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Abstract 
Tackling the problem of eutrophication in fresh waters is at the top of the agenda for the 
implementation of the Water Framework Directive (WFD) in Europe. The  problem is caused 
primarily by an increase in phosphorus loading from diffuse sources. Therefore there is a need 
to apply appropriate measures, which are able to reduce the phosphorus diffuse pollution, at a 
catchment scale in each River Basin District (RBD). As the implementation of such measures 
disturbs the existing system in the catchment it is important to be able to predict their impact 
and this requires a reliable mathematical model to represent the system. In this study, a new, 
lumped catchment, methodology to improve on an existing diffuse phosphorus pollution 
model, the Grid Oriented Phosphorus Component (GOPC) model, is proposed. This 
methodology consists of two elements; (i) the Soil Moisture Accounting and Routing (SMAR) 
hydrological model was used to provide the required hydrological variables to the GOPC 
model; and (ii) fuzzy logic rules were formulated with the notion that each rule corresponds to 
a sub-model representing a particular hydrological behaviour in the catchment and the 
combined results of all rules give the total response. Sixteen modelling cases, each of which 
uses different numbers of fuzzy sub-sets for the rainfall and the evaporation, were compared 
for their discharge and total phosphorus (TP) simulations in a catchment in Northern Ireland. 
The comparison was based on the validation results as they allow testing the applicability of 
the models for conditions different from those used in the calibration period. Using 2 fuzzy 
sub-sets for the rainfall and a single fuzzy sub-set for the evaporation produced the best 
simulation for the discharge whereas the best TP simulation was obtained from the case of 4 
rainfall fuzzy sub-sets and 3 evaporation fuzzy sub-sets.  
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INTRODUCTION 
The European Water Framework Directive (WFD) (EEC, 2000) has set a stringent target of 
bringing all fresh water bodies in Europe to “good status” by 2015. Therefore immediate action 
is required to alleviate the existing pollution pressures and eutrophication of rivers and lakes, for 
which phosphorus (P) pollution from diffuse sources is the main culprit (Mainstone and Parr, 
2002). Before choosing management measures it is essential to predict their impact with the aid 
of a catchment-scale mathematical model. Three hydrological variables, soil moisture, surface 
runoff volume and baseflow volume have a direct influence on some of the bio-chemical 
processes of the soil P cycle as well as the P transportation mechanisms. Therefore a P model 
must always be accompanied by a hydrological model to provide values for these variables. A 
wide range of mathematical models are readily available for modelling the catchment system of 
P diffuse sources pollution, e.g. SWAT (Arnold et al., 1998), HSPF (Bicknell et al., 1997), 
LASCAM (Viney et al., 2000), INCA-P (Wade et al., 2002), GOPC (Nasr et al., 2005). All these 
simulate the temporal and spatial variations of the soil P cycle variables using the principal of 



mass balance. In addition, some sort of a hydrodynamic model is incorporated to account for the 
transport of P to the receiving water. Despite the successful application of these models to 
catchments of different climatic, hydrologic, and agro-chemical conditions none of them has 
exhibited a consistent performance for all conditions. For instance the performance of a model 
could vary from one catchment to another although they both lie in the same region. Therefore 
there is still scope for more experimental studies to identify the factors determining the success 
or failure of these models. One of these factors is the degree of complexity required in the model 
and, in particular, whether a fully distributed model is required or whether extensions of lumped 
models are adequate. This is explored in this paper, by developing a new methodology to 
implement the Grid Oriented Phosphorus Component (GOPC) model in a lumped manner. The 
methodology consists of two elements; (i) using the Soil Moisture Accounting and Routing 
(SMAR) model as a provider of the required hydrological variables to the GOPC; and (ii) 
describing different sub-models using fuzzy logic rules to account for the effects of the temporal 
variations in the processes. The following two sections describe the basis of the GOPC and the 
SMAR models. These are then followed by a description of the procedure by which the fuzzy 
logic rules can be used in the modelling. The last three sections are devoted for describing the 
study catchment, discussing the results, and presenting the conclusions 
 
GOPC 
The GOPC model (Nasr et al., 2005) is a generic phosphorus module developed to simulate the 
processes in the soil P cycle and the transportation of different P components over the land and 
through the sub-surface. The soil P state variables in the GOPC consist of the soil soluble P 
(SSP), the fresh organic P (FROP), the fixed organic P (FXOP), the easily soluble inorganic P 
(ESIP), and the fixed or insoluble inorganic P (FIP). The FROP represents the organic matter 
that easily mineralised and it consists of the manures, and the decayed plant and microbial 
biomass. On the other hand the FXOP contains the humus material which mineralises slowly. 
The inorganic P in the soil is divided into two types, the ESIP and the FIP. With respect to the P 
export in the GOPC model, the overland flow transports two forms of P, dissolved P (DP) and 
particulate P (PP), whereas the DP is the only form delivered by baseflow. The dynamic changes 
in the soil storage of each state variable is described by a mass balance equation which relates 
the input fluxes, the output fluxes, and the rate of change of the storage. All mass balance 
equations are solved simultaneously to obtain the mass of the each state variable at each time 
step (Nasr, 2004). 
 
SMAR 
The model is a quasi-physical rainfall-runoff model known as the layers model because a 
procedure of moisture balancing between the rainfall, evaporation, and runoff is applied to the 
soil storage which consists of a number of layers. In this model, a water balance component is 
connected with a flow routing component to create an adequate conceptualization of the 
hydrological processes involved in flow generation. Using a number of empirical and physically 
plausible relationships, the non-linear water balance component distributes the available 
moisture between evaporation, soil storage and overland runoff. The routing component of the 
model simulates the flow of water across the land and inside the stream channels until it reaches 
a controlling point where the discharge is measured. The simulation accounts for attenuation and 
wave diffusion of the runoff and baseflow volumes separately with different conservative linear 
time-invariant elements. A number of modifications to the original structure of the model have 



been introduced (Khan, 1986; Liang, 1992) and the latest version by Tan and O’Connor (1996) 
is used here.  
 
FUZZY MODELLING APPROACH 
Implementation of most of the existing catchment models is always preceded by a long process 
of building a GIS database of information required by such models. This might not be 
appropriate when immediate answers are sought from the models. Therefore there should be a 
type of models which requires minimum amount of input data and at the same time can provide 
quick answers with similar degree of reliability to those sophisticated models. In this study, a 
fuzzy modelling approach is proposed as a way of building a model which uses only the 
available time series of the input and output variables to provide reliable estimates of the 
discharge and total phosphorus (TP) load. The proposed fuzzy logic model has the structure of 
an artificial neural network with five layers and hence is called a neuro-fuzzy model. This model 
is an abstract of a rule-based or knowledge-based system consisting of three conceptual 
components; (i) fuzzy logic; (ii) fuzzy decision rules; and (iii) fuzzy reasoning (Jang, 1997). 
The function of the fuzzy logic component is to represent the uncertainty of assigning a 
membership for any value of the system input and output variables to certain fuzzy sets of that 
variable. To achieve this, a continuous and multi-valued logic membership function between 0 
and 1 is defined for each of the fuzzy sets. The value obtained from this function provides a 
qualitative representation of the uncertainty in such a way that the range between 0 and 0.5 can 
be divided to encompass the various degrees of uncertainty whereas the remaining range is made 
for the various degrees of certainty. 
The fuzzy decision rules consist of a number of fuzzy IF-THEN rules. The antecedents or 
premises of the IF-THEN rules define a fuzzy region of the input space while the output or the 
consequent parameters specify the corresponding output. Each of the IF-THEN rules describes 
the local behaviour of the mapping between the inputs and the outputs of the system and in this 
sense it can be interpreted as a sub-model of the entire system. To perform the mapping an 
appropriate mathematical model must be used. The discharge and TP load are the two targeted 
variables in the modelling here. To obtain simulations of these variables two models in a series 
must be used. The first model generates the discharge as its output and moreover it also produces 
all the hydrological variables required by the second model which simulates the TP load. 
In the fuzzy reasoning component, an inference procedure is implemented whereby outputs of all 
the IF-THEN rules are combined and then transformed into crisp values, if they were not already 
so, to obtain the final outputs from the fuzzy model. A weighted average combination of the 
individual outputs is applied in this case. The weight given to the output of certain IF-THEN rule 
is determined by multiplying the values of the fuzzy membership functions of the input variables 
which constitute that rule.   
 
STUDY CATCHMENT 
All cases of the proposed model in this study were tested by applying them to a 96 km2 
catchment which is part of an International RBD managed collaboratively by the Republic of 
Ireland and Northern Ireland. The dominant land use in this catchment is grassland which ranges 
in quality from unimproved pasture to improved pasture and intensively used silage meadows. 
Significant areas of natural vegetation also exist. Carboniferous series sandstone and limestone 
characterise the catchment geology while the soil is part of an extensive drumlin belt and is clay 
rich and highly gleyed with low infiltration rates.  



 
IMPLEMENTATION OF THE GOPC MODEL 
The way in which the GOPC module has been formulated allows its use in conjunction with any 
potential hydrological model that produces the required variables. Nasr (2004) used the 
SHETRAN model (Ewen et al. 2000) as a hydrological model for the GOPC and applied them 
along with other models to simulate the total P load in three catchments in Ireland. In his study, 
each catchment was divided into square cells of 100 m sides and hence the model can be 
considered as fully distributed. In contrast, the GOPC in this present study is used in conjunction 
with the SMAR model and the study catchment is considered as a single lumped unit, however, 
with the aid of IF-THEN fuzzy logic rules this lumped catchment configuration is transformed 
into a combination of sub-models. Each sub-model has a separate set of parameters representing 
different P transport behaviours that corresponds to different patterns of the two driving 
variables, rainfall and evaporation. Therefore the total number of parameters ( totalNP ) which 

require identification can be determined as follows: � � MFGOPCSMARtotal NPNRLNPNPNP �� *       (1) 

where:  

SMARNP : number of parameters in the SMAR model; 

GOPCNP : number of parameters in the GOPC model; 

NRL : number of the fuzzy rules; 

MFNP : total number of parameters of all membership functions of the fuzzy sub-sets of the input 
variables. 
 
Table 1. Details of the fuzzy rule cases tested in this study 

Case Rainfall fuzzy sub-sets Evaporation fuzzy sub-sets Number of rules 
1 1 1 1 
2 1 2 2 
3 1 3 3 
4 1 4 4 
5 2 1 2 
6 2 2 4 
7 2 3 6 
8 2 4 8 
9 3 1 3 
10 3 2 6 
11 3 3 9 
12 3 4 12 
13 4 1 4 
14 4 2 8 
15 4 3 12 
16 4 4 16 

   
There are 21 parameters in the GOPC model to model the TP load whereas SMAR uses 11 
parameters to calculate the required hydrological variables. Table 1 shows the number of fuzzy 
rules in each modelling case tested in this study. The table also shows the number of fuzzy sub-
sets used for rainfall and evaporation. A two parameter Gaussian function was used for each 
membership function of the fuzzy sub-sets of the input variables and as a result the total number 
of parameters is twice the number of fuzzy sub-sets. The problem of calibrating all the above 



parameters is a non-linear one and was done with the Genetic algorithm (GA) (Holland, 1975). 
A global heuristic search method, the operation of the GA is broadly based on the Darwinian 
theory of ‘survival of the fittest’, as potential solutions to a given optimisation problem contend 
and ‘mate’ with each other to evolve improved solutions. The GA codes the parameter values as 
genes in a chromosome and uses probabilistic rules to advance the search process. The starting 
point for the operation of the GA is the random generation of an initial population of parameter 
sets. From this initial population, pairs of parameters sets are randomly chosen depending on 
their fitness evaluated on the basis of the value of the selected objective function. The chosen 
pairs are subsequently used to generate a new population of parameters sets (i.e. the next 
generation) utilising the genetic operators of ‘crossover’ and ‘mutation’ to generate ‘offspring’. 
The newly generated population is anticipated to be better than the older one. The process of 
generating new populations continues until a pre-specified ‘stopping-criterion’ is fulfilled (e.g. 
when the specified number of function evaluations is reached). 
For each modelling case two groups of data were required. The first group, which includes 
rainfall, evaporation, and discharge, was used to run and calibrate the SMAR model. Similarly, 
the second group, which includes the estimated amount of inorganic and organic fertiliser 
application and the total Phosphorus (TP) load at the catchment outlet, was also used in the 
GOPC model. The available data covers the period from 1/10/2001 up to 31/1/2003. The first 
67% of the data was used in the model calibration while the remaining 33% was used to verify 
the calibrated models. The Nash-Sutcliffe criterion (R2) (Nash and Sutcliffe, 1970) was used to 
compare the results of all the modelling cases.  
 
Table 2. R2 values of discharge (Q) and TP simulations by SMAR and GOPC for all tested cases 
of the fuzzy rules 

Q/SMAR TP/GOPC Case 
Calibration Verification Rank Calibration Verification Rank 

1 80.49 73.21 2 67.20 42.62 5 
2 80.12 66.24 10 68.48 41.31 6 
3 81.01 64.91 13 66.18 4.86 15 
4 80.96 62.25 15 67.48 29.92 11 
5 81.47 73.11 1 68.54 36.77 9 
6 82.00 72.85 3 69.99 -22.25 16 
7 82.87 65.35 12 72.01 13.21 13 
8 81.28 66.44 9 69.38 37.38 8 
9 81.68 65.64 11 69.55 34.67 10 
10 81.92 70.01 4 69.96 53.75 2 
11 81.11 69.88 5 69.59 38.17 7 
12 81.63 67.06 8 71.80 6.84 14 
13 74.82 62.12 16 49.98 48.15 4 
14 81.93 67.10 7 69.46 17.44 12 
15 81.94 63.89 14 71.55 54.05 1 
16 82.64 68.87 6 69.40 48.79 3 

 
RESULTS 
In Table 2, the R2 values for the SMAR and GOPC models during calibration and verification in 
each case of the fuzzy rules are given. The SMAR results indicate the performance of simulating 



the discharge values at the catchment outlet whereas the GOPC values assess the TP load 
simulation. The performances of all cases have been ranked according to their verification results 
since model validation is always crucial in determining the applicability of the model. If two or 
more cases score similar R2 values in validation, then their rank is determined by their R2 values 
in calibration. Two columns showing the ranking results for SMAR and GOPC are added in 
Table 2. 
 
Flow results  
Cases 5 and 1 have R2 values in validation of almost the same magnitude, however, the R2 value 
for case 5 in calibration outperforms the one for case 1. Therefore case 5 has been ranked the top 
of the list. The best R2 in calibration was obtained by case 7 but its R2 in validation was 
considerably poor and relegates it to 11th position in the ranking list. The worst R2 values in 
calibration and validation are from case 13 and both values are significantly lower than the ones 
for the best case.  
For the best case (case 5) 2 fuzzy sub-sets were used for the rainfall while a single one was used 
for the evaporation and this resulted in 2 sub-models. On the other hand, the worst case (case 7) 
used 2 fuzzy sub-sets for the rainfall and 3 for the evaporation.  

 
Figure 1. Plots of discharge (Q) and TP during validation for case 7  
 
TP results 
The R2 value of case 7 for TP is the best and this case was also the best for the flow. This is not a 
surprising result because the flow simulation has a direct influence on the TP simulation and 
hence in calibration the best results for both variables are obtained from the same case. For case 
7 Fig. 1 shows plots of the observed and estimated values of the discharge and the TP during the 
validation period. The graphs illustrate the good performance of SMAR and GOPC in 
reproducing the low values while there are some deficiencies in their capturing some of the 
peaks.  



The ranking list for TP results is different from the flow one. At the top of this list is case 15 
which used 4 and 3 fuzzy sub-sets for the rainfall and evaporation respectively. In contrast Case 
6 with 2 rainfall fuzzy sub-sets and 2 evaporation fuzzy sub-sets is at the bottom. It is obvious 
that as many as 12 sub-models are required to adequately capture the variations in the processes 
involved in the TP simulation by case 15. The discharge and TP plots of case 15 are presented in 
Fig. 2. The hydrograph shapes do not much differ from those in Fig.1 for case 7. Likewise the 
TP graphs for cases 7 and 15 have similar shapes except for the largest two peaks which have 
been underestimated by the latter and overestimated by the former. The differences in simulation 
of the largest peaks explain the better R2 value for case 15 than the one for case 7.  

 
Figure 2. Plots of discharge (Q) and TP during validation for case 15  
 
CONCLUSIONS 
In this study, the SMAR model has been used with the GOPC to simulate the discharge and TP 
load at the outlet of a catchment in Northern Ireland. The rainfall and evaporation inputs have 
been represented in a fuzzy way. Different numbers of fuzzy sub-sets for both variables has been 
used in sixteen different combinations and for each combination different fuzzy logic rules have 
been formulated. The combination of the results of all rules in each case has been interpreted as a 
use of different sub-models representing various hydrological behaviours. The results showed 
that the best simulation for the discharge was achieved when using 2 fuzzy sub-sets for the 
rainfall and a single sub-set for the evaporation. For the TP, the use of 4 rainfall sub-sets along 
with 3 evaporation sub-sets was the best combination. The results are generally encouraging and 
they prove that the use of GOPC/SMAR along with fuzzy logic rules is worthwhile when good 
prediction of TP export has to be obtained and a fully distributed model, and the spatial database 
it requires, is not available. 
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