Research Repository UCD

Title On the use of Gene Dependency to Avoid Deceptive Traps

Authors(s) Nicolau, Miguel, Ryan, Conor

Publication date 2002-07-13

Publication information Nicolau, Miguel, and Conor Ryan. “On the Use of Gene Dependency to Avoid Deceptive Traps.”
AAAI, 2002.

Conference details Genetic and Evolutionary Computation Conference (GECCO 2002), New York, USA, 9-13 July
2002

Publisher AAAI

Item record/more http://hdl.handle.net/10197/8296

information

Downloaded 2024-03-28T04:02:09Z

The UCD community has made this article openly available. Please share how this access
benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information


https://twitter.com/intent/tweet?via=ucd_oa&text=On+the+use+of+Gene+Dependency+to+Avoi...&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F8296

On the use of gene dependency
to avoid deceptive traps

Miguel Nicolau
C.S.I.S. Department
University of Limerick
Ireland
Miguel.Nicolau@ul.ie

Abstract

This paper presents a new approach to the
field of genetic algorithms, based on the in-
troduction of dependency between genes, as
inspired by Grammatical Evolution. A sys-
tem based on that approach, LINKGAUGE,
is presented, and results reported show how
the dependency between genes creates a tight
linkage, guiding the system to success on
hard deceptive linkage problems.

1 INTRODUCTION

Since they were first introduced, genetic algorithms
(Holland, 1975; Goldberg, 1989) have been considered
good general problem solvers, and have been applied to
many problems, showing their flexibility. In the stan-
dard approach, an individual consists of a string of
values, and operators are provided to combine those
values, so that building blocks are constructed and
combined to form solutions. However, no mechanism
exists to ensure a linkage between the values of those
blocks (Goldberg, Deb, Korb, 1991); if using standard
genetic operators, this leads to an easy disruption of
those blocks, and to an inability to scale-up efficiently.

According to (Goldberg, Deb, Thierens, 1993), a suc-
cessful algorithm should not only concentrate on the
production of building blocks, but also on maintaining
and exchanging those blocks between individuals.

In recent years, much work has been done on achieving
a tighter linkage between genes, and a family of algo-
rithms called competent GAs has emerged; these have
been largely based on the idea encoding both the po-
sition and the value of each element of an individual.
These algorithms have proven to be successful when
applied to hard deceptive linkage problems.

Conor Ryan
C.S.I.S. Department
University of Limerick
Ireland
Conor.Ryan@Qul.ie

In this paper, we present a new system, LINKGAUGE,
which uses the idea of functional dependency between
genes to tackle the class of deceptive linkage problems.
This system is an extension of GAUGE (Genetic Al-
gorithms Using Grammatical Evolution), a system in-
troduced in (Ryan, Nicolau, O’Neill, 2002) and based
on the idea of position independence for the values en-
coded by each gene; GAUGE, in turn, uses many of the
ideas behind Grammatical Evolution (Ryan, Collins,
O’Neill, 1998; O’Neill, Ryan, 2001).

Our aim is to investigate the effect of gene dependency
when tackling hard deceptive linkage problems. To do
so, we apply LINKGAUGE to two problems of this
class, and compare it to the original GAUGE system
and to the standard messy genetic algorithm (Gold-
berg, Korb, Deb, 1989). Our results show by compar-
ison that not only the new system solves the problems
presented, but it is faster, scales better, and requires
less hardware resources than the messyGA.

2 GRAMMATICAL EVOLUTION

Grammatical Evolution (GE) is an evolutionary al-
gorithm approach to automatic program generation,
which evolves strings of binary values, and uses a BNF
grammar to map these into programs. This map-
ping involves transforming the binary individual into
a string of integer values, and then using those values
to choose transformations from the grammar, to map
a start symbol into a syntactically correct program.

The main nature-inspired features used in GE are:

e genotype to phenotype mapping;
e degenerate genetic code;

e functional dependency between genes.

The genotype to phenotype mapping process is ap-
plied as follows: a string of binary values (genotype)



Biological System GE GAUGE
zZ
g DNA mm Binary String Binary String
o
A ' '
3
é RNA M/\ Integer String Integer String
B '

Amino

z . Rules
5 (R
> Positions
@ ‘ ‘ and Values
z
<
04
|_

Phenotypic Effect Program Binary String

Figure 1: Genotype to Phenotype mapping

is evolved, and, before being evaluated, is subjected to
a mapping process to create a program (phenotype),
which is then evaluated by the fitness function.

The degenerate genetic code also plays a role in the
performance of GE (O’Neill, Ryan, 1999); since the
mod function is used to map each integer to a finite
number of grammar rules, different integers can select
the same rule. The genotype can therefore be modified
without affecting the phenotype.

Finally, the function of each value in the integer string
depends on those preceding it, as they determine which
non-terminal symbols remain to be mapped. This
creates a linkage between each gene on the chromo-
some and those that precede it, helping the individual
preserve good building blocks during the evolutionary
process, when subjected to the harsh effects of genetic
operators. This has been termed the “Ripple Effect”
(Keijzer et al., 2001).

3 GAUGE

GAUGE is based on many of the same ideas behind the
implementation of GE. It too uses a genotype to phe-
notype mapping process: an individual is composed
of a binary sequence (genotype) which, once ready for
evaluation, is mapped onto a string of integers, which
are decoded as a series of (position, value) pairs to
finally build a new binary string (phenotype), ready
to be evaluated. Figure 1 illustrates this process, and
compares it to GE’s analogy to molecular biology.

The degenerate genetic code is also seen in GAUGE:

as in GE, the integer string is encoded using 8 bits per
gene, and the mod function maps the resulting value
onto the range of accepted values, resulting in different
bit combinations encoding the same integer.

When mapping a (position, value) pair onto the pheno-
type string, and to avoid over and under-specification,
GAUGE uses the principle of functional dependency
between genes: each position reference depends on
those preceding it, creating a left side dependency as
in GE, and a tight linkage between all genes in each
individual. This process is explained in Section 3.1.

Since the position and value of each bit of the pheno-
type string are expressed on each gene, geographically
disparate values of the phenotype can be grouped to-
gether on the genotype. This leads to the creation of
tight building blocks at the start of the genome that
can be gradually grown by the evolutionary process.

Work by Bean (Bean, 1994) with the Random Keys
Genetic Algorithm (RKGA) hinted that a tight linkage
between genes would result in a smoother transition
between parents and offspring, therefore respecting the
linkage between the values within the genotype.

3.1 EXAMPLE GAUGE MAPPING

Let us take the following binary string as an example:

0110 0111 0001 0100 0111 1001 0010 0011

The first step is to map it onto an integer string. For
the purpose of clarity, we will use only four bits to
encode each integer, and therefore end up with:

67147923

This string represents a sequence of four (position,
value) pairs, and will be used to fill a string of four bits
(phenotype). We take the first position, 6, and mod
it onto the number of available positions in the final
string (i.e., 4), obtaining 6 % 4 = 2 (the third posi-
tion in the phenotype string). In a similar way, we map
the value of that pair (7) into a binary value: 7 % 2 =
1. Finally we place this value on the phenotype string:

77 17

With the next pair, (1,4), we again map the position
onto the number of available positions, in this case 3,
which gives us 1 % 3 = 1 (second free position), and
normalize the value 4 onto a binary value (4 % 2 = 0):

? 017



With the pair (7,9), we map the position 7 onto the
number of remaining positions: 7 % 2 = 1 (second
free position, i.e. the last position in the string); and
map the value 9 onto a binary value, 9 % 2 = 1:

7 011

Finally, with the last pair, we map the position 2 onto
the number of remaining places (1), giving the value 2
% 1 = 0, and place the value 3 % 2 = 1 in it. Note
that the last position will always be mapped onto value
0, since there is only one free position left in the fi-
nal individual. Our phenotype string will therefore be:

1011

3.2 EARLY RESULTS

In (Ryan, Nicolau, O’Neill, 2002), GAUGE was ap-
plied to a standard genetic algorithm problem and a
deceptive ordering problem. On the former, it per-
formed as well as a simple GA, showing that its map-
ping process does not affect its performance in simple
problems; on the latter, its (position,value) specifica-
tion provided a way of swapping elements in a solution,
helping the system to avoid local optima. The inter-
ested reader is referred to the mentioned paper.

4 LINKGAUGE

The idea behind LINKGAUGE is to extend the gene
dependency, seen in GAUGE when mapping positions
of the phenotype string, to the mapping of the con-
tents of that string. This is done by introducing a
dependency of each gene-specified value on the gene-
specified values preceding it: when a value is placed on
the phenotype string, it is calculated by adding all the
previous value fields in each (position, value) pair, and
normalizing the result to the range of accepted values.
The value each gene encodes can be calculated by:

(Z azi)%v

where

n = order of the gene (i.e. gene 0, gene 1, etc)

x; = number in value field for gene i

v = value to normalize (for binary strings, 2 is used)

It should be noted that, theoretically, any function
could be used to introduce this dependency; further
research will analyze the suitability of other functions.

4.1 EXAMPLE LINKGAUGE MAPPING

Following the GAUGE mapping example, the pair
(6,7) will generate the same string as before:

? 7 17

With the next pair, however, the value is calculated by
(7+4) % 2 = 1 (the sum of the previous value fields
mapped to the binary range). The position is the same
as before (1 % 3 = 1), so we end up with the string:

? 117

In the next pair, the value is calculated by (7+4+9) %
1, giving the value 0, and the final value is calculated
by (7+4+9+3) % 1 = 1. The final string will be:

1110

The objective of this mapping is to create a tight link-
age between the values encoded by each gene. The
previously mentioned ”Ripple Effect” is therefore ex-
tended to the values within the genes themselves.

5 EXPERIMENTAL RESULTS

We tested our system with an order-three deceptive
problem and an order-five deceptive problem (Gold-
berg, Deb, Kargupta, Harik, 1993), with string lengths
of 30 through 105 bits, and compared our system to the
original GAUGE system and the standard messyGA.

The original GAUGE system failed to find a solution
for any of the two problems; this shows that the exten-
sion of gene dependency to the specification of both
positions and values (as in LINKGAUGE) is crucial
to the performance of the system on deceptive linkage
problems. We therefore analyze the results obtained
with both LINKGAUGE and the messyGA (Figure 2).

Results for the order-three problem show the messyGA
performing better with small string lengths, but los-
ing performance as the problem gets harder, failing
to find a solution with strings of 60-bits or more.
LINKGAUGE, however, looses little performance as
the problem gets harder, showing its ability to scale-
up to an increasing problem difficulty.

In the order-five problem, the messyGA failed to find a
solution over a maximum set number of function calls,
due to the difficult nature of the problem. The results
obtained with LINKGAUGE were, however, similar
to those obtained in the order-three problem, suggest-
ing that the extra deceptiveness of order-five problems
doesn’t have as strong an impact on its performance,
thus underlining the scale-up properties of the system.



Order-three Subfunction - messyGA

Order-three Subfunction - LINKGAUGE

Order-five Subfunction - LINKGAUGE

100 T . 100 100
8 —— - 80 |- 80
V—
~
2 2 2 ¥
8 8 8 ¥
8 8 ; 8 ;
S 6ot 30-bit —+— | S 6ot 30-bit —+— | E : 30-bit —+— |
2 45-bit —-x-—- 2 45-bit —--x-—- 2 ; 45-bit —--x-—-
2 60-bit ------ 2 60-bit ------ 2 * 60-bit ------
9 75-bit -8 g 75-bit -8 g % 75-bit -8
g 90-bit - 8 90-bit - 8 i 90-bit =~
z 105-bit - z 105-bit - 2 ! 105-bit -
g g g %
= = = %
2 2 s 2 ¥
g 4w £ 4 S 4 [
H H H i
£ 5 5 %
3 3 8] ;
¥ o
x
¥
¥ Fy
20 |- R 20 |- - 20 |- i
' :
| o x *
-~ i
g i A
i 4 . o et
i [PEORUSRTURRR N R - e Iy o J_.r
; ; H o =
o bz ® L L L L 0 s P 0 LA L L L
0 20000 40000 60000 80000 100000 120000 140000 160000 0 20000 40000 60000 80000 100000 120000 140000 160000 0 20000 40000 60000 80000 100000 120000 140000 160000

Fitness Evaluations

Fitness Evaluations

Fitness Evaluations

Figure 2: Order-three results for messyGA (left) and LINKGAUGE (center); the former failed to find any
solutions with string lengths of over 60 bits, whereas the latter is shown to scale better when using longer
strings. That scalability is further illustrated with the results obtained for the order-five problem (right).

6 CONCLUSIONS AND FUTURE
WORK

The results obtained show how, by introducing depen-
dency between the values encoded by each gene on the
GAUGE system, a tight linkage between the values of
the genotype string is created, which helps the system
avoid hard deceptive linkage traps.

Future work will involve a close examination of the
effects of gene dependency on the evolution process of
LINKGAUGE, and how the construction of building
blocks is affected by this technique.

References

Bean, J. 1994. Genetic Algorithms and Random Keys
for Sequencing and Optimization. ORSA Journal on
Computing, Vol. 6, No. 2, Spring 1994. (pp. 154-160)

Goldberg, D. E. 1989. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison Wesley.

Goldberg, D. E., Deb, K., Kargupta, H., and Harik,
G. 1993. Rapid, Accurate Optimization of Difficult
Problems Using Fast Messy Genetic Algorithms. Illi-
nois Genetic Algorithms Laboratory, report no. 93004.

Goldberg, D. E., Deb, K, and Korb, B. 1991. Don’t
Worry, be Messy. In Proceedings of ICGA’91, R. Belew
and L. Booker, Eds., Morgan Kaufman. (pp. 24-30)

Goldberg, D. E., Deb, K., and Thierens, D. 1993. To-

ward a Better Understanding of Mixing in Genetic Al-
gorithms. Journal of the Society of Instrument and
Control Engineers, Vol. 32, No. 1. (pp. 10-16)

Goldberg, D. E., Korb, B., and Deb, K. 1989. Messy
genetic algorithms: Motivation, analysis, and first re-
sults. in Complex Systems, 3. (pp. 493-530)

Holland, J. 1975. Adaptation in Natural and Artificial
Systems. Ann Arbor, University of Michigan Press.

Keijzer M., Ryan C., O’Neill M., Cattolico M., and
Babovic V. 2001. Ripple Crossover in Genetic Pro-
gramming. In LNCS 2038, Proceedings of FuroGP
2001, Springer. (pp. 74-86)

O’Neill, M., and Ryan, C. 1999. Genetic Code Degen-
eracy: Implications for Grammatical Evolution and
Beyond. In ECAL’99: Proceedings of the Fifth Euro-
pean Conference on Artificial Life.

O’Neill, M., and Ryan, C. 2001. Grammatical Evolu-
tion. IEEE Transactions on Evolutionary Computa-
tion, Vol. 5, No. 4. (pp. 349-358)

Ryan, C., Collins, J.J., and O’Neill, M. 1998. Gram-
matical Evolution: Evolving Programs for an Arbi-
trary Language. In LNCS 1391, Proceedings of Fu-
roGP 98, Springer-Verlag. (pp. 83-95)

Ryan, C., Nicolau, M., and O’Neill, M. 2002. Genetic
Algorithms using Grammatical Evolution. In LNCS
2278, Proceedings of FuroGP 2002, Springer-Verlag.
(pp. 279-288)



