

Title	Tremor-rich shallow dyke formation followed by silent magma flow at Bárðarbunga in Iceland
Authors(s)	Eibl, Eva P. S., Bean, Christopher J., Vogfjörð, Kristín, Ying, Yingzi, Lokmer, Ivan, Möllhoff, Martin, O'Brien, G. S., Pálsson, Finur
Publication date	2017-04
Publication information	Eibl, Eva P. S., Christopher J. Bean, Kristín Vogfjörð, Yingzi Ying, Ivan Lokmer, Martin Möllhoff, G. S. O'Brien, and Finur Pálsson. "Tremor-Rich Shallow Dyke Formation Followed by Silent Magma Flow at Bárðarbunga in Iceland." Nature, April 2017. https://doi.org/10.1038/NGEO2906.
Publisher	Nature
Item record/more information	http://hdl.handle.net/10197/8740
Publisher's version (DOI)	10.1038/NGEO2906

Downloaded 2025-05-13 15:11:26

The UCD community has made this article openly available. Please share how this access benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

manuscript published in Nature Geoscience:

Eibl, E. P. S., Bean, C. J., Vogfjörd, K. S., Ying, Y., Lokmer, I., Möllhoff, M., O'Brien, G. S., Pálsson, F. (2017), Tremor-rich shallow dyke formation followed by silent magma flow at Bárdarbunga in Iceland, Nature Geoscience 10 (4), 299-304, DOI: 10.1038/NGEO2906

Tremor-rich shallow dyke formation followed by silent magma flow at Bárdarbunga in Iceland

Eva P. S. Eibl^{1,2,*} (eva.ps.eibl@hotmail.com), Christopher J. Bean^{1,2}, Kristín S. Vogfjörd³, Yingzi Ying^{1,2}, Ivan Lokmer¹, Martin Möllhoff^{1,2}, Gareth S. O'Brien⁴, Finnur Pálsson⁵ 1: School of Earth Sciences, University College Dublin, Belfield, Dublin 4, Ireland 2: now at: Geophysics Section, School of Cosmic Physics, Dublin Institute for Advanced Studies, 5 Merrion Square, Dublin 2, Ireland

3: Icelandic Meteorological Office, Bústaðavegi 7 - 9, 108 Reykjavík, Iceland

4: Tullow Oil, Leopardstown, Dublin 18, Ireland

5: Institute of Earth Sciences, University of Iceland, Askja, Building of Natural Sciences, Sturlugata 7, 101 Reykjavík, Iceland

1

The Bárdarbunga eruption in Iceland in 2014 and 2015 produced about $1.6 \pm 0.3 \text{ km}^3$ of lava. Magma propagated away from Bárdarbunga to a distance of 48 km in the sub-surface beneath Vatnajökull glacier, emerging a few kilometres beyond the glacier's northern rim. A puzzling observation is the lack of shallow (<3 km deep), high-frequency earthquakes associated with shallow dyke formation near the subaerial and subglacial eruptive sites, suggesting that near-surface dyke formation is seismically quiet. However, seismic array observations and seismic full wavefield simulations reveal the presence and nature of shallow, pre-eruptive, long-duration seismic tremor activity. Here we use analyses of seismic data to constrain the relationships between seismicity, tremor, dyke propagation and magma flow during the Bárðarbunga eruption. We show that although tremor is usually associated with magma flow in volcanic settings, pre-eruptive tremor at Bárdarbunga was probably caused by swarms of microseismic events during dyke formation, and hence is directly associated with fracturing of the upper 2-3 km of the crust. Subsequent magma flow in the newly formed shallow dyke was seismically silent, with almost a complete absence of seismicity or tremor. Hence, we suggest that the transition from temporarily isolated, large, deep earthquakes to many smaller, shallower, temporally overlapping earthquakes (< magnitude 2) that appear as continuous tremor announces the arrival of a dyke opening in the shallow crust, forming a pathway for silent magma flow to the Earth's surface.

Sustained seismic signals called seismic tremor are often associated with volcanic eruptions but the exact relationships may vary and are not well constrained. Traditionally tremor is thought to be directly linked to fluid movement in the sub-surface¹. Tremor models range from boiling related mechanisms to resonating cracks² or pipes³ to flow induced excitation and oscillation of the conduit walls⁴⁻⁶. More recent tremor models evoke repeating processes such as rock deformation/ faulting^{7;8} or merging low frequency events⁹ as a possible source of tremor. A common lack of tremor depth estimates and a variety of possible generation processes leave the interpretation of these pre-, syn- and post-eruptive signals open to large uncertainty.

2 Earthquakes Mark Dyke Propagation at Depth

Bárdarbunga volcano in Iceland is one of the most active volcanoes beneath Vatnajökull glacier and its recent activity offers an unique window into seismic tremor generation. From August 16^{th} , 2014 a dyke accompanied by 5 to 8 km deep earthquakes formed beneath Bárdarbunga volcano propagating initially in a SE direction. Propagation speeds and directions changed multiple times with an average direction towards the NNE migrating about 48 km in 11 days¹⁰. On August 29^{th} , 2014 a 4 hour long subaerial eruption started near the tip of the dyke 5 km north of the glacier rim. It stopped only to restart on the same fissure on August 31^{st} , 2014 continuing until February 27^{th} , 2015^{11} and producing 1.6 ± 0.3 km³ of lava¹². In addition, multiple subglacial eruptions were suspected between August 23^{rd} and September $5^{th\,13;14}$.

The propagation of the growing dyke in the subsurface was well tracked using earthquake locations at 5 to 8 km depth (figure 1). Despite the high levels of seismicity associated with dyke propagation at depth, levels of continuous tremor, often conceptually associated with magma flow, were low. Another remarkable observation is a lack of shallow (<3 km), high-frequency earthquakes during the entire sequence with most seismicity lying deeper than 5 km even at the eruptive site^{10;15}. The exceptional Bárdarbunga eruption was very well instrumented^{10;15;16} which allows us to constrain the relationships between seismicity, tremor, dyke propagation and magma flow.

3 Tremor Level During the Dyke Propagation

We assess the tremor level during dyke propagation and subglacial and subaerial eruptions using the Root Median Square (RMeS) calculated over 14.9 minute windows with 80% overlap. This represents the tremor amplitude better than Root Mean Square (RMS) as it filters out discrete earthquakes (figure 2b). A closer inspection of figure 1 reveals that some tremor pulses seem to temporally correlate with the initiation of dyke propagation. For example, dyke propagation stopped for 81 h from August 19th and one of the three strongest tremors occurred when it suddenly propagated further northwards on August 23^{rd} . A cauldron on the ice surface (C2 in figure 1) was observed, a few days later, to have formed above the dyke, suggesting that the dyke may have breached the shallow crust subglacially. However, some tremor pulses do not coincide with the initiation of dyke propagation/ faster magma flow (e.g. on August 20^{th}). These indicate that the pre-eruptive tremor source is not well correlated with the expected magma flow speed.

The sparse yet intense tremor activity on August 23^{rd} was the catalyst for the installation of a 7-station (3-component Güralp 6TDs, 30 s) seismic array at Urdarháls (UR in figure 1a) on August 30^{th} . Such arrays are well suited for tremor location¹⁷. The installation was completed between the 4 hour long subaerial fissure eruption of August

Figure 1: Earthquake locations show the propagation of the dyke at depth. (a) Dots indicate relocated earthquakes plotted in latitude and longitude from August 16^{th} until September 6^{th} , 2014 coloured according to depth (locations from figure $2c^{10}$). Grey straight lines indicate dyke segments¹⁰. Black stars mark the location of the fissures, the black triangle the location of the temporary seismometer DY3 on top of the dyke on August 30^{th} and the black inverted triangle the installation of the 7-station UR seismic array. Cyan squares C1-C3 mark cauldrons and therefore potential subglacial eruption sites. The inset shows UR and Vatnajökull glacier in Iceland. (b) The Root Median Square (RMeS) of the seismic data at station KRE from the Icelandic Meteorological Office (IMO) network (see figure 3 for the location) is shown filtered between 0.8 and 2.6 and between 2.6 and 5.0 Hz. (c) Dots, grey lines, black stars, black triangle and black inverted triangle as in a. Dashed and dotted vertical lines mark the start and end of an subaerial eruption, respectively. C1-C3 mark when cauldrons were first observed during flights, or identified in aerial photos, although they might have formed earlier (pers. comm. Hannah I. Reynolds & Magnús T. Gudmundsson, Feb. 2016).

Figure 2: Laterally moving and shallowing pre-eruptive tremor on September 3^{rd} , 2014. (a) Dots indicate the back azimuth coloured according to horizontal slowness. The red horizontal lines indicate times when the tremor stopped completely and cyan squares mark the back azimuth of cauldrons C1-C3. (b) RMS and RMeS averaged over the vertical component of all 7 stations in UR array. (c) Instrument corrected seismogram of the vertical component at station URA of UR array filtered between 0.4 and 2.6 Hz and (d) Amplitude spectrogram of subfigure c with a fast Fourier transform window length of 256 s.

 29^{th} and the 6 month long subaerial eruption from August 31^{st} (figure 1c). UR is 12 km from the fissure and gives us the opportunity to analyze the tremor in detail. We can see an increase in tremor especially around 1 Hz after August 31^{st} , which marks the beginning of the subaerial eruption and the beginning of syn-eruptive tremor. The back azimuth obtained from the array, clearly points towards the eruptive site whilst no concurrent tremor was detected along the 48 km long eruption-feeding dyke. However, we focus in the remainder of this study on the anomalously high pre-eruptive tremor with a different back azimuth on September 3^{rd} . We refer to it as pre-eruptive as it marks the site where a local, subglacial eruption was suspected based on cauldron formation between August 23^{rd} and September $5^{th-13;14}$. It is approximately 12 km south of the main ongoing subaerial eruption. Array analysis of this tremor is undertaken in order to understand its precise causative mechanism.

4 Shallowing of the Pre-eruptive Tremor Source

The tremor on September 3^{rd} started emergently around midnight and ended abruptly at 21:35 (figure 2). By 2:00 it was stronger than the syn-eruptive tremor from the ongoing subaerial eruption and had maximum amplitudes from 10:30 to 12:30 and from 18:30 to

20:30. The tremor was harmonic with a first faintly visible frequency band at 0.55 Hz and overtones at a spacing of approximately 0.25 Hz (figure 2d). During the whole tremor sequence most energy was concentrated around 1.3 Hz. Whilst the tremor amplitude changed only slightly during the first 5.5 h it waxed and waned still retaining its harmonic character from 9:00 and especially from 19:38 tremor entered a start-stop phase still showing harmonic frequency bands when present. It first stopped for 1.5 minutes at 15:49:29, then for 1.3 minutes at 17:16:59 and much more often from 19:38 when the longest gap was 10.3 minutes and the shortest about 7 seconds.

Temporal changes are also visible in the back azimuth and slowness at UR array (see Methods, ref.¹⁸ and figure 2a). The tremor back azimuth initially stabilized around 122° . From 3:30 it decreased to 119° and moved from there in steps to 128, 123 and 134° . Between the steps the back azimuth stabilised for time periods of up to 6 h. Slownesses increased from 0.57 to 0.75 s/km and correlated with the steps in back azimuth. Hence, we can determine that the tremor source shallowed and moved overall southwards in pulses over a 19 hour period.

The back projection along the estimated back azimuth (figure 3b) indicates that the tremor came from a region southeast of UR. We constrain the location horizontally by applying an amplitude location method (see Methods and refs.^{19;20}) using permanent stations in the area (triangles in figure 3b). The horizontal locations are spread in a NNE-SSW direction which is consistent with the elongation of the location error ellipse in that direction (not shown). We determine that the epicentre of the tremor is laterally consistent with the dyke location (as defined by relatively relocated earthquakes at 5 to 8 km depth¹⁰) and cauldron C1 to C3 locations. In this instance the tremor depth is not constrained by array analysis but is determined in the next section with the aid of full waveform numerical simulations (see supplementary figure 2e for a location precision test using a well located earthquake).

5 Tremor Models and Tremor Simulations

On closer inspection of the tremor there are seven important observations: (i) we find evidence of discrete events in the tremor that come from the same location as the tremor itself (marked with red arrows in figure 4a), (ii) temporal gaps indicate an erratic tremor generating process, (iii) there is a lack of sustained tremor from the dyke accompanying the persistent constant lava flow from the subaerial eruptive fissure after August 31^{st} , (iv) tremor is in some cases temporarily correlated with pulsations in dyke propagation, (v) the fastest dyke propagation (4.7 km/h) on August 23^{rd-15} does not coincide with the highest tremor amplitude (August 24^{th}) and further propagation speeds above 4.0 km/h on August 16^{th} and 18^{th-15} occur at times of very low tremor amplitudes. (vi) on September 3^{rd} the tremor source moves at least 3.1 km horizontally in 19 h and (vii) the tremor source moves upwards (shallows) with a prominent jump around 19:00.

As possible tremor generation processes here we consider fast flow of magma, repeating earthquakes and boiling activity. The boiling temperature of water at 2 km depth is about 350°C and 441°C under hydrostatic and lithostatic pressure conditions, respectively²¹. These temperatures are achievable given a temperature of more than 1100°C for the effusing lava²². However, for hydrothermal boiling we would expect that an increase in available water and decrease in pressure (upwards movement) would lead to an increase in observed tremor amplitude. Instead, with upward tremor migration the tremor amplitude

Figure 3: **Projected back azimuth and amplitude location of the pre-eruptive tremor.** (a) Location of UR in Iceland with respect to glaciers, the dyke (green lines) and the subaerial eruption site (red star). The insets show the geometry of UR and location of DY3 on August 30^{th} . (b) Amplitude location estimates of the tremor on September 3^{rd} 2014 are shown in the 3-4 Hz band. Lines indicate the mean back azimuth in each half hour coloured according to time. Dots indicate the best fit gridpoint in the amplitude distribution in each time window, coloured according to the minimum location error percentage. Site corrections as in supplementary table 1 were applied. Elevation in m a.s.l. based on data from the National Land Survey of Iceland. The inset shows the location of the cauldrons with respect to the back azimuth, in more detail.

dies down while gaps in the tremor become prominent.

We investigated the possibility of magma flow induced tremor generation using Julian's⁴ established fluid flow driven non-linear conduit excitation model. Model parameters were constrained by field measurements $^{10;22}$ (see Methods). The model was run using all possible combinations of these parameters. We found that for most combinations the system exhibits steady state behaviour without generating tremor. If present in the model, tremor frequencies are below 0.005 Hz for the field parameters used here, almost two orders of magnitude smaller than observed tremor frequencies. This is in accordance with Balmforth²³ who found that magma induced tremor from instability requires very narrow cracks and high flow velocities; conditions that are unlikely to be satisfied in general. Similar results on tremor generation were obtained from tests in the laboratory 6 and theoretical analysis⁵. In general, tremor could be generated in these models but only if the flow speed was high enough or the dimensions of the resonating body were adapted to fit the observed tremor frequencies. However, putting it in geological context, these models required either unrealistically high flow speeds or physical dimensions, for example for the resonating body, that were unrealistically $large^{6}$. Consequently, for example Hellweg⁵ concluded that if one of their models applies, then tremor was generated by the movement of water or gases and not by magma. Based on our above calculations and observations we explore a model of repeating microearthquake sources rather than flowing magma or hydrothermal boiling as an explanation for the observed tremor.

To investigate this model, synthetic tremor is generated with the aid of full wavefield numerical simulations in a realistic topographic and velocity model²⁴. Our velocity model is based on a published velocity model in the volcanic zone around Vatnajökull glacier²⁵ and small-scale refraction seismic studies on volcanoes^{26;27} (see figure 5a and Methods). We calculate full wavefield synthetic seismograms at all UR station locations for Ricker

Figure 4: **Comparison of real and synthetic tremor.** Synthetic tremor simulated by the convolution of a simulated microseismic (Ricker wavelet) event beneath C2 recorded at UR array with a quasi-comb function with a 4 s mean time spacing, 7% time spacing variation and an amplitude distribution derived from the real tremor. (a) Horizontal velocity seismogram of real field tremor between 14:00 and 15:00 where slownesses in figure 2a indicate that the tremor source is at 1 km depth at that time, (b) Same as subfigure a but for simulated tremor from a source at 0 km depth, (c) Same as subfigure b but for a source at 1 km depth and (f) Same as e but for a source at 1 km depth. All spectrograms are made with a fast Fourier transform window length of 32 s. Red arrows mark individual events in the real tremor, that are colocated with the tremor source.

wavelet sources at 0, 0.5, 1, 3 (see supplementary figure 3), 5, 7 and 10 km depth beneath cauldron C2, based on the field tremor epi-central location obtained from the amplitude and array analysis (figure 3). Depth values are with respect to the bedrock-ice interface. These synthetic seismograms are then convolved with a quasi-comb function with a mean spike spacing of 4 s in order to simulate tremor, as detailed in the Methods. As the mean spacing of the spikes in the comb is small in comparison to the duration of each single recorded synthetic event at UR's location, body and surface waves overlap producing a continuous tremor wavefield. Synthetic and real tremor can be compared in figure 4 and supplementary figure 4. Despite the sensitivity to the comb details and the wavelet, our synthetic waveforms and spectrograms are reasonably similar to observed tremor.

The resulting synthetic tremor was then analysed using array processing in order to constrain the depth of the real tremor based on slowness estimates. With decreasing source depth, median slownesses increase towards surface wave slownesses (figure 5b) as observed in reality (see figure 2a). The maximum depth of the tremor source is the one which corresponds to the lowest observed slowness (figure 5b). The simulations suggest that from 2:00 to 21:35 on September 3^{rd} the tremor source moved from 1.8 ± 0.3 km depth to less than 0.5 ± 0.4 km depth. This is supported by the observation that the final tremor slownesses are 0.75 s/km which is in the range of typical surface wave slownesses in Iceland and suggests a strong surface wave component. That the character of the

Figure 5: Tremor simulations indicate a tremor source depth of less than 2 km. (a) Velocity model for P and S waves in bedrock and ice in the volcanic zone around Vatnajökull (see Methods). (b) Median slownesses observed for synthetic tremor created with sources at different depths beneath cauldron C2. Grey horizontal lines mark the minimum and maximum slowness from array analysis of the tremor at UR array on September 3^{rd} , 2014. Light grey lines and black vertical lines mark the associated error in the slownesses (for details on the error estimation see section 7.1).

tremor changed following the final upwards movement (see figure 2d) supports a change in environment such as reaching the bedrock surface (beneath the ice). This is also consistent with our hypothesis that the tremor consists of closely spaced microseismicity and with a deepening of cauldron C2 on the ice surface that was observed on September $5^{th 13}$.

6 Tremor Marks Shallow Dyke Formation

A picture is emerging in which pre-eruptive tremor is associated with shallow dyke propagation but does not appear to be directly related to magma flow. Once the subaerial fissure opened no tremor is detected along the dyke feeding it. This observation is further supported by a short term deployment directly on an already formed surface fracture zone directly on/above the dyke (station DY3¹⁶, black triangle in Figure 1, figure 3a and supplementary figure 5). No tremor is evident.

Here we propose that (i) the propagation of dykes at depth (> ca. 3km) can be well constrained by seismicity rather than by tremor. (ii) Shallow dyke formation (< 3 km depth) occurs in a region with a lack of high-frequency earthquakes but is instead accompanied by pre-eruptive tremor. (iii) Pre-eruptive tremor is created by repeating microearthquakes that initiate when rock is fractured in shallow (< ca. 3 km) dyke formation – likely at dyke tips ahead of the arrival of 'first magma' in the dyke. (iv) Magma flows silently or might be accompanied by weak tremor below the detection threshold of normal instrumentation (at ca. 12 km distance in our case) in already formed dyke pathways. (v) A drop in high-frequency seismicity and onset of tremor can announce the arrival of a dyke forming magma pathway in the uppermost few kilometres of the crust shortly before an eruption. We hypothesise that the uppermost crust in the volcanic rift zone is too weak to sustain regular high-frequency earthquakes, but instead breaks through swarms of microseismic events, closely spaced in time and hence appears as continuous tremor at seismic stations. (vi) For shallow dyke formations, tremor can be used to deduce shallow (<3 km) dyke emplacement rates. We deduce an average dyke propagation rate of 0.22 km/h from 16 hours of lengthening, 1.8 km vertically and 3.1 km horizontally. Our rates are slightly lower than the rates observed elsewhere^{15;28-30} and are non-steady state. These interpretations find further support in the following observations:

(i) most dyke related seismicity was in the 5 to 8 km depth range according to results from the IMO permanent network¹⁰ and a temporary, more dense network¹⁵. However, shallowing seismicity at less than 5 km depth was observed around C1 and C2 before August 27^{th} (figure 1 and¹⁵).

(ii) we observed that jumps in tremor back azimuth coincide with increases in tremor amplitude (see figure 2a) including up to magnitude 2 events within the tremor (supplementary figure 6).

(iii) that magma can flow silently³¹, slowly changing flows can be aseismic³² and only channels with strong barriers cause tremor³¹ was found in earlier tremor studies.

Here we propose that pre-eruptive tremor is a marker for brittle failure in the weak upper 2-3 km of the crust and is therefore intimately related to near surface dyke-formation. In this scenario seismicity tells us about magma flow pathways at depth, whilst the transition to tremor indicates breakthrough to the uppermost crust. At Bárdarbunga once upper crustal dykes were formed they no longer produced tremor and 1.6 ± 0.3 km³ of magma ¹² flowed silently through the uppermost crust to eruption. As the Bárdarbunga eruption was an exceptionally well instrumented type-example of crustal growth with weak if any tremor along the magma feeding dyke, our observations help advance the interpretation of pre-eruptive tremor signals in rifting environments in general.

7 Methods

7.1 Frequency Wavenumber Analysis

As tremor has no clear P and S wave arrivals traditional travel time location methods cannot be used to locate tremor sources. In contrast, clusters of stations can be used to determine the back azimuth (the direction from which tremor waves are coming). Two or more such arrays allow a determination of the epicentral location of the source.

For the joint determination of back azimuth and slowness of a wave, both frequency domain methods $^{18;33;34}$ and time domain methods $^{35-37}$ and were compared $^{17;38}$. We perform a frequency wavenumber (FK) analysis with a moving time window 18 . The FK analysis is a beamforming method in the spectral domain that performs a grid search within a horizontal slowness grid (s_x and s_y)^{39;40}. In each time window the covariances of the Fourier transformed signal at each receiver pair are calculated. Phase delays of each plane wave described by the horizontal slowness grid are applied and the trace of the resulting covariance matrix is the cross spectral density. This is undertaken for every grid point and results in absolute power and semblance maps (ratio of the averaged power of the stacked trace and the stack of the average single trace powers) in the spectral domain with respect to the horizontal slownesses. The maximum value in these maps is determined and converted to back azimuth and slowness of the incoming wave using the angle and length of the vector from the origin to the maximum, respectively. The underlying assumptions include a plane wave front, coherent signal and incoherent noise.

Based on the array response function of our array we chose a horizontal slowness grid with a limit of ± 0.6 s/km and a stepsize which is one quarter the width of the main lobe at its half height. The stepsize depends on the number of stations and is, for our 7 stations, a minimum of 0.02 s/km. We remove trend, taper, instrument correct, filter between 0.8 and 2.6 Hz and decimate the vertical component of the data to a sampling frequency of 20 Hz. The recordings from all available stations in the array are then used in the array processing.

In order to process tremor the whole dataset is divided into one-hour-long time windows. For the array processing the time window is subdivided into 30% overlapping time windows that were 10 dominant periods long (5.88 s). In each of these windows the standard FK analysis¹⁸ is performed. The result is a time series of back azimuth, horizontal slowness, semblance and absolute power of the predominant signal in each time window. Changes in the back azimuths suggest a source movement, while a change in slowness reveals different phases arriving at the array (due to the source movement or the change in the wavefield character). We assess the dominant back azimuth with histograms with 0.8° wide bins and pick the maximum. One standard deviation of the back azimuth during September 3^{rd} is between 4 and 10° , depending on the signal to noise ratio. We derive the dominant slowness by calculating the median of the continuous tremor slowness. We require a lower limit for the semblance of 0.3 based on the characteristics of our data. The error in back azimuth and slowness is determined by calculating back azimuth and slowness for each point in the grid at which the power is above 95% of the maximum⁴¹. The standard deviation of the back azimuths and slownesses of all these points is shown as the error and is in the range of 3.5 to 5.5°. The errors associated with array analysis are linked among other things to the array geometry including array aperture, number of stations and interstation distances. The signal to noise ratio and noise level affect the coherency of the waveforms and therefore the error. Propagation factors like the ray paths

search and binning for the histograms induces further errors⁴¹.

Amplitude Location Method

7.2

We use ten stations from the IMO network around northwestern Vatnajökull in order to perform an amplitude based location method of the tremor. We subdivided the tremor into 30-minute-long time windows and detrended, instrument corrected, filtered and calculated the RMS of the seismograms. Since the amplitude location methods assume an isotropic radiation pattern from the source, it is desirable to perform the analysis at frequencies above 5 Hz where the path effect has scattered the waves, resulting in an isotropic radiation pattern⁴³. But since the signal strength strongly decreases above 2.6 Hz with only little energy remaining from 2.6 to 5 Hz we chose to filter the data between 3 and 4 Hz. We perform a grid search in 3D assuming propagating body waves and fit the amplitudes¹⁹ according to:

or reflections can also decrease the coherence across the array⁴². The time sampling, grid

$$\frac{I_i(r_i)}{I_j(r_j)} = e^{\frac{\pi \cdot f}{Q \cdot \beta} \cdot (r_j - r_i)} \cdot \left(\frac{r_j}{r_i}\right)$$
(7.1)

 I_i and I_j are the signal amplitudes at station *i* and *j*, r_i and r_j are the distance between the source and seismometer *i* and *j*, *f* is the dominant frequency of the signal, *Q* is the quality factor for attenuation and β is the S wave velocity in m/s. Performing the location assuming surface waves did not change the tremor location.

Further details of the method and tests performed with the amplitude-based location method can be found in other studies^{20;44}. It is shown that the method works well for events inside the network especially above 4 Hz and is only slightly affected by the chosen quality factor and velocities²⁰.

We did not manage to find enough usable teleseismic events within the analysed time period to calculate site correction factors using teleseismic coda due to a high level of seismicity from Bárdarbunga volcano and the dyke formation. Regional events could not be included due to a station spacing of 10 to 80 km. In order to estimate site correction factors we used locations of well constrained events beneath the cauldrons and in the dyke. Root Mean Square (RMS) amplitudes at the stations were estimated, normalized and plotted against the hypocentral distance from the station location. The amplitude distribution was then fit with an exponentially decaying curve assuming body wave decay as shown in supplementary figure 1. For the curve fit amplitudes from station KVE were discarded as they were too high for all events from the dyke region. This station was not excluded from the amplitude locations but has a very high site correction factor. Site correction factors for each station were then calculated by dividing the observed amplitudes by the amplitude expected from the curve fit averaged over all events.

Fitting the curve also gives an estimate for $(\pi \cdot f)/(Q \cdot \beta)$. As f and π are known it is possible to estimate $Q \cdot \beta$. Derived site correction factors from the best fitting curve in supplementary figure 1 and $Q \cdot \beta$ are shown in supplementary table 1.

7.3 Total Wavefield Simulations

We used a glacier surface and bedrock topography model in the western Vatnajökull region based on high resolution airborne LiDAR surveys or optical satellite images and radio-echo sounding profile on the glacier⁴⁵, respectively, in order to estimate the seismic path effects caused by the glacier. The models have a resolution of 50 m and 500 m, respectively. We used them to build a model of western Vatnajökull and run 3D full wavefield elastic simulations in SPECFEM3D⁴⁶ that encompasses 7 array stations and 9 IMO stations. We implemented the velocity model and densities as described below. 1 Hz Ricker wavelets are used as synthetic seismic sources. We assume observed double couple mechanisms¹⁰ and modelled the total seismic wavefield at 16 synthetic seismometer locations in the model.

7.3.1 Velocity Model

We studied published velocity models of the upper and lower crust in the volcanic zone around Vatnajökull glacier, Iceland. We excluded velocity models of the whole island or in regions of central volcanoes and tertiary rocks. The remaining models include two Askja velocity models of⁴⁷ and⁴⁸ and the velocities on the southern end of the⁴⁹ velocity model. We also included the velocity model calculated by²⁵, who reinterpreted the refraction profiles of⁵⁰ with a gradually increasing velocity gradient. The above mentioned velocity models are consistent in depth but P wave velocities near the surface range from 2 to 4 km/s. We expect this as the very near surface velocity structure is poorly constrained by regional scale refraction seismic experiments. We therefore studied the real slownesses of well located earthquakes. We simulated these slownesses in various velocity models and found that the model of²⁵ fits the best. But due to a station spacing of 1 to 4 km⁵⁰ the top few hundred metres are not well resolved which we constrained with small scale refraction studies on other volcanoes^{26;27}. We lowered the velocities in the first 200 m of the²⁵ model and created the velocity model shown in figure 5a. 0 km depth corresponds to the elevation of the bedrock-ice interface. We calculate v_s based on a Poisson ratio of 0.26 in the upper crust and 0.27 in the lower crust (⁵¹ and⁵⁰) and the density ρ according to⁵².

7.3.2 Ice Properties

Temperature profiles in the temperate Vatnajökull glacier measured 0°C at the surface, and -0.9°C at 1 km depth (pers. comm. Thorsteinn Thorsteinnsson, Tómas Jóhannesson, Feb. 2015). Various studies⁵³⁻⁵⁵ found that the P wave velocity in 0°C cold ice increases from 3.5 km/s at 100 m to 3.8 or 3.9 km/s at 600 m depth. This is consistent with values of 3.6 km/s measured at Grimsvötn volcano^{56;57}. We use the increase of v_p with depth as published in⁵⁴ as an approximation and calculate v_s based on a Poisson ratio of 0.33^{53;55}. Densities of 0.5 g/cm³ were measured at the surface and 0.9 g/cm³ at 40 m depth at 1790 m elevation at Hofsjökull glacier (pers. comm. Thorsteinn Thorsteinnsson, Feb. 2015). We use densities of 0.9 g/cm³ as published in⁵⁵ and⁵⁸.

7.3.3 Tremor Simulation

Tremor was simulated as a superposition of 'rapidly' repeating 'small' earthquakes. The timing and amplitude of these events were represented using comb-like functions. We derived a spike spacing of 4 s in the comb from harmonic frequency bands at a spacing of 0.25 Hz in the real tremor. We tested combs with various amplitude distributions and time spacing variations ranging from 2.5 to 20%. We show (i) a perfectly regular comb and (ii) a comb with a time spacing variation of $\pm 7\%$ and an amplitude distribution that follows the amplitude distribution of the real tremor. For the latter, histograms of the positive amplitudes of the real tremor seismograms were created with 10^{-7} m/s wide bins. We simulated tremor and counted the occurrence of each amplitude in order to demonstrate that we can recover the initially used amplitude distribution. The latter comb fits the real tremor best.

We then convolved the synthetic seismograms generated for a source location beneath cauldron C2 and a 1 Hz Ricker wavelet source time function at all UR station locations with a comb function in order to simulate one hour long tremors. We repeated this for events at seven different depths and for different combs. The resulting tremor was then processed like the real tremor. The observed seismograms/ amplitude spectrograms are shown in supplementary figure 4 for a perfectly regular comb. Figure 4 shows a comb with a time spacing variation of $\pm 7\%$ and an amplitude distribution that follows an amplitude distribution as observed in reality.

7.4 Numerical Modelling of Magma Flow

The possibility of tremor being generated by magma flow was investigated using the nonlinear excitation of a conduit by fluid flow model of Julian⁴. Here, a third order system of non-linear equations drives flow through a conduit which induces the surrounding wall oscillations feeding back into the flow via pressure. The model exhibits both stable flow where no tremor is generated and unstable flow which can excite continuous tremor. The model requires several input parameters which determines the frequency of tremor and whether the system is in the stable or unstable regime. A set of parameters constrained from field measurements were input into this model, see supplementary table 2. Since, the field measurements are highly variable, for each parameter, a lower, intermediate and upper bound value was chosen and the model was run using every possible combination of these parameters. Based on our velocity model we derived a rock density at 3 to 8 km depth of 2.64 to 2.79 g/cm⁻³. P wave velocities are 5288 to 6591 m/s and S wave velocities 3011 to 3700 m/s.

For most combinations, the system exhibits steady state behaviour and no tremor is generated. For examples where tremor is generated, the frequency is less than 0.005 Hz almost two orders of magnitude less than frequencies observed in our field data. Therefore, with these parameters constrained from field measurements, it is highly unlikely that the system will generate tremor with a frequency greater than 0.5 Hz. This result is consistent with other studies where is has been shown that these flow models for high viscosity, low flow rate fluids tend to be in the steady state regime^{5;6;23}.

7.5 Data availability statement

The seismic data that support the findings of this study are available via the website: 'http://futurevolc.vedur.is/'.

7.6 Code availability statement

The array processing was performed using the freely available Python toolbox ObsPy^{39;40}. Numerical full wavefield elastic simulations were carried out in SPECFEM3D⁴⁶. A selection of other codes are available through the corresponding author.

8 References

- [1] McNutt, S. R. Earth science: Volcanic tremor wags on. *Nature* **470**, 471–2 (2011).
- [2] Chouet, B. Dynamics of a fluid-driven crack in three dimensions by the finite difference method. Journal of Geophysical Research 91, 13967 (1986).
- [3] Chouet, B. Excitation of a Buried Magmatic Pipe: A Seismic Source Model for Volcanic Tremor. *Journal of Geophysical Research* **90**, 13 (1985).
- [4] Julian, B. R. Volcanic tremor: Nonlinear excitation by fluid flow. Journal of Geophysical Research 99, 11859–11877 (1994).
- [5] Hellweg, M. Physical models for the source of Lascar's harmonic tremor. Journal of Volcanology and Geothermal Research 101, 183–198 (2000).
- [6] Rust, A. C., Balmforth, N. J. & Mandre, S. The feasibility of generating lowfrequency volcano seismicity by flow through a deformable channel. *Geological Soci*ety, London, Special Publications **307**, 45–56 (2008).
- [7] Steel, C. Reconciling university teacher beliefs to create learning designs for LMS environments. Australasian Journal of Educational Technology 25, 399–420 (2009).

- [8] Hotovec, A. J., Prejean, S. G., Vidale, J. E. & Gomberg, J. Strongly gliding harmonic tremor during the 2009 eruption of Redoubt Volcano. *Journal of Volcanology and Geothermal Research* 259, 89–99 (2013).
- [9] Chouet, B. a. Long-period volcano seismicity: its source and use in eruption forecasting. Nature 380, 309-316 (1996).
- [10] Sigmundsson, F. et al. Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland. Nature 517, 15 (2014).
- [11] Hjartardóttir, A. R., Einarsson, P., Gudmundsson, M. T. & Högnadóttir, T. Fracture movements and graben subsidence during the 2014 Bárdarbunga dike intrusion in Iceland. Journal of Volcanology and Geothermal Research 310, 242-252 (2016).
- [12] Gíslason, S. et al. Environmental pressure from the 2014–15 eruption of Bárðarbunga volcano, Iceland. Geochemical Perspectives Letters 1, 84–93 (2015).
- [13] Scientific Advisory Board of the Icelandic Civil Protection. Factsheet-Bárdarbunga-20140906. http://en.vedur.is/media/jar/Factsheet-Bardarbunga-140906.pdf (2014).
- [14] Scientific Advisory Board of the Icelandic Civil Protection. Factsheet-Bárðarbunga-20140823. http://en.vedur.is/media/jar/Bardarbunga_Daily_status_report_230814.pdf (2014).
- [15] Ágústsdóttir, T. et al. Strike-slip faulting during the 2014 Bárdarbunga-Holuhraun dike intrusion, central Iceland. Geophysical Research Letters 43, 1495–1503 (2016).
- [16] Thun, J. et al. Micrometre-scale deformation observations reveal fundamental controls on geological rifting. Scientific Reports 6, 1–7 (2016).
- [17] Almendros, J., Abella, R., Mora, M. M. & Lesage, P. Array analysis of the seismic wavefield of long-period events and volcanic tremor at Arenal volcano, Costa Rica. *Journal of Geophysical Research: Solid Earth* **119**, 5536–5559 (2014).
- [18] Capon, J. High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE 57, 1408–1418 (1969).
- [19] Taisne, B., Brenguier, F., Shapiro, N. M. & Ferrazzini, V. Imaging the dynamics of magma propagation using radiated seismic intensity. *Geophysical Research Letters* 38, 1944–8007 (2011).
- [20] Eibl, E. P. S., Bean, C. J., Vogfjörd, K. & Braiden, A. Persistent shallow background microseismicity on Hekla volcano, Iceland: A potential monitoring tool. *Journal of Volcanology and Geothermal Research* 289, 224–237 (2014).
- [21] Doering, E., Schedwill, H. & Dehli, M. Grundlagen der technischen Thermodynamik (Springer-Verlag, 2012).
- [22] Gudmundsson, M. T. et al. Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow. Science 353, 262 (2016).
- [23] Balmforth, N. J., Craster, R. V. & Rust, A. C. Instability in flow through elastic conduits and volcanic tremor. *Journal of Fluid Mechanics* 527, 353–377 (2005).

- [24] Björnsson, H. & Einarsson, P. Volcanoes beneath Vatnajokull, Iceland: Evidence from radio echo-sounding, earthquakes and jokulhlaups. *Jökull* 40, 147–168 (1990).
- [25] Flóvenz, Ó. G. & Gunnarsson, K. Seismic crustal structure in Iceland and surrounding area. *Tectonophysics* 189, 1–17 (1991).
- [26] Ferrazzini, V., Aki, K. & Chouet, B. Characteristics of seismic waves composing Hawaiian volcanic tremor and gas-piston events observed by a near-source array. *Journal of Geophysical Research* 96, 6199–6209 (1991).
- [27] DeLuca, G., Scarpa, R., Del Pezzo, E. & Simini, M. Shallow structure of Mt Vesuvius volcano, Italy, from seismic array analysis. *Geophysical Research Letters* 24, 481–484 (1997).
- [28] Einarsson, P. & Brandsdottir, B. Seismological evidence for Lateral magma intrusion during the July 1978 deflation of the Krafla volcano in NE-Iceland. *Raunvisindastof*nun Háskólans - Report 47, 160-165 (1978).
- [29] Belachew, M. et al. Comparison of dike intrusions in an incipient seafloor-spreading segment in Afar, Ethiopia: Seismicity perspectives. Journal of Geophysical Research: Solid Earth 116, B06405 (2011).
- [30] Buck, W. R., Einarsson, P. & Brandsdóttir, B. Tectonic stress and magma chamber size as controls on dike propagation: Constraints from the 1975-1984 Krafla rifting episode. Journal of Geophysical Research: Solid Earth 111, B12404 (2006).
- [31] Aki, K. & Koyanagi, R. Deep Volcanic Tremor and Magma Ascent Mechanism Under Kilauea, Hawaii. J. Geophys. Res. 86, 7095–7109 (1981).
- [32] Ferrick, M. G., Qamar, A. & Lawrence, W. F. S. Source Mechanicm of Volcanic Tremor. Journal of Geophysical Research 87, 8675–8683 (1982).
- [33] Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation 34, 276–280 (1986).
- [34] Goldstein, P. & Archuleta, R. J. Array analysis of seismic signals. Geophys. Res. Lett. 14, 13–17 (1987).
- [35] Frankel, A. & Vidale, J. Observations of Loma Prieta aftershocks from a dense array in Sunnyvale, California. Bulletin of the Seismological Society of America 82, 2045–2074 (1992).
- [36] Del Pezzo, E., La Rocca, M. & Ibanez, J. Observations of high-frequency scattered waves using dense arrays at Teide Volcano. Bulletin of the Seismological Society of America 87, 1637-1647 (1997).
- [37] Saccorotti, G. & Del Pezzo, E. A probabilistic approach to the inversion of data from a seismic array and its application to volcanic signals. *Geophysical Journal International* 143, 249–261 (2000).
- [38] Rost, S. Array seismology: Methods and applications. Reviews of Geophysics 40, 1944–9208 (2002).
- [39] Beyreuther, M. et al. ObsPy: A Python Toolbox for Seismology. Seismological Research Letters 81, 530-533 (2010).

- [40] Megies, T., Beyreuther, M., Barsch, R., Krischer, L. & Wassermann, J. ObsPywhat can it do for data centers and observatories? Annals of Geophysics 54, 47–58 (2011).
- [41] La Rocca, M. *et al.* Testing small-aperture array analysis on well-located earthquakes, and application to the location of deep tremor. *Bulletin of the Seismological Society of America* **98**, 620–635 (2008).
- [42] Almendros, J. et al. A double seismic antenna experiment at teide volcano: Existence of local seismicity and lack of evidences of volcanic tremor. Journal of Volcanology and Geothermal Research 103, 439-462 (2000).
- [43] Kumagai, H. et al. Broadband seismic monitoring of active volcanoes using deterministic and stochastic approaches. Journal of Geophysical Research: Solid Earth 115, 2156–2202 (2010).
- [44] Battaglia, J. & Aki, K. Location of seismic events and eruptive fissures on the Piton de la Fournaise volcano using seismic amplitudes. *Journal of Geophysical Research* 108, 2364 (2003).
- [45] Björnsson, H. Surface and bedrock topography of ice caps in Iceland, mapped by radio echo-sounding. Annals of Glaciology 8, 11–18 (1986).
- [46] Tromp, J., Komatitsch, D. & Liu, Q. Spectral-element and adjoint methods in seismology. Communications in Computational Physics 3, 1–32 (2008).
- [47] Martens, H. R. et al. Dense seismic network provides new insight into the 2007 Upptyppingar dyke intrusion. Jokull 60, 47–66 (2010).
- [48] Mitchell, M. A., White, R. S., Roecker, S. & Greenfield, T. Tomographic image of melt storage beneath Askja Volcano, Iceland using local microseismicity. *Geophysical Research Letters* 40, 5040–5046 (2013).
- [49] Menke, W., West, M., Brandsdóttir, B. & Sparks, D. Compressional and shear velocity structure of the lithosphere in northern Iceland. Bulletin of the Seismological Society of America 88, 1561–1571 (1998).
- [50] Pálmason, G. Seismic Refraction Investigation of the Basalt Lavas in Northern and Eastern Iceland. *Jökull* 13, 40–60 (1963).
- [51] Darbyshire, F. A., Bjarnason, I. T., White, R. S. & Flóvenz, Ó. G. Crustal structure above the Iceland mantle plume imaged by the ICEMELT refraction profile. *Geophysical Journal International* 135, 1131–1149 (1998).
- [52] Gardner, G. H. F., Gardner, L. W. & Gregory, A. R. Formation velocity and density – The diagnostic basis for stratigraphic traps. *Geophysics* **39**, 770–780 (1974).
- [53] Kohnen, H. The temperature dependence of seismic waves. Journal of Glaciology 13, 144-147 (1974).
- [54] Bentley, C. R. Seismic-wave velocities in anisotropic ice: A comparison of measured and calculated values in and around the deep drill hole at Byrd Station, Antarctica. *Journal of Geophysical Research* 77, 4406–4420 (1972).

- [55] Dewart, G. Seismic Investigation of Ice Properties and Bedrock Topography at the Confluence of the North and Central Arms of the Kaskawulsh Glacier. Tech. Rep., Institute of Polar Studies Report No. 27, Institute of Polar Studies, The Ohio State University (1970).
- [56] Alfaro, R., Brandsdóttir, B., Rowlands, D. P., White, R. S. & Gudmundsson, M. T. Structure of the Grímsvötn central volcano under the Vatnajökull icecap, Iceland. *Geophysical Journal International* 168, 863–876 (2007).
- [57] Guðmundsson, M. T. The Grímsvötn caldera, Vatnajökull: subglacial topography and structure of caldera infill. *Jökull* **39**, 1–20 (1989).
- [58] Kohnen, H. & Gow, A. J. Ultrasonic velocity investigations of crystal anisotropy in deep ice cores from Antarctica. J. Geophys. Res. 84, 4865–4874 (1979).

9 Corresponding Author Details

Correspondence and requests for materials should be addressed to E.P.S.E (eva.ps.eibl@hotmail.com).

10 Acknowledgements

The data were collected and analyzed within the framework of FutureVolc, which has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 308377. The Geological Survey of Ireland (GSI) provided additional financial support for field work. We thank Bergur H. Bergsson and Heiko Buxel for technical support, Magnús H. Steinarsson and Aoife Braiden for support in the field. We are grateful to Javier Almendros for helpful discussions and comments.

11 Author Contributions

E.P.S.E., C.J.B. and M.M. participated in instrument installation and data collection from seismometers in Iceland and analyzing the data. Processing including amplitude locations, array locations and tremor simulations was carried out by E.P.S.E. K.S.V. relocated earthquakes in the dyke and participated with E.P.S.E., C.J.B. and I.L. in the interpretation of the results. Numerical wavefield simulations were performed by Y.Y. on the basis of the topography provided by F.P. G.S.O'B. performed tremor simulations due to magma flow. All authors contributed to the preparation of the manuscript.

12 Competing Financial Interests

The authors declare no competing financial interest.