamic co-clustering scenario where two clusters appear in successive time steps. Note
that a subset of both objects (bookmarks) and features (tags) persists across time.

ings over time, and improving cluster quality by incorporating historic information to reduce the
effects of noisy data.

A number of additional considerations arise when tracking dynamic data represented in feature
spaces. Notably, a set of objects or features will not always persist in the data across steps. In
general, three different scenarios are possible:

1. Data objects alone persist across time steps. For instance, in bibliographic networks, papers
are only published at a single point in time, whereas authors will generally be present in
the network over an extended period of time.

2. Features alone persist across time. In a news collection, articles will appear once, whereas
terms may continue to appear as topics extend over time.

3. Both objects and features persist across time. For example, in the case of Web 2.0 tagging
portals, both the individual tags and the objects being tagged (e.g. bookmarks, images) will
appear in multiple time steps. A simple example with just two clusters is shown in Figure 1.

Here we consider the problem of tracking nodes in multiple related dynamic bipartite graphs. In
Section 3 we describe the main contribution of this paper – the Dynamic Spectral Co-Clustering
algorithm (DSCC), which simultaneously groups objects and features over time, in any of the above
scenarios. This algorithm takes into account information from the current time step, together with
historic information from the previous step. While our focus is primarily on the co-clustering of
individual time step graphs, we also discuss the issue of tracking clusters across time steps.

In our evaluations in Section 4, we show that the DSCC algorithm is effective both in the case where
features alone persist over time, and when objects and features persist. These evaluations are per-
formed on a range of different datasets: synthetic datasets containing embedded cluster structures, a
labelled benchmark news corpus, and a social bookmarking collection from the Del.icio.us web por-
tal. On the labelled data we examine the ability of the dynamic co-clustering approach to correctly
identify ground truth groupings, to deal with change in cluster structure over time, and to increase
smoothness in the transitions between time step clusterings. In the case of the unlabelled collection,
we explore the effectiveness of the algorithm in helping us to locate stable clusters representing
meaningful trending topics, reflecting user interests and activity.

The remainder of the paper is structured as follows. In the next section we provide a summary of
existing work in the areas of co-clustering and clustering of dynamic data. In Section 3 we outline
the proposed dynamic co-clustering algorithm. An evaluation of the operation of this method on
synthetic data, labelled benchmark text data, and real-world Web 2.0 tagging data is provided in
Section 4. The paper concludes with suggestions for plans for future work.

2 Related Work

2.1 Co-Clustering

In certain problems it may be useful to perform co-clustering, where both objects and features are
assigned to groups simultaneously. Such techniques are related to the principle of the duality of
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clustering objects and features, where a clustering of objects induces a clustering of features, while
a clustering of features also induces a clustering of objects (Dhillon, 2001). One approach to the
co-clustering problem is to view it as the task of partitioning a weighted bipartite graph. Dhillon
(2001) proposed a spectral approach to approximate the optimal normalised cut of a bipartite graph,
which was applied for document clustering. This involved computing a truncated singular value
decomposition (SVD) of a suitably normalised term-document matrix, constructing an embedding
of both terms and documents, and applying k-means to this embedding to produce a simultaneous
k-way partitioning of both documents and terms. Mirzal & Furukawa (2010) provided a further
theoretical grounding for spectral co-clustering, demonstrating that simultaneous row and column
clustering is equivalent to solving the separate row and column clustering problems.

A number of other co-clustering approaches have been proposed, including an information theo-
retic formulation involving alternating between updating row and column clusterings (Dhillon et al.,
2003), and a range of methods for producing soft co-clusterings via matrix factorization (Lee &
Seung, 1999).

2.2 Semi-Supervised Clustering

For some real-world data exploration tasks a limited degree of supervision may be available. This
may not necessarily correspond to the traditional notion of a subset of labelled training examples.
For instance, the supervision could be derived from user feedback regarding the relations between
pairs of objects in a small subset of a given dataset. This information is often represented as a set
of pairwise constraints, where each constraint indicates that a pair of objects should either always
be assigned to the same cluster or should never be assigned to the same cluster. This form of
supervision can be used to guide a traditional clustering algorithm, either by providing a good set
of initial clusters (Basu et al., 2002), by using a “learnable” similarity function that adapts based
on a small amount of label information (Bilenko, 2003), or by modifying the objective function of
the algorithm to incorporate constraint information (Tseng, 2007). In the latter case, this can take
the form of an additional reward or penalty term that quantifies the level of agreement between the
current cluster memberships and the background information – a well-known example of this is the
PCKMeans algorithm introduced by Basu et al. (2004).

2.3 Dynamic Clustering

The general problem of identifying clusters in dynamic data has been studied by a number of authors.
Early work on the unsupervised analysis of temporal data focused on the problems of topic tracking
and event detection in document collections (Yang et al., 1998). More recently, Chakrabarti et al.
(2006) proposed a general framework for “evolutionary clustering”, where both current and historic
information was incorporated into the objective of the clustering process. The authors used this to
formulate dynamic variants of common agglomerative and partitional clustering algorithms. In the
latter case, related clusters were tracked over time by matching similar centroids across time steps.
Two evolutionary versions of spectral partitioning for classical (unipartite) graphs were proposed by
Chi et al. (2007). The first version (PCQ) involved applying spectral clustering to produce a partition
that also accurately clusters historic data. The second version (PCM) involved measuring historic
quality based on the chi-square distance between current and previous partition memberships. Both
algorithms were applied to synthetic data and weekly blog data.

The application of dynamic clustering methods has been particularly prevalent in the realm of social
network analysis, where the goal is to identify communities of users in dynamic networks. Palla
et al. (2007) proposed an extension of the popular CFinder algorithm to identify community-centric
evolution events in dynamic graphs, based on an offline strategy. This extension involved applying
community detection to composite graphs constructed from pairs of consecutive time step graphs.
Another life-cycle model was proposed by Tantipathananandh et al. (2007), where the dynamic
community finding approach was formulated as a graph colouring problem. The authors proposed
a heuristic solution to this problem, by greedily matching pairs of node sets between time steps.
The problem of clustering data over time has also been considered in the temporal analysis domain.
Kalnis et al. (2005) described a density-based clustering approach where clusters persist over time,
despite continuous changes in cluster memberships. This corresponds closely to the “assembly line”
dynamic clustering scenario described by Tantipathananandh et al. (2007).
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Little work has been done in adapting co-clustering methods to dynamic data. Koutsonikola et al.
(2008) considered the problem of co-clustering pairs of related time series datasets (e.g. news and
market data) based on successive snapshots, in order to reveal dependencies between the datasets.
Giannakidou et al. (2010) described a “time-aware” user-tag clustering approach for application to
dynamic social bookmarking data. The approach involves constructing a user-tag similarity matrix
that includes both semantic information from Wordnet to deal with synonymy and temporal user-tag
assignment information from successive time intervals. The authors used this approach to identify
communities of users on Flickr tagging data.

3 Methods

3.1 Problem Definition

Before describing our proposed algorithm, we frame the dynamic co-clustering problem. We repre-
sent a dynamic feature-based dataset as a set of l bipartite graphs {G1, . . . , Gl}. Each step graph Gt

consists of two sets of nodes, representing the nt data objects, and mt features present in the data at
time t. Edges exist only between nodes of different types, corresponding to non-zero feature values.
We can conveniently represent each step graph using a feature-object matrix At of size mt × nt.

In the “step-based” formulation of the dynamic co-clustering problem, the overall goal is to identify
a set of dynamic clusters of objects and features, which appear in the data across one or more time
steps. We refer to step clusters that are identified on individual step graphs, which represent specific
observations of dynamic clusters at a given point in time.

The formulation therefore has two key requirements: a suitable clustering algorithm to cluster in-
dividual time step graphs (ideally in a way that incorporates historic information), and an approach
to track these clusters across time steps. While our primary focus here is on the former aspect, in
Section 3.3 we also briefly discuss the latter aspect.

3.2 Dynamic Spectral Co-Clustering

We now describe the Dynamic Spectral Co-Clustering (DSCC) algorithm that considers both historic
information from the previous time step, and the internal quality of the clustering in the current time
step. The algorithm consists of three phases: (1) spectral embedding of the matrix representation of
a bipartite graph, (2) a cluster initialisation phase, and (3) a cluster assignment phase.

3.2.1 Spectral Embedding

Following the formulation for normalised cut optimisation via spectral co-clustering described by
Dhillon (2001), for the feature-object matrix At at time step t, we construct the degree-normalised
matrix

Ât = D1
− 1

2 AtD2
− 1

2 (1)
where D1 and D2 are diagonal column and row degree matrices defined as:

[D1]ii =
n∑

j=1

At(i, j) , [D2]jj =
m∑

i=1

At(i, j) (2)

We then apply SVD to Ât, computing the leading left and right singular vectors corresponding to
the largest singular values. Following the choice made by many authors in the spectral clustering
literature (e.g. Ng et al. (2001)), we use kt dimensions corresponding to the expected number of
clusters. Although the issue of selecting the number of clusters is not discussed in this paper, one
potential approach is to choose kt based on the eigengap method (Ng et al., 2001). The truncated
SVD yields matrices Ukt and Vkt . A unified embedding of size (mt + nt) × kt is constructed by
normalising and stacking the truncated factors as follows:

Zt =
[

D1
−1/2Ukt

D2
−1/2Vkt

]
(3)

Prior to clustering, the rows of Zt are subsequently re-normalised to have unit length, as proposed for
spectral partitioning in Ng et al. (2001). This process provides us with a kt-dimensional embedding
of all nodes of both types in Gt.
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3.2.2 Cluster Initialisation

At time step t = 1, we have no historic information. Therefore to seed the clustering process, we use
a variant of orthogonal initialisation as proposed by Ng et al. (2001) for spectral graph partitioning.
This operates using a “farthest-first” strategy as follows. The first cluster centroid is chosen to be
the mean vector of the rows in Zt. We then repeatedly select the next centroid to be the row in Zt

that is closest to being 90◦ from those that have been previously selected. This process continues
until kt centroids have been chosen.

For each time step t > 1, we initialise using clusters from the previous time step. A simple approach
is to map the clusters generated on the embedding for time t−1 to Zt. However, as noted previously,
not all features and objects will persist between time steps. To produce an initial clustering at time
t, we identify the intersection of the sets of nodes present in the graphs Gt−1 and Gt. The clusters
containing these nodes are mapped to the embedding Zt, and we compute the resulting centroids
and normalise these centroids to unit length. If less than kt centroids are produced, the remaining
centroids are chosen from the rows of Zt using orthogonal selection as above. We can then predict
memberships for each unassigned row zi of Zt, using a simple nearest centroid classifier to maximise
the dot product similarity:

max
C∈Ct

z
T

i µc (4)

where µc is the normalised centroid of cluster Cc. This classification procedure yields a predicted
clustering for all rows in Zt (i.e. a co-clustering of all objects and features present in Gt), which we
denote Pt.

3.2.3 Cluster Assignment

To recover a clustering from Zt, we apply a constrained version of k-means clustering to the rows of
the embedding, which takes into account both the internal quality of the current partition, and agree-
ment with the predicted partition Pt. We distinguish the latter from the membership preservation
objective described by Chi et al. (2007) – here we use predicted memberships for missing objects
and features missing from the previous step.

As a measure of current cluster quality, we use vector-centroid similarities as in Eqn. 4. Historical
quality is calculated based on the quantity pred(Pt, Ct), which denotes the degree to which the
predicted cluster assignments in Pt agree with those in the current clustering Ct. To quantify this
agreement, we use a variant of the pairwise prediction strength measure proposed by Tibshirani et al.
(2001) for stability analysis:

pred(Pt, Ct) =
∑

C∈Ct

1
|C| (|C| − 1)

∑
(zi,zj)∈C

co(zi, zj) (5)

The value co(zi, zj) = 1 if rows zi and zj were predicted to be co-assigned in Pt, or co(zi, zj) = 0
if they were predicted be assigned to different clusters.

To combine both sources of information, the clustering objective then becomes a weighted combi-
nation of two objectives:

J(Ct) = (1− α) ·

(
k∑

c=1

∑
zi∈Cc

z
T

i µc

)
+ α · (pred(Pt, Ct)) (6)

This type of aggregation approach has been widely used for combining sources of information,
such as in dynamic clustering Chakrabarti et al. (2006) and semi-supervised learning Basu et al.
(2004). The balance parameter α ∈ [0, 1] controls the trade-off between the influence of historical
information and the information present in the current spectral embedding. A higher value of α
allows information from the previous time step to have a greater influence, yielding a smoother
transition between clusterings at successive time steps. Naturally at time t = 1, the right-hand term
in Eqn. 6 will be zero.

Eqn. 6 can be viewed as the standard spherical k-means objective (Dhillon & Modha, 2001), aug-
mented by a constraint reward term. We can find a local solution for this problem by using an
approach analogous to the semi-supervised PCKMeans algorithm proposed by Basu et al. (2004)
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1. Build spectral embedding

• Construct the normalised feature-object matrix Ât = D1
− 1

2 AtD2
− 1

2 .
• Compute the embedding Zt from the truncated SVD of Ât according to Eqn. 3.
• normalise the rows of Zt to unit length.

2. Initialisation and prediction
• If t = 1, apply orthogonal initialisation to select a set of kt representative centroids from

the representations of the objects in the embedded space.
• For t > 1, recompute the kt−1 centroids based on last clustering but including only the

embedding of the relevant set of objects/features in the current space.
• If less than kt centroids have been produced, select remaining centroids to be orthogonal

to existing centroids.
• If not all rows of the embedding have been assigned, apply nearest centroid classification

to compute the predicted clustering Pt.
3. Compute clustering

• Apply constrained k-means to rows in Zt, initialised by centroids from the prediction
Pt to produce a co-clustering Ct.

4. Repeat from #1 until all l time steps have been processed.

Figure 2: Overview of the Dynamic Spectral Co-Clustering (DSCC) algorithm.

for clustering with pairwise constraints. Specifically, we apply an iterative k-means-like assignment
process, re-assigning each row vector zi from Zt to maximise:

max
C∈Ct

(1− α) · z
T

i µc + α · pred(zi, C) (7)

where the quantity pred(zi, C) represents the degree to which the predicted assignment for the row
zi in Pt agrees with the assignment of zi to cluster C. This is given by the proportion of rows in C
that were co-assigned with zi in Pt:

pred(zi, C) =
1

|C| (|C| − 1)

∑
(zi,zj)∈C

co(zi, zj) (8)

Once the algorithm has converged to a local solution, Ct provides us with a k-way partitioning of all
nodes in the graph Gt (i.e. features and objects). An overview of the complete DSCC algorithm is
shown in Figure 2.

3.3 Tracking Clusters Over Time

In the previous section we focused on the problem of co-clustering individual time step graphs in
a dynamic context. A related aspect of the step-based approach to dynamic clustering involves
identifying dynamic clusters composed from chains of clusters linked across time steps. We sug-
gest that previous frameworks for tracking evolving dynamic communities (Greene et al., 2010;
Tantipathananandh et al., 2007) can be readily adapted to the dynamic bipartite case.

In brief, we construct a set of dynamic cluster timelines, each consisting of a set of clusters identified
at different time steps and ordered by time. At each time t > 1 in the dynamic co-clustering process,
we match the most recent observations associated with the existing dynamic cluster timelines with
the output of DSCC in the current time step. Matches are made based on the step cluster member-
ships for subsets of objects and/or features persisting between pairs of consecutive steps, using a set
matching measure, such as the Jaccard index (Jaccard, 1912), and a user-defined matching threshold
θ ∈ [0, 1]. After processing all l time steps, this matching procedure will result in a set of dynamic
clusters persisting across multiple steps, each consisting of a timeline of step clusters produced by
DSCC.

6



4 Evaluation

4.1 Synthetic Evaluation

To initially evaluate the behaviour of the DSCC algorithm proposed in Section 3.2, we conducted
experiments on a number of dynamic synthetic datasets1 containing embedded clusters. The goal of
these evaluations was to examine the performance of DSCC when incorporating history data with
different levels of volatility – from cases where clusters are stable over time, to cases where clusters
change substantially between time steps.

4.1.1 Data Generation

Synthetic data was generated as follows. Each synthetic dataset consisted of l matrices, correspond-
ing to l successive time steps. All features and objects persist across time steps. Each time step
matrix At is rectangular, with n rows (features) and m columns (objects). These matrices contain k
embedded rectangular structures, corresponding to clusters of both objects and features. For object
i and feature j that are assigned to the same cluster, the corresponding entry At(i, j) will take a
value 1 with probability pin, and zero otherwise. For object i and feature j that are assigned to dif-
ferent clusters, the corresponding entry At(i, j) will take a value 1 with probability pout, and zero
otherwise. The latter entries correspond to the background noise in the data.

(a) pswap = 0.1, t = 1 (b) pswap = 0.1, t = 2

(c) pswap = 0.4, t = 1 (d) pswap = 0.4, t = 2

Figure 3: Matrices for the first two time steps from two synthetically-generated dynamic datasets
with embedded clusters. The rows of the matrices are ordered according to cluster memberships at
t = 1. The top pair of figures show a dataset that contains relatively little volatility (pswap = 0.1).
The dataset in the bottom figures contains a very high level of volatility (pswap = 0.4).

At the first time step t = 1, objects and features were randomly assigned to the k clusters so that
clusters were reasonably balanced in size, with ±20% random variation. After each time step, the
cluster memberships of objects and features were swapped with a probability pswap. This random
permutation is intended to simulate the natural movement of nodes between clusters over time in
a dynamic dataset. Once cluster memberships have been swapped, the next time step matrix At+1

was constructed as described above.

For the evaluations described here, we constructed four datasets with l = 10 time steps, containing
n = 1, 000 objects and m = 1, 500 features, assigned to k = 8 embedded clusters of objects and

1Datasets for this paper are available at http://mlg.ucd.ie/dscc.html
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Figure 4: Comparison of accuracy (in terms of NMI) for object clusterings generated by standard
spectral co-clustering and DSCC on four synthetic dynamic datasets generated with increasing levels
of volatility pswap = {0.1, 0.2, 0.3, 0.4}.
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Figure 5: Comparison of accuracy (in terms of NMI) for feature clusterings generated by standard
spectral co-clustering and DSCC on four synthetic dynamic datasets generated with increasing levels
of volatility pswap = {0.1, 0.2, 0.3, 0.4}.
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features. To construct reasonably clear block cluster structures with some background noise, we set
pin = 0.6 and pout = 0.45. Since the goal of our evaluation was to examine the degree to which
the volatility impacted on the success of the DSCC algorithm, we focused on examining a range of
values pswap ∈ [0.1, 0.4], where a higher value indicates a greater degree of cluster membership
change between successive time steps. The relative difference in volatility between the first and
last datasets is illustrated in Figure 3. We see that there is a substantially greater change in cluster
memberships between time steps t = 1 and t = 2 for the dataset generated with pswap = 0.4.

4.1.2 Discussion

We assessed the performance of DSCC at all time steps in each of the four dynamic synthetic
datasets, using a range of values α ∈ [0.1, 0.3] for the balance parameter. As a baseline competitor,
we used standard multi-partition spectral co-clustering as proposed by Dhillon (2001). To provide a
fair comparison, we use orthogonal initialisation for both algorithms, and set the number of clusters
to the number of embedded clusters k = 8. To quantify the performance of both algorithms, we
measure the agreement between co-clustering and the embedded clusters (both object and feature
clusters) in terms of their normalised mutual information (NMI) (Strehl & Ghosh, 2002).

Figure 4 illustrates the comparison of object clustering accuracy scores for DSCC and standard
spectral co-clustering on the datasets, in increasing order of volatility. We observe that for the first
dataset, where 10% of objects and features are swapped between clusters after each time step, a con-
siderable increase in NMI is achieved by DSCC. This increase is more pronounced as α increases,
so that historic data makes a greater contribution to the clustering objective defined in Eqn. 6. We
see increases in the second and third datasets, where 20% and 30% of memberships are switched.
For the highly volatile case of the fourth dataset, where 40% of memberships change between time
steps, there is little improvement gained by incorporating temporal information – accuracy is com-
parable to that achieved by standard spectral co-clustering. Note that the average NMI between all
pairs of embedded ground truth clusterings for this dataset is 0.04, and the agreement between the
ground truth memberships at t = 1 and t = 10 is 0.01. This is little better the random, indicating that
the cluster assignments have almost completely changed through the course of the dynamic process.
Therefore it is unsurpising that DSCC does not lead to an improvement in accuracy here, given the
level of volatility present in the data.

Figure 5 presents an analogous comparison of NMI scores for the feature clusterings generated
on the ten successive time steps for each of the four synthetic datasets. We observed behaviour
that is highly similar to that described above – DSCC leads to noticeable improvements in cluster-
ing accuracy, except in the case of extremely volatile data (pswap = 0.4). Experiments on other
synthetically-generated data, with a range of values for (pin, pout) for different levels of intra- and
inter-cluster similarity, lead to very similar behaviour for both DSCC and standard co-clustering.
In general, the results on synthetic data demonstrate that DSCC successfully allows us to use his-
toric data to potentially improve clustering accuracy in cases where both objects and features persist
across time.

4.2 Benchmark Evaluation

Next we evaluated the performance of DSCC on the dynamic bipartite document clustering problem.
For this we required an annotated corpus with temporal information. We used a subset of the widely-
used Reuters RCV1 corpus Lewis et al. (2004). The RCV1-5topic dataset consists of 10,116 news
articles covering a seven month period. Each article is annotated with a single ground truth topical
label: health, religion, science, sport, weather. These topics are present across the entire time period
of the corpus. We considered a number of different time step durations to split the seven month
period – one month, a fortnight, and one week – yielding 7, 14, and 28 step graphs respectively.
Naturally for this type of data, a subset of features (terms) will persist across time, while objects
(documents) appear in only one time step.

Our evaluations focused on the performance of DSCC on each time step graph in the RCV1-5topic
dataset, using a range of values α ∈ [0.1, 0.3] for the balance parameter. Again we use multi-
partition spectral co-clustering Dhillon (2001) with orthogonal initialisation as a baseline. We set
the number of clusters kt at each time step t to the number of ground truth topics in the data.
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4.2.1 Temporal Smoothness

One of the primary motivations for dynamic co-clustering is to increase smoothness in the transitions
between time step clusterings. To quantify the degree to which the proposed algorithm can enforce
temporal smoothness, we measure the agreement between successive clusterings based on their
pairwise NMI scores. Note that NMI values were calculated only over the terms common to each
pair of consecutive time steps – documents are not considered as they do not persist.

Figure 6 shows a comparison of agreement values for the three different time window sizes. Dy-
namic co-clustering leads to a higher level of agreement than standard spectral co-clustering for all
three time window sizes. The effect becomes significantly more pronounced as α increases, with
a considerable rise apparent in Figure 6 at α = 0.3. This is to be expected, as increasing the pa-
rameter leads to a higher weighting for the historic information in Eqn. 6. We also observed that,
when we increase α ≥ 0.4, the resulting co-clusterings are often almost identical to the predicted
co-clustering Pt, with the constrained k-means process converging to a solution after 1–5 iterations.
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Figure 6: Comparison of agreement (in terms of NMI) between successive feature clusterings, gen-
erated by spectral co-clustering and DSCC (α ∈ [0.1, 0.3]), on the RCV1-5topic dataset for time
steps of duration one month, two weeks, and one week respectively.
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4.2.2 Clustering Accuracy

To quantify algorithm accuracy, we calculated the NMI between clusterings and the relevant anno-
tated document label information for each time step. Note that, in this case, NMI figures are only
calculated based on document assignments, as annotation information is not available for terms.
Figure 7 illustrates a comparison of the accuracy achieved by traditional spectral co-clustering and
dynamic co-clustering on the RCV1-5topic dataset for the three different time step sizes.

We observed that, for monthly and fortnightly time steps, the accuracy achieved by dynamic co-
clustering was not significantly higher. However, for the weekly case, there was a noticeable increase
in accuracy. In the case of α = 0.3, DSCC lead to higher accuracy on 20 of the 28 weekly graphs.

These results could appear surprising given the increases in temporal smoothness demonstrated Fig-
ure 6. However, on closer inspection, it is apparent that there is a strong concept drift effect in the
data, as the composition of topics changes over seven months. Therefore, for longer time periods,
there is a greater change in the clusters identified in successive time periods. In such cases we ex-
pect historic information to be less useful. For the shorter weekly time windows, where there is less
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Figure 7: Comparison of accuracy for document clusterings generated by spectral co-clustering and
DSCC (α ∈ [0.1, 0.3]), on the RCV1-5topic dataset for time steps of duration one month, two weeks,
and one week respectively.
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scope for drift between steps, we expect the use of historic information to improve accuracy. These
results highlight the importance of selecting an appropriate time step size for step-based dynamic
clustering, as has been highlighted by other researchers (Sulo et al., 2010).

4.3 Evaluation on Social Bookmarking Data

For the third phase of our evaluation, we applied the proposed co-clustering algorithm to a Web 2.0
data exploration problem. Unlike the RCV1 data, subsets of both objects (bookmarks) and features
(tags) persist over time. We use a subset of the most recent data from a collection harvested by
(Görlitz et al., 2008) from the Del.icio.us web bookmarking portal. The subset covers the 2,000
top tags and 5,000 top bookmarks across an eleven month period from January-November 2006.
We divided this period into 44 weekly time steps, and for each time step we constructed a bipartite
graph – the nodes represent tags and bookmarks, and the edges between them denote the number
of times each bookmark was assigned a given tag during the time step. On average, each graph
contained approximately 3,750 bookmarks and 1,760 tags. For each time step, we applied dynamic
co-clustering for kt = 20 to identify high-level topical clusters. For these experiments, we examined
a wider range of balance parameter values α ∈ [0.1, 0.5].

4.3.1 Temporal Smoothness

Figure 8 illustrates the NMI-based agreement between both tag and bookmark clusterings identified
by DSCC for α = {0.1, 0.3, 0.5}, when compared with the agreement scores achieved between step
clusterings generated using standard spectral co-clustering (Dhillon, 2001) with k = 20. As with the
RCV1-topic data, the use of historic information in DSCC leads to far more consistent clusterings
between successive time steps. However, in the case of the Del.icio.us data this applies to both object
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Figure 8: Agreement between successive object and feature clusterings, identified by spectral co-
clustering and DSCC (α ∈ [0.1, 0.5]), on the Del.icio.us dataset across 44 weekly time steps.
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and feature clusters. Again, raising the value of the balance parameter α yields increasingly smooth
transitions between clusterings. In the extreme case of α = 0.5, there is effectively no change
between the predicted memberships and the final output of the co-clustering algorithm, with the
iterative assignment phase converging to a solution that is almost identical to the predicted clustering.

4.3.2 Cluster Content

A number of authors (e.g. Berger-Wolf & Saia (2006)) have suggested analysing the stability or
“loyalty” of object member-cluster memberships across time. In the bipartite case, we can quantify
this for both objects and features – we suggest the latter can be used to generate meaningful labels
for dynamic clusters. Dynamic clusters are constructed from timelines of step clusters produced
by DSCC, as described in Section 3.3 – we use a matching threshold of θ = 0.2 in all cases. For
each dynamic cluster, we can then produce a ranking of features (tags) based on their respective
membership stability scores. The membership stability for a given feature in a dynamic cluster is
defined as the fraction of time steps during which the feature is assigned to a step cluster associated
with that dynamic cluster. The overall feature membership stability for a dynamic cluster is defined
as the mean stability for the union of all features that were assigned to that cluster in at least one
time step.

Examining the range of α parameters ∈ [0.1, 0.5], we found the trade-off afforded by α = 0.1 lead to
the most interpretable stability-based label sets. In Table 1 we show the resulting descriptive labels
selected for the ten dynamic clusters that exhibited the highest overall feature membership stability,
together with a suggested topic name based on the most stable tags. These descriptions highlight a
range of general areas of interest covering sites frequently bookmarked by users of the Del.icio.us
portal during 2006.

Topic Top 10 Tags
Education academic, school, mathematics, education, spanish, grammar,

elearning, learning, math, translation
Web Design usability, navigation, web, menus, html, standards, css, webstan-

dards, tutorials, validation
Music/Video mp3blog, youtube, television, movie, bittorrent, divx, torrent, p2p,

npr, audiobooks
Shopping clothes, t-shirt, gifts, handmade, shirts, store, clothing, fashion,

crafts, shopping
Maps world, maps, gis, geo, googleearth, geography, gps, mapping, map,

googlemaps
IT shortcuts, tweaks, wireless, opensource, support, security, trou-

bleshooting, system, seguridad, livecd
Games/Humor comic, worldofwarcraft, videogames, gaming, cartoon, cats, sec-

ondlife, parody, webcomics, funny
Mobile Tech storage, mobile, pocketpc, files, file, ical, cellphone, hosting, mes-

saging, bandwidth
Photography fotos, stock, pictures, digital, fotografia, photography, panorama,

textures, photo, flickr
Programming developer, ajax, java, ror, regexp, rubyonrails, python, tutorial, pro-

gramacion, php5

Table 1: Top 10 tags for 10 most stable clusters (in terms of feature memberships over time) identi-
fied on the Del.icio.us dataset by DSCC (α = 0.1).

5 Conclusion

In this work, we have described a spectral co-clustering algorithm for simultaneously clustering both
objects and features in dynamic feature-based data, represented as a sequence of bipartite graphs.
The DSCC algorithm incorporates both current and historic information into the clustering process.
A key aspect of the algorithm is that it is applicable in domains where objects or features alone
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persist across time. In applications on dynamic synthetic, text, and real Web 2.0 data, the DSCC
algorithm was successful in identifying coherent clusters, while also ensuring a smooth, consistent
transition between clusterings in successive time steps.

A natural avenue of future research relates to the visualisation of dynamic co-clusterings across time,
particularly in cases where informative features could be incorporated into the visualisation, such as
descriptive terms or user-assigned tags.
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