
Title On the use of Gene Dependency to Avoid Deceptive Traps

Authors(s) Nicolau, Miguel, Ryan, Conor

Publication date 2002-07-13

Publication information Nicolau, Miguel, and Conor Ryan. “On the Use of Gene Dependency to Avoid Deceptive Traps.”

AAAI, 2002.

Conference details Genetic and Evolutionary Computation Conference (GECCO 2002), New York, USA, 9-13 July

2002

Publisher AAAI

Item record/more

information

http://hdl.handle.net/10197/8296

Downloaded 2024-03-28T04:02:09Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=On+the+use+of+Gene+Dependency+to+Avoi...&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F8296

On the use of gene dependen
yto avoid de
eptive trapsMiguel Ni
olauC.S.I.S. DepartmentUniversity of Limeri
kIrelandMiguel.Ni
olau�ul.ie Conor RyanC.S.I.S. DepartmentUniversity of Limeri
kIrelandConor.Ryan�ul.ieAbstra
tThis paper presents a new approa
h to the�eld of geneti
 algorithms, based on the in-trodu
tion of dependen
y between genes, asinspired by Grammati
al Evolution. A sys-tem based on that approa
h, LINKGAUGE,is presented, and results reported show howthe dependen
y between genes
reates a tightlinkage, guiding the system to su

ess onhard de
eptive linkage problems.1 INTRODUCTIONSin
e they were �rst introdu
ed, geneti
 algorithms(Holland, 1975; Goldberg, 1989) have been
onsideredgood general problem solvers, and have been applied tomany problems, showing their
exibility. In the stan-dard approa
h, an individual
onsists of a string ofvalues, and operators are provided to
ombine thosevalues, so that building blo
ks are
onstru
ted and
ombined to form solutions. However, no me
hanismexists to ensure a linkage between the values of thoseblo
ks (Goldberg, Deb, Korb, 1991); if using standardgeneti
 operators, this leads to an easy disruption ofthose blo
ks, and to an inability to s
ale-up eÆ
iently.A

ording to (Goldberg, Deb, Thierens, 1993), a su
-
essful algorithm should not only
on
entrate on theprodu
tion of building blo
ks, but also on maintainingand ex
hanging those blo
ks between individuals.In re
ent years, mu
h work has been done on a
hievinga tighter linkage between genes, and a family of algo-rithms
alled
ompetent GAs has emerged; these havebeen largely based on the idea en
oding both the po-sition and the value of ea
h element of an individual.These algorithms have proven to be su

essful whenapplied to hard de
eptive linkage problems.

In this paper, we present a new system, LINKGAUGE,whi
h uses the idea of fun
tional dependen
y betweengenes to ta
kle the
lass of de
eptive linkage problems.This system is an extension of GAUGE (Geneti
 Al-gorithms Using Grammati
al Evolution), a system in-trodu
ed in (Ryan, Ni
olau, O'Neill, 2002) and basedon the idea of position independen
e for the values en-
oded by ea
h gene; GAUGE, in turn, uses many of theideas behind Grammati
al Evolution (Ryan, Collins,O'Neill, 1998; O'Neill, Ryan, 2001).Our aim is to investigate the e�e
t of gene dependen
ywhen ta
kling hard de
eptive linkage problems. To doso, we apply LINKGAUGE to two problems of this
lass, and
ompare it to the original GAUGE systemand to the standard messy geneti
 algorithm (Gold-berg, Korb, Deb, 1989). Our results show by
ompar-ison that not only the new system solves the problemspresented, but it is faster, s
ales better, and requiresless hardware resour
es than the messyGA.2 GRAMMATICAL EVOLUTIONGrammati
al Evolution (GE) is an evolutionary al-gorithm approa
h to automati
 program generation,whi
h evolves strings of binary values, and uses a BNFgrammar to map these into programs. This map-ping involves transforming the binary individual intoa string of integer values, and then using those valuesto
hoose transformations from the grammar, to mapa start symbol into a synta
ti
ally
orre
t program.The main nature-inspired features used in GE are:� genotype to phenotype mapping;� degenerate geneti

ode;� fun
tional dependen
y between genes.The genotype to phenotype mapping pro
ess is ap-plied as follows: a string of binary values (genotype)

Protein

Amino
Acids

RNA

DNA

Integer String

Binary String

Terminals

Rules

Binary String

Integer String

Positions
and Values

T
R

A
N

SC
R

IP
T

IO
N

T
R

A
N

SL
A

T
IO

N

Biological System GE GAUGE

Phenotypic Effect Program Binary StringFigure 1: Genotype to Phenotype mappingis evolved, and, before being evaluated, is subje
ted toa mapping pro
ess to
reate a program (phenotype),whi
h is then evaluated by the �tness fun
tion.The degenerate geneti

ode also plays a role in theperforman
e of GE (O'Neill, Ryan, 1999); sin
e themod fun
tion is used to map ea
h integer to a �nitenumber of grammar rules, di�erent integers
an sele
tthe same rule. The genotype
an therefore be modi�edwithout a�e
ting the phenotype.Finally, the fun
tion of ea
h value in the integer stringdepends on those pre
eding it, as they determine whi
hnon-terminal symbols remain to be mapped. This
reates a linkage between ea
h gene on the
hromo-some and those that pre
ede it, helping the individualpreserve good building blo
ks during the evolutionarypro
ess, when subje
ted to the harsh e�e
ts of geneti
operators. This has been termed the \Ripple E�e
t"(Keijzer et al., 2001).3 GAUGEGAUGE is based on many of the same ideas behind theimplementation of GE. It too uses a genotype to phe-notype mapping pro
ess: an individual is
omposedof a binary sequen
e (genotype) whi
h, on
e ready forevaluation, is mapped onto a string of integers, whi
hare de
oded as a series of (position, value) pairs to�nally build a new binary string (phenotype), readyto be evaluated. Figure 1 illustrates this pro
ess, and
ompares it to GE's analogy to mole
ular biology.The degenerate geneti

ode is also seen in GAUGE:

as in GE, the integer string is en
oded using 8 bits pergene, and the mod fun
tion maps the resulting valueonto the range of a

epted values, resulting in di�erentbit
ombinations en
oding the same integer.When mapping a (position, value) pair onto the pheno-type string, and to avoid over and under-spe
i�
ation,GAUGE uses the prin
iple of fun
tional dependen
ybetween genes: ea
h position referen
e depends onthose pre
eding it,
reating a left side dependen
y asin GE, and a tight linkage between all genes in ea
hindividual. This pro
ess is explained in Se
tion 3.1.Sin
e the position and value of ea
h bit of the pheno-type string are expressed on ea
h gene, geographi
allydisparate values of the phenotype
an be grouped to-gether on the genotype. This leads to the
reation oftight building blo
ks at the start of the genome that
an be gradually grown by the evolutionary pro
ess.Work by Bean (Bean, 1994) with the Random KeysGeneti
 Algorithm (RKGA) hinted that a tight linkagebetween genes would result in a smoother transitionbetween parents and o�spring, therefore respe
ting thelinkage between the values within the genotype.3.1 EXAMPLE GAUGE MAPPINGLet us take the following binary string as an example:0110 0111 0001 0100 0111 1001 0010 0011The �rst step is to map it onto an integer string. Forthe purpose of
larity, we will use only four bits toen
ode ea
h integer, and therefore end up with:6 7 1 4 7 9 2 3This string represents a sequen
e of four (position,value) pairs, and will be used to �ll a string of four bits(phenotype). We take the �rst position, 6, and modit onto the number of available positions in the �nalstring (i.e., 4), obtaining 6 % 4 = 2 (the third posi-tion in the phenotype string). In a similar way, we mapthe value of that pair (7) into a binary value: 7 % 2 =1. Finally we pla
e this value on the phenotype string:? ? 1 ?With the next pair, (1,4), we again map the positiononto the number of available positions, in this
ase 3,whi
h gives us 1 % 3 = 1 (se
ond free position), andnormalize the value 4 onto a binary value (4 % 2 = 0):? 0 1 ?

With the pair (7,9), we map the position 7 onto thenumber of remaining positions: 7 % 2 = 1 (se
ondfree position, i.e. the last position in the string); andmap the value 9 onto a binary value, 9 % 2 = 1:? 0 1 1Finally, with the last pair, we map the position 2 ontothe number of remaining pla
es (1), giving the value 2% 1 = 0, and pla
e the value 3 % 2 = 1 in it. Notethat the last position will always be mapped onto value0, sin
e there is only one free position left in the �-nal individual. Our phenotype string will therefore be:1 0 1 13.2 EARLY RESULTSIn (Ryan, Ni
olau, O'Neill, 2002), GAUGE was ap-plied to a standard geneti
 algorithm problem and ade
eptive ordering problem. On the former, it per-formed as well as a simple GA, showing that its map-ping pro
ess does not a�e
t its performan
e in simpleproblems; on the latter, its (position,value) spe
i�
a-tion provided a way of swapping elements in a solution,helping the system to avoid lo
al optima. The inter-ested reader is referred to the mentioned paper.4 LINKGAUGEThe idea behind LINKGAUGE is to extend the genedependen
y, seen in GAUGE when mapping positionsof the phenotype string, to the mapping of the
on-tents of that string. This is done by introdu
ing adependen
y of ea
h gene-spe
i�ed value on the gene-spe
i�ed values pre
eding it: when a value is pla
ed onthe phenotype string, it is
al
ulated by adding all theprevious value �elds in ea
h (position, value) pair, andnormalizing the result to the range of a

epted values.The value ea
h gene en
odes
an be
al
ulated by:(nXi=0 xi)%vwheren = order of the gene (i.e. gene 0, gene 1, et
)xi = number in value �eld for gene iv = value to normalize (for binary strings, 2 is used)It should be noted that, theoreti
ally, any fun
tion
ould be used to introdu
e this dependen
y; furtherresear
h will analyze the suitability of other fun
tions.

4.1 EXAMPLE LINKGAUGE MAPPINGFollowing the GAUGE mapping example, the pair(6,7) will generate the same string as before:? ? 1 ?With the next pair, however, the value is
al
ulated by(7+4) % 2 = 1 (the sum of the previous value �eldsmapped to the binary range). The position is the sameas before (1 % 3 = 1), so we end up with the string:? 1 1 ?In the next pair, the value is
al
ulated by (7+4+9) %1, giving the value 0, and the �nal value is
al
ulatedby (7+4+9+3) % 1 = 1. The �nal string will be:1 1 1 0The obje
tive of this mapping is to
reate a tight link-age between the values en
oded by ea
h gene. Thepreviously mentioned "Ripple E�e
t" is therefore ex-tended to the values within the genes themselves.5 EXPERIMENTAL RESULTSWe tested our system with an order-three de
eptiveproblem and an order-�ve de
eptive problem (Gold-berg, Deb, Kargupta, Harik, 1993), with string lengthsof 30 through 105 bits, and
ompared our system to theoriginal GAUGE system and the standard messyGA.The original GAUGE system failed to �nd a solutionfor any of the two problems; this shows that the exten-sion of gene dependen
y to the spe
i�
ation of bothpositions and values (as in LINKGAUGE) is
ru
ialto the performan
e of the system on de
eptive linkageproblems. We therefore analyze the results obtainedwith both LINKGAUGE and the messyGA (Figure 2).Results for the order-three problem show the messyGAperforming better with small string lengths, but los-ing performan
e as the problem gets harder, failingto �nd a solution with strings of 60-bits or more.LINKGAUGE, however, looses little performan
e asthe problem gets harder, showing its ability to s
ale-up to an in
reasing problem diÆ
ulty.In the order-�ve problem, the messyGA failed to �nd asolution over a maximum set number of fun
tion
alls,due to the diÆ
ult nature of the problem. The resultsobtained with LINKGAUGE were, however, similarto those obtained in the order-three problem, suggest-ing that the extra de
eptiveness of order-�ve problemsdoesn't have as strong an impa
t on its performan
e,thus underlining the s
ale-up properties of the system.

0

20

40

60

80

100

0 20000 40000 60000 80000 100000 120000 140000 160000

C
um

ul
at

iv
e

fr
eq

ue
nc

y
of

 s
uc

ce
ss

Fitness Evaluations

Order-three Subfunction - messyGA

30-bit
45-bit
60-bit
75-bit
90-bit

105-bit

0

20

40

60

80

100

0 20000 40000 60000 80000 100000 120000 140000 160000
C

um
ul

at
iv

e
fr

eq
ue

nc
y

of
 s

uc
ce

ss
Fitness Evaluations

Order-three Subfunction - LINKGAUGE

30-bit
45-bit
60-bit
75-bit
90-bit

105-bit

0

20

40

60

80

100

0 20000 40000 60000 80000 100000 120000 140000 160000

C
um

ul
at

iv
e

fr
eq

ue
nc

y
of

 s
uc

ce
ss

Fitness Evaluations

Order-five Subfunction - LINKGAUGE

30-bit
45-bit
60-bit
75-bit
90-bit

105-bit

Figure 2: Order-three results for messyGA (left) and LINKGAUGE (
enter); the former failed to �nd anysolutions with string lengths of over 60 bits, whereas the latter is shown to s
ale better when using longerstrings. That s
alability is further illustrated with the results obtained for the order-�ve problem (right).6 CONCLUSIONS AND FUTUREWORKThe results obtained show how, by introdu
ing depen-den
y between the values en
oded by ea
h gene on theGAUGE system, a tight linkage between the values ofthe genotype string is
reated, whi
h helps the systemavoid hard de
eptive linkage traps.Future work will involve a
lose examination of thee�e
ts of gene dependen
y on the evolution pro
ess ofLINKGAUGE, and how the
onstru
tion of buildingblo
ks is a�e
ted by this te
hnique.Referen
esBean, J. 1994. Geneti
 Algorithms and Random Keysfor Sequen
ing and Optimization. ORSA Journal onComputing, Vol. 6, No. 2, Spring 1994. (pp. 154-160)Goldberg, D. E. 1989. Geneti
 Algorithms in Sear
h,Optimization and Ma
hine Learning. Addison Wesley.Goldberg, D. E., Deb, K., Kargupta, H., and Harik,G. 1993. Rapid, A

urate Optimization of DiÆ
ultProblems Using Fast Messy Geneti
 Algorithms. Illi-nois Geneti
 Algorithms Laboratory, report no. 93004.Goldberg, D. E., Deb, K, and Korb, B. 1991. Don'tWorry, be Messy. In Pro
eedings of ICGA'91, R. Belewand L. Booker, Eds., Morgan Kaufman. (pp. 24-30)Goldberg, D. E., Deb, K., and Thierens, D. 1993. To-

ward a Better Understanding of Mixing in Geneti
 Al-gorithms. Journal of the So
iety of Instrument andControl Engineers, Vol. 32, No. 1. (pp. 10-16)Goldberg, D. E., Korb, B., and Deb, K. 1989. Messygeneti
 algorithms: Motivation, analysis, and �rst re-sults. in Complex Systems, 3. (pp. 493-530)Holland, J. 1975. Adaptation in Natural and Arti�
ialSystems. Ann Arbor, University of Mi
higan Press.Keijzer M., Ryan C., O'Neill M., Cattoli
o M., andBabovi
 V. 2001. Ripple Crossover in Geneti
 Pro-gramming. In LNCS 2038, Pro
eedings of EuroGP2001, Springer. (pp. 74-86)O'Neill, M., and Ryan, C. 1999. Geneti
 Code Degen-era
y: Impli
ations for Grammati
al Evolution andBeyond. In ECAL'99: Pro
eedings of the Fifth Euro-pean Conferen
e on Arti�
ial Life.O'Neill, M., and Ryan, C. 2001. Grammati
al Evolu-tion. IEEE Transa
tions on Evolutionary Computa-tion, Vol. 5, No. 4. (pp. 349-358)Ryan, C., Collins, J.J., and O'Neill, M. 1998. Gram-mati
al Evolution: Evolving Programs for an Arbi-trary Language. In LNCS 1391, Pro
eedings of Eu-roGP 98, Springer-Verlag. (pp. 83-95)Ryan, C., Ni
olau, M., and O'Neill, M. 2002. Geneti
Algorithms using Grammati
al Evolution. In LNCS2278, Pro
eedings of EuroGP 2002, Springer-Verlag.(pp. 279-288)

