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Abstract—In this paper, we derive linearized discrete-time
models of higher order Charge-Pump Phase-Locked Loops (CP-
PLLs). The behaviour of CP-PLLs in the steady state is analysed
and an important feature is developed. The nonlinear state
equations of CP-PLLs are linearized around the equilibrium
point. The linearized discrete-time model is finally verified using
behavioral simulations in Matlab and PSpice.

I. I NTRODUCTION

Charge-Pump Phase Locked Loops (CP-PLLs) are impor-
tant component blocks which are used in a wide variety of
applications, such as clock generation, frequency synthesis
and clock data recovery. The popularity of CP-PLLs is due
to the fact that they provide flexible design parameters, such
as loop bandwidth, damping factor and locking range. In
Gardner’s pioneering work on CP-PLLs [1], he develops what
has become the standard linear model and provides some
empirical design rules. Subsequently many analytic models
for CP-PLLs have been proposed. Van Paemel [2], Acco [3],
Hedayat [4] and Co [5] have given nonlinear models for
second order loops. Hedayat [6], Hanumolu [7], Wang [8]
and Daniels [9] have analysed third order CP-PLLs while
Guermandi [10] and Yao [11] have studied fourth order CP-
PLLs. In the present work we consider quite generalnth order
CP-PLLs.

The work of Van Paemel [2] in particular is of interest
here. Van Paemel establishes that for first order loop filter
the system permits a model which is of second order and
discrete-time, although not in fact linear. Van Paemel shows
that, close to equilibrium, the system behaves according to
one of four particular modes determined by the patterns of
transitions of the VCO and the PFD. We establish that in
the more general case of higher order filters the system is
again described by a discrete-time system of order equal to
one plus the order of the filter and that the behaviour close
to equilibrium is again described by four modes, indeed the
same four modes discussed by Van Paemel. As stated, the
system described by Van Paemel is not in fact linear or
even linearizable. It transpires that, given a first order filter,
the designer must choose between having a capacity to lock
or being linearizable, they cannot have both. In the case of
higher order filters however the designers can, and essentially
do, choose to design systems which can lock and which are
linearizable. Since engineers are particularly interested in the
local dynamics around the equilibrium point, they generally
develop linearized discrete-time models of CP-PLLs and it is
therefore of some comfort to know that such models exist and
are valid.

Fig. 1. A block diagram of charge-pump phase-locked loops.

This paper is organized in the following manner. Section II
briefly describes the behavior of CP-PLLs in the steady state.
The complete analysis of the linearized discrete-time model of
CP-PLLs around the equilibrium point is presented in section
III. Section IV presents some simulation results from Matlab
and PSpice.

II. A NALYSIS OF CP-PLLS IN THE STEADY STATE

Charge-Pump Phase-locked Loops (CP-PLLs) are composed
of a phase and frequency detector (PFD), a charge pump (CP),
a loop filter (LPF) and a voltage-controlled oscillator (VCO).
The PFD is treated as a finite state machine (FSM) which
compares the phase and frequency of the VCO signal and the
external reference signal. The state transitions are triggered by
the rising edge of the VCO signal (V CO ↑) and the reference
signal (Ref ↑). The states of the FSM are denoted by(1, 0),
(0, 0) and(0, 1). The PFD outputs Up and Down signals which
are proportional to the phase error. The CP circuit is controlled
by the Up and Down signal and generates outputIp, 0 or −Ip,
where Ip is the charge pump current. The LPF is described
by the state-space equation

ẋ = Ax+Bu (1)

y = CTx+Du (2)

wherex is ann×1 vector (n ≥ 1), u is an input scalar, which
is Ip, 0 or −Ip, andy is an output scalar.A, B, CT andD are,
respectively,n×n, n× 1, 1×n, and1× 1 constant matrices.

The input of the VCO is the output of the LPF,y, and
changes the frequency of the VCO. So the frequency of the
VCO is given byfV CO(t) = f0 +Kvy(t) , whereKv is the
VCO gain, expressed inHz/V andf0 is the initial frequency
of the VCO. The associated phase of the VCO isθV CO(t) =
∫ t

0
fV CO(τ)dτ .
Van Paemel [2] categorized the dynamic behavior of CP-

PLLs into six cases, depending on the relationship between
the phase and frequency of the VCO and reference signals. We
assume that the CP-PLL is close to locking state. We consider
four cases for the local dynamics around the equilibrium point,



as shown in Fig. 2. We define that the rising edges of the
reference signal occur at the timest = kT for all integers
k, whereT = 1/fref is the period of the reference signal.
Similarly, we denote that the times at which the falling edges
of VCO occur by t = tk, and introduce the variableτk =
tk − kT . Another variable is the voltage across the capacitors
sampled at the later of the two timest = kT and t = tk, i.e.
xk = x(max{kT, tk}). Firstly, we consider the case when
the CP-PLL is in the steady state and the system is at the
equilibrium point. The FSM is in the state(0, 0) for all the
time t andtk = kT for all k. The LPF input,u, equals0. The
state equations (1) and (2) become

ẋ = Ax (3)

y = CTx (4)

We obtain the solution of (3) and (4) forkT ≤ t ≤ (k+1)T
as follows:

x(t) = eA(t−kT )x(kT ) (5)

θV CO(t)=

∫ t

kT

(f0 +KvC
T eA(τ−kT )x(kT ))dτ

=f0(t− kT ) +KvC
T (

∫ t−kT

0

eAτdτ)x(kT ) (6)

At the equilibrium point, we definex(kT ) = x∗ for all
k and putt = (k + 1)T into the equations (5) and (6). We
obtain an important feature of the system at the equilibrium
point from the equation (6):

T (f0 +KvC
Tx∗) = 1 (7)

From the equation (5), we obtainx∗ = eATx∗ and conclude
that eAT has an eigenvalue at1 with the associated eigen-
vector,x∗ andA has an eigenvalue at0 with the associated
eigenvector,x∗.

III. L INEARIZED DISCRETE-TIME MODELS OF CP-PLLS

In this section we derive the linearized discrete-time model
for the higher order CP-PLLs based on the Van Paemel’s
paper [2]. In order to conveniently obtain linearized discrete-
time models of CP-PLLs, we firstly introduce the following
normalized variables:

τ̂k = τk/T and x̂k = xk − x∗. (8)

A. τ̂k > 0, τ̂k+1 > 0

We definexk = x(tk) and xk+1 = x(tk+1) in the case
A, as shown in Fig. 2 (a). The rising edge of the VCO lags
behind the rising edge of the reference signal and the state of
the FSM is(1, 0) when the time is fromkT to tk. The input
of LPF,u, equalsIp. The equation (1) becomesẋ = Ax+BIp
and the solution is

x(tk) = x(kT ) + (Ax(kT ) +BIp)T τ̂k (9)

When time is fromtk to (k+ 1)T , the state of the FSM is
(0, 0) andu equals to0. The equation (1) becomeṡx = Ax
and the solution is

x((k + 1)T ) = eAT (1−τ̂k)xk (10)

Fig. 2. Waveforms for the four cases.

When time is from(k+ 1)T to tk+1, the state of the FSM
is (1, 0) andu equals toIp and the solution of the equation
(1) is

x(tk+1) = x((k + 1)T )+

(Ax((k + 1)T ) +BIp)T τ̂k+1
(11)

We put the equation (10) into the equation (11) and obtain

x(tk+1) = eAT (1−τ̂k)xk+(AeAT (1−τ̂k)xk+BIp)T τ̂k+1 (12)

Using the equation (8) and neglecting the higher order terms
at the equilibrium point, we obtain the difference equationfor
x̂k+1 from the equation (12)

x̂k+1 = eAT x̂k +BIpT τ̂k+1 (13)

Now we define another functionΦV CO(t) which is a function
of θV CO(t) mod 2π. The kth rising edge of the VCO occur
at the timetk whenΦV CO(tk) equals1.

As shown in Fig. 2 (a), the rising edge of the VCO occurs
at the timetk+1, so we can get

ΦV CO(tk+1)=

∫ tk+1

(k+1)T

(f0 +KvC
Tx((k + 1)T ) +KvDIp)dt

+ΦV CO((k + 1)T ) = 1 (14)

τ̂k+1 is computed as

τ̂k+1 =
1− ΦV CO((k + 1)T )

f0T +KvDIpT +KvTCTx((k + 1)T )
(15)

On the other hand,ΦV CO((k + 1)T ) is given by

ΦV CO((k + 1)T )=

∫ (k+1)T

tk

(f0 +KvC
T eA(t−tk)xk)dt

=1− τ̂k + qT x̂k (16)

whereqT = KvC
T
∫ T

0
eAτdτ .

We put the equations (16) and (8) into the equation (15)
and get

τ̂k+1 =
τ̂k − qT x̂k

f0T +KvDIpT +KvTCT eAT (1−τ̂k)(x̂k + x∗)
(17)



Using the equation (7) and neglecting the higher order terms
at the equilibrium point, we obtain̂τk+1 from the equation
(17).

τ̂k+1 =
τ̂k − qT x̂k

1 +KvDIpT
(18)

for τ̂k > 0, τ̂k > qT x̂k.

B. τ̂k < 0, τ̂k+1 < 0

In this case (Fig. 2 (b)), we definexk = x(kT ) and
xk+1 = x((k + 1)T ). The input of LPF,u, equals0 from
kT to tk+1 and−Ip from tk+1 to (k+1)T . According to the
state equations (1),x(tk+1) andx((k+1)T ) are expressed as
follows:

x(tk+1) = eA(tk+1−kT )xk (19)

x((k+1)T ) = x(tk+1)+(Ax(tk+1)−BIp)((k+1)T − tk+1)
(20)

Using the equations (7), (8), (19) and (20) and neglecting
the higher order terms at the equilibrium point, we can get the
same result for̂xk+1 as in caseA:

x̂k+1 = eAT x̂k +BIpT τ̂k+1 (21)

We know the rising edge of the VCO occurs at the time
tk+1 from Fig. 2 (b). We obtain

ΦV CO(tk+1)=

∫ kT

tk

(f0 +KvC
Tx(t)−KvDIp)dt

+

∫ tk+1

kT

(f0 +KvC
Tx(t))dt = 1 (22)

We put the equations (7), (8), (19) and (20) into the equation
(22) and computêτk+1 in this case as

τ̂k+1 = (1−KvDIpT )τ̂k − qT x̂k (23)

for τ̂k < 0, (1−KvDIpT )τ̂k < qT x̂k.

C. τ̂k > 0, τ̂k+1 < 0

We definexk = x(tk) andxk+1 = x((k+1)T ) in the case
C shown in Fig. 2 (c). The input of LPF,u, equals0 from tk
to tk+1 and−Ip from tk+1 to (k + 1)T . The solution of the
state equation (1) are expressed at timestk+1 and (k + 1)T
as follows:

x(tk+1) = eA(tk+1−tk)xk (24)

x((k+1)T ) = x(tk+1)+(Ax(tk+1)−BIp)((k+1)T − tk+1)
(25)

Using the equations (7), (8), (24) and (25), we can get the
same result for̂xk+1 as in caseA:

x̂k+1 = eAT x̂k +BIpT τ̂k+1 (26)

In this case, we know that the rising edge of the VCO occurs
at the timetk+1 , as shown in Fig. 2 (c). We obtain

ΦV CO(tk+1)=

∫ tk+1

tk

(f0 +KvC
T eA(t−tk)xk)dt = 1(27)

Using the equation (7) and neglecting the higher order terms
at the equilibrium point,̂τk+1 is computed in this case as

τ̂k+1 = τ̂k − qT x̂k (28)

for τ̂k > 0, τ̂k < qT x̂k.

D. τ̂k < 0, τ̂k+1 > 0

We definexk = x(kT ) andxk+1 = x(tk+1) in the caseD
shown in Fig. 2 (d). The input of LPF,u, equals0 from kT
to (k+1)T andIp from (k+1)T to tk+1. The solution of the
state equation (1) are expressed at times(k + 1)T and tk+1

as follows:
x((k + 1)T ) = eATxk (29)

x(tk+1) =x((k + 1)T )+

(Ax((k + 1)T ) +BIp)(tk+1 − (k + 1)T )
(30)

Using the equations (7), (8), (29) and (30) and neglecting
the higher order terms at the equilibrium point, we can get the
same result for̂xk+1 as in caseA:

x̂k+1 = eAT x̂k +BIpT τ̂k+1 (31)

Fig. 2 (d) shows that the rising edge of VCO occurs at the
time tk+1. We obtain

ΦV CO(tk+1)=

∫ kT

tk

(f0 +KvC
Tx(t)−KvDIp)dt

+

∫ (k+1)T

kT

(f0 +KvC
Tx(t))dt

+

∫ tk+1

(k+1)T

(f0 +KvC
Tx(t) +KvDIp)dt

= 1 (32)

We put the equations (7), (8), (29) and (30) into the equation
(32) and computêτk+1 in this case as

τ̂k+1 =
(1−KvDIp)τ̂k − qT x̂k

1 +KvDIpT
(33)

for τ̂k < 0, (1 − KvDIpT )τ̂k > qT x̂k. Finally, linearized
discrete-time models of higher order CP-PLLs are presented
by the equations (34) and (35):

x̂k+1 = eAT x̂k +BIpT τ̂k+1 (34)

τ̂k+1 =











































τ̂k−qT x̂k

1+KvDIpT
for τ̂k > 0, τ̂k > qT x̂k

(1−KvDIpT )τ̂k − qT x̂k

for τ̂k < 0, τ̂k < qT x̂k

1−KvDIpT

τ̂k − qT x̂k for τ̂k > 0, τ̂k < qT x̂k

(1−KvDIp)τ̂k−qT x̂k

1+KvDIpT

for τ̂k < 0, τ̂k > qT x̂k

1−KvDIpT

(35)

IV. B EHAVIORAL SIMULATION

The linearized discrete-time model in the previous sectionis
now verified in Pspice. Though the linearized model is suitable
for higher order CP-PLLs, we choose the third order CP-PLL
as an example in this section because of the popularity of
the third order CP-PLL frequency synthesizer in the practical
design.

Consider the second-order LPF, we can get

A =

[

−τ2 τ2
τ1 −τ1

]

, B =

[

1
C3

0

]

, CT = [1, 0] , D = [0]



Fig. 3. Simulation circuit for charge-pump phase-locked loops in Pspice.
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Fig. 4. Simulation results obtained from linearized discrete-time model and PSpice simulation. (a) the capacitor voltage;(b) the control voltage; (c) the phase
error.

whereτ1 = 1
R1C2

, τ2 = 1
R1C3

andR1, C2, C3 are the circuit
parameters of LPF, as shown in Fig. 3. Then we put these
constant matrices into the equations (34) and (35) to get the
linearized discrete-time model of the third order CP-PLL. For
this particular case whenD = [0], the equation (35) becomes
τ̂k+1 = τ̂k − qT x̂k.

We build up a third order CP-PLL in the Pspice envi-
ronment, which is shown in Fig. 3. The circuit parameters,
like those in the linearized discrete-time model, are given
Ip = 5mA, Kv = 0.1MHz/V , fref = 1MHz, R1 = 385Ω,
C2 = 19.2nF , C3 = 3.32nF . In order to verify the linearized
discrete-time model of CP-PLLs, we choose the initial values
around the equilibrium point, the capacitor voltageVC2

(0) =
3.005V , the control voltageVC3

(0) = 3.005V and the phase
error Φe(0) = 0. The linearized discrete-time model of the
third order CP-PLL, the equations (34) and (35), described
in section III is simulated using Matlab. The validity of the
linearized discrete-time model around the equilibrium point is
verified by comparing the capacitor and control voltage and
the phase error obtained from Matlab and Pspice simulation,
as shown in Fig. 4.

V. CONCLUSIONS

The linearized discrete-time model of higher order CP-
PLLs around equilibrium has been described in this paper,
based on Van Paemel’s paper [2]. We have linearized the
nonlinear model around equilibrium and developed explicitly a
more general linearized discrete-time model for the CP-PLLs.
We, then, have presented the simulation results obtained from

Matlab and PSpice simulation to verify the validity of this
linearized model. We have investigated the local dynamics
around equilibrium when the CP-PLL is close to the locking
state, which engineers are particularly interested in.

REFERENCES

[1] F. Gardner, “Charge-pump phase-lock loops,”IEEE Trans. Commun.,
vol. 28, no. 11, pp. 1849–1858, Nov. 1980.

[2] M. Van Paemel, “Analysis of a charge-pump PLL: A new model,”IEEE
Trans. Commun., vol. 42, no. 7, pp. 2490–2498, Nov. 1994.

[3] P. Acco, “Why do we linearise charge pump pll equation so early?” in
Proc. NDES, May 2001, pp. 173–176.

[4] C. D. Hedayat, A. Hachem, Y. Leduc, and G. Benbassat, “High-level
modeling applied to the second-order charge-pump PLL circuit,” Texas
Instruments Technical Journal, vol. 14, no. 2, Mar. 1997.

[5] R. S. Co and J. H. Mulligan, “Optimization of phase-lockedloop
performance in data recovery systems,”IEEE J. Solid-State Circuits,
vol. 29, pp. 1022–1034, Sep. 1994.

[6] C. D. Hedayat, A. Hachem, Y. Leduc, and G. Benbassat, “Modeling and
characterization of the 3rd order charge-pump PLL: a fully event-driven
approach,”Analog Integrated Circuits and Signal Processing, vol. 19,
no. 1, pp. 25–45, Apr. 1999.

[7] P. K. Hanumolu, M. Brownlee, K. Mayaram, and U.-K. Moon, “Analysis
of charge-pump phase-locked loops,”IEEE Trans. Circuits Syst. I,
vol. 51, no. 9, pp. 1665–1674, Sep. 2004.

[8] Z. D. Wang, “An analysis of charge-pump phase-locked loops,” IEEE
Trans. Circuits Syst. I, vol. 52, no. 10, pp. 2128–2138, Oct. 2005.

[9] B. Daniels and R. Farrell, “Rigorous stability criterion for digital phase
locked loops,” ISAST Trans. on Electronics and Signal Processing,
vol. 2, pp. 1–10, 2008.

[10] M. Guermandi, E. Franchi, and A. Gnudi, “On the simulationof fast
settling charge pump plls up to fourth order,”International Journal of
Circuit Theory and Applications, Apr. 2010.

[11] C.-Y. Yao, C.-T. Hsu, and C.-C. Hsieh, “Stability analysis of fourth-
order charge-pump plls using linearized discrete-time models,” in Proc.
2007 IEEE Region 10 Conference, pp. 1–4, 2007.


