
Title On the use of Gene Dependency to Avoid Deceptive Traps

Authors(s) Nicolau, Miguel, Ryan, Conor

Publication date 2002-07-13

Publication information Nicolau, Miguel, and Conor Ryan. “On the Use of Gene Dependency to Avoid Deceptive Traps.”

AAAI, 2002.

Conference details Genetic and Evolutionary Computation Conference (GECCO 2002), New York, USA, 9-13 July

2002

Publisher AAAI

Item record/more

information

http://hdl.handle.net/10197/8296

Downloaded 2024-03-28T04:02:09Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=On+the+use+of+Gene+Dependency+to+Avoi...&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F8296

On the use of gene dependenyto avoid deeptive trapsMiguel NiolauC.S.I.S. DepartmentUniversity of LimerikIrelandMiguel.Niolau�ul.ie Conor RyanC.S.I.S. DepartmentUniversity of LimerikIrelandConor.Ryan�ul.ieAbstratThis paper presents a new approah to the�eld of geneti algorithms, based on the in-trodution of dependeny between genes, asinspired by Grammatial Evolution. A sys-tem based on that approah, LINKGAUGE,is presented, and results reported show howthe dependeny between genes reates a tightlinkage, guiding the system to suess onhard deeptive linkage problems.1 INTRODUCTIONSine they were �rst introdued, geneti algorithms(Holland, 1975; Goldberg, 1989) have been onsideredgood general problem solvers, and have been applied tomany problems, showing their exibility. In the stan-dard approah, an individual onsists of a string ofvalues, and operators are provided to ombine thosevalues, so that building bloks are onstruted andombined to form solutions. However, no mehanismexists to ensure a linkage between the values of thosebloks (Goldberg, Deb, Korb, 1991); if using standardgeneti operators, this leads to an easy disruption ofthose bloks, and to an inability to sale-up eÆiently.Aording to (Goldberg, Deb, Thierens, 1993), a su-essful algorithm should not only onentrate on theprodution of building bloks, but also on maintainingand exhanging those bloks between individuals.In reent years, muh work has been done on ahievinga tighter linkage between genes, and a family of algo-rithms alled ompetent GAs has emerged; these havebeen largely based on the idea enoding both the po-sition and the value of eah element of an individual.These algorithms have proven to be suessful whenapplied to hard deeptive linkage problems.

In this paper, we present a new system, LINKGAUGE,whih uses the idea of funtional dependeny betweengenes to takle the lass of deeptive linkage problems.This system is an extension of GAUGE (Geneti Al-gorithms Using Grammatial Evolution), a system in-trodued in (Ryan, Niolau, O'Neill, 2002) and basedon the idea of position independene for the values en-oded by eah gene; GAUGE, in turn, uses many of theideas behind Grammatial Evolution (Ryan, Collins,O'Neill, 1998; O'Neill, Ryan, 2001).Our aim is to investigate the e�et of gene dependenywhen takling hard deeptive linkage problems. To doso, we apply LINKGAUGE to two problems of thislass, and ompare it to the original GAUGE systemand to the standard messy geneti algorithm (Gold-berg, Korb, Deb, 1989). Our results show by ompar-ison that not only the new system solves the problemspresented, but it is faster, sales better, and requiresless hardware resoures than the messyGA.2 GRAMMATICAL EVOLUTIONGrammatial Evolution (GE) is an evolutionary al-gorithm approah to automati program generation,whih evolves strings of binary values, and uses a BNFgrammar to map these into programs. This map-ping involves transforming the binary individual intoa string of integer values, and then using those valuesto hoose transformations from the grammar, to mapa start symbol into a syntatially orret program.The main nature-inspired features used in GE are:� genotype to phenotype mapping;� degenerate geneti ode;� funtional dependeny between genes.The genotype to phenotype mapping proess is ap-plied as follows: a string of binary values (genotype)

Protein

Amino
Acids

RNA

DNA

Integer String

Binary String

Terminals

Rules

Binary String

Integer String

Positions
and Values

T
R

A
N

SC
R

IP
T

IO
N

T
R

A
N

SL
A

T
IO

N

Biological System GE GAUGE

Phenotypic Effect Program Binary StringFigure 1: Genotype to Phenotype mappingis evolved, and, before being evaluated, is subjeted toa mapping proess to reate a program (phenotype),whih is then evaluated by the �tness funtion.The degenerate geneti ode also plays a role in theperformane of GE (O'Neill, Ryan, 1999); sine themod funtion is used to map eah integer to a �nitenumber of grammar rules, di�erent integers an seletthe same rule. The genotype an therefore be modi�edwithout a�eting the phenotype.Finally, the funtion of eah value in the integer stringdepends on those preeding it, as they determine whihnon-terminal symbols remain to be mapped. Thisreates a linkage between eah gene on the hromo-some and those that preede it, helping the individualpreserve good building bloks during the evolutionaryproess, when subjeted to the harsh e�ets of genetioperators. This has been termed the \Ripple E�et"(Keijzer et al., 2001).3 GAUGEGAUGE is based on many of the same ideas behind theimplementation of GE. It too uses a genotype to phe-notype mapping proess: an individual is omposedof a binary sequene (genotype) whih, one ready forevaluation, is mapped onto a string of integers, whihare deoded as a series of (position, value) pairs to�nally build a new binary string (phenotype), readyto be evaluated. Figure 1 illustrates this proess, andompares it to GE's analogy to moleular biology.The degenerate geneti ode is also seen in GAUGE:

as in GE, the integer string is enoded using 8 bits pergene, and the mod funtion maps the resulting valueonto the range of aepted values, resulting in di�erentbit ombinations enoding the same integer.When mapping a (position, value) pair onto the pheno-type string, and to avoid over and under-spei�ation,GAUGE uses the priniple of funtional dependenybetween genes: eah position referene depends onthose preeding it, reating a left side dependeny asin GE, and a tight linkage between all genes in eahindividual. This proess is explained in Setion 3.1.Sine the position and value of eah bit of the pheno-type string are expressed on eah gene, geographiallydisparate values of the phenotype an be grouped to-gether on the genotype. This leads to the reation oftight building bloks at the start of the genome thatan be gradually grown by the evolutionary proess.Work by Bean (Bean, 1994) with the Random KeysGeneti Algorithm (RKGA) hinted that a tight linkagebetween genes would result in a smoother transitionbetween parents and o�spring, therefore respeting thelinkage between the values within the genotype.3.1 EXAMPLE GAUGE MAPPINGLet us take the following binary string as an example:0110 0111 0001 0100 0111 1001 0010 0011The �rst step is to map it onto an integer string. Forthe purpose of larity, we will use only four bits toenode eah integer, and therefore end up with:6 7 1 4 7 9 2 3This string represents a sequene of four (position,value) pairs, and will be used to �ll a string of four bits(phenotype). We take the �rst position, 6, and modit onto the number of available positions in the �nalstring (i.e., 4), obtaining 6 % 4 = 2 (the third posi-tion in the phenotype string). In a similar way, we mapthe value of that pair (7) into a binary value: 7 % 2 =1. Finally we plae this value on the phenotype string:? ? 1 ?With the next pair, (1,4), we again map the positiononto the number of available positions, in this ase 3,whih gives us 1 % 3 = 1 (seond free position), andnormalize the value 4 onto a binary value (4 % 2 = 0):? 0 1 ?

With the pair (7,9), we map the position 7 onto thenumber of remaining positions: 7 % 2 = 1 (seondfree position, i.e. the last position in the string); andmap the value 9 onto a binary value, 9 % 2 = 1:? 0 1 1Finally, with the last pair, we map the position 2 ontothe number of remaining plaes (1), giving the value 2% 1 = 0, and plae the value 3 % 2 = 1 in it. Notethat the last position will always be mapped onto value0, sine there is only one free position left in the �-nal individual. Our phenotype string will therefore be:1 0 1 13.2 EARLY RESULTSIn (Ryan, Niolau, O'Neill, 2002), GAUGE was ap-plied to a standard geneti algorithm problem and adeeptive ordering problem. On the former, it per-formed as well as a simple GA, showing that its map-ping proess does not a�et its performane in simpleproblems; on the latter, its (position,value) spei�a-tion provided a way of swapping elements in a solution,helping the system to avoid loal optima. The inter-ested reader is referred to the mentioned paper.4 LINKGAUGEThe idea behind LINKGAUGE is to extend the genedependeny, seen in GAUGE when mapping positionsof the phenotype string, to the mapping of the on-tents of that string. This is done by introduing adependeny of eah gene-spei�ed value on the gene-spei�ed values preeding it: when a value is plaed onthe phenotype string, it is alulated by adding all theprevious value �elds in eah (position, value) pair, andnormalizing the result to the range of aepted values.The value eah gene enodes an be alulated by:(nXi=0 xi)%vwheren = order of the gene (i.e. gene 0, gene 1, et)xi = number in value �eld for gene iv = value to normalize (for binary strings, 2 is used)It should be noted that, theoretially, any funtionould be used to introdue this dependeny; furtherresearh will analyze the suitability of other funtions.

4.1 EXAMPLE LINKGAUGE MAPPINGFollowing the GAUGE mapping example, the pair(6,7) will generate the same string as before:? ? 1 ?With the next pair, however, the value is alulated by(7+4) % 2 = 1 (the sum of the previous value �eldsmapped to the binary range). The position is the sameas before (1 % 3 = 1), so we end up with the string:? 1 1 ?In the next pair, the value is alulated by (7+4+9) %1, giving the value 0, and the �nal value is alulatedby (7+4+9+3) % 1 = 1. The �nal string will be:1 1 1 0The objetive of this mapping is to reate a tight link-age between the values enoded by eah gene. Thepreviously mentioned "Ripple E�et" is therefore ex-tended to the values within the genes themselves.5 EXPERIMENTAL RESULTSWe tested our system with an order-three deeptiveproblem and an order-�ve deeptive problem (Gold-berg, Deb, Kargupta, Harik, 1993), with string lengthsof 30 through 105 bits, and ompared our system to theoriginal GAUGE system and the standard messyGA.The original GAUGE system failed to �nd a solutionfor any of the two problems; this shows that the exten-sion of gene dependeny to the spei�ation of bothpositions and values (as in LINKGAUGE) is ruialto the performane of the system on deeptive linkageproblems. We therefore analyze the results obtainedwith both LINKGAUGE and the messyGA (Figure 2).Results for the order-three problem show the messyGAperforming better with small string lengths, but los-ing performane as the problem gets harder, failingto �nd a solution with strings of 60-bits or more.LINKGAUGE, however, looses little performane asthe problem gets harder, showing its ability to sale-up to an inreasing problem diÆulty.In the order-�ve problem, the messyGA failed to �nd asolution over a maximum set number of funtion alls,due to the diÆult nature of the problem. The resultsobtained with LINKGAUGE were, however, similarto those obtained in the order-three problem, suggest-ing that the extra deeptiveness of order-�ve problemsdoesn't have as strong an impat on its performane,thus underlining the sale-up properties of the system.

0

20

40

60

80

100

0 20000 40000 60000 80000 100000 120000 140000 160000

C
um

ul
at

iv
e

fr
eq

ue
nc

y
of

 s
uc

ce
ss

Fitness Evaluations

Order-three Subfunction - messyGA

30-bit
45-bit
60-bit
75-bit
90-bit

105-bit

0

20

40

60

80

100

0 20000 40000 60000 80000 100000 120000 140000 160000
C

um
ul

at
iv

e
fr

eq
ue

nc
y

of
 s

uc
ce

ss
Fitness Evaluations

Order-three Subfunction - LINKGAUGE

30-bit
45-bit
60-bit
75-bit
90-bit

105-bit

0

20

40

60

80

100

0 20000 40000 60000 80000 100000 120000 140000 160000

C
um

ul
at

iv
e

fr
eq

ue
nc

y
of

 s
uc

ce
ss

Fitness Evaluations

Order-five Subfunction - LINKGAUGE

30-bit
45-bit
60-bit
75-bit
90-bit

105-bit

Figure 2: Order-three results for messyGA (left) and LINKGAUGE (enter); the former failed to �nd anysolutions with string lengths of over 60 bits, whereas the latter is shown to sale better when using longerstrings. That salability is further illustrated with the results obtained for the order-�ve problem (right).6 CONCLUSIONS AND FUTUREWORKThe results obtained show how, by introduing depen-deny between the values enoded by eah gene on theGAUGE system, a tight linkage between the values ofthe genotype string is reated, whih helps the systemavoid hard deeptive linkage traps.Future work will involve a lose examination of thee�ets of gene dependeny on the evolution proess ofLINKGAUGE, and how the onstrution of buildingbloks is a�eted by this tehnique.ReferenesBean, J. 1994. Geneti Algorithms and Random Keysfor Sequening and Optimization. ORSA Journal onComputing, Vol. 6, No. 2, Spring 1994. (pp. 154-160)Goldberg, D. E. 1989. Geneti Algorithms in Searh,Optimization and Mahine Learning. Addison Wesley.Goldberg, D. E., Deb, K., Kargupta, H., and Harik,G. 1993. Rapid, Aurate Optimization of DiÆultProblems Using Fast Messy Geneti Algorithms. Illi-nois Geneti Algorithms Laboratory, report no. 93004.Goldberg, D. E., Deb, K, and Korb, B. 1991. Don'tWorry, be Messy. In Proeedings of ICGA'91, R. Belewand L. Booker, Eds., Morgan Kaufman. (pp. 24-30)Goldberg, D. E., Deb, K., and Thierens, D. 1993. To-

ward a Better Understanding of Mixing in Geneti Al-gorithms. Journal of the Soiety of Instrument andControl Engineers, Vol. 32, No. 1. (pp. 10-16)Goldberg, D. E., Korb, B., and Deb, K. 1989. Messygeneti algorithms: Motivation, analysis, and �rst re-sults. in Complex Systems, 3. (pp. 493-530)Holland, J. 1975. Adaptation in Natural and Arti�ialSystems. Ann Arbor, University of Mihigan Press.Keijzer M., Ryan C., O'Neill M., Cattolio M., andBabovi V. 2001. Ripple Crossover in Geneti Pro-gramming. In LNCS 2038, Proeedings of EuroGP2001, Springer. (pp. 74-86)O'Neill, M., and Ryan, C. 1999. Geneti Code Degen-eray: Impliations for Grammatial Evolution andBeyond. In ECAL'99: Proeedings of the Fifth Euro-pean Conferene on Arti�ial Life.O'Neill, M., and Ryan, C. 2001. Grammatial Evolu-tion. IEEE Transations on Evolutionary Computa-tion, Vol. 5, No. 4. (pp. 349-358)Ryan, C., Collins, J.J., and O'Neill, M. 1998. Gram-matial Evolution: Evolving Programs for an Arbi-trary Language. In LNCS 1391, Proeedings of Eu-roGP 98, Springer-Verlag. (pp. 83-95)Ryan, C., Niolau, M., and O'Neill, M. 2002. GenetiAlgorithms using Grammatial Evolution. In LNCS2278, Proeedings of EuroGP 2002, Springer-Verlag.(pp. 279-288)

