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Nonlinear Behavioral Modeling Dependent on
Load Reflection Coefficient Magnitude

Jialin Cai, Student Member, IEEE, Justin B. King, Member, IEEE, Anding Zhu, Senior Member, IEEE,
José C. Pedro, Fellow, IEEE, and Thomas J. Brazil, Fellow, IEEE

Abstract—A new frequency-domain nonlinear behavioral mod-
eling technique is presented and validated in this paper. This tech-
nique extends existing Padé and poly-harmonic distortion models
by including the load reflection magnitude, , as a parameter.
Although a rigorous approach requires a full 2-D load–pull model
to cover the entire Smith chart, simulation and experimental ev-
idence have shown that such a 1-D model—that retains only am-
plitude information of the load reflection coefficient—can give ac-
curacy close to that of a full 2-D load–pull model. Consequently,
neglecting the phase constitutes an approximation that provides
large benefits without appearing to lead to a severe compromise
in accuracy. Furthermore, compared with traditional load-inde-
pendent models, the new -dependent models provide a major
improvement in model accuracy. After a discussion of the model
extraction methodology, examples are provided comparing tradi-
tional load–pull -parameter models with the model presented in
this paper. The new model not only provides consistently good ac-
curacy, but also has a much smaller model file size. Along with the
examples that display the ability of the new modeling technique to
predict fundamental frequency behavioral, a second harmonic ex-
ample is also provided. The modeling approach is also validated
using measurements results.

Index Terms—Behavioral model, load–pull model, nonlinear,
Padé model, poly-harmonic distortion (PHD) model.

I. INTRODUCTION

N ONLINEAR behavioral modeling has been used for de-
vice characterization in RF circuit design for many years

[1]–[3]. With this kind of model, device performance can be 
predicted under varying drive and impedance conditions, which
allows for the rapid design of complex circuits. Much effort
has been devoted to nonlinear behavioral model development
at microwave frequencies, resulting in a number of nonlinear
behavioral modeling approaches for high-frequency transistors
[4]–[17].
The poly-harmonic distortion (PHD) model [4]–[7] (or the

basic -parameter model) has been used successfully to de-
scribe nonlinear device behavior around the operating condi-
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tions about which it is extracted. It is assumed there is only
one large RF signal that must be treated generally, and that the
remaining spectral components can be treated as small. This
is often the case for power amplifiers (PAs), at least those in
“nearly matched” cases [18]. If the device-under-test (DUT) is
not perfectly matched at the output port due to a small deviation
in load impedance, there will be reflections at the fundamental
and the harmonics back into the DUT. These mismatches are
considered as small perturbations to simplify the description.
The validity of the approximation depends on whether these sig-
nals are small enough such that their contributions appear only
as linear perturbations.
However, there are several cases of practical importance

where it becomes necessary to relax the simplifying approxima-
tion just stated, i.e., that the reflected waves depend nonlinearly
only on the applied bias conditions and the single large RF
incident component at Port 1 at the fundamental frequency
[18]–[20]. An example is a bare transistor presented with a
very large output mismatch at the fundamental frequency. In
this case, the large corresponding fundamental frequency wave
at Port 2 will reflect from the mismatch and create a large
fundamental incident wave. Both the basic PHD model [4]–[7]
and basic Padé model [16], [17] cannot accurately describe the
case where the DUT behaves in a fully nonlinear way with
respect to large incident waves from both the incident port and
the output port [21]. Although extensions such as the quadratic
poly-harmonic distortion (QPHD) [4], [5], or the second-order
Padé models [16], [17] may help in improving model predic-
tion, inaccuracies still remain. The reduced polynomial (RP)
model of [22] has advantages that it has a smaller number of
model parameters compared with the PHD model, but not the
model accuracy.
To extend the range of validity, an approach using

load–pull data in conjunction with the -parameter model
has been shown to work very well [18]–[20]. However, the
load–pull-based approach causes pronounced increase in model
file size because the model dimensionality is increased by
the requirement for additional parameters. Additionally, the
extraction of the model requires a secondary signal generator in
order to generate the small perturbation signal required during
the extraction process [18], thereby increasing the cost and
complexity of generating the model.
Another extension from Cardiff University, called the Cardiff

model [10]–[13], extends the PHD model to become not only
dependent on the large signal on the input side, but also on the
output side, which allows the model to include more informa-
tion, making it more general. However, in order to improve the
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model accuracy, the traveling waves need to be renormalized
to an optimal characteristic impedance different to the one nor-
mally used. Moreover, due to the irregular shape of the renor-
malized data grid, in order to obtain data with the same ampli-
tude of incident wave at the load side, 2-D interpolation has to
be used when extracting the model [10], making the model ex-
traction method complex.
In [22], the magnitude of the load reflection coefficient, ,

is introduced within the Padé model for the first time. In this
paper, both the QPHD model and the Padé 11/11 model [17] are
extended by including the parameter . The model derivation
procedures are provided, and the extractionmethod is presented.
The results from both simulations and measurements are pro-
vided together with a detailed discussion of the issues involved.
This paper is organized as follows. In Section II, the basic

theory of the -dependent models and the model extraction
methodology are presented. In Section III, the new modeling
technique is validated through both simulation and measure-
ment results. Section IV provides conclusions.

II. BASIC THEORY OF -DEPENDENT MODELS

In this section, the theoretical foundations of the load reflec-
tion magnitude-dependent model are presented. The quantities
we are working with are traveling voltage waves, which are con-
verted from the port voltage, , and the port current, , and
is the port number. The incident waves are called the “A-waves”
and the reflected waves are called the “B-waves.” For a given
DUT, the performance at a specific operating point can be de-
scribed by the incident and reflected waves at all the different
ports and all the different harmonics. This situation is described
mathematically in (1) as follows:

(1)

where is a describing function that associates all of the rel-
evant incident waves with the reflected waves , where
and range from one to the number of signal ports, and and
range from zero (dc) to the highest harmonic index.
As the system we describe here is considered to be time in-

variant, an arbitrary delay to all the input signals, i.e., the inci-
dent A-waves, will only result in exactly the same time delay
for the output signals, i.e., the shape of the reflected B-waves
do not change. Based on this fact, we can normalize the phase
of so that (1) becomes

(2)
where .
The reason for normalizing can be found in [4]. There are

two different approximation methods to simplify (2). The first
is based on a Taylor-series approximation and the harmonic su-
perposition principle, which results in the PHD model [4]–[7],
while the second is based on Padé approximation and the har-
monic superposition principle, which leads to the basic Padé
model [16], [17].

The two basic behavioral models just described can give good
prediction in the nearly matched case, where we can assume

. In this case, the magnitude of is small enough
such that the spectral linearization of the DUT’s response with
respect to will be valid [18]. Thus, under well-matched con-
ditions, the influence of incident signal on the large-signal
operating point (LSOP) of the DUT can be considered negli-
gible. Including the dc bias, the LSOP can be expressed as (3)

bias (3)

However, as previously mentioned, the PHD model, or the
first-order Padé model, cannot readily predict behavior over
the entire Smith chart, especially for the operation of bare
(unmatched) transistors, or for highly mismatched PAs under
strong input drive. In these cases, the nonlinear model functions
are more complicated than the case considered in the PHD
model and the first-order Padé model. The reason for this is
that in the PHD model and first-order Padé model, the large
scattered wave in both basic models are assumed only
to depend on the fundamental input large-signal excitation

. However, in the latter highly mismatched cases, the
large wave, generated by the device in response to the
large incident wave, will reflect from the mismatch and
create a large incident wave, , at the output port, also at the
fundamental frequency. In the highly mismatched cases, the
condition is no longer satisfied. Thus, for large ,
a large output mismatch means can be sufficiently large
that it will change the DUT’s LSOP, and hence, the spectral
approximation used previously becomes invalid [18].
The Cardiff model [10]–[13] can overcome the limitation of

the former two basic models by including the amplitude of the
large incident wave at the output port, , and the phase
difference between the two large incident waves, , in the
LSOP, where . The LSOP of this
model is shown as (4) as follows:

bias (4)

The load–pull -parameter model provides another choice
to solve this problem. In this model, the LSOP not only includes
the amplitude of the incident wave , but also the load
reflection coefficient . Hence, the LSOP of the load–pull
model becomes (5) as follows:

bias (5)

In this paper, a new simpler modeling technique is used to
solve the problem. In this modeling technique, the magnitude
of the fundamental output load reflection coefficient, , has
been introduced to the model together with . In this way,
the large-signal operating area is not localized to a point, but
exists around a circle in the Smith chart. This can be viewed as
a parameter-controlled large-signal operating circle with
as the parameter. We name this large-signal operating area the



3

Fig. 1. Smith chart showing load points included in PLSOC when is
equal to 0.8.

parametric large-signal operating circle (PLSOC), according to
(6) as shown follows:

bias (6)

This modeling technique is similar to the load–pull model,
but it is not dependent on the phase of the load reflection
coefficient. Although a rigorous approach requires a full 2-D
load–pull model to cover the entire Smith chart, simulation
and experimental evidence have shown that a 1-D load–pull
model that retains only the amplitude information can be nearly
as accurate as a full 2-D model. Consequently, neglecting
the phase constitutes an approximation that provides large
benefits without severely compromising accuracy. The DUT’s
large-signal operating area for each model set is restricted at a
load circle on the Smith chart, rather than a specific load point.
Take equal to 0.8 as an example, the points belonging to
this PLOSC are shown in Fig. 1 (72 points along the circle are
chosen as an example).
As can be seen from (4) and (5), the LSOP of the Cardiff

and load–pull -parameter models is a steady-state point on
the Smith chart; however, in our new modeling technique, the
PLSOC is not a point anymore. The nonlinearity of each point

in the PLSOC will vary a little bit along this circle, as will
vary along the PLSOC. Due to this, the accuracy of the model
will decrease if we persist with a first-order approximation. In
order to retain a high level of accuracy from the model, we ex-
tend the basic models to include a second-order term. Thus, we
introduce the magnitude of the fundamental output load refec-
tion coefficient, , into the two existing second-order non-
linear behavioral models discussed here, the Padé 11/11 model
and the QPHD model.

A. -Dependent Padé Model
According to [17], aside from the large-signal , the output

wave depends not only on the incident waves , but
also the conjugate terms. Thus, (2) can be rewritten
as follows:

(7)

for all values of greater than 1 up to the number of signal ports.
Based on the 2-D Padé approximant theory [23], [24], an ap-

proximation to around the point can be obtained
as

(8)

The LSOP in (7) can be seen as the steady-state point ,
in order to approximate (7), we use and to represent

and its conjugate . This gives the equiva-
lences

(9)

The combination of the Padé approximation and the harmonic
superposition principle results in the Padé model. The formula-
tion of the model is provided in [16] and [17], shown in (10) at
the bottom of this page.

(10)
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After the parameter has been introduced, the equiva-
lences in (9) become

(11)

We then have the -dependent Padé model, as shown in
(12). We choose the Padé 11/11 model as an example in this
paper and assume the phase of the large incident signal is
equal to 0, where (12) can be simplified to (13), shown at the
bottom of this page.

B. -Dependent QPHD Model

A combination of the Taylor series and the harmonic super-
position principle results in the PHD model. The formulation of
the model is provided in [4] as follows:

(14)

After it has been extended to the QPHD model, the resulting
expression is

(15)

In a similar way to the previous case, the -dependent
QPHD model can be obtained by including ,

(16)

From the expressions of the two new models in (13) and (16),
we can see that these new models add no extra complexity apart
from including the second-order terms.

C. Model Extraction Methodology
The adoptedmodel extraction procedure can be seen as a least

squares problem. Actually, the extraction methodology herein
followed is similar to the randomized phase method used in [16]
and [17]; the main difference is how we chose the sample points
used for model extraction.
In order to explain this methodology, a simple case is chosen

as an example. We use the Padé 11/11 model in this example.
Assuming the phase of the input large signal is 0, and only taking
the fundamental frequency at Port 2 into consideration, (13) will
be simplified to (17), shown at the bottom of the following page.
To begin, we keep the magnitude of both the large-signal

input , and the fundamental load reflection coefficient,
, unchanged, while the phase of this reflection coefficient

is swept. Theoretically, if a model has parameters, then
independent measurements are sufficient to extract the

model. However, in order to reduce errors, we usually take
more measurements than needed. Here, each model contains 7
parameters, and 16 measurements are used for each extraction
in all the simulation and measurement examples given below.

(12)

(13)
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Fig. 2. Simulation curve of Gain versus input power for 45-W GaN at 1 GHz.

The amplitude of the incident wave at Port 2 will vary de-
pending on the phase of the load reflection coefficient at that
port. This variation results in a similar variation of the oper-
ating point around the PLSOC. When the range of this varia-
tion range is small, the load sample points may be chosen such
that the phase of is uniformly distributed along the PLSOC.
However, when the variation range increases, the situation be-
comes more complex; if the same method is used in this case,
the chosen sample points may not cover the whole range evenly.
This makes it difficult for the extracted model to fit the behavior
around the entire PLSOC, and the accuracy of the model will de-
grade.
In order to overcome this problem, an alternative way to

choose the sample points is used. As we know, for the simple
case described in (17), the operating point of the DUT depends
on the amplitude of the incident waves, and . As

is fixed in each PLSOC, the operating point variation
range along the PLSOC depends on the variation range of

. Accordingly, we choose the sample points that uniformly
distribute the variation of around the PLSOC.
A simple example is shown here. The DUT is a 45-W GaN

transistor (CGH40045F) manufactured by Cree, and its equiva-
lent circuit model was the one supplied by the manufacturer.
The device is biased at V and V.
Fig. 2 shows the gain-versus-input power curve with the input
available power varying from 0 to 45 dBm at 1 GHz, shown in
(17) at the bottom of this page.
The selected input power in this example is 41 dBm, at 1 GHz,

which corresponds to 10 dB of gain compression. As shown in
Fig. 3, the fundamental reflection coefficient, , is set to a
constant amplitude, equal to 0.8.
Two different groups of sample points are used to conduct

model extraction so that the accuracy of the extracted models

Fig. 3. Reflection coefficient phasors, , at Port 2.

will be compared later. In the first sample group (“Sample
points 1”), the chosen load points are evenly distributed along
the PLSOC, being the step size of the phase 22.5 ; while, in
the second group (“Sample points 2”), the sample points are
evenly distributed around the variation range of along
the PLSOC. As we can see in Fig. 4, most of the sample points
in the first group are distributed in the range from 2 to
7. Only one point is located in the range from 7 to 11. In the
second group, the sample points are evenly distributed along
the range of from 2 to 11.
The difference of the distribution of the two different sample

groups results in a significantly different distribution of the fun-
damental incident waves and reflected waves, and , at
Port 2. Indeed, the corresponding incident and reflected fun-
damental waves are shown in Figs. 5 and 6. As we can see,
sample group 1 lacks the information in zone 1 and zone 2,
which sample group 2 has.
After the sample points are taken, we can get the matrix for-

mulation of the problem, shown in (18) at the bottom of the
following page, whereby , , , ,

, , and are the seven parameters of
the Padé 11/11 model. This matrix formulation can be repre-
sented symbolically as (19)

(19)

(17)
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Fig. 4. Distribution of the sample points along the PLSOC based on the ampli-
tude of the incident wave, , at Port 2.

Fig. 5. Incident phasors from two different sample groups, , at Port 2.

Since is not square in general, we have to obtain the solution
of (19), , using its pseudo-inverse, which is constructed by

(20)

Fig. 6. Scattered fundamental phasors from two different sample groups, ,
at Port 2.

where the superscript refers to the Hermitian conjugate op-
eration so that

(21)

Using the above approach, models can be extracted for
both sample groups, allowing the comparison between the
fundamental output voltage of the two behavioral models, and
the circuit model. As we can see in Fig. 7, the Padé 11/11
model extracted from the second sample group provides much
better accuracy than the same model extracted from the first
sample group. This was to be expected, especially in zone 1 and
zone 2. The reason for this is that the points from the second
sample group are distributed over the full range of amplitude
variation around the PLSOC in a more even fashion than the
points from the first sample group. Thus, in strongly nonlinear
cases (i.e., cases where the compression level is higher than
3 dB, and is larger than 0.5), the second sample group
must be used as the appropriate excitation. In other cases, any
of the sample groups can be used.
The extraction method presented here can be easily extended

to include harmonic frequencies. For example, if the funda-
mental load condition is fixed, the second harmonic load can be
swept, and then a -dependent model can be extracted. From

...
...

...
...

...
...

...
...

(18)
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Fig. 7. Simulation results of the two different load sample groups.

the model extraction procedure presented here, we can see that
no perturbation signal is required when generating this model,
simplifying and reducing the cost of the extraction.

III. MODEL VALIDATION

In this section, we verify the -dependent model through
both computer simulations and experimental tests.
The first example provided here is intended to test the accu-

racy of the -dependent models extracted at
when compared with the -independent models. The second
example shows the prediction of output power and drain ef-
ficiency throughout the entire Smith chart by the new model.
Another example has been given to compare the traditional
load–pull -parameter model with the newly presented model,
not only in terms of the accuracy of both models, but also the
model file size. A second harmonic, -dependent model
simulation result is also provided.
Measurements are then performed on a gallium–nitride

(GaN) high electron-mobility transistor (HEMT) and we extract
a -dependent model using the methodology previously
described. Comparisons between the models and the measured
data are then given and the results are presented.

A. Computer Simulations
We use an equivalent-circuit transistor model in Agilent

Technologies’ Advanced Design System (ADS) simulation
environment in the test. The DUT here is the same as in
Section II-C.
The load points in the first example for detailed comparison

are the same as shown in Fig. 1. In this group, is equal
to 0.8, the phase of the reflection coefficients ranges from 0 to
355 , with a step size of 5 , giving 72 points in total. The input
power is 32 dBm, at 1 GHz, and 3-dB compression. The device
is biased at 3 V for VGS and 28 V for VDS. After model
extraction, simulation was performed in MATLAB.
The simulation results are provided in Fig. 8 using the output

voltage as a comparisonmetric. From this figure, we can see that
the -dependent models, both the QPHD model (magenta
cross in online version) and Padé 11/11 model (red star in online

Fig. 8. Simulation results of the load points group.

Fig. 9. Relative error (%) of the load points group with 32-dBm
input power at 1 GHz.

version), provide much better prediction than the 50- Padé
11/11 model (red square in online verison) and the 50- QPHD
model (black diamond) under strong nonlinearity conditions.
The results also emphasize that the 50- models are incapable
of giving good prediction under strong nonlinearity conditions,
even if these models are extended to second order. The detailed
relative errors are given in Fig. 9 from which it may be seen that
the new -dependent model provides a major improvement
compared to the regular 50- case.
Fig. 10 shows the variation of the amplitude of the incident

fundamental wave at Port 2, , in the example. From this
figure, we can see that the incident wave at Port 2 varies over a
wide range, from 1.5 to 6.7. However, even under such a strong
nonlinear situation, the new -dependent models still pro-
vide us with good prediction. The combination of the magni-
tude of load reflection coefficient information, , with the
second-order approximation method, greatly improve the capa-
bility of the models in handling significant nonlinearity.
Along with the performance from the example at just a single

value of the load reflection coefficient magnitude ( )
just shown, other examples have been considered.
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Fig. 10. Amplitude of the incident fundamental wave at Port 2, , at the
load condition with 32-dBm input power at 1 GHz.

Fig. 11. Smith chart showing load points chosen as an example.

In Fig. 11, the chosen load points for comparison are shown
in the Smith chart. In this example, we use the new model to
conduct simulations at different load conditions throughout the
whole Smith chart. The magnitude of the reflection coefficient
ranges from 0.1 to 0.9 with a step size of 0.1; the phase of reflec-
tion coefficient ranges from 0 to 355 with a step size of 5 , this
gives 648 points in total. In this example, nine sets of -de-
pendent models are extracted. The model extraction procedure
is the same as before. The model we used in this example is
a Padé 11/11 model. After models have been extracted, sim-
ulations are performed at the load points chosen as shown in
Fig. 11.
Fig. 12 demonstrates a comparison between the output

power contours using the circuit model and simulation with
the -dependent Padé 11/11 model. From the results, we
can see that the new model very closely tracks the results
from the circuit model. The output power ranges of these two
models are also shown in Table I. From the table we can see

Fig. 12. Output power contours with 32-dBm input power at 1 GHz.

TABLE I
RANGE OF OUTPUT POWER ACROSS SMITH CHART

that the differences between the behavioral model and circuit
model results are quite small, showing the good accuracy of the
proposed approach.
From the basic theory of the -dependent model pre-

sented in Section II, it is easy to note that this model can be
conveniently extended to the dc region. In this example, we
also use a dc -dependent Padé 11/11 model to calculate
the dc current. The dc power can then be obtained. After that, a
comparison can be made between the drain efficiency contours
from circuit model and that from the -dependent Padé
11/11 model, as shown in Fig. 13.
From the results shown in Fig. 13, we can see that the
-dependent Padé 11/11 model provides as good a predic-

tion of the drain efficiency as it did previously when comparing
output power. The drain efficiency ranges of these two models
are also shown in Table II. From the figure and the table, we
can see that the accuracy of the new behavioral model is very
good in terms of the prediction of drain efficiency.
As is well known, both output power and drain efficiency cal-

culations are very important for PA design. Thus, good predic-
tion of these two parameters can provide PA designers a conve-
nient way to produce an accurate design.
Fig. 14 represents a comparison between the circuit model,

the -dependent Padé 11/11 model, and the load–pull -pa-
rameter model. The key difference between a general load–pull
model and this new -dependent model is that the former
requires 2-D sweeps throughout the Smith chart, involving both
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Fig. 13. Output drain efficiency contours with 32-dBm input power at 1 GHz.

TABLE II
RANGE OF DRAIN EFFICIENCY ACROSS SMITH CHART

Fig. 14. Simulation results from circuit model, Padé 11/11 model, and
load–pull -parameter model.

the phase and magnitude of the load reflection coefficient, while
the latter only needs a 1-D (magnitude) sweep. The comparison
metric used here is the fundamental output voltage. The mag-
nitude of the load reflection coefficient in the load–pull -pa-
rameter model varies from 0.1 to 0.9, with a step size of 0.1; the
phase of the load reflection coefficient varies from 0 to 350 ,
with a step size of 10 , giving a total of 324 sets of -parame-
ters in the load–pull model. The load–pull -parameter model
is directly extracted from equivalent circuit model simulation in

Fig. 15. Relative error (%) of the load points group with 32-dBm
input power at 1 GHz from -dependent Padé 11/11 model and load–pull
-parameter model.

ADS. The same nine sets of -dependent Padé 11/11 models
are used here, with the magnitude of the reflection coefficient
ranging from 0.1 to 0.9. The fundamental frequency and bias
condition are the same as before.
Simulation results are shown in Fig. 14. From the figure,

we can see that both the -dependent Padé 11/11 model
and the load–pull -parameter model provide good prediction.
However, when compared with the load–pull model, the new

-dependent model still gives better accuracy, especially in
the region where the reflection coefficient is high.
A detailed example comparing the accuracy of the load–pull
-parameter model and the -dependent Padé model is also

presented here. We choose the outermost circle of load points as
our sample points. In this group, the magnitude of the reflection
coefficient is 0.9, the phase of the reflection coefficient ranges
from 0 to 355 with a step size of 5 , giving 72 points in total.
The relative errors from the two different models are given in
Fig. 15. From the figure, it can be seen that both models give
good prediction over most of the points, the relative errors being
much lower than 1%. However, the accuracy of the load–pull
-parameter model decreases when the phase ranges from 120

to 240 , where the maximum relative error increases to nearly
5%. The reason is that the level of nonlinearity increases when
the reflection coefficient enters into this area, and the density
of the load–pull model is not high enough to provide sufficient
prediction accuracy in this region. If we want to obtain better ac-
curacy, we have to increase the density of the load–pull model.
The new -dependent model provides us with more accurate
and more robust prediction throughout all the sample points.
In addition to the comparison of the model simulation results,

the parameter count for each model is also compared here. From
Table III we can see that the new -dependent model greatly
reduces the number of model parameters, and this will greatly
decrease the model file size.
The modeling technique can be easily extended to include

the harmonic frequencies, and a multi-harmonic example is
also provided here. The same Cree 45-W transistor is used
with an input power of 41 dBm—which corresponds to a
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TABLE III
PARAMETER NUMBERS FROM DIFFERENT MODELS

Fig. 16. Smith chart showing second harmonic simulated load points.

10 dB of gain compression—and the bias condition is the
same as the former example. The fundamental reflection coef-
ficient , the magnitude of the second harmonic
reflection coefficient, , equals 0.8, while the reflection co-
efficients of all remaining harmonics are set to 0. The simulated
load points are shown in Fig. 16.
Taking the -dependent QPHD model as an example, the

expression of the reflected second harmonic wave in this case
becomes

(22)

Fig. 17. Simulation results of the load points group.

Fig. 18. Mesuro nonlinear measurements system.

The simulation results are shown in Fig. 17. From the figure,
we can see that both -dependent models i.e., the QPHD and
PADE 11/11 models, provide us very accurate predictions.

B. Experimental Measurements
Experimental test results are also provided in order to val-

idate the proposed behavioral modeling technique. The Cree
GaN 10-W transistor was measured here. The device is oper-
ated at 1.5 GHz and excited by a 35-dBm large signal at the
input of the device. The gate and drain are biased at 3 and
28 V, respectively. The compression level is 2.8 dB. The test
bench used here is a Mesuro nonlinear measurements system,
as shown in Fig. 18. In this example, the magnitude of the re-
flection of the load points chosen is 0.9, and the phase varies
around the center point, with 72 points in total.
The results are shown in Fig. 19. The quantity compared here

is the fundamental output voltage at Port 2. From the results,
we can see that the new models, both the -dependent Padé
11/11 model (red stars in online version) and the -depen-
dent QPHD model (magenta cross in online version) provide
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Fig. 19. Measured and modeled results of the load points from
the 10-W transistor.

Fig. 20. Relative errors of different modeled results of the load
points.

Fig. 21. Amplitude of the incident fundamental wave at Port 2, , at the
load condition with 35-dBm input power at 1.5 GHz.

good prediction, the modeled results matching the measured re-
sults very well. Although the magnitudes of the reflection co-
efficients at the measured points have a small deviation from
the specified value of 0.9, the accuracy of the models is still

very good, which shows the strong prediction ability of the new
modeling technique.
In Fig. 20, the relative errors of the two different -de-

pendent models are shown. From this figure, we can see that
the relative errors are much smaller than 2% both from QPHD
model and Padé 11/11 model over most of the chosen points.
Fig. 21 shows the amplitude of the incident fundamental wave
at Port 2, , at the example load points with 35-dBm input
power at 1.5 GHz. From this figure, we can see that the variation
of the is high, approximately from 2.4 to 7, which shows
the strong nonlinearity under the chosen load conditions. Even
with such strongly nonlinear operation, both models provide us
with good prediction, which proves the powerful capability of
the new modeling technique in handling strong nonlinearity.

IV. CONCLUSION
A new frequency-domain -dependent model has been

presented and validated. This new modeling technique can
be introduced into both a Padé behavioral model and a PHD
model. A simple and efficient model extraction methodology
has been provided, reducing the load–pull model from a 2-D
sweep to a 1-D sweep. Examples based on the -dependent
Padé and QPHD models, beyond a multi-harmonic example,
were also given. The performance of both models has been
studied, and both simulated and experimentally measured
results showed that the proposed new modeling technique
provides high-level and reliable accuracy. Compared with the
traditional load–pull -parameter model, the new modeling
technique not only gives better and more consistent accuracy,
but also has a much smaller model file size.
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