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Abstract

Tackling the problem of eutrophication in fresh eratis at the top of the agenda for the
implementation of the Water Framework Directive (WHn Europe. The problem is caused
primarily by an increase in phosphorus loading faiffuse sources. Therefore there is a need
to apply appropriate measures, which are abledocethe phosphorus diffuse pollution, at a
catchment scale in each River Basin District (RB&9.the implementation of such measures
disturbs the existing system in the catchment iimigortant to be able to predict their impact
and this requires a reliable mathematical modekpresent the system. In this study, a new,
lumped catchment, methodology to improve on antiegjsdiffuse phosphorus pollution
model, the Grid Oriented Phosphorus Component (GOR®Gdel, is proposed. This
methodology consists of two elements; (i) 8@l Moisture Accounting and Routing (SMAR)
hydrological model was used to provide the requingdrological variables to the GOPC
model; and (ii) fuzzy logic rules were formulatedthwthe notion that each rule corresponds to
a sub-model representing a particular hydrologisahaviour in the catchment and the
combined results of all rules give the total reg@orSixteen modelling cases, each of which
uses different numbers of fuzzy sub-sets for thefath and the evaporation, were compared
for their discharge and total phosphorus (TP) satioihs in a catchment in Northern Ireland.
The comparison was based on the validation reaslithey allow testing the applicability of
the models for conditions different from those usedhe calibration period. Using 2 fuzzy
sub-sets for the rainfall and a single fuzzy subfee the evaporation produced the best
simulation for the discharge whereas the best TRilsition was obtained from the case of 4
rainfall fuzzy sub-sets and 3 evaporation fuzzy-sets.
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INTRODUCTION

The European Water Framework Directive (WFD) (ERGCQ0) has set a stringent target of
bringing all fresh water bodies in Europe to “gatdtus” by 2015. Therefore immediate action
is required to alleviate the existing pollution gseres and eutrophication of rivers and lakes, for
which phosphorus (P) pollution from diffuse soureg®she main culprit (Mainstone and Parr,
2002). Before choosing management measures isengal to predict their impact with the aid
of a catchment-scale mathematical model. Threedhygical variables, soil moisture, surface
runoff volume and baseflow volume have a directugrice on some of the bio-chemical
processes of the soil P cycle as well as the Bp@atation mechanisms. Therefore a P model
must always be accompanied by a hydrological mam@rovide values for these variables. A
wide range of mathematical models are readily afbéal for modelling the catchment system of
P diffuse sources pollution, e.g. SWAT (Arnold ét 4998), HSPF (Bicknell et al., 1997),
LASCAM (Viney et al., 2000), INCA-P (Wade et alQ@2), GOPC (Nasr et al., 2005). All these
simulate the temporal and spatial variations ofdbié P cycle variables using the principal of



mass balance. In addition, some sort of a hydragymanodel is incorporated to account for the
transport of P to the receiving water. Despite shiecessful application of these models to
catchments of different climatic, hydrologic, angr@chemical conditions none of them has
exhibited a consistent performance for all condsioFor instance the performance of a model
could vary from one catchment to another althougy tboth lie in the same region. Therefore
there is still scope for more experimental studeeglentify the factors determining the success
or failure of these models. One of these factotkasdegree of complexity required in the model
and, in particular, whether a fully distributed nreb@ required or whether extensions of lumped
models are adequate. This is explored in this pamperdeveloping a new methodology to
implement the Grid Oriented Phosphorus Compone@RG) model in a lumped manner. The
methodology consists of two elements; (i) using 8wl Moisture Accounting and Routing
(SMAR) model as a provider of the required hydratag variables to the GOPC; and (ii)
describing different sub-models using fuzzy logites to account for the effects of the temporal
variations in the processes. The following two ieest describe the basis of the GOPC and the
SMAR models. These are then followed by a desomptf the procedure by which the fuzzy
logic rules can be used in the modelling. The faste sections are devoted for describing the
study catchment, discussing the results, and ptiegethe conclusions

GOPC

The GOPC model (Nasr et al., 2005) is a generisphorus module developed to simulate the
processes in the soil P cycle and the transpontatialifferent P components over the land and
through the sub-surface. The soil P state varialbldhe GOPC consist of the soil soluble P
(SSP), the fresh organic P (FROP), the fixed og&(FXOP), the easily soluble inorganic P
(ESIP), and the fixed or insoluble inorganic P (FIPhe FROP represents the organic matter
that easily mineralised and it consists of the masuand the decayed plant and microbial
biomass. On the other hand the FXOP contains theubumaterial which mineralises slowly.
The inorganic P in the soil is divided into two &gy the ESIP and the FIP. With respect to the P
export in the GOPC model, the overland flow tramsptwo forms of P, dissolved P (DP) and
particulate P (PP), whereas the DP is the only foetivered by baseflow. The dynamic changes
in the soil storage of each state variable is desdrby a mass balance equation which relates
the input fluxes, the output fluxes, and the rateclvange of the storage. All mass balance
equations are solved simultaneously to obtain thssnof the each state variable at each time
step (Nasr, 2004).

SMAR

The model is a quasi-physical rainfall-runoff modelown as the layers model because a
procedure of moisture balancing between the rdjrdaaporation, and runoff is applied to the
soil storage which consists of a number of layerghis model, a water balance component is
connected with a flow routing component to create a@lequate conceptualization of the
hydrological processes involved in flow generatidsing a number of empirical and physically
plausible relationships, the non-linear water bagdarcomponent distributes the available
moisture between evaporation, soil storage andlawerunoff. The routing component of the
model simulates the flow of water across the lamdliaside the stream channels until it reaches
a controlling point where the discharge is measurée simulation accounts for attenuation and
wave diffusion of the runoff and baseflow volumegparately with different conservative linear
time-invariant elements. A number of modificatidosthe original structure of the model have



been introduced (Khan, 1986; Liang, 1992) and #test version by Tan and O’Connor (1996)
is used here.

FUZZY MODELLING APPROACH

Implementation of most of the existing catchmenteis is always preceded by a long process
of building a GIS database of information requideg such models. This might not be
appropriate when immediate answers are sought fremmodels. Therefore there should be a
type of models which requires minimum amount ofuingata and at the same time can provide
quick answers with similar degree of reliability tttose sophisticated models. In this study, a
fuzzy modelling approach is proposed as a way oldimg a model which uses only the
available time series of the input and output \deis to provide reliable estimates of the
discharge and total phosphorus (TP) load. The meghduzzy logic model has the structure of
an artificial neural network with five layers andrite is called a neuro-fuzzy model. This model
is an abstract of a rule-based or knowledge-bagstera consisting of three conceptual
components; (i) fuzzy logic; (ii) fuzzy decisiones; and (iii) fuzzy reasoning (Jang, 1997).

The function of the fuzzy logic component is to reent the uncertainty of assigning a
membership for any value of the system input artpudwariables to certain fuzzy sets of that
variable. To achieve this, a continuous and mudtigd logic membership function between 0
and 1 is defined for each of the fuzzy sets. THeevabtained from this function provides a
gualitative representation of the uncertainty inhsa way that the range between 0 and 0.5 can
be divided to encompass the various degrees oftamtty whereas the remaining range is made
for the various degrees of certainty.

The fuzzy decision rules consist of a number ofzyu#~-THEN rules. The antecedents or
premises of the IF-THEN rules define a fuzzy regabrthe input space while the output or the
consequent parameters specify the correspondimubuiEach of the IF-THEN rules describes
the local behaviour of the mapping between thetsjpnd the outputs of the system and in this
sense it can be interpreted as a sub-model of ti2 esystem. To perform the mapping an
appropriate mathematical model must be used. Téwhdige and TP load are the two targeted
variables in the modelling here. To obtain simalasi of these variables two models in a series
must be used. The first model generates the digelas its output and moreover it also produces
all the hydrological variables required by the setmodel which simulates the TP load.

In the fuzzy reasoning component, an inferenceqaore is implemented whereby outputs of all
the IF-THEN rules are combined and then transformgxcrisp values, if they were not already
so, to obtain the final outputs from the fuzzy mlode weighted average combination of the
individual outputs is applied in this case. Thegieigiven to the output of certain IF-THEN rule
is determined by multiplying the values of the furmaembership functions of the input variables
which constitute that rule.

STUDY CATCHMENT

All cases of the proposed model in this study wested by applying them to a 96 &m
catchment which is part of an International RBD aged collaboratively by the Republic of
Ireland and Northern Ireland. The dominant landingéis catchment is grassland which ranges
in quality from unimproved pasture to improved pastand intensively used silage meadows.
Significant areas of natural vegetation also eX@sttboniferous series sandstone and limestone
characterise the catchment geology while the s@krt of an extensive drumlin belt and is clay
rich and highly gleyed with low infiltration rates.



IMPLEMENTATION OF THE GOPC MODEL

The way in which the GOPC module has been formdlati®ws its use in conjunction with any
potential hydrological model that produces the nesgl variables. Nasr (2004) used the
SHETRAN model (Ewen et al. 2000) as a hydrologioaldel for the GOPC and applied them
along with other models to simulate the total Rlloathree catchments in Ireland. In his study,
each catchment was divided into square cells of t08ides and hence the model can be
considered as fully distributed. In contrast, tHeR& in this present study is used in conjunction
with the SMAR model and the study catchment is wed as a single lumped unit, however,
with the aid of IF-THEN fuzzy logic rules this lumg@ catchment configuration is transformed
into a combination of sub-models. Each sub-modslehaeparate set of parameters representing
different P transport behaviours that corresporaldifferent patterns of the two driving
variables, rainfall and evaporation. Therefore tbial number of parameterdNP,,,) which

require identification can be determined as follows
NPtotaI = (NPSMAR + NPGOPC )* NRL+ NPMF (1)

where:
NPy,ar - NUMber of parameters in the SMAR model;

NP,opc - NUMber of parameters in the GOPC model,

NRL : number of the fuzzy rules;
NP, : total number of parameters of all membership fions of the fuzzy sub-sets of the input

variables.

Table 1. Details of the fuzzy rule cases tested in thig\stu

Case Rainfall fuzzy sub-sets | Evaporation fuzzy sub-sets | Number of rules
1 1 1 1
2 1 2 2
3 1 3 3
4 1 4 4
5 2 1 2
6 2 2 4
7 2 3 6
8 2 4 8
9 3 1 3
10 3 2 6
11 3 3 9
12 3 4 12
13 4 1 4
14 4 2 8
15 4 3 12
16 4 4 16

There are 21 parameters in the GOPC model to mbeéellP load whereas SMAR uses 11
parameters to calculate the required hydrologieailables. Table 1 shows the number of fuzzy
rules in each modelling case tested in this stlithg. table also shows the number of fuzzy sub-
sets used for rainfall and evaporation. A two patam Gaussian function was used for each
membership function of the fuzzy sub-sets of thmuirvariables and as a result the total number
of parameters is twice the number of fuzzy sub-sBte problem of calibrating all the above



parameters is a non-linear one and was done wélGG#metic algorithm (GA) (Holland, 1975).
A global heuristic search method, the operationthef GA is broadly based on the Darwinian
theory of ‘survival of the fittest’, as potentiadlstions to a given optimisation problem contend
and ‘mate’ with each other to evolve improved sohs. The GA codes the parameter values as
genes in a chromosome and uses probabilistic taleslvance the search process. The starting
point for the operation of the GA is the randomegation of an initial population of parameter
sets. From this initial population, pairs of paréeng sets are randomly chosen depending on
their fitness evaluated on the basis of the valuth® selected objective function. The chosen
pairs are subsequently used to generate a new gimpulof parameters sets (i.e. the next
generation) utilising the genetic operators of Ssmver’ and ‘mutation’ to generate ‘offspring’.
The newly generated population is anticipated tdéier than the older one. The process of
generating new populations continues until a pexgied ‘stopping-criterion’ is fulfilled (e.g.
when the specified number of function evaluatiaeeached).

For each modelling case two groups of data wereired, The first group, which includes
rainfall, evaporation, and discharge, was useditoand calibrate the SMAR model. Similarly,
the second group, which includes the estimated ammobi inorganic and organic fertiliser
application and the total Phosphorus (TP) loadhat datchment outlet, was also used in the
GOPC model. The available data covers the perioch f£/10/2001 up to 31/1/2003. The first
67% of the data was used in the model calibratibileathe remaining 33% was used to verify
the calibrated models. The Nash-Sutcliffe criteriBf) (Nash and Sutcliffe, 1970) was used to
compare the results of all the modelling cases.

Table 2. R? values of discharge (Q) and TP simulations by SV GOPC for all tested cases
of the fuzzy rules

Case Q/SMAR TP/GOPC
Calibration | Verification | Rank | Calibration | Verification Rank
1 80.49 73.21 2 67.20 42.62 5
2 80.12 66.24 10 68.48 41.31 6
3 81.01 64.91 13 66.18 4.86 15
4 80.96 62.25 15 67.48 29.92 11
5 81.47 73.11 1 68.54 36.77 9
6 82.00 72.85 3 69.99 -22.25 16
7 82.87 65.35 12 72.01 13.21 13
8 81.28 66.44 9 69.38 37.38 8
9 81.68 65.64 11 69.55 34.67 10
10 81.92 70.01 4 69.96 53.75 2
11 81.11 69.88 5 69.59 38.17 7
12 81.63 67.06 8 71.80 6.84 14
13 74.82 62.12 16 49.98 48.15 4
14 81.93 67.10 7 69.46 17.44 12
15 81.94 63.89 14 71.55 54.05 1
16 82.64 68.87 6 69.40 48.79 3
RESULTS

In Table 2, the Rvalues for the SMAR and GOPC models during calibnaand verification in
each case of the fuzzy rules are given. The SMARItgindicate the performance of simulating



the discharge values at the catchment outlet whetlea GOPC values assess the TP load
simulation. The performances of all cases have bagked according to their verification results
since model validation is always crucial in deterimy the applicability of the model. If two or
more cases score similaf Ralues in validation, then their rank is deterrditiy their B values

in calibration. Two columns showing the rankingules for SMAR and GOPC are added in
Table 2.

Flow results

Cases 5 and 1 havé Ralues in validation of almost the same magnitideyever, the Rvalue

for case 5 in calibration outperforms the one fsecl. Therefore case 5 has been ranked the top
of the list. The best Rin calibration was obtained by case 7 but ifsifR validation was
considerably poor and relegates it td"Idosition in the ranking list. The worst Ralues in
calibration and validation are from case 13 andh vaiues are significantly lower than the ones
for the best case.

For the best case (case 5) 2 fuzzy sub-sets wetkfasthe rainfall while a single one was used
for the evaporation and this resulted in 2 sub-rfod@n the other hand, the worst case (case 7)
used 2 fuzzy sub-sets for the rainfall and 3 ferekiaporation.
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Figure 1. Plots of discharge (Q) and TP during validationdase 7

TP results

The R value of case 7 for TP is the best and this casealso the best for the flow. This is not a
surprising result because the flow simulation hafiract influence on the TP simulation and
hence in calibration the best results for bothalaés are obtained from the same case. For case
7 Fig. 1 shows plots of the observed and estimaa&es of the discharge and the TP during the
validation period. The graphs illustrate the gooerfgrmance of SMAR and GOPC in
reproducing the low values while there are somecieicies in their capturing some of the
peaks.



The ranking list for TP results is different frommetflow one. At the top of this list is case 15
which used 4 and 3 fuzzy sub-sets for the rairiatl evaporation respectively. In contrast Case
6 with 2 rainfall fuzzy sub-sets and 2 evaporafiarey sub-sets is at the bottom. It is obvious
that as many as 12 sub-models are required to atidguapture the variations in the processes
involved in the TP simulation by case 15. The diggk and TP plots of case 15 are presented in
Fig. 2. The hydrograph shapes do not much diffemfthose in Fig.1 for case 7. Likewise the
TP graphs for cases 7 and 15 have similar shapepefor the largest two peaks which have
been underestimated by the latter and overestinigteéde former. The differences in simulation
of thezlgrgest peaks explain the betténRlue for case 15 than the one for case 7.
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Figure 2. Plots of discharge (Q) and TP during validationdase 15

CONCLUSIONS

In this study, the SMAR model has been used wighGIOPC to simulate the discharge and TP
load at the outlet of a catchment in Northern indlaThe rainfall and evaporation inputs have
been represented in a fuzzy way. Different numbéfazzy sub-sets for both variables has been
used in sixteen different combinations and for ezminbination different fuzzy logic rules have
been formulated. The combination of the resultsliofules in each case has been interpreted as a
use of different sub-models representing varioudrdipgical behaviours. The results showed
that the best simulation for the discharge waseagld when using 2 fuzzy sub-sets for the
rainfall and a single sub-set for the evaporatfeor. the TP, the use of 4 rainfall sub-sets along
with 3 evaporation sub-sets was the best combimalibe results are generally encouraging and
they prove that the use of GOPC/SMAR along withefulogic rules is worthwhile when good
prediction of TP export has to be obtained andlg fistributed model, and the spatial database
it requires, is not available.
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