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Abstract 
 

 
In this thesis, the aim is to contribute to the development of long-time methods 

for molecular dynamics (MD) simulations such as the Milestoning method and Markov 

State Model (MSM), and their application to study the conformational dynamics of 

systems ranging from the small piezoelectric amyloid peptide diphenylalanine (FF) to 

much larger cancer-related systems such as the Abl and K-Ras proteins. 

 

Albeit all the progress in high-performance computing capacity, MD simulations 

of large systems with atomistic detail is computationally very expensive and requires 

advanced methods that can aid probing slow kinetics. Markov State Modelling and the 

Milestoning method are two fast developing novel and powerful computational 

approaches that can accurately capture molecular kinetics besides thermodynamics, 

and yet are relatively simple and easy to implement. The MSM approach relies of 

mapping the complex underlying dynamics of complex biomolecular systems on 

relatively simple networks with nodes corresponding to stable conformational states 

that are interconnected through Markovian transitions.  The Milestoning method is 

useful where the sampling problem can be stated in terms of estimating the 

thermodynamics and kinetics along transition pathways that connect two known 

metastable states of the underlying molecular system.  One could target the sampling 

in order to identify and characterize the most probable pathway(s) and the 

corresponding intermediate states that are relevant to the underlying reaction 

mechanism.  

 

Firstly, I showed that the thermodynamics and kinetics of the ensemble of 

conformations adopted by amyloid FF peptides solvated in explicit water molecules 

can be analysed in detail by using an efficient enhanced sampling method, replica 

exchange molecular dynamics (REMD), while simultaneously applying external 

electric fields and probing a range of temperatures. I also showed that even for such a 

small system, there could be possible artifacts arising from due to the coupling the 

exchange with external fields, and I proposed how to overcome these artifacts in our 

simulations. 

Next, I combined a reaction path algorithm with the theory and algorithm of 

Milestoning to study kinetics of the DFG flip and disassociation of Gleevec from the 

Abelson murine leukaemia viral oncogene homolog (Abl) kinase. This allowed me to 

probe the detailed mechanism for the unbinding transition, at a timescale longer than 

accessibly by conventional MD studies. This also allowed the accurate calculation of 

the slow underlying kinetic timescales from our sets of short atomistic MD trajectories, 

while sampling the unbinding pathway of Gleevec from Abl and providing detailed 

insight into the corresponding dissociation kinetics.  



 vi 

Finally, using also sets of appropriately initialized yet relatively short trajectories, I 

analysed the underlying free energy landscape of K-Ras4B and unveiled new 

information on its underlying conformational states, and sheds new light on the 

activation/inactivation mechanism. This new MSM study of K-Ras, based on sets of 

short trajectories approach, unveils details underlying its equilibrium conformational 

kinetics, including the role of cancer-relevant mutations and the corresponding 

changes in activation/inactivation propensities. 
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Figure 2.1.  Visual representation of bonded and non-bonded terms in the potential function 

defined above.  A represents bond length; B represents bond angle; dihedral term is 

represented by C; non-bonded terms Vander Waals interaction and electrostatic interaction is 

represented by D and E respectively. 

 
Figure 2.2.  Plot of temperature replica exchange molecular dynamics (TREMD) trajectory. 

Trajectory originating from temperature T2 has been represented by solid line to show how it 

visits other temperatures, as well (T1, T3). 

 
Figure 2.3.  Probability distribution of energy at temperature T and T’, where T’ > T has been 
shown in above figures. In part (A), the difference between temperatures is not large, thus, 
there is an overlap between the plots. This overlap is required for exchange to be accepted, in 
REMD. In part (B), the difference between T and T’ is very large, i.e., the replicas as very far 
from each other and hence there is no overlap. In such a case, ∆ becomes very large and the 
probability of acceptance tends to zero. In general, the distribution of temperature is selected 
such that there is about 20% overlap between the neighbouring replicas. 
 
Figure 2.4.  Possible energy landscape of a molecule. Energy landscape of a molecule is very 

complex, with many valleys and hills. If we run simulation at only one temperature then we 

might get to see some states at and nearby local minima, as shown in figure with cyan colour 

dots. Instead, if we run simulation at a range of temperatures, we can visit many other possible 

states as well (red dots form run at high temperature and cyan dots from run at low 

temperature). Thus, we get to study the whole landscape. Also, in REMD we attempt exchange 

and get better sample for every temperature used. This makes REMD a much better tool to 

study a system. 

 
Figure 2.5.  Horizontal lines of different colours at a temperature is called T- trajectory. It is a 

discontinuous trajectory. R- trajectory is a continuous trajectory which visits other temperatures 

as well. Here, it has been shown with a solid red line. If the REMD is run long enough, it visits 

all temperatures used for the simulation.[40] 

 
Figure 2.6. Markov State Models (MSMs) aim to sample accurately the underlying free energy 

landscape by use of either long or short equilibrium trajectories.  Consider the sampling of the 

conformational space region containing a typical transition pathway between two end points 

(e.g., reactants, R, and products, P). Using short, rather than long equilibrium trajectories 

brings major sampling advantages. In typical MSM simulations, sets of short trajectories are 

initialized from intermediate conformations between R and P regions that are candidates for 

Markovian states. During analysis, transition probabilities between candidate states are 

extracted at different lag times and the states can be either divided or combined (clustered) 

until the transitions between them can be shown to be truly Markovian and a proper MSM is 

built. Short trajectories can be simulated either for the same duration (“fixed length”) or only 

until crossing into nearby regions (macro-states). 

 
Figure 2.7. Using the relative RMSD (RelRMSD) reaction coordinate to assign trajectories. (a) 

RMSD1 (blue, circles) and RMSD2 (green, triangles) are two illustrative values obtained by 



 x 

aligning a trajectory to structures corresponding to representative conformations for state 1 

and state 2, respectively. As expected, these are most informative only for RMSD values close 

to zero. (b) By combining the two signals in RelRMSD12 (red, circles) the overall ability to 

discriminate between the two states is improved, and the assignment of states can be done 

more accurately (for example, by using the transition-based assignment method) resulting in 

a discretised trajectory (horizontal lines). 

 
Figure 2.8. The RelMSD calculation can be used multi-dimensionally in the state assignment 
step for discriminating between multiple MSM states (in this case three conformational states). 
 
Figure 2.9. Example of using RelRMSD for MSM analysis of the conformational dynamics of 
a small diphenylalanine (FF) peptide (replica exchange MD simulation with explicit water 
molecules). 
 
Figure 2.10. Schematic 1d representation of two typical approaches to sampling free energy 
barriers in molecular simulations using (a) one or a few typically long trajectories, and (b) short 
trajectories initialized along the transition pathway between two end points (e.g., reactants, R, 
and products, P). In (b), central in the implementation of the Milestoning method, the aim is to 
achieve higher computational efficiency by initializing the short trajectories from multi-
dimensional hypersurfaces (vertical lines, blue) that are located between anchors (red dots) 
along a low dimensional reaction coordinate (see also Fig. 2.7).   
 
Figure 2.11.  In Milestoning, the sampling is initiated by first defining a set of “anchors” (red) 
conformations that span a (typically low dimensional) transition pathway between two end 
points (e.g., reactants, R, and products, P). The underlying kinetic and thermodynamic 
information is extracted by analysing sets of short trajectories initiated in conformational space 
regions (blue, milestones, where Mij is the milestone between anchors i and j, respectively). 
The short trajectories (green) are terminated as soon as they reach another milestone, different 
from the one at which they were initiated.  
 
Figure 2.12. Example of using a multi-dimensional Milestoning approach in a large and more 
complex molecular system: the characterization of the DFG-flip dynamics in Abl kinase. 
 
Figure 3.1. Representative conformations of FF peptides in the absence of externally applied 
electric fields. Values of the dee distances (i.e., distances between the CZ atoms at the ends 
of the two sidechains, in Å), are shown in black. 
 
Figure 3.2. (a) Distributions of potential energy values (U, in kcal/mol) calculated from REMD 
simulations in the presence of an external electric field with an intensity of E = 30 kcal/mol·Å·e. 
(b) Illustration of the problems that could occur when attempting REMD simulations in external 
electric fields. The presence of the field can induce some (in this case the first two) replicas to 
adopt conformations that are significantly lower in energy than the corresponding initial 
conformational states of the other replicas. This is a serious artifact, as illustrated in (a), as it 
changes the expected equilibrium U distributions.  
 
Figure 3.3. Distributions of potential energy values (U, in kcal/mol) calculated from REMD 
simulations (a) at E = 0 kcal/mol·Å·e, and (b) with corrected initial conditions in the presence 
of an external electric field with an intensity of E = 30 kcal/mol·Å·e. 
 
Figure 3.4. Distributions of RMSD values calculated for the heavy atoms of FF peptides for 
conformations from REMD simulations in the presence of external electric fields with intensities 
of (a) E = 0 kcal/mol·Å·e, (b) E = 30 kcal/mol·Å·e, and (c) E = 45 kcal/mol·Å·e.  
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Figure 3.5. Distributions of the dipole moment magnitude (m, Debye units), calculated for FF 

peptides for conformations from REMD simulations in the presence of external electric fields 

with intensities of (a) E = 0 kcal/mol·Å·e, (b) E = 30 kcal/mol·Å·e, and (c) E = 45 kcal/mol·Å·e. 

 

Figure 3.6. Replica exchange equilibrium distributions of sidechain-sidechain distances of FF 

amyloid peptides, with no external electric field applied, (a) for each replica (R-trajectories), 

and (b) at each temperature (T-trajectories) of the REMD simulation set.  

 

Figure 3.7. Distributions of sidechain-to-sidechain distances, dee, for simulations with an 

applied electric field of 30 kcal/mol·Å·e, (a) for each replica (R-trajectories), and (b) at each 

temperature (T-trajectories) of the REMD simulation set. Note that, at this field intensity, the 

conformational dynamics is restricted to one extended structure with a most probable dee value 

of ~8.9 Å.  

 

Figure 3.8. Distributions of dee values for simulations with an applied electric field of 45 

kcal/mol·Å·e, (a) for each replica (R-trajectories), and (b) at each temperature (T-trajectories) 

of the REMD simulation set. At this field intensity, the conformational dynamics is restricted 

further to a single extended structure with a most probable dee value of ~10 Å.  

 

Figure 3.9. Representative conformations of FF amyloid peptides derived by kinetic analysis 

of REMD simulations at different electric fields. In the absence of electric fields, the FF peptide 

adopts three main Markovian conformational states: S1, S2 and S3 (top).  The corresponding 

equilibrium transition rates between these states (blue arrows, see text) are shown as 

numbers. These REMD rates are for the data corresponding to all the replicas (all R-

trajectories). Each arrow’s thickness is proportional to the magnitude of its corresponding 

transition rate. On the bottom are shown the representative conformations, S2´ and S2´´, 

adopted in presence of external electric fields with intensities of E = 30 kcal/mol·Å·e, and E = 

45 kcal/mol·Å·e, respectively.  

 
Figure 4.1.  A schematic representation of the Abl kinase protein. The active and inactive 

states of the activation loop is shown in yellow and red, respectively. The C helix is green. The 

magnified region shows the start of the activation loop that includes the DFG switch. The image 

was generated by the software VMD.[1] 

 

Figure 4.2. The reduction in the norm of force, averaged over the entire reaction path, as a 

function of iteration number. The norm of the force drops rapidly in the first ten minimization 

steps and then decays more gradually. It seems to stabilize at around 100 iterations. The final 

gradient is around 0.35 kcal/mol Å-1. It is not zero since the norm of the force along the reaction 

coordinate is included. 

 

Figure 4.3. A schematic representation of the discretization of the coarse space following the 

transition pathway. R and P represent the reactant and product states, respectively. The black 

line shows the reaction pathway. The red dots are the anchors, and the blue lines are the 

milestones. Every milestone is numbered by its corresponding anchors. For example, 

milestone (j,k) is the boundary between cells j and k. The green arrows show 4 unbiased 

trajectories initiated from milestone (i,j). The trajectories are terminated when they hit any other 

milestone for the first time. Re-crossing the original milestone does not lead to trajectory 

termination. 
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Figure 4.4. Representation of all the 171 milestones considered for computing the transition 

matrix. Every point corresponds to one milestone. The red points are the initial milestones 

between the consecutive anchors along the transition path. The blue points represent the 

milestones discovered during the analysis of the free trajectories that are used to enrich the 

sampling of the pathways.  

 
Figure 4.5. Free energy of pairs of anchors as computed from the Milestoning theory. The 

energy values are in Kcal/mol. The two paths with maximum flux from the reactant to the 

product are lines in red and in magenta. Note that the significantly off-diagonal “jumps” on the 

surface are a consequence of long-range connection between milestones that are not in 

sequence along the reaction pathway (see also Fig. 4.4). 

 
Figure 4.6. Two optimal free energy profiles along the two max-flux pathways from active to 

inactive state. In panel a, the milestones are numbered from 1 to 41 for the corresponding 

points along the red path shown in figure 4.5 starting from active state, and from 1 to 32 for 

the magenta path in figure 4.5, starting from the inactive state for panel b. 

Figure 4.7. Color-coding the committor function at every milestone. The committor of a 

milestone is the probability of a complete trajectory initiated at that milestone to reach the 

product before the reactant state.  

Figure 4.8. A stick model of residues 381 to 386 for active (yellow), inactive (red), and a sample 
configuration at anchor 23 where the committor value is near 0.5 (blue). Note that Arg386 
already reached its final position at the transition state, while Asp381 did not change its 
configuration significantly. The residue Phe382 is found at half of the way of the transition. 
 
Figure 4.9. Changes in the salt bridge between Lys271 and Glu286 for inactive (A), an 

intermediate state (B), and active (C) states. The salt bridge exists in the active state and 

inactive states but during the transition from active to inactive state, the salt bridge breaks. The 

intermediate state shown is anchor 27. The DFG residues are shown in red, blue, and yellow 

for inactive, intermediate, and active states, respectively.     

Figure 4.10. Distribution of lifetime for (a) milestone (21,22), (b) milestone (22,23), (c) 

milestone (24,25) and (d) milestone (40,41).  

Figure 4.11. Distributions of MFPT for transition from active to inactive states (top) and the 

reverse process (bottom). The insets show the corresponding distributions for 1/MFPT which 

are estimates of the rate coefficients consistent with the simulation data and the error analysis. 

We quote the mean values of the rate coefficients for the forward and backward transition. 

 
Figure 4.13. Fluctuations and systematic drifts of residues in Abl-kinase. Top panel reports 

the B factors of the reactant and product structures as a function of the residue index to identify 

flexible domains. In the lower panel we compare the structure of Anchor 27 with the reactant 

and product using room mean square difference (RMSD) between all the heavy atoms of the 

residues in the protein. The two pink arrows point to Glu286 and Lys271 that forms a blocking 

salt bridge. Note that the transition state differs about equally from the reactant and from the 

product structures. There are several spikes at Phe382, Leu384, Arg386, Met388 and Ala397 

that belongs to the A loop and are included in the set of coarse variables. 
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Figure 4.14. The distances between atom CZ of Phe382 to atoms representing the ends of 

the sidechain of residues Met290, Glu286, and Lys271 are shown. For Glu286, the minimum 

distance two both oxygens OE1 and OE2 was measured. Lys271 and Glu286 are the salt 

bridge residues. Around anchor 30, the Phe382 reaches as close as possible to the salt bridge, 

(Lys 271) breaks it and then goes away from this residue.  The distance to Glu286 remains 

roughly a constant throughout the transition. 

 
Figure 5.1. The potential energy (kcal/mol) and the distance of Gleevec from the binding 

pocket as a function of pulling time (ns). Gleevec is pulled out of the binding pocket at a small 

constant velocity (0.5 Å/ns) to reduce system strain, providing a flat sampling of the underlying 

potential energy (top panel). The lower panel shows the center of mass distance (in Å, see 

main text for the definition) as the function of time (ns). 43 configurations are selected from 

this SMD trajectory to serve as anchors in the Milestoning calculations. 

 
Figure 5.2. Abl kinase in complex with Gleevec. Abl kinase with Gleevec bound (reactant) is 

shown in red. Abl kinase with unbound Gleevec (product) is shown in green. Gleevec has been 

highlighted by representing it as opaque and using a translucent/shaded texture for the kinase 

matrix.  

 
Figure 5.3. Schematic representation of the reaction space in two dimensions. The axes 

represent coarse variables. The unfilled circles represent reactant (R) and product (P) 

conformations. The filled blue circles are the anchors, obtained by exploratory Steered 

Molecular Dynamics calculation, and serving as centers of Voronoi cells. The dashed lines are 

the milestones or the boundaries of the Voronoi cells. Note that anchors placed on a straight 

reaction pathway segment appear connected to only two neighboring milestones, forward and 

backwards. However, in more dimensions, a milestone can be connected to more than two 

milestones. 

 
Figure 5.4. Representation of the 126 milestones used in the present study. The axes are the 

anchor indices. A milestone between anchors i and j is represented by the point (i, j). The red 

dots are the initial milestones between the consecutive anchors along the transition path. The 

blue dots represent the 84 new milestones discovered during the analysis of the free 

trajectories from the initial set of only 42 milestones.  

 
Figure 5.5. Network representation of the anchors’ space. Each node represents an anchor, 

there are 43 anchors in total. The first node represents the reactant (1st anchor, shown in red). 

The last node represents the product (43rd anchor, is shown in green). A connection between 

any two anchors is represented by a straight black line. There are 126 connections (or 

milestones) in total.  

 
Figure 5.6. Free energy plot for 126 milestones. The free energy of every milestone is colored 

according to its numerical value in kcal/mol (see color-bar). The maximum flux (Max Flux) 

pathway is shown in red (see text for details).  

 

Figure 5.7. Free energy profile (kcal/mol) along the maximum weight path. To estimate the 

mean values (dots, red) and the errors (standard deviation, red vertical lines) we sampled the 

transition matrices and lifetimes from their Milestoning model distribution, using a set of 1000 

samples.  The committor-estimated transition state (TS) appears to be located late and broad 



 xiv 

between milestone 20 and 30 along the reaction coordinate. The energy minimum for Gleevec 

unbinding is seen near milestone 12. Structural differences between the reactant (shown in 

yellow) and the structure at milestone 12 (shown in pink) have been illustrated in the inset 

figure. At this minimum, we observe the outward displacement of Gleevec (IMA), show with 

blue arrow. We also observe an outward rotation in the C helix (see inset blue arrow). There 

is an RMSD difference of 2.6Å. The center of mass distance of Gleevec between the two 

structures is ~4.5Å. 

 

Figure 5.8. Color-coded committor function at each milestone. The committor function, Ci, is 

defined as the probability that a trajectory initiated at milestone i will reach the product before 

the reactant. Milestones with committor values close to 0.5 are candidates for the transition 

state and have been highlighted with red squares. 

 

Figure 5.9. Representative structure from the Transition State Ensemble (TSE) estimated 

using the committor function (called TS-1). The image was generated using the VMD 

software.32 At this position, the probability to return to the bound state is equal to the probability 

of escaping the protein to the aqueous solution. 

 

Figure 5.10: Transition function (defined as the logarithm of the ratio of the exit times towards 

the product and the reactant (Eq. (4)).21 Milestones with similar exit times to both the product 

and the reactant, are close to the transition state. The region highlighted by the blue contains 

milestones (marked with small blue squares) near the transition state with the transition 

function close to zero. The R and P states are located inside the red and the green boxes, 

respectively, representing reactant and products. 

 

Figure 5.11. A representative TSE structure found using the transition function (Eq. 4). By 

construction, the transition function value is ~0 for TSE conformations, as the exit times to the 

product and reactant are equal. The image was generated using VMD.32 

 

Figure 5.12. Conformational changes along the Gleevec dissociation reaction pathway. 

GLU282-LYS274 is shown in green and Gleevec is shown in yellow. Gleevec, when inside the 

binding pocket blocks the direct interaction between GLU282 and LYS274, shown in (a). Panel 

(b) represents the configuration at the transition state 2. (c) Finally, when the Gleevec molecule 

is out of the kinase matrix, the distance reduces to ~2Å.  

 

Figure 5.13. The Abl kinase sequence - comparison with the corresponding residues from Src. 

The two kinase sequences have 50.6% sequence identity and 69.0% sequence similarity. 

Identical residues are colored in red. P-loop, C helix and A-loop are highlighted in yellow, 

cyan and green, respectively. 

 

Figure 5.14. Significant differences in salt bridge interactions are observed between Abl and 

Src kinases. We show salt bridges that are formed in the Abl kinase, making significant 

contribution to the reaction pathway, and are modified in Src kinase. P-Loop, A-Loop, C helix, 

salt bridges and Gleevec are shown in blue, green, red, magenta, and yellow, respectively. 

Inset graphs show the changes in the salt bridge distance as a function of milestone positions 

along GMW path. At the bottom left of each panel are shown the salt-bridges for the Abl-kinase 
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case (highlighted with green), and the corresponding residues for Src-kinase (cyan). The 

corresponding Abl and Src residues that are not similar have been boxed in red. 

 

Figure 5.15. Highly conserved LYS271-GLU286 salt-bridge. For the kinase to be active, DFG 

needs to be in the ‘in’ conformation, LYS271-GLU286 salt bridge should be formed, the 

catalytic spine that involves the residues Asp421, His361, Phe382, Met290, and Leu301 needs 

to be formed, and the binding site should be accessible to ATP. Thus, the integrity of the 

LYS271-GLU286 salt bridge is central to kinase activity. Shown above is the LYS271-GLU286 

salt bridge in green, Gleevec (yellow), and the kinase (cyan). During the unbinding of Gleevec, 

this salt bridge breaks near the transition state 2 (panel b). The distance between the two 

residues increases from ~3Å (panel a) to ~7.8Å (panel b). The bond is formed again when 

Gleevec is completely out of the kinase matrix (panel c). 

 

Figure 5.16. Dihedral angles along the GMW path. As Gleevec moves away from the binding 

pocket to slide out of the Abl kinase, the steric hinderance decreases, and an increase in the 

movement and rotation is observed. The dihedral angle, Θ, defined by the C8, C15, C32 and 

C37 atoms of Gleevec, was recorded for the milestones along the GMW path from reactant to 

product. Larger ranges of dihedral angles at milestones outside the binding pocket suggests 

greater flexibility and entropy. The onset of larger flexibility is near transition state 2.  

 

Figure 5.17: Distribution of first passage times for Gleevec dissociation from the Abl kinase. 
The corresponding MFPT value derived from Milestoning calculations is 0.055 s. Note the 
broad distribution of predicted MFPT values suggesting significant uncertainties in the 
calculations. 
 

Figure 6.1. (a) K-Ras4B structural elements.  The switch I and switch II regions are highlighted 

in yellow and magenta, respectively. The GTP ligand is shown in licorice and colored by atom 

type. The Ca (for residues T35 and G60) and Pb (for GTP) atoms are shown as blue spheres. 

d1 is the distance (dashed black line) between the Ca atom of G60 and the Pb atom of GTP. d2 

is the distance between the Ca atom of T35 and the same Pb atom of GTP (dashed black line).  

The D33 residue is circled in red. (b) Schematic representation of the GTP-dependent 

activation of K-Ras4B and the hypothesized relationship between its active/inactive states and 

the d1 and d2 distances. 

 

Figure 6.2. (a) The detailed K-Ras4B wild type (WT) free energy landscape (G, kcal/mol) for 

its GTP-bound structure in d1 and d2 (Å) coordinates (see Fig. 1a). The six main conformational 

states of K-Ras4B WT are labelled S1 to S6, (yellow). (b) The corresponding G landscape 

calculated for the GTP-bound K-Ras4B D33E mutant, with the new conformational basins 

labelled S1’ to S6’. 

 

 

Figure 6.3. Visual representation of rate matrix with rates (in ns-1) shown along the lines.  

Relative population (in %) of each state is shown along the nodes. S2 is the most populated 

state with 46.648 % population and S6 is the least populated state with 3.579 %.  Estimate of 

error in rates and population has been shown in supplementary table S6.2 and table S6.3. 

 

Figure 6.4. (a) The positions of atoms defining the angle q (i.e., the C-Ca-Cb-Cg dihedral angle 

for residue D38, in degrees) used for measuring the relative orientation (w.r.t. the local 
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backbone) of the D38 side chain in the K-Ras4B WT with respect to the local backbone. The 

GTP ligand is shown as licorice and the D38 atoms as balls-and-sticks. (b) The corresponding 

overall distribution of 𝜃38 values for K-Ras4B WT. (c) Dihedral angle (𝜃38) distributions in each 

of the six states of K-Ras4B WT. (d) The corresponding dihedral angle (𝜃38) distributions in 

each of the six states of K-Ras4B D33E. 

 
Figure 6.5. RAF-RAS binding interface. (a) Crystal structure of K-Ras4B-GNP in complex with 

RAF1 (from PDB ID 6XI7)[2]. The binding interface for RAF1is shown with surface 

representation and colored with residue type and binding interface residues of K-Ras are 

shown with sticks and colored with residue type. Acidic residues of K-Ras like residue 37 and 

38 (shown in red and circled) binds with the basic interface residues (shown in blue) on RAF1 

binding surface. (b) RAF1 docked to S2’ peak1 and peak2 structures. RAF1 shown in cyan is 

docked to S2’ peak 1 and RAF1 shown in purple is docked to S2’ peak 2. The two structures 

share only a small part of binding interface. RAF1bound to peak 2 structure is closer to the 

crystal structure RAF1.    

 

Figure S5.1. Thermodynamic cycle for alchemical free energy calculations. We compare the 

free energy changes of the bound (left) and transition states (right) for Gleevec interactions 

with the wild-type Abl Kinase and Y253F mutant. The mutated residue and the ligand (green) 

are shown using a CPK representation, in color.  

 

Figure S5.2. Initial and final Abl (ribbon) and Gleevec (licorice) structures and relative positions 

for the three inbound (i.e., moving towards the binding pocket)  trajectories. 

 

Figure S6.1. Representative structures for the six conformational states of K-Ras4B WT, S1 

to S6, evidenced by the corresponding free energy map of GTP-bound K-Ras4B in the d1-d2 

coordinates (in Å, see Fig. 6.2). Note differences in the relative positions of the switch I and 

switch II regions highlighted with red and blue arrows, respectively (see also Fig. 6.1). The 

sets of (d1, d2) coordinates of the representative structures selected here as centers of the S1 

to S6 regions are (6.07, 6.45), (6.1, 8.58), (8.16, 10.45), (8.66, 8.82), (11.86, 8.57) and (9.01, 

6.52), respectively. 

Figure S6.2.  Distributions of the distances from switch I to GTP. Shown is the distribution of 

distance between alpha carbon of residues 32-40 and beta phosphate of GTP. Clearly, the d2 

distance (i.e., using the alpha carbon of T35) is the best reaction coordinate as it can 

discriminate more states. 

 
Figure S6.3. (a) Corresponding locations of the d1 and d2 values from experimental crystal 

structures overlapped on the free energy map of GTP-bound K-Ras4B WT (see also Fig. 2a). 

The positions of crystal structures of K-Ras and H-Ras bound to GTP (or GTP analogue), and 

to GDP (or GDP analogue) are highlighted in black and blue, respectively. The corresponding 

PDB codes for these structures are shown in the legend, using superscript K or H to distinguish 

between K-Ras and H-Ras structures, respectively. Wild type structures are marked with *. (b) 

Values of the corresponding d1 and d2 distances (in Å) and of the angle 𝜃38 (the C-Ca-Cb-Cg 

dihedral angle for residue D38, in degrees) for experimental PDB structures. 
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Figure S6.4.  Slowest relaxation time with respect to change in window length. A sliding 

window was used to build the transition probability matrix and slowest relaxation time was 

estimated using the second eigenvalue. For final analysis, window length of 20 ns was used. 

Inset is the error in slowest relaxation time, for 20 ns window, with change in the diameter of 

for-sure-zone.  

 

Figure S6.5.  Distribution of docking scores, using PatchDock, obtained for docking the K-

Ras4B representative structures S1 and S6 (see Fig. 2) to the CRAF1 (from PDB ID 6XI7). 

Note that PatchDock is appropriate as it successfully at predicts only a few complex structures 

with high scores, including structures of the binding interface that have a small RMSD from the 

experimental interface (PDB ID 6XI7). 
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List of tables 
 
 

Table 3.1. The three main sets of REMD data analyzed here correspond to simulations, with 

explicit water molecules, performed in the presence of external electric fields with intensities 

of (a) 0, (b) 30, and (c) 45 kcal/mol·Å·e, respectively. Each run used 12 replicas, at 

temperatures spaced according to an optimized protocol,[3] as indicated in the table together 

with the corresponding run times. The total simulation time is ~4 ms (i.e., also including the 

initial setup and testing runs at 30 kcal/mol·Å·e). 

 

Table 4.1. List of the 24 atoms used to define the coarse space in the calculations of the 

pathway. The final 12 atoms that are used in the Milestoning calculations are indicated in red. 

See text for more details about the selection 

 

Table 5.1. Starting and final anchors for 10 unbiased test MD trajectories launched from the 

TS1 conformation.  

 

Table 6.1. Results of docking-based modelling. RMSD values (in Å) obtained for comparing 

the docking interface of K-Ras4B and RAF1 obtained experimentally (PDB code 6XI7 with the 

dimer structures corresponding to the two peaks (denoted here by q1 and q2, respectively) of 

the angle 𝜃38 (i.e., the C-Ca-Cb-Cg dihedral angle for residue D38, in degrees) used for 

measuring the relative orientation (w.r.t. the local backbone) of the D38 side chain in the K-

Ras4B WT with respect to the local backbone. See text for discussion. 

 

Table S5.1. Alchemical free energy differences for the transformation from wild-type (WT) to 

Y253F, at bound (∆𝐺1) and transition (∆𝐺2) state conformations.  

 

Table S6.1. Error estimated as standard deviation. Data was split in four equal part and rate 

and population was calculated for each data set and the whole data set. Error reported here is 

the standard deviation of calculated  (a) rate and (b) population values.  

 

Table S6.2. Binding-cite residues. (a) RAF1 residues on RBD and CRD provide to the docking 

software PatchDock. (b) K-Ras residues provided to the docking software.  
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1. Introduction 

 
Experimentally studying biological systems and reactions in atomistic detail, is 

often impossible due to their intrinsic complexity. Both conceptual and computational 

challenges arise due to the large number of degrees of freedom involved. However, 

molecular dynamics (MD) simulation-based methods offer a promising alternative by 

allowing researcher to perform simulations of many biological systems at atomistic 

level of detail. It can help us to connect microscopic interactions and structures with 

thermodynamic properties and, unveil the kinetics and mechanisms of molecular 

processes. Using MD methods, we can calculate physics-based parameters such as 

the underlying free energy landscapes, mean first passage times (MFPT), relative 

populations, etc., which could have been difficult or, often, impossible to obtain 

experimentally. Atomically detailed simulations can also supplement experimental data 

to obtain a more complete understanding of the underlying kinetics. 

 

The development of computational methods has progressed greatly in last few 

decades. The first MD simulations were performed in 1957.[4]  Simulation of protein 

was first carried out in 1977.[5] In 2013, the Nobel Prize in Chemistry was awarded to 

Martin Karplus, Michael Levitt and Ariel Warshel for development of multiscale models 

for complex chemical systems, groundwork  that enabled these simulations. 

 

Despite all the progress, MD simulations come with the significant limitation that 

their time step (typically one or a few femtoseconds) and the corresponding total 

simulations lengths feasible on current computers (up to milliseconds) are much 

shorter than the relaxation times relevant to most biomolecular processes. This 

limitation makes MD simulations, especially of systems as big as the Abelson murine 

leukaemia viral oncogene homolog (ABL) protein, computationally very challenging 

and expensive.  Although the availability of high-performance computing (HPC) 

hardware capacity has grown considerably and is likely to continue its remarkable 

growth, the high complexity of accurate kinetic and thermodynamic studies based on 
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molecular dynamics simulations of biomolecular systems requires novel modelling 

methods that can be accurate yet simple and relatively easy to implement and, 

advanced methods to extend the time scale of the simulations and produce trajectories 

probing slow kinetics.  

 

One approach, that takes advantage of the intrinsically parallel architecture 

HPC facilities or the highly distributed computing projects such as Folding@Home,[6] 

is the use Markov State Models (MSMs). It relies on mapping the complex underlying 

dynamics of otherwise complex biomolecular systems on relatively simple networks 

with nodes corresponding to stable conformational states that are interconnected 

through Markovian transitions. Thus, both the design and the goals of MD studies are 

targeted towards identifying the regions of the corresponding configuration space that 

are characterized by a sufficient conformational stability such that subsequent inter-

state transition are independent from each other (i.e., Markov states). This approach 

has strong roots in the statistical mechanics of biomolecules being related to the 

projection operator formalism. [7]  

 

A second approach, which takes advantage of parallel architecture of HPC and 

which does not require states to be Markovian, is the Milestoning method. This method 

can be used for systems where the sampling problem can be stated in terms of 

estimating the thermodynamics and kinetics along transition pathways that connect 

two known metastable states (e.g., reactant and product) one could target the sampling 

in order to identify and characterize the pathway(s) (typically with the maximum 

reaction flux) and the corresponding intermediate states that are relevant to the 

underlying reaction mechanism.  

 

In this thesis, I present the development and proper application of the two 

master-equation-based methods for MD simulations, on two very important proteins, 

namely K-Ras4B and ABL kinase.  Kristen rat sarcoma viral oncogene homologue (K-

Ras) is a GTPase that controls cellular proliferation by playing an important role in the 

signal transduction pathway.[8] It acts as a molecular switch, flipping between inactive 

guanine diphosphate (GDP) bound state and active form of guanine triphosphate 

(GTP) bound state. K-Ras is one of the most mutated oncogenes and has been 

associated with many fatal cancers like colorectal cancer, pancreatic ductal 
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adenocarcinoma and lung cancer.[9-13] Many computational and experimental efforts 

have been made to understand the conformational dynamics of K-Ras, effects of 

mutations and to find mutation specific drugs. [8, 14, 15] Just like K-Ras, mutations in 

ABL, a kinase, is also associated with certain cancers like chronic myelogenous 

leukaemia. Kinases are enzymes that catalyse the transfer of the ɤ-phosphate group 

from an ATP molecule to the hydroxyl group of the serine, threonine or tyrosine 

residue. Thus, they act as effective switches along cellular transduction pathways, 

because of their ability to alternate between catalytically active and inactive state in 

response to specific molecular signals. Hence, kinases play important roles in cell 

growth, proliferation and differentiation. In cancer, uncontrolled division of cells and 

malignant transformations are direct consequences of kinase deregulation. Abelson 

murine leukaemia viral oncogene homolog 1 (ABL) is a kinase protein that, in humans, 

is encoded by the ABL gene located on chromosome9.[16] ABL encodes cytoplasmic 

and nuclear protein tyrosine kinase, which is involved in the process of cell division, 

adhesion, differentiation and response to stress. ABL's activity is controlled by its SH3 

domain. Absence of SH3 domain makes ABL oncogene. Such mutation in the ABL  

gene has been associated with chronic myelogenous leukaemia. [17]  

 

In chapter 2, I introduce the theory and methods underpinning the work in this 

thesis. In the first section, the theory guiding Molecular dynamic simulations is briefly 

described. In the next section of the chapter, replica exchange molecular dynamics 

(REMD) is discussed. REMD is used to improve the sampling. In the next two sections, 

theory of the two approaches, MSM and the Milestoning method, is discussed.   

 

In chapter 3, I study the temperature-dependent conformational dynamics of 

FF peptides solvated in explicit water molecules, an environment relevant to 

biomedical applications, by using an enhanced sampling method, REMD, in 

conjunction with applied electric fields. Simulations highlight and overcome possible 

artifacts that may occur during the setup of REMD simulations of explicitly solvated 

peptides in the presence of external electric fields, a problem particularly important in 

the case of short peptides such as FF. The presence of the external fields could over-

stabilize certain conformational states in one or more REMD replicas, leading to 

distortions of the underlying potential energy distributions observed at each 

temperature. 
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In chapter 4, I combine a reaction path algorithm with the theory and algorithm 

of Milestoning to study kinetics of the three residue motif Aspartic acid-Phenylalanine-

Glycine (DFG) flip and compute the mechanism and the rate of the transition in ABL 

kinase. The activation of kinases includes a conformational transition of the DFG motif 

that is important for enzyme activity but is not accessible to conventional MD. I propose 

a detailed mechanism for the transition, at a timescale longer than conventional MD, 

using a combination of reaction path and Milestoning algorithms. The mechanism 

includes local structural adjustments near the binding site as well as collective 

interactions with more remote residues.  

 

In chapter 5, I use atomically detailed simulations within the Milestoning 

framework to study the molecular dissociation mechanism of Gleevec from Abl Kinase. 

I compute the dissociation free energy profile, the mean first passage time for 

unbinding, and explore the transition state ensemble of conformations. The milestones 

form a multidimensional network with average connectivity of about 2.93, which is 

significantly higher than the connectivity for a one-dimensional reaction coordinate 

(RC). I examined the transition state conformations using both, the committor and 

transition function. I show that near the transition state the highly conserved salt bridge 

of K217 and E286 is transiently broken. Together with the calculated free energy 

profile, these calculations can advance the understanding of the molecular interaction 

mechanisms between Gleevec and Abl kinase and play a role in future drug design 

and optimization studies.  

 

 In chapter 6, I probe the equilibrium conformations adopted by GTP-bound K-

Ras4B proteins using long-time atomistic molecular dynamics (MD) simulations. I 

analyse the underlying free energy landscape of wildtype K-Ras4B projected on two 

important distances, labelled d1 and d2 (i.e., coordinating the P atom of the GTP ligand 

with two key residues, T35 and G60), that are useful reaction coordinates for 

discussing the K-Ras4B activation/inactivation mechanism. However, the detailed 

inspection of the K-Ras4B conformational landscape reveals a more complex network 

of underlying equilibrium states. I show that including a new reaction coordinate to 

account for the orientation of acidic K-Ras4B sidechains such as D38, with respect to 

the interface with binding effectors such as RAF1, is needed to rationalize the 
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activation/inactivation propensities. I also show that a relatively minor mutation, D33E, 

in the switch 1 region can lead to significantly different activation propensities of 

monomeric K-Ras4B.  This study shades new light on the role of residues located at 

the K-Ras4B – RAF1 interface on its underlying GTP-dependent activation/inactivation 

mechanism. 

 

Finally, chapter 7, provides a concise summary of all the work and the main 

results presented in this thesis and published or prepared for publication in peer-

reviewed articles. [18-21]  

 

 

 

 

 

 

 

 

 

 

 



1. This chapter has been adapted from reference [19].  6 

2. Theoretical and Computational 

Methods1 

 

2.1 Overview 

This chapter introduces the theory and methods underpinning the work in this 

thesis. In the first section, the theory guiding Molecular Dynamics, which is the main 

tool used for simulations in this work, is briefly described. In the next section of the 

chapter, replica exchange molecular dynamics (REMD) is discussed. REMD is used 

to improve the sampling. In the next two sections, theory of the two approaches, 

Markov State Modelling and the Milestoning method, is discussed.  

 

2.2 Molecular Dynamics  

 
Molecules like lysozyme, alanine, etc. are normally represented as static 

structures, but in fact these are dynamic. Most experimental properties for example, 

measure a time or an ensemble average over the range of possible confirmations the 

molecule can adopt. One way to study the range of possible configurations is to 

simulate the motions of the molecule. Molecular Dynamics is one of the main 

simulation technique, other being Monte Carlo (MC). Advantage of MD over MC is 

that MD is deterministic and gives a route to dynamical properties of the system. MD 

simulations consists of step by step numerical solution of Newton’s equations of 

motion. For a simple atomic system, we can write 

 𝑓𝑖 =  𝑚𝑖𝑟𝑖̈  
 

    𝑓𝑖  = −
𝜕

𝜕𝑟𝑖
𝑈                                               

where U = potential energy, mi = mass, and ri = position of atom i.  
 

Factors like, degrees of freedom, solvation effects, boundary conditions, treatment of     

temperature and pressure, force field parameters, etc. govern the outcome of any MD 

simulation. Force field and force field parameters can be considered as one of the most 

important factors.
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Force Fields: 

In molecular dynamics, a molecule is considered as a series of charged points 

where points represent atoms linked by spring, where springs represents bonds. To 

find the time evolution of bond lengths, bond angles and torsions, along with non-

bonding van der Waals, electrostatic, etc. interactions between atoms, an atomistic 

force field [22, 23] is used. Such a force field is collection of equations and associated 

parameters designed to reproduce molecular geometry and selected properties of 

tested structures. In other words, it is a mathematical expression describing energy 

dependence molecule on the coordinates of atoms in it.  Force Field is made up of two 

components: 

1)Set of equations called potential function 

2)Parameters used in potential function. 

 

The simplest form of potential function can be written as 

 

𝑈(𝑅⃗ ) = ∑ 𝑘𝑖
𝑏𝑜𝑛𝑑(𝑟𝑖

𝑏𝑜𝑛𝑑𝑠

− 𝑟0)
2 + ∑ 𝑘𝑖

𝑎𝑛𝑔𝑙𝑒
(𝜃𝑖

𝑎𝑛𝑔𝑙𝑒𝑠

− 𝜃0)
2 + ∑ 𝑘𝑖

𝑑𝑖ℎ𝑒[1

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ cos(𝑛𝑖∅𝑖 + 𝛿𝑖)] + ∑∑4є𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

]

𝑗≠𝑖𝑖

+ ∑∑
𝑞𝑖𝑞𝑗

𝜋𝐷𝑟𝑖𝑗
𝑗≠𝑖𝑖

  

 
First term is due to all the bonds. It describes linear spring like terms for every 

bond. 𝑘𝑏𝑜𝑛𝑑 is the spring constant and r0 is the equilibrium bond length. Second term 

describes potential due to all the angle (e.g. CCC, OCH, COH, …). 𝜃0 is the equilibrium 

angle and 𝑘𝑎𝑛𝑔𝑙𝑒 is the force constant. Similarly, the third term describes torsional or 

dihedral motion. ∅  is torsional angle, n is the number of maxima or minima in between 

0 to 2𝜋 and 𝛿  is the phase. The last two terms are due to non-bonded interactions 

(van der Waals and Coulombic interactions respectively).  є is van der Waals’s 

Lennard-Jones (LJ) well-depth, 𝜎 is LJ radius, 𝑞 is partial atomic charge and D is 

dielectric constant. Apart from these terms there can be many other terms, for example 

due to dipole-dipole interactions, hydrogen bonds, etc.      

 

All interatomic potentials are derived from various experimental data and have 

many approximations. These are empirical. With advances in the experimental 
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techniques and in our understanding of the behaviour of atoms, there is improvement 

in the force fields (ff), as well. 

Force fields can be of several different types, such as:                                                                                                                                         

1. All atom - parameters given for every atom in the system, including hydrogen                                                                                   

2. Coarse grained -  atoms are grouped into super atoms and molecule is represented 

by these                                                                     

3. United atom – except non-polar hydrogen, parameters given for all atoms in the 

system. In united atom ff, hydrogen and carbon atoms in methyl groups and methylene 

is considered as a single interaction centre.   

 

Some commonly used force fields for molecular dynamics of macromolecules 

are AMBER [24] force field, CHARMM [25] force field and GROMOS [26]. These are 

also commonly used for minimizing the energy.  Detailed discussion of all available 

force fields is beyond the scope of this thesis. Some good reviews on this topic can be 

found in refs.  [24, 27, 28]. For all research work presented in this thesis CHARMM 

force field was used. 

 

 
 

Figure 2.1.  Visual representation of bonded and non-bonded terms in the potential function 

defined above.  A represents bond length; B represents bond angle; dihedral term is 

represented by C; non-bonded terms Vander Waals interaction and electrostatic interaction is 

represented by D and E respectively. 
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 Numerical Integration: 
 
Once we know the potential function, U(R), and the corresponding force field 

parameters, we can obtain the dynamical trajectory of a system of N atoms. We 

integrate Newton’s equations of motions, that is, solve the classical equation of motion. 

𝑚𝑖

𝑑2𝑟𝑖
𝑑𝑡2

= 𝑓𝑖 = −
𝜕

𝜕𝑟𝑖
𝑈(𝑟1, 𝑟2, … , 𝑟𝑁) 

 
where 𝑈(𝑟1, 𝑟2, … , 𝑟𝑁) is the potential energy depending on the coordinates of the N 

particles. This set of second order non-linear differential equations is solved 

numerically, step by step using integration algorithm.  By using numerical integrator, 

we can generate an approximate solution trajectory given a time-step and initial 

positions and velocities. Various numerical integration algorithms used with MD are-                                                                                                                                                                                                                                                                                                           

1. Verlet algorithm [29], 

2. Leap-frog method and  

3.  velocity-Verlet algorithm.   

All the methods mentioned above produce deterministic dynamical systems, that is, no 

stochastic element is there. Leap Frog algorithm is essentially the same as velocity-

Verlet and give equivalent trajectories. The difference between the two algorithm is 

that the velocities are not calculated at the same time as positions and, the leap frog 

and the velocity-Verlet have different restart files. These algorithms have been 

summarized in ref. [30]. 

 

Thermodynamic Ensembles 

Statistical Ensemble is an idealization consisting of a large number of copies of 

a system, each of these copies represents a possible state in which the real system 

might be in. A statistical ensemble that is in statistical equilibrium is a thermodynamic 

ensemble.  Before initializing the MD simulation, one must select a thermodynamic  

ensemble, which will depend on the properties one need to study. For the purpose of 

MD simulation three main ensembles can be considered, the microcanonical, 

canonical and isothermal-isobaric ensembles.  

1. Microcanonical Ensemble: It is a system that is completely isolated from its 

surrounding, such that there is no transfer of energy or matter between the system 
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and the surroundings. Here the total number of particles (N), the total volume (V) 

and the total energy (E) are constant, thus this ensemble is abbreviated as NVE. 

2. Canonical Ensemble: In canonical ensemble, energy can transfer across the 

boundary between system and surroundings but matter cannot. Also the volume 

of the system is fixed. The system is immersed in a heat bath at a temperature (T), 

and temperature here is constant. Canonical ensemble is abbreviated as NVT. 

3. Isothermal-Isobaric Ensemble: Similar to canonical ensemble, in isothermal-

isobaric ensemble, energy can transfer across the boundary but matter cannot. 

Also, similar to canonical, the system is immersed in a heat bath at a temperature 

(T), and temperature is constant. Unlike canonical, here volume is not constant 

and it changes such that the internal pressure of the system matches the pressure 

on the system by surroundings and pressure is constant. This ensemble is 

abbreviated as NPT.  

A more detailed discussion can be found in ref. [31]  

 

It is relatively easy to achieve the microcanonical (NVE) ensemble in a 

simulation. To achieve NVT ensemble, where we need to make temperature constant, 

we need to use a temperature control algorithm (also called thermostat). In case of 

NPT ensemble, in addition to thermostat for temperature control, a barostat (pressure 

control algorithm) is also required.  

 

Thermostats maintain a constant temperature by modifying velocities of subsets 

of particles in the system. Some of the thermostats used in MD simulations are 

discussed briefly below. 

1. Berendsen thermostat: It rescales the velocities of all particles to remove a 

predefined fraction of the difference from the predefined temperature. This 

analogous to coupling the system to a heat bath kept at a constant temperature.  

2. Andersen thermostat: It controls the temperature by assigning a subset of atoms 

new velocities that are randomly selected from the Maxwell-Boltzmann 

distribution. This is similar to every atom, on average, experiencing a stochastic 

collision with a virtual particle every time step. 

3. Langevin thermostat: This thermostat mimics the viscous aspect of a solvent and 

interaction with the environment by adding a frictional force and a random force 
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to the equation of motion. The amount of friction is controlled by the damping 

coefficient.  

4. Nosé-Hoover thermostat: An artificial variable associated with a fictional heat 

bath mass is introduced to the equations of motion. This thermostat can control 

temperature without involving random numbers, thus correlated motions are not 

impaired. The drawback of using this thermostat is that it imparts the canonical 

distribution and ergodicity.  

These are discussed in more detained in ref. [32-35]  

 

Barostats regulate pressure by adjusting volume of the system. This is achieved by 

scaling coordinates of each atom in the system by a small factor and thus changing 

the size of the system. Some commonly used barostats are mentioned here. 

1. Berendsen barostat: Conceptually similar to Berendsen thermostat. It changes the 

volume by an increment proportional to the difference between the internal 

pressure and pressure in a weakly coupled bath. 

2. Andersen barostat: Pressure is controlled by introducing an additional degree of 

freedom corresponding to the volume of a simulation box which adjusts itself to 

equalize the internal and external pressure.  Other barostats like Parrinello-

Rahman barostat, the Nosé-Hoover barostat, etc, are all based on this. 

3. Langevin piston Barostat: This is based on Langevin thermostat.  

These are discussed in more detail in ref. [32-38]  

 

General steps involved in MD simulation 

The standard steps followed in any MD simulation are as follows: 

1. Generate Topology: To generate topology, initial structure of desired protein/ 

molecule is required. Atomic coordinate file of the molecule, obtained through X 

ray crystallography or NMR measurement, is available in .pdb, .gro, etc. format. In 

case crystal or NMR structure of desired biomolecule is not available, homology 

modelling can be used to obtain the initial structure. 

2.  Solvate: Once we have a structure to start with, we need to define the simulation 

box of required size. The box should be large enough that the protein does not 

interact with its image in case of  periodic boundary conditions. Box and the 

molecule is solvated using suitable water model eg. TIP3P water model. To 
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replicate physiological conditions certain ions like, NaCl, can also be added to the 

system. If required molecule can be simulated without solvation and addition of 

ions. 

3. Energy minimization:  Since the atomic coordinates of protein and water box are 

obtained from different source there may be steric clashes. To remove any such 

clashes, energy minimization is attempted, usually using steepest descent 

algorithm. 

4. Equilibration:  After minimization step, the system is equilibrated with position 

restraint placed on protein, so that water molecules and protein atoms can relax 

and reach an equilibrium state. In this step, the system is heated to desired and 

equilibrated. Heating is done with small increments in temperature and followed by 

equilibration step. Equilibration step is required to re-equilibrate out the energies 

that have been introduced to the system during heating. For high temperature 

simulations, this is an important step for reaching a stable initial structure. Normally 

for high-temperature simulations heating and equilibration are done in several 

steps until the desired temperature is reached. Gradual heating is used to avoid 

the simulation from crashing or the system from degenerating, which is a possibility 

when trying to heat a system in one step.   

5. MD simulation:  After our system is equilibrated, we are ready to run MD simulation 

for required time.  Alternately, we can also run replica exchange molecular 

dynamics simulation. 

 

2.3 Replica Exchange MD  

 
Sugita and Okamoto in 1999 [39] were the first to formulate parallel tempering 

for molecular dynamics called replica-exchange molecular dynamics. Now, it has 

become one of the most widely used tool for molecular dynamics simulation [40-46]. 

 

The algorithm helps to run multiple MD simulations in parallel at a sequence of 

increasing temperatures (the distribution of temperature can be uniform or exponential; 

it has been shown that exponential distribution is better and more efficient see ref. 

[47]).  The initial conditions and structures are same, apart from temperature.  Each of 

these structures at different temperature are called replicas.  After every n-steps, we 
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try to swap simulations between neighbouring replicas, say j and k= j+1. n should be 

large enough for replicas to relax after a swap  [48, 49] and small enough [50, 51] to 

keep computational cost low and improve convergence. Typically in most REMD 

studies exchange is attempted after 1ps to 3 ps [44] (1000 to 3000 steps in 1 fs 

integration time step).  

 

 
 

Figure 2.2.  Plot of temperature replica exchange molecular dynamics (TREMD) trajectory. 

Trajectory originating from temperature T2 has been represented by solid line to show how it 

visits other temperatures, as well (T1, T3). 

 
 
 
We accept the swap with the probability given by Metropolis ratio [39]: 

                                   𝑚𝑖𝑛 {1,
𝜋𝑇𝑘

(𝑞𝑗 ,𝑝𝑗)𝜋𝑇𝑗
(𝑞𝑘,𝑝𝑘)

𝜋𝑇𝑘
(𝑞𝑘,𝑝𝑘)𝜋𝑇𝑗

(𝑞𝑗,𝑝𝑗)
}                                   

 
The distribution 𝜋𝑇𝑘

(𝑞𝑗 , 𝑝𝑗) is the Boltzmann distribution for replica j at temperature Ti. 

From above ratio, we can get probability to visit from state x to x’ as 

 

                                   𝑃(𝑥 → 𝑥′) = {
1               𝑓𝑜𝑟    ∆≤ 0

exp(−∆)   𝑓𝑜𝑟   ∆> 0
                                           

where ∆ can is defined as  

                                      ∆= (
1

𝑘𝐵𝑇
−

1

𝑘𝐵𝑇′
) [𝑈(𝑥′) − 𝑈(𝑥)]                                          
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Temperature for replicas are selected such that there is at least 20 percent 

overlap of probability distribution curves of two neighbouring replicas. If the 

temperatures are far apart then there won’t be overlap and ∆ would be very large thus 

the probability of exchange will be negligible. For the same reason, we attempt 

exchange between the neighbouring replicas and not any two replicas. 

 

                       
 
 

Figure 2.3.  Probability distribution of energy at temperature T and T’, where T’ > T has been 

shown in above figures. In part (A), the difference between temperatures is not large, thus, 

there is an overlap between the plots. This overlap is required for exchange to be accepted, in 

REMD. In part (B), the difference between T and T’ is very large, i.e., the replicas as very far 

from each other and hence there is no overlap. In such a case, ∆ becomes very large and the 

probability of acceptance tends to zero. In general, the distribution of temperature is selected 

such that there is about 20% overlap between the neighbouring replicas. 

 

 

This stochastic dynamical system on 𝑋 = ℝ2𝑑𝑛  has enabled the crossing of 

large energy barriers and the efficient exploration of the corresponding energy 

landscape. The output of REMD can be represented in form of continuous and 

discontinuous trajectory. Continuous trajectory is called R-trajectory while the 

discontinuous trajectory is called T-trajectory (as shown in figure 2.5).  
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Figure 2.4.  Possible energy landscape of a molecule. Energy landscape of a molecule is 

very complex, with many valleys and hills. If we run simulation at only one temperature then 

we might get to see some states at and nearby local minima, as shown in figure with cyan 

colour dots. Instead, if we run simulation at a range of temperatures using REMD, we can visit 

many other possible states as well (red dots form run at high temperature and blue dots from 

run at low temperature). Thus, we get to study the whole landscape. In REMD, a better 

sampling is achieved for every temperature used. This makes REMD a much better tool to 

study a system. 

                                                                          

 
 

Figure 2.5.  Horizontal lines of different colours at a temperature is called T-trajectory. It is a 

discontinuous trajectory. R-trajectory is a continuous trajectory which visits other temperatures 

as well. Here, it has been shown with a solid red line. If the REMD is run long enough, it visits 

all temperatures used for the simulation.[52] 
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Typically, in any REMD simulation, the atomistic coordinates are saved at each 

temperature, and these are termed as T-trajectories.  History of exchange events is 

also saved in a separate exchange data file. Using information in both the files we can 

generate R-trajectories. These corresponds to a replica R as it progresses to different 

temperature after accepted exchange. These trajectories are continuous, unlike T-

trajectories. It can be used to assign states with TBA method[53]. It is only after this 

step, by using again the exchange history data, that states can be also assigned 

accurately along the more typical REMD T-trajectories, enabling thus the temperature-

dependent investigation of the dynamics. 

 

2.4 Markov State Modelling 

 

Although the availability of high-performance computing hardware capacity is 

likely to continue its remarkable growth, the high complexity of accurate kinetic and 

thermodynamic studies based on molecular dynamics simulations of biomolecular 

systems requires novel modelling methods that can be accurate yet simple and 

relatively easy to implement. One approach, that takes advantage of the intrinsically 

parallel architecture HPC facilities or the highly distributed computing projects such as 

Folding@Home[6], relies of mapping the complex underlying dynamics of otherwise 

complex biomolecular systems on relatively simple networks with nodes corresponding 

to stable conformational states that are interconnected through Markovian transitions. 

Thus, both the design and the goals of MD studies are targeted towards identifying the 

regions of the corresponding configuration space that are characterized by a sufficient 

conformational stability such that subsequent inter-state transition are independent 

from each other (i.e., Markov states). This approach has strong roots in the statistical 

mechanics of biomolecules being related to the projection operator formalism.[7] 

 

A Markov State Model (MSM) can be used to describe the dynamics of the 

system. MSM is a square matrix, generally made of transition probabilities between 

two states. The whole space is divided into states and by determining the state of MD 

simulations, we can track the dynamical progress of the system in state space by 

writing down which state the trajectory is at time points separated by 𝜏, referred to as 

the lag time or window length. To build a MSM, a Markovian lag time is selected. In 
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such case the system is memoryless meaning that the probability of going a state j, 

after an increment of 𝜏,  given it is in state i  does not depend on where the system 

was before it entered state i. The goal is to choose the n states such that they best 

capture the dynamics of the system and are interpretable, and a lag time that is long 

enough to be Markovian but short enough to resolve the dynamics and keep 

computational cost low.  

 

 

 

Figure 2.6. Markov State Models aim to sample accurately the underlying free energy 

landscape by use of either long or short equilibrium trajectories.  Consider the sampling of the 

conformational space region containing a typical transition pathway between two end points 

(e.g., reactants, R, and products, P). Using short, rather than long equilibrium trajectories 

brings major sampling advantages. In typical MSM simulations, sets of short trajectories are 

initialized from intermediate conformations between R and P regions that are candidates for 

Markovian states. During analysis, transition probabilities between candidate states are 

extracted at different time intervals (also called lag times) and the states can be either divided 

or combined (clustered) until the transitions between them can be shown to be truly Markovian 

and a proper MSM is built. Short trajectories can be simulated either for the same duration 

(“fixed length”) or only until crossing into nearby regions (macro-states). 

 

Once the Markovian transition probabilities between different states are inferred 

from either long or short trajectories (see Fig. 2.6), they can be used to build transition 

probability matrices corresponding to different lag times and, ultimately, time-

independent rate matrices that contain a complete representation (in the limits of the 

underlying Markovian model) of the thermodynamics and kinetics of the corresponding 
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biomolecular system.[21, 54, 55] Due to their popularity and usefulness,[56] several 

packages are available to assist both the implementation and the analysis of MSMs 

from molecular trajectories as well as several useful reviews.[56-61] Here, we highlight 

the basic theoretical considerations behind extracting Markovian transition 

probabilities and rate matrices from molecular simulations.  

Markovian approach: Markov State Models for MD Simulations 

Markov State Models are becoming increasingly popular as they have proven 

to be a useful approach to both generating and analysing the results of a broad range 

of molecular dynamics simulations, from folding/unfolding of proteins and studies of 

conformational dynamics under applied forces,[6, 7] to binding/unbinding of 

peptides.[62, 63] MSM-based studies allow for the convenient combination of several 

MD trajectories in to a single model of the underlying network of kinetic transitions 

between Markovian states from which experimental observables can be estimated, 

often to a high degree of accuracy. [54, 56-58, 60, 61] 

Master equation and rate matrix:   

Assuming ideal and Markovian states, a master equation accurately describes 

the rate of change of the population of the states in terms of fluxes in and out of the 

states. In a real system the states are highly dependent on the reaction coordinate 

chosen and on the lag time used to observe the system, and as such the system, for 

very short lag times, cannot be seen as Markovian. However, beyond certain lag times, 

most complex systems become “memoryless” and therefore the Markovian 

assumption holds, and the master equation can accurately represent the kinetics of 

the system. Say the system has N states and the probability of a particular state m is 

given by
mp . The rate constant, 

mnk , is the rate of transition from state m to state n and 

thus the master equation of the system is given by: 

 
1

0

( )
[ ( ) ( )]

N
m

mn n nm m

n

dp t
k p t k p t

dt

−

=

= −   

This can be written in simpler terms by using matrix notation: 

 
( )

( ) ( )
d t

t t
dt

=
p

K p  (1) 
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where p(t) is the probability matrix and K(t) is the N × N rate matrix of the system. 

At equilibrium the rate of change of the population is zero and therefore the 

equilibrium population, op , can be defined as: 

                                                                   0o =Kp                                                              (2) 

which is normalized according to the relation 
1

0

1
N

o

n

n

p
−

=

= and positive 

0, {0,1,..., 1}o

np n N = − . 

The components of the rate matrix K are given by: 

 

1

0 ( )

,

/ ,

N

in

i i nnm

o o

mn n m

k n m
k

k p p n m

−

= 


− =

= 
 


.  

This allows detailed balance to be maintained, which is a requirement for a rate matrix 

when the system is at equilibrium 

 
o o

nm m mn nk p k p= .  

 

Interestingly, one can express the likelihood   of a system of N states, being 

represented by the rate matrix K. Propagators, or the corresponding Green’s functions 

( ), | ,0G n t m  are the probability of being in state n at time t  after having been in 

state m at time 0. These propagators are weighted by the number of transitions from 

m to n observed in a trajectory, during an interval of t , and cumulating the observed 

numbers of these transitions in a transition matrix ( )nmT t  such that 

Λ = ∏ ∏ [𝐺(𝑛, ∆𝑡|𝑚, 0)]𝑇𝑛𝑚(∆𝑡)𝑁𝑖𝑛𝑡
𝑚=1

𝑁−1
𝑛=0                                                (3) 

 

where 
intN is the number of time intervals of equal time length t  such that the 

total length of the trajectory is 
inttotalt N t=   [54]. Equation 3 makes the connection 

between observed transitions and the likelihood  of these transitions. This allows the 

extraction of the rate matrix of the system by maximizing the likelihood, for example by 
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using the method of simulated annealing of the free parameters of the rate matrix until 

convergence upon the maximum likelihood. In practice, the minimum of the log-

likelihood is determined.  

Eigen-spectrum properties of rate matrices:   

The eigenvectors of the rate matrix K satisfy the following eigenvalue equations 

 
i i i =K , and 

i i i  =K   

where i and i  are the left and right eigenvectors K respectively and the eigenvalues

i can be sorted such that 
0 1 2 10 ... N    −=     . 

The symmetrized rate matrix, H, is given by 

 
1/2 1/2

0 0

−=H P KP  

where 
0 0 1,...,o o

Ndiag p p −
 =  P  is the equilibrium population matrix consisting of the 

equilibrium populations of each state and such that the trace is unity, i.e. ( ) 1otr =P . 

The components of H are given by 

 

1

0 ( )

,

,

N

nn in

i i n
nm

nm mn

k k n m
h

k k n m

−

= 


= − =

= 





.  

The eigenvalues,
i , of H are the same as the eigenvalues of K and they satisfy the 

following equation 

 
i i i =H   

such that 
i are the orthonormal eigenvectors of H. We note that in many practical 

applications it is better to work with the symmetrize rate matrix H rather than with K, to 

avoid confusion, and for numerical accuracy. The eigenvectors of both matrices are 

connected analytically to each other and to the vector of equilibrium population of 

states, as described below. 
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Autocorrelation functions:  

The autocorrelation function of a time-dependent observable a(t), which 

depends on the state, s(t) of the system at time t such that  ( ) 0,1,..., 1s t N − , can be 

written using spectral decomposition 

 

2
1 1

0

0 0

( ) (0) ( ) ( ) ( )
N N

n i i

i i

t a n n exp t  
− −

= =

 
=  

 
 a a   

A useful identity can be derived if the case of 
0( ) ( ( )) / ( ( )) ( ( ))i it s t s t s t  = =a  is 

calculated. This gives 

 
0 0

( ( )) ( (0))
. exp( )

( ( )) ( (0))

i i
i

s t s
t

s t s

 


 
=         (4) 

Eq. (4) is used to validate the extracted master equation against actual simulation 

trajectories of Markovian dynamic systems. 

Relation between symmetrized and non-symmetrized rate matrices:  

The right and left eigenvectors of the original rate matrix K can be recovered 

from the eigenvectors of H in the manner below: 

 

2 2

2 2

( ) . ( ),

( ) ( ) /

o

i n i

o

i i n

n p n

n n p

 

 

=

=
  

and also 
2 2 2( ) ( ) . ( )o

i n in p n =  

The first right eigenvector, 
0 , of K, corresponding to the eigenvalue 

0 0 =  is found to 

be the equilibrium population from Eq. (2). Therefore, 0

o

np = . From this it can be seen 

that 
0( ) 1n =  for all {0,1,..., 1}n N= − .  Therefore Eq. (4) shows that  

  
2

0 ( ), {0,1,..., 1}o

np n n N=   −   

Further relations can be extracted by using the orthonormality of the eigenvectors 

( )i n of H. 
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1 1 1 1

0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) / ( ) ( )
N N N N

o o

i j i j n i j n i j ij

n n n n

n n n n p n n p n n        
− − − −

= = = =

= = = =     

 

where ij  is the Kronecker delta. Filling in for 0j = results in: 

 
1 1 1

0

0 0 0

( ) ( ) ( )
N N N

o o

i n i n i i

n n n

n p n p n   
− − −

= = =

= = =     

 

Deriving likelihood function:  

We can write an analogous equation to Equation 1 for the symmetrized rate 

matrix H if the substitution 
1/2

0 −= P p is used. 

( )
( ) ( )

d t
t t

dt


= H                                                           (5) 

The solution of Eq. (5) is exponential along with the eigenvectors and eigenvalues of 

H and has the form 

 𝑝𝑛(𝑡) = 𝑝𝑛(0)∑ ψ𝑖
2(𝑛)exp (𝜆𝑖𝑡)

𝑁−1
𝑖=0   

The propagators of the system (i.e., the conditional probability of being in state n at 

time t given that the system was in state m at time 
0 0t = ) are the Green’s functions 

 ( )
1

0

00

( )
, | ,0 ( ) ( )exp( )

( )

N
t

i i inm
i

n
G n t m e n m t

m


  



−

=

 = =  K . 

The propagators of the system are used to form the likelihood function  of the 

Markovian trajectory such that 

 ( )
int

1

( ), | (( 1) ),0
N

i

G s i t t s i t
=

 =   −    

where 
intN is the number of time intervals of equal time length t such that the total 

length of the trajectory is 
inttotalt N t=  . The likelihood function can be factorized into a 

product of products given the Markovian nature of the system leading to the Eq. (3). 
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In typical Markov state modelling, as illustrated in Figure 2.6, a set of either long 

or short[64] trajectories are used to sample the underlying free energy landscape. The 

trajectories are first processed to assign Markovian states, using a variety of possible 

approaches such as, for example, the transition-based assignment (TBA, see Ref. 

[65]). Secondly, the transition probabilities, or propagators described above are used 

to estimate either transition matrices at certain lag times or, the time-independent rate 

matrix K (e.g., by likelihood maximization using Eq. 3).[65]  

 

Relative Root-Mean-Square Deviation (RMSD) for state assignment:   

 Here, we illustrate a simple yet effective method, the use of relative RMSD 

(RelRMSD or RMSDrel) measure to assign the configurations to correct 

conformational states in biomolecular simulations. Let RMSDi be the RMSD value 

calculated along a trajectory after aligning it with the set of atomic coordinates for the 

molecular conformation i. Similarly, RMSDj is the RMSD value calculated along a 

trajectory after aligning it with the set of atomic coordinates for the molecular 

conformation j (see fig. 2.7a). Using the RMSDi and RMSDj values, we can define the 

time dependent relative RMSD (RMSDrel). 

 

𝑅𝑀𝑆𝐷𝑖𝑗
𝑟𝑒𝑙(𝑡) =

𝑅𝑀𝑆𝐷𝑖(𝑡)

𝑅𝑀𝑆𝐷𝑖(𝑡) + 𝑅𝑀𝑆𝐷𝑗(𝑡)
 

 

The RMSDrel will always have values bound between 0 and 1. When the 

trajectory is close to conformation “i”, the RMSDrel function takes positive values close 

to zero, and when the trajectory is close to the conformation “j”, RelRMSD takes close 

to one but always less than one (see Fig. 2.7b). Combination of pairwise RelRMSD 

can be used in cases with more than two main conformations. We refer the readers to 

Ref. [66] for a more detailed description.  
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Figure 2.7. Using the relative RMSD (RelRMSD) reaction coordinate to assign trajectories. 

(a) RMSD1 (blue, circles) and RMSD2 (green, triangles) are two illustrative values obtained by 

aligning a trajectory to structures corresponding to representative conformations for state 1 

and state 2, respectively. As expected, these are most informative only for RMSD values close 

to zero. (b) By combining the two signals in RelRMSD12 (red, circles) the overall ability to 

discriminate between the two states is improved, and the assignment of states can be done 

more accurately (for example, by using the transition-based assignment method) resulting in 

a discretised trajectory (horizontal lines). 

 

 

In Fig. 2.7 it is illustrated the use of the relative RMSD (RelRMSD) reaction 

coordinate to assign trajectories. Here, RMSD1 (blue, circles) and RMSD2 (green, 

triangles) are two illustrative values obtained by aligning a trajectory to structures 

corresponding to representative conformations for state 1 and state 2, respectively 

(Fig. 2.7a). As expected, these are only informative for RMSD values close to zero. In 

Fig. 2.7b it is shown how by combining the two signals in RelRMSD12 (red, circles) the 

signal is improved, and the assignment of states can be done more accurately (for 

example, by using transition-based assignment) resulting in a discretised trajectory 

(lines). 
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Figure 2.8. The RelMSD calculation can be used multi-dimensionally in the state assignment 

step for discriminating between multiple MSM states (in this case three conformational states). 

Structures assigned to S1, S2 and S3 states are shown in red, blue and green, respectively.    

 

Interestingly, the RelRMSD calculation can be used multi-dimensionally in the 

state assignment step for discriminating between multiple MSM states (in this case 3 

conformational states), as illustrated in Figs. 2.8 and 2.9. Using the RelRMSD to assign 

states (e.g., in conjunction with the TBA method) is particularly useful in cases in which 

well-defined representative biomolecular conformations exist for the corresponding 

Markov states and can be used to make the thermodynamic and kinetic MSM analysis 

of the underlying conformational dynamics more automatic.  

 

Figure 2.9. Example of using RelRMSD for MSM analysis of the conformational dynamics of 

a small diphenylalanine (FF) peptide (replica exchange MD simulation with explicit water 

molecules). 
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Figure 2.9 shows an example of using RelRMSD for MSM analysis of the 

conformational dynamics of a diphenylalanine peptide (replica exchange MD 

simulation with explicit water molecules), which is shown to be essentially 3-state in 

Ref. [66]. 

 

2.5 Milestoning 

 

For systems where the sampling problem can be stated in terms of estimating 

the thermodynamics and kinetics along transition pathways that connect two known 

metastable states (e.g., “reactant”, R, and “product”, P, see Figures 2.6 and 2.7) one 

could target the sampling in order to identify and characterize the pathway(s) (typically 

with the maximum reaction flux) and the corresponding intermediate states that are 

relevant to the underlying reaction mechanism.  

 

 

Figure 2.10. Schematic 1d representation of two typical approaches to sampling free energy 

barriers in molecular simulations using (a) one or a few typically long trajectories, and (b) short 

trajectories initialized along the transition pathway between two end points (e.g., reactants, R, 

and products, P). In (b), central in the implementation of the Milestoning method, the aim is to 

achieve higher computational efficiency by initializing the short trajectories from multi-

dimensional hypersurfaces (vertical lines, blue) that are located between anchors (red dots) 

along a low dimensional reaction coordinate (see also Fig. 2.7).   

 

 

  In Milestoning, an initial pathway between R and P conformations can be used 

to first select a set of intermediate conformations along any candidate reaction path 

that may be available (e.g., from a high-temperature simulation, steered MD, etc.). The 
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intermediate representative conformations (Fig. 2.10, red points) are referred to as 

anchors. Milestones are further introduced as hypersurfaces in the free energy 

landscape that have an equal minimal distance from at least two anchors (blue lines in 

Figs. 2.10 and 2.11).  Finally, once the energy landscape is divided along the reaction 

coordinate using milestones, one can run sets of short trajectories from each milestone 

(shown in Figs. 2.10 and 2.11). These short trajectories are terminated as soon as they 

reach a new milestone. The statistical information on local transitions between each 

pair of milestones (e.g., first passage times), can be combined to obtain the global 

statistical information on possible R-P transition pathways, free energy profiles and 

relative transition times.  

 
Figure 2.11.  In Milestoning, the sampling is initiated by first defining a set of “anchors” (red) 

conformations that span a (typically low dimensional) transition pathway between two end 

points (e.g., reactants, R, and products, P). The underlying kinetic and thermodynamic 

information is extracted by analysing sets of short trajectories initiated in conformational space 

regions (blue, milestones, where Mij is the milestone between anchors i and j, respectively). 

The short trajectories (green) are terminated as soon as they reach another milestone, different 

from the one at which they were initiated.  

 

Here we briefly illustrate the Milestoning method. To initiate Milestoning, we 

need a set of sample configurations, that we call anchors, from the coarse space 

between R and P (red dots in Figs. 2.10 and 2.11). These anchors are the centres of 

Voronoi cells in space of several course variables. A milestone between two anchors, 

i and j, is thus a set of points with equal distance from anchors i and j. This distance is 

smaller than the separation from all other anchors. Milestone between anchors i and j 

is denoted by Mij (shown in blue in Fig. 2.10) or 𝑀𝛼.  

 

At this stage, one needs to sample configurations on each milestone (e.g., by 

using MD simulations constrained to corresponding milestone coordinates). Finally, we 

launch unbiased MD trajectories from the sampled configurations on each milestone. 

Distance from all the anchors is measures along these unbiased trajectories. If the 
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closest anchor is other than the two anchors used to define the milestone from which 

the unbiased trajectory was initiated, then we know that trajectory hit a new milestone.   

These trajectories are terminated.  We record the starting and terminating milestone 

index and the time of termination. Using this information, we can estimate transition 

probability between milestones, also called kernel, W, and the corresponding lifetime 

of the milestone. Let 𝑛𝛼 be the total number of trajectories initiated at the milestone 

𝑀𝛼. Let 𝑛𝛼𝛽 be the number of trajectories which started at milestone 𝑀𝛼 and terminated 

at milestone 𝑀𝛽.  The transition probability, 𝑊𝛼𝛽, is estimated as 𝑛𝛼𝛽 / 𝑛𝛼. The lifetime 

of the milestone, 𝑀𝛼, is 𝑡𝛼 =
1

𝑛𝛼
∑ 𝑡𝑙𝑙=1,…,𝑛𝛼

, where l is the index of the trajectory and tl 

is the time length of the trajectory l.  

 

Using the transition probability or kernel matrix, W, and the milestone lifetime, 

t, we can compute important kinetic and thermodynamic observables such as the flux 

through a milestone, free energy, mean first passage time, etc. [67] The stationary flux 

of trajectories through a milestone is denoted by the eigenvector, q, of the matrix W, 

with an eigenvalue of one.  It can be shown that the free energy of a milestone a  is  

Fa = -kBT log qata[ ]  and the mean first passage time (MFPT, 〈𝜏〉) can be written as 

〈𝜏〉 = 𝐩𝟎(𝐈 − 𝑊)−1𝐭, where p0
 is the vector of the initial distribution and I is the identity 

matrix.[67]   

 

Figure 2.12. Example of using a multi-dimensional Milestoning approach in a large and more 
complex molecular system: the characterization of the DFG-flip dynamics in Abl kinase. 
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Figure 2.12 illustrates the use of a multi-dimensional Milestoning approach in a 

large and more complex molecular system: the characterization of the DFG-flip 

dynamics in Abl kinase.[18] Here the Milestoning method to study the transition 

between active and inactive conformations of Abl kinase (shown in Fig. 2.12). Note 

that it would have been impractical to study a complex system like this with regular MD 

simulations using comparable HPC resources.[18, 20] 

 

2.6  Conclusions 

 

In spite of significant and sustained advances in computational hardware 

allowing for larger size and longer scale computations, molecular dynamics studies of 

a large majority of biomolecular systems remain outside the reach of traditional 

simulation methods. A main problem springs from  the intrinsically high-dimensional 

and complex nature of the underlying free energy landscape of most systems, and the 

necessity to sample accurately such landscapes for identifying kinetic and 

thermodynamic states in the configurations space, and for accurate calculations of 

both free energy differences and the corresponding transition rates between states. 

Here, we reviewed two modern methods that allow longer-time MD studies of 

biomolecular systems that can open a broad spectrum of applications. A first approach 

Markov State Models, relies on identifying a set of configuration states in which the 

system resides sufficiently long to relax and loose the memory of previous transitions, 

and on using simulations for mapping the underlying complex energy landscape on a 

network of Markovian transitions. The independence of the underlying transition 

probabilities creates the opportunity to increase the sampling efficiency by using sets 

of appropriately initialized sets of short simulations rather than more typical long MD 

trajectories, which leads to both enhanced sampling and higher accuracy. This allows 

MSM studies to unveil bio-molecular mechanisms and to estimate free energy barriers 

with high accuracy, in a manner that is both systematic and relatively automatic, which 

accounts for their increasing popularity. The second approach, Milestoning, is focused 

on accurate studies of the ensemble of pathways connecting two specific end-states 

(e.g., reactants and products) in a similarly systematic and highly automatic and highly 

accurate manner. Conceptually, both methods are theoretically identical for transition 

paths between Markovian states, however Milestoning can be generalized and applied 



 30 

to studies of non-Markovian transitions as well. It has been shown in ref. [68] that in 

general milestoning procedure the dynamics is not of a continuous time Markov chain. 

Despite the basic idea in MSM and the milestoning method being same, there are other 

two main differences. First difference is in the definition of states. In MSM, states form 

a partition of phase space, whereas in the Milestoning states are hypersurfaces in the 

phase space. In MSM, one needs to select a lag time at which transition probability 

matrix should to be computed. It is not very obvious at which lag time the results of 

MSM will be accurate. In milestoning, provided that optimal milestones are being used, 

exact mean first passage time can be obtained. More detailed comparison can be 

found in ref. [68-71] As highlighted by the increasing number of studies using both 

methods, we anticipate that they will open new avenues for the investigation of 

systematic sampling of reactions pathways and mechanisms occurring on longer time 

scales than currently accessible by purely computational hardware and parallelization-

related advances. 

 

 

 

 

 

 

 

 



2.  This chapter has been adapted from reference [21].  31 

3. Replica Exchange Molecular 

Dynamics of FF Amyloid Peptides 

in Electric Fields2 

 
 

3.1 Overview 

 
Here, I study the temperature-dependent conformational dynamics of FF 

peptides solvated in explicit water molecules, an environment relevant to biomedical 

applications, by using an enhanced sampling method, replica exchange molecular 

dynamics, in conjunction with applied electric fields. Simulations highlight and 

overcome possible artifacts that may occur during the setup of REMD simulations of 

explicitly solvated peptides in the presence of external electric fields, a problem 

particularly important in the case of short peptides such as FF. The presence of the 

external fields could over-stabilize certain conformational states in one or more REMD 

replicas, leading to distortions of the underlying potential energy distributions observed 

at each temperature. This can be overcome by correcting the REMD initial conditions 

to include the lower energy conformations induced by the external field. 

 

3.2 Introduction 

 

Small, biocompatible peptides, such as amyloid-forming diphenylalanine (FF) 

have raised an increasing interest in both theoretical[66, 72-75] and experimental[76-

80] nanoscience studies for almost two decades. This success is due both to their 

intrinsic propensity to self-assemble in a hierarchic manner from FF monomers into 

diverse nanostructures, and to the interesting emerging biophysical properties of these 

nanostructures (e.g., piezoelectric, optical and mechanical strength properties).[77, 78, 

81] FF is one of the smallest, naturally occurring amyloid peptides, found commonly in 

the hydrophobic structural core the amyloid beta (Aβ) protein, which
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allowed its identification as one of the smallest peptides capable of self-assembly 

leading to the formation of ordered fibrillar amyloid nanostructures.[81]  

 

Amyloid FF peptides and their bioinspired nano-scale structures such as FF and 

nanotubes, nanospheres, or even nanorods[82] have led to a multitude of applications 

in biomedicine, nanoscience and nanotechnology.[75, 77, 78, 83] However, there are 

also significant limitations to using FF-based nanomaterials, one of the main factors 

being the instability of FF nanotubes in solution (e.g., a major limitation hindering the 

development of FF nanotube-based biosensors or drug delivery systems) and the 

relative heterogeneity of the local, nm-scale structures formed by self-assembly of the 

FF peptides under various conditions, including but not limited to temperature, pH and 

solvation.[79, 80] To overcome such barriers it becomes important to understand and 

control the peptide self-assembly process. Innovative approaches such as directed 

self-assembly have been developed, such as subjecting a system under the influence 

of an externally applied stimuli, including mechanical mixing, temperature or pH 

variations. Thus, different degrees of control are achieved by enabling the tuning of 

desired interactions, structure and properties of the final self-assembled 

nanomaterials. Recent experimental methods of directed self-assembly such as di-

electrophoresis, rely on applying an external electric field on the entire ensemble of 

assembling peptides and have been used to modulate the alignment of FF nanotubes. 

[84-88] However, a main challenge with directed self-assembly remains the need for 

predictive models that bridge the detailed conformational behaviour of a single FF 

molecule under an electric field and the properties of the resulting nanoscale self-

assembled structures. 

 

In this study, we use atomistic molecular dynamics simulations to study the 

combined effect of applied electric fields and temperature dependence on the detailed 

conformational dynamics of FF peptides solvated in explicit water molecules, an 

environment relevant to biomedical applications. In order to capture the temperature 

effect on the FF thermodynamics and kinetic properties, our simulations rely on an 

enhanced sampling method, temperature replica exchange molecular dynamics. Here, 

we first highlight and overcome a possible problem that may lead to artifacts during the 

setup of REMD simulations of explicitly solvated peptides in the presence of external 

electric fields, a problem particularly important in the case of short peptides such as 
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FF. We show how to overcome this problem (i.e., by correcting the REMD initial 

conditions to include the lower energy conformations induced by the external field, and 

we analyse the converged REMD data using a Markovian description of conformational 

states of the simulated system. Finally, we discuss the observed temperature, and 

electric field-dependent thermodynamic and kinetic properties of small FF amyloid 

peptides, which may be useful in understanding and devising new methods to control 

their aggregation-prone biophysical properties and, possibly, the structural and 

biophysical properties of FF molecular nanostructures. 

 

3.3 Methods 

 

REMD Simulations in external electric fields  

We use atomistic REMD simulations of FF peptides, following a similar 

procedure to our previous study described in Ref. [66] (though, in that case we did not 

use external electric fields), with the MD package Gromacs (version 5.1.4),[89, 90] 

using Langevin dynamics with a friction coefficient of 0.1 ps−1.[91] These REMD 

simulations used the particle-mesh Ewald implementation with a switching distance for 

the van der Waals interactions and nonbonded electrostatics of 8.5 Å and a cut-off 

distance of 12 Å, and an integration time step of 2 fs. The runs were performed in the 

NPT ensemble, using an improved Berendsen-type weak coupling method for 

temperature coupling,[92] Parrinello-Rahman isotropic pressure coupling,[93] the 

recent CHARMM[25] 36 all-atom protein force field parameters (C36),[94] and using 

explicit TIP3P[95] water molecules. The FF peptide was included in a simulation box 

containing 1112 water molecules. To enhance the sampling, REMD is performed with 

12 replicas running in parallel at temperature values chosen according to an optimized 

protocol[3] (Table 3.1) in the range of 310.00 K to 373.45 K.[63]  

 

For the REMD simulations, we prepared the system including the FF amyloid 

peptide and water molecules using VMD’s[1] Molefacture Plugin protein builder tool, 

followed by minimization, heating and equilibration stages, at each electric field value. 

The system was simulated using the Gromacs REMD implementation,[3] with an 

average acceptance probability for the replica exchanges of ∼20%. The atomic 

velocities and coordinates were saved every 100 fs and, after simulation, the REMD 
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per-replica trajectory data (i.e., referred to as R-trajectories) was also transformed for 

analysis into per-temperature data (i.e., referred to as T-trajectories) using the 

Gormacs demux command. The Gromacs trajconv command was used to select 

system conformations only every 1 ps (i.e., every 500th MD frame, with a 2 fs 

integration timestep) for our detailed thermodynamic and kinetic analysis.   

 
E = 0 kcal/mol·Å·e 

Replica no. 1 2 3 4 5 6 7 8 9 10 11 12 

Temp [K] 310.00 315.38 320.82 326.35 331.96 337.64 343.41 349.26 355.19 361.20 367.30 373.45 

Time [ns] 126 126 126 126 126 126 126 126 126 126 126 126 

E = 30 kcal/mol·Å·e 

Replica no. 1 2 3 4 5 6 7 8 9 10 11 12 

Temp [K] 310.00 315.38 320.82 326.35 331.96 337.64 343.41 349.26 355.19 361.20 367.30 373.45 

Time [ns] 100 100 100 100 100 100 100 100 100 100 100 100 

E = 45 kcal/mol·Å·e 

Replica no. 1 2 3 4 5 6 7 8 9 10 11 12 

Temp [K] 310.00 315.38 320.82 326.35 331.96 337.64 343.41 349.26 355.19 361.20 367.30 373.45 

Time [ns] 98 98 98 98 98 98 98 98 98 98 98 98 

 

 

Table 3.1. The three main sets of REMD data analysed here correspond to simulations with 

explicit water molecules, performed in the presence of external electric fields with intensities 

of (a) 0, (b) 30, and (c) 45 kcal/mol·Å·e, respectively. Each run used 12 replicas, at 

temperatures spaced according to an optimized protocol,[3] as indicated in the table together 

with the corresponding run times. The total simulation time is ~4 ms (i.e., also including the 

initial setup and testing runs at 30 kcal/mol·Å·e) 

 

 
For the first run, in the absence of electric fields, the production simulations were 

done for 126 ns for each of the 12 replicas, giving a total REMD simulation time of 

1.512 μs, which was sufficient for achieving convergence of all the relevant 

thermodynamic and kinetic quantities. As an additional test for convergence we also 

checked the “equal occupancy rule” of replicas at each temperature,[96] which is a 

very useful method for assessing quickly the performance of parallel tempering 

simulations.[52, 96] Subsequently, kinetic data on the identified conformational Markov 

states and the corresponding transition probabilities was calculated from the REMD 

trajectories as discussed below.  
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Extracting transition probabilities and rates from REMD data 

To identify and test the Markovian conformational states and the corresponding 

transition states for REMD trajectories, we analysed the temperature-dependent FF 

data by following the workflow that we developed and presented in our previous 

study,[66] and the corresponding transition probabilities were extracted and compared. 

Relative RMSD was extracted using representative structures for the three peaks of 

dee distribution. Using TBA method, states were assigned and then transition between 

these states were counted to extract transition probability matrix (see Ref 59). As 

highlighted in Ref. [63], the replica R-trajectories are continuous, even though they 

travel at various temperatures during the REMD as exchange attempts are accepted 

(e.g., Fig. 1 in Ref. [63]), while the data captured as T-trajectories is actually 

discontinue, being interrupted at time steps when exchange attempts are accepted. 

Note that, unlike other REMD analysis methods that are focused on T-trajectories, due 

to their well-defined temperatures, we showed that it is convenient to start by analysing 

R-trajectories in order to take advantage by their time-continuity both in the initial 

assignment of states, and, importantly, in assessing convergence.[62, 63] As 

demonstrated in Ref. [63], there is an analytical relation that connects both R-

trajectories and T-trajectories. The propagators (i.e., conditional probabilities) for 

transitions along R-trajectories were shown to be in effect the weighted geometric 

means of propagators extracted for the corresponding transitions in T-trajectories. This 

observation enables a powerful direct application of kinetic analysis along R-

trajectories, on which state assignment is easier due to their continuous nature, rather 

than performing directly a more laborious (and thus more prone to errors) kinetic 

analysis of the discontinuous T-trajectories.[62, 63] 

 

Following the procedure detailed for REMD data of FF peptides in Ref. [62], 

here we assume that the conformational space of a system can be discretized into N 

distinct states that obey a master equation, which can be expressed in matrix notation 

as , with  being the time dependent column vector of probabilities 

with elements such that  𝑝𝑛(𝑡) > 0, 𝑛 ∈ {1,… , 𝑁} . Here, K(t) is the 𝑁 × 𝑁 rate matrix, 

the K element is the rate of transition from state m to state n, and is the probability 

of the state labelled m, at time t.[7, 54, 64, 97-105] At thermodynamic and kinetic 

   

dp(t)

dt
= K(t)p(t)    p(t)

nmk
 
p

m
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equilibrium, we have 𝐊𝐩o ≡ 0 , with being thus the vector of equilibrium populations 

that has positive elements, 𝑝𝑛
𝑜(𝑡) > 0, 𝑛 ∈ {1,… , 𝑁}, and it is properly normalized 

(∑ 𝑝𝑛
𝑜 = 1𝑁

𝑛=1 ).Therefore, appears as the first right eigenvector of K, corresponding 

to the first eigenvalue 𝜆1 = 0. 

 

Figure 3.1. Representative conformations of FF peptides in the absence of externally applied 

electric fields. Values of the dee distances (i.e., distances between the CZ atoms at the ends 

of the two sidechains, in Å), are shown in black. 

 

Similarly to previous studies,[62, 66] we use the Markov-based DTC method[62, 

106] for extracting transition rates from REMD trajectories (in this case, for different 

values of an externally applied electric field), which requires the initial assignment of 

conformational states of the system. The conformational states of the peptide are 

assigned by following each replica using both T-trajectories and R-trajectories, using 

the transition based assignment (TBA) method described and used in previous 

studies.[54, 57, 63] We use the TBA method of assignment of Markov states for 

biomolecular MD trajectories introduced in Ref. [54], and reviewed in detail 

subsequently in Ref. [57]. The TBA method requires initially a reasonable choice of 

reaction coordinates that allow a good discrimination between the different 

conformational Markov states. However, though these reaction coordinates need to be 

reasonably good, the subsequent state assignment step does not depend entirely on 

their absolute quality, as the TBA method also uses additional, more specific 

information from analyzing the actual transition paths (i.e., time sequence of transition 

events) to the state assignment process.[57] As described next here, we use the dee 

distances (i.e., distances between the CZ atoms at the ends of the two sidechains, in 

Å), illustrated in Fig. 3.1 in black, as a useful choice for initiating the TBA analysis step. 

 

  p
o

  p
o
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Tests of REMD convergence 

Following previous studies,[66] we tested initially the REMD data convergence 

by investigating the “equal occupancy” rule of replicas (if converged then a trajectory 

would spend equal time at each replica) at each temperature,[96] which is a fast and 

useful to assess the performance of parallel tempering simulations.[52, 96] 

Additionally, we have also analyzed and compared data from both R- and T-trajectories 

to show that our extracted quantities are converged (e.g., as shown in the probability 

distributions of different relevant observables illustrated in Figs. 3.5 to 3.8). As 

discussed in Ref. [66], it is important to note that, in cases with several Markovian 

states present (here, for the FF dynamics in the absence of electric fields), the 

transition probabilities extracted from REMD data after applying the TBA method to 

project the R- and T-trajectories to states and performing the kinetic analysis can also 

serve as the ”ultimate” test of the convergence of the REMD simulations performed. In 

practice, we can also use subset of REMD data to estimate statistical errors for the 

extracted transition probabilities, as errors of the means for each data set. The analysis 

of the errors in the extracted intrinsic parameters, like, transition probabilities, of the 

Markovian kinetics offers a reliable assessment of the convergence of the data in the 

MD trajectories generated [66]. Figure 3.1. Representative conformations of FF peptides 

in the absence of externally applied electric fields. Values of the dee distances (i.e., distances 

between the CZ atoms at the ends of the two sidechains, in Å), are shown in black. 

 

3.4 Results 

 

We generate and use new data from REMD simulations performed in the 

presence of external electric fields to probe the combined Temperature and E-field 

dependent conformational dynamics of FF peptides (Fig. 3.1).[66, 74] However, while 

the REMD simulations without electric fields were rather straight forward, the presence 

of the external field allowed us to unveil interesting artifacts. These that may occur in 

general during the setup of any REMD simulations of explicitly solvated peptides in the 

presence of external electric fields, though they have a particularly high likelihood in 

the case of short peptides such as FF. In this case, the presence of the external fields 

can induce rapidly (i.e., on the order of tens of picoseconds) and over-stabilize (i.e., as 

compared to conformational dynamics in the absence of external fields) a low-energy 
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conformational state in one or more REMD replicas, leading to distortions of the 

underlying potential energy distributions observed at each temperature.  

 

The issue is illustrated in Fig. 3.2 that shows the potential energy distributions 

for our initial replica exchange FF simulation with explicit water molecules in an electric 

field of intensity E = 30 kcal/mol·Å·e. The non-Gaussian shape of the potential energy 

distribution is evidenced for the first two lowest temperatures as shown in Fig. 3.2a, 

while the induced transitions to field-stabilized low-energy conformations is illustrated 

schematically in Fig. 3.2b. The REMD implementation in most software packages, and 

the underlying replica exchange attempts, are designed to preserve detailed balance 

when sampling from canonical distributions. Thus, the REMD exchange protocol relies 

on accurate dynamics that preservers the Gaussian shape of the underlying potential 

energy distributions. Parameters of the REMD simulations such as the number of 

replicas and the exact values of the temperatures selected depend directly on the 

correct shape of the underlying energy distributions and on their overlap (e.g., which 

controls the acceptance/rejection exchange probabilities for a simulation of a system 

with a certain number of atoms and the corresponding thermodynamic conditions). 

Thus, replica potential energy distributions with non-Gaussian shapes due to, in this 

case, the presence of external fields can easily lead to serious artifacts. We note that 

this cause is different from REMD artifacts due to modified underlying energy 

distributions, for example, due to the use of weak-coupling thermostats which were 

highlighted before [107]. Earlier studies have shown that REMD simulations of other 

small peptides, such as dialanine [107] and pentaalanine [108] using explicit TIP3P 

water molecules,[95] the choice of weak-coupling thermostats can significantly affect 

the outcome of REMD simulations, though in that case through a narrowing of the 

underlying potential energy distribution for each replica.  
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              (a)          

(b)  

 
Figure 3.2. (a) Distributions of potential energy values (U, in kcal/mol) calculated from REMD 

simulations in the presence of an external electric field with an intensity of E = 30 kcal/mol·Å·e. 

(b) Illustration of the problems that could occur when attempting REMD simulations in external 

electric fields. The presence of the field can induce some (in this case the first two) replicas to 

adopt conformations that are significantly lower in energy than the corresponding initial 

conformational states of the other replicas. This is a serious artifact, as illustrated in (a), as it 

changes the expected equilibrium U distributions. 

 

The artifacts due to external electric fields can be overcome, as demonstrated 

here, by correcting the REMD initial conditions to include the lower energy 

conformations induced by the external field for all replicas. When transitioning from 

properly equilibrated initial conditions to simulations when an additional field is present, 

it is thus crucial to not only re-equilibrate but also monitor the underlying energy 

distributions for all replicas (see Fig. 3.3), at all temperatures, and re-initialize the 

REMD protocol to include the lower energy conformations that may be induced. 

Subsequently the REMD protocol can proceed to achieve enhanced sampling by use 

of replicas running at higher temperatures, in parallel, while preserving the correct 

underlying dynamic and thermodynamic behavior of the system at all temperatures. 

Fig. 3.3a shows the corrected REMD distributions of potential energy values (U, in 

kcal/mol) calculated from REMD simulations at E = 0 kcal/mol·Å·e (Fig. 3.3a), and also 

with the new, corrected initial conditions in the presence of an external electric field 

with an intensity of E = 30 kcal/mol·Å·e (Fig. 3.3b). 
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(a)   

(b)  

 
Figure 3.3. Distributions of potential energy values (U, in kcal/mol) calculated from REMD 

simulations (a) at E = 0 kcal/mol·Å·e, and (b) with corrected initial conditions in the presence 

of an external electric field with an intensity of E = 30 kcal/mol·Å·e. 

 

Figure 3.4 shows the distributions of root-mean-square deviation of atomic 

positions (RMSD) values calculated for the heavy atoms of FF peptides for 

conformations from REMD simulations, with respect to initial configuration, in the 

presence of external electric fields with intensities in the three cases studied here and 

detailed in Table 1: E = 0, 30, and 45 kcal/mol·Å·e, respectively. These distributions 

shows clearly that the complexity of the conformational dynamics of the FF amyloid 

peptides is dramatically reduced in the presence of external fields, in agreement with 

earlier studies that, however used much reduced sampling in simple MD 

simulations.[74]  
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(a)  

(b)   

(c)  
 

Figure 3.4. Distributions of RMSD values calculated for the heavy atoms of FF peptides for 

conformations from REMD simulations in the presence of external electric fields with intensities 

of (a) E = 0 kcal/mol·Å·e, (b) E = 30 kcal/mol·Å·e, and (c) E = 45 kcal/mol·Å·e.  

 

In relation to the piezoelectric behaviour of FF amyloid peptides, in Figure 3.5 

are shown the distributions of the dipole moment magnitude (m, Debye units), 

calculated for FF peptides for conformations from our three sets of REMD simulations 
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in the presence of different external electric. In agreement with earlier observations, 

there is a noticeable effect on the magnitude of the dipole moment which increases 

systematically with larger E values, showing less complexity and fluctuations at all 

temperatures, as the peptide adopts more extended conformations.  

 

(a)  

(b)   

(c)  

 
Figure 3.5. Distributions of the dipole moment magnitude (m, Debye units), calculated for FF 

peptides for conformations from REMD simulations in the presence of external electric fields 

with intensities of (a) E = 0 kcal/mol·Å·e, (b) E = 30 kcal/mol·Å·e, and (c) E = 45 kcal/mol·Å·e. 
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However, while both RMSD and the dipole moment magnitude are useful 

collective variables utilized in MD analysis of FF peptides, Figs. 3.4 and 3.5 also 

illustrate their intrinsic limitations in allowing us to identify and discuss the detailed 

dynamics. Thus, here we choose to focus on a different measure, the dee distances 

(i.e., distances between the CZ atoms at the ends of the two sidechains, in Å, shown 

in Fig. 3.1 in black) as a useful choice for our more detailed kinetic and thermodynamic 

analysis. Fig. 3.6 shows REMD equilibrium distributions of dee values for FF amyloid 

peptides, in the case where no external electric field is applied, for each replica (R-

trajectories, Fig. 3.6a), and at each temperature (T-trajectories, Fig. 3.6b) of the REMD 

trajectories. We note the clear presence of three conformational peaks. 

 

(a)  

   (b)  
 

Figure 3.6. Replica exchange equilibrium distributions of sidechain-sidechain distances of FF 

amyloid peptides, with no external electric field applied, (a) for each replica (R-trajectories), 

and (b) at each temperature (T-trajectories) of the REMD simulation set. 

 

The corresponding distributions of sidechain-to-sidechain distances for 

simulations with an applied electric field of 30 kcal/mol·Å·e, are shown in Fig. 3.7 for 

E=0 

E=0 
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each replica (R-trajectories, Fig. 3.7a), and at each temperature (T-trajectories, Fig 

3.7b) of the REMD simulation set. We note that, at a field intensity of 30 kcal/mol·Å·e, 

the conformational dynamics is restricted to one extended structure with a most 

probable dee value of ~8.9 Å.   

 

(a)  

(b)  
 

Figure 3.7. Distributions of sidechain-to-sidechain distances, dee, for simulations with an 

applied electric field of 30 kcal/mol·Å·e, (a) for each replica (R-trajectories), and (b) at each 

temperature (T-trajectories) of the REMD simulation set. Note that, at this field intensity, the 

conformational dynamics is restricted to one extended structure with a most probable dee value 

of ~8.9 Å. 

 

Finally, in Fig. 3.8 are shown the measured distributions of dee values for 

simulations with an applied electric field of 45 kcal/mol·Å·e, for each replica (R-

trajectories, Fig. 3.8a) and, once again, at each temperature (T-trajectories, Fig. 3.8b) 

of the REMD simulation set. At this field intensity, the conformational dynamics is 

restricted further to a single extended structure with a most probable dee value of ~10 

Å which, as expected is a bit higher than in the previous case for an applied electric 

field of only 30 kcal/mol·Å·e. As shown by data in Figs. 3.5 to 3.8, our choice or electric 
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field intensities, in agreement with earlier studies with less sampling,[74] allows us the 

monitor the entire expected range of conformational changes that can occur when 

using a classical MD simulation force field. While the results are intrinsically limited by 

the classical nature of our MD simulations, they capture, nevertheless the expected 

overall behaviour or the FF system and allows us to study the response conformational 

dynamics electric field and temperature perturbations.  

 

(a)  

(b)  
 

Figure 3.8. Distributions of dee values for simulations with an applied electric field of 45 

kcal/mol·Å·e, (a) for each replica (R-trajectories), and (b) at each temperature (T-trajectories) 

of the REMD simulation set. At this field intensity, the conformational dynamics is restricted 

further to a single extended structure with a most probable dee value of ~10 Å. 

 
 

The main results of our conformational and kinetic analysis are summarized in 

Figure 3.9. Here, are illustrated the temperature-dependent Markov kinetic network 

estimated from our new REMD simulation trajectories for FF peptides in the absence 

(top) and the presence of representative electric field intensities. Fig. 3.9 shows the 



 46 

relative transition probabilities (blue arrows) between the three major conformational 

Markovian states (denoted as S1, S2 and S3) and their corresponding probabilities of 

occurrence (or state populations in percentages). Note that, in the absence of electric 

fields (Fig. 3.9 top), the FF peptide adopts three different main Markovian 

conformational states: S1, S2 and S3. In Fig. 3.9, the corresponding equilibrium 

transition rates between these states (blue arrows, see text) are shown as numbers. 

The REMD transition rates, were extracted for the data corresponding to transitions 

occurring in all trajectories, cumulated for all the replicas (all R-trajectories). As shown 

in earlier works on analysing and extracting kinetic information from REMD data from 

different atomistic systems (e.g., FF [66], pentaalanine[109] and NNQQ[62, 63] 

peptides), while the data from all the R-trajectories correspond to dynamics at an 

intermediate temperature that is not exactly defined, they are nevertheless 

representative for the entire set of REMD replicas, at all temperatures. Moreover, the 

propagators for transitions along R-trajectories can be calculated analytically as 

weighted geometric means of propagator values extracted for the corresponding 

transitions in T-trajectories.[63] In Fig. 3.9, each arrow’s thickness is proportional to 

the magnitude of its corresponding transition rate. On the bottom are illustrated the 

representative FF conformations, denoted here as S2´ and S2´´, adopted by the peptide 

in presence of external electric fields with intensities of 30 and 45 kcal/mol·Å·e, 

respectively. As illustrated in Fig 3.9 (and as suggested by the notation), our REMD 

simulations show that the S2´ and S2´´ conformations induced by the external electric 

field, at different field magnitudes, are part of the same conformational ensemble as 

the S2 conformations adopted intrinsically by the FF peptide even in the absence of an 

externally applied electric field, but with a probability of only ~42 %. The S2-type of 

molecular conformations, shown in Fig. 3.9, results from the peptide backbone 

stretching effect due to the presence of the external field, and results in a more direct 

exposure of the hydrophobic aromatic rings of the phenyl sidechains to peptide-peptide 

interactions facilitating FF aggregation. The interplay between increased backbone 

dipolar moments and stronger side chain-side chain interactions could be particularly 

important in understanding the dependence of FF-peptide aggregation propensities on 

physical parameters such as temperature and external electric fields.  
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Figure 3.9. Representative conformations of FF amyloid peptides derived by kinetic analysis 

of REMD simulations at different electric fields. In the absence of electric fields, the FF peptide 

adopts three main Markovian conformational states: S1, S2 and S3 (top).  The corresponding 

equilibrium transition rates between these states (blue arrows, see text) are shown as 

numbers. These REMD rates are for the data corresponding to all the replicas (all R-

trajectories). Each arrow’s thickness is proportional to the magnitude of its corresponding 

transition rate. On the bottom are shown the representative conformations, S2´ and S2´´, 

adopted in presence of external electric fields with intensities of E = 30 kcal/mol·Å·e, and E = 

45 kcal/mol·Å·e, respectively. 
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3.5 Conclusions 

 

In summary, we show that replica exchange molecular dynamics (REMD) 

trajectories of explicitly solvated FF peptides can be used to probe in detail the 

interplay between temperature and electric field effects on the detailed thermodynamic 

and kinetic properties of the conformational dynamics of FF peptides in the presence 

of explicit water molecules.[66, 74] While their well-documented piezoelectric 

properties allow FF molecules and their aggregates (e.g., FF nanotubes) to be aligned 

in a controlled way by application of external electric fields, the detailed response of 

individual peptides to both temperature and electric fields are not fully understood. 

Here, we show that the thermodynamics and kinetics of the ensemble of conformations 

adopted by amyloid FF peptides solvated in explicit water molecules - an environment 

relevant to biomedical applications - can be analysed in detail by using REMD to 

enhance sampling, while simultaneously applying external electric fields and probing 

temperature ranges relevant to earlier studies.[74, 79, 80, 84, 85]  

 

Methodologically important, our simulations highlight and overcome possible 

artifacts that may occur during the setup of REMD simulations of explicitly solvated 

peptides in the presence of external electric fields, a problem particularly important in 

the case of short peptides such as FF. The effect of an external electric field on the 

dipole moment due to the charged ends should be larger for relatively short peptides 

which have more extended backbone conformations and can respond easily to 

external perturbations. On the other hand, larger peptides and proteins may have more 

complex folds, backbone conformations and, also more charged residues in their 

composition. The effect of the external electric fields on conformations of such large 

systems may be more complex and harder to quantify than for shorter peptides. 

 

The presence of the external fields could over-stabilize certain conformational 

states in one or more REMD replicas, leading to distortions of the underlying potential 

energy distributions observed at each temperature. This cause is different from REMD 

artifacts reported and documented by earlier studies, which were due to modified 

underlying energy distributions caused, for example, by the use of weak-coupling 

thermostats.[107, 108] In our case, we show that the resulting artifacts can be 



 49 

overcome by correcting the REMD initial conditions to include the lower energy 

conformations induced by the external field. This is illustrated by the initial energy 

distributions shown in Fig. 3.2 and the corrected ones from Fig. 3.3. Such corrections 

could be also important in other replica-exchange simulations (e.g., using methods 

such as REST2 [110, 111]) that enable the use of broader range of temperatures in 

atomistic MD studies of amyloid peptide aggregation. [112] 

 

Subsequently, we show that the corrected and converged REMD data can be 

analysed using a Markovian description of conformational states and show that a 

rather complex, 3-state, temperature-dependent conformational dynamics in the 

absence of electric fields collapses to only one of these states in the presence of the 

electric fields. As illustrated in Figure 3.9, we can study and analyse the detailed 

interplay between temperature and electric field on the thermodynamic and kinetic 

properties of solvated FF peptides. In particular, we identify and characterize the 

ensemble of S2-type of molecular conformations, illustrated in Fig. 3.9, which are 

expected to play a particularly important role in understanding the dependence of FF-

peptide aggregation propensities on physical parameters such as temperature and 

external electric fields. The mechanistic details behind the temperature-, and electric 

field-dependent thermodynamic and kinetic properties of small FF amyloid peptides 

can be useful in understanding and devising new methods to control their aggregation-

prone biophysical properties and, possibly, the structural and biophysical properties of 

FF molecular nanostructures. 
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4. Transition Between Active and 

Inactive Conformation of Abl 

Kinase Studied by Milestoning3 

 

4.1 Overview 

 

Here, I combine a reaction path algorithm with the theory and algorithm of 

Milestoning to study kinetics of the DFG flip and compute the mechanism and the rate 

of the transition in ABL kinase. The activation of kinases includes a conformational 

transition of the DFG motif that is important for enzyme activity but is not accessible to 

conventional Molecular Dynamics. I propose a detailed mechanism for the transition, 

at a timescale longer than conventional MD, using a combination of reaction path and 

Milestoning algorithms. The mechanism includes local structural adjustments near the 

binding site as well as collective interactions with more remote residues. 

 

4.2 Introduction 

 
Kinases form one of the largest family of enzymes. In the human genome, there 

are about 500 predicted protein kinases. They catalyze the transfer of the ɤ-phosphate 

group from ATP to the hydroxyl group of a serine, threonine or tyrosine residue, a type 

of transfer that is found in many biological processes. Malfunctioning kinases are 

involved in many major human health-related problems such as cardiovascular 

diseases, diabetes, and cancer. Despite their diversity of function, the structure of their 

catalytic domain is shared across the kinase family. Roughly, the kinase domains 

consist of an N-lobe, and a C-lobe connected by a flexible hinge region (Fig. 4.1). The 

active sites consist of three conserved structural elements: the activation loop (A-loop), 

the Asp-Phe-Gly (DFG) motif, and the a C helix (which is part of the N-lobe). 
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These conserved structural elements make it challenging to design a drug that would 

be specific to only one kinase. Nevertheless, such a design is desirable to minimize 

unwanted, yet likely side effects, given the high structural similarity of members of this 

family. 

 

Nevertheless, the drug imatinib[113] was found to be selective and inhibit BCR-

Abl but not c-Src. Understanding the origin of this selectivity is of significant interest 

and potential for enhancing drug design efforts.[114] An intriguing proposal[115] 

explains the selectivity using variation in active site flexibility and binding of the drug to 

the inactive kinase conformation. However, a recent experiment suggests that the 

selectivity of imatinib towards Abl-kinase and not Src-kinase is a result of a slow 

conformational change that occurs after ligand binding.[116] The importance of the 

DFG flip to selectivity is therefore in doubt. Nevertheless, the DFG must change a 

structure at some step along the reaction to allow the entrance of the inhibitor to the 

active site. 

 

Only kinases that are able to form DFG-out (inactive) conformation can open up 

a pocket to facilitate binding to the imatinib. Supporting evidence for a high activation 

loop conformational flexibility emerged from X-ray crystallography (significant 

variations were observed in many structures of kinase proteins).[117] Also illustrating 

diversity are NMR spectroscopy,[118] and molecular simulations.[119-123]  

 

There have been numerous experimental studies to estimate the rate of 

transition between DFG-in and DFG-out for different members of the kinase family. It 

was argued that the operating mechanism of the enzyme is influenced by the rate of 

the DFG flip. The early evidence for this mechanism came from the experimental 

observations of the significant differences between the rates of binding of inhibitors to 

the DFG-out and the DFG-in states in P38 kinase. While the DFG-in inhibitors binding 

is quite fast and within the diffusion-controlled regime, the rate for DFG-out inhibitors 

were orders of magnitude slower.[118],[124-126] This observation suggests that DFG-

in states are more populated in equilibrium. Kinetic may also play a role. If the rate of 

transition between the protein conformations is fast, the drug can always find a ready 

conformation to bind, and the ratio of the unbound population: [DFG-in]/[DFG-out] 

remains the same. If the rate is slow a shift in the conformation of the unbound protein 
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will be observed and the binding of the inhibitors to one of the states may slow down if 

saturation of proteins bound to ligands is reached. 

 

In an NMR study,[127] it was shown that the binding of different inhibitors can 

influence the dynamics of the DFG motif in Abl-kinase. A wide range of timescales was 

suggested for the dynamics of different residues in presence of different inhibitors. 

However, determining the accurate time scale of the DFG flip remains challenging due 

to the lack of signal for some key residues from DFG motif and activation loop. In 

another study,[118] probing the kinetics of the DFG-flip in NMR measurements for P38 

kinase, the observed experimental line-shape is very broad and indicates an 

intermediate time scale on the NMR time scale (milliseconds). In a combined 

experimental and computational paper, the time scale of imatinib binding, under a 

variety of perturbations, was estimated to be in the range of ten milliseconds.[121] A 

recent study combines NMR and tryptophan fluorescence on imatinib binding to Abl-

kinase and observes two time-scales for the binding event.[116] One time-scale is at, 

or below a few milliseconds and a second time is of 100 milliseconds to seconds.[116]  

The process with a slower time scale was identified as a large conformational 

transition. The shorter time scale is assigned to a local binding event. If we assume 

that the local and fast event of imatinib binding to Abl kinase is associated with the 

DFG flip, we can obtain an indirect estimate of the time scale ~2ms, as we illustrate in 

the discussion.  

 

Summarizing experimental results of particular relevance to the present study, 

these studies shared the following observations (i) DFG-in state is more populated 

than DFG-out state in Abl kinases for unprotonated Asp381and (ii) Some indirect 

evidence is available that the timescale for the flip DFG-in to DFG-out in kinases is in 

the millisecond time scale.  

 

Computational studies are in general agreement for the slightly larger stability 

of the DFG-in active conformation compared to DFG-out state in Abl kinase with Asp 

381 unprotonated.[122, 128, 129] However, the study of kinetics is more restricted due 

to limitations on conventional MD. A recent study of Abl kinase, using MD and the 

Markov State Models[120] suggest a time scale for the transition of milliseconds.[116] 

However, the statistics of transitions was small. This estimate is consistent with 
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conventional MD simulations that were not able to sample the DFG-in and DFG-out 

transition on hundreds of nanoseconds simulation time without an assisting mutation 

(M290A).[121] The kinetic of the DFG-in to DFG-out transition is an important 

component of the Abl kinase activity. It is therefore of interest to further investigate the 

mechanism of the transition and quantify the time scale of the process.  

 

4.3 Method 

 
Choice of reactant and product structures 

The reaction path approach that we use requires as input the conformations of 

the two end states, the reactant and the product.[130] Given the richness of 

crystallographic structures of kinases and specifically of Abl kinases the choice of the 

end structures requires discussion. 

 

The “classical DFG-out” cluster of structures in the PDB (with ~200 structures) 

is the most prevalent inactive state observed among kinase structures with DFG-out, 

in which the activation loop(A-loop) is fully folded/closed.[131] The second most 

populated cluster of DFG-out inactive structures is a cluster we refer to as “DFG-out 

minimally perturbed”, and 2G2F is a member of this cluster. The root-mean-square 

deviation (RMSD) of the activation loop over all DFG-out inactive structures with 

respect to 2F4J which is a representative of an active kinase with the A-loop extended 

in the active conformation, indicates that the A-loop in the DFGout-A-loopminimally-perturbed 

cluster differs by 1-5 Å from 2F4J, in contrast to the large range variation of between 

11-19 Å in the classical DFG-out cluster (Ref structure: 2F4J chain A). Representatives 

of the DFGout-A-loopminimally-perturbed cluster have been observed for 11 kinase families, 

and Abl (with ~10 unique pdbs) is the most observed family among them. 

 

The Protein Data Bank (PDB) structures of the Abl kinase with accession codes 

of 2F4J[132] and 2G2F[133] were used as active (reactant) and inactive (product) 

conformations, respectively. We picked two conformations that are not profoundly 

different with the exception of the activation loop, making it possible for us to focus on 

the transition of the DFG motif. For example, there is no significant shift of the C helix 

between the two states. In previous studies it was also shown that the inactivated set 
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of structures is highly flexible (see for instance[120, 131]). A significant number of 

structures are sampled with conventional Molecular Dynamics in the flexible state and 

it is likely that a single pathway calculation assisted with unbiased trajectory sampling 

of Milestoning will probe the transition network. 

 

The structures were solvated separately with TIP3P water molecules and salt 

concentration of 0.15M (NaCl). The systems consist of ~45,000 atoms. All the 

simulations have been conducted with the NAMD program[134] and the 

CHARMM36[135] forcefield has been used. Periodic boundary conditions were used, 

and the system was minimized using conjugate gradient algorithm for 10,000 steps. 

Equilibration followed in the NPT ensemble with Nose-Hoover Langevin piston 

pressure control for 5 ns at pressure of 1atm and temperature of 310 K.[136, 137]  

Then the system was equilibrated in the NVT ensemble at 310 K using Langevin 

thermostat for additional 10 ns. Water molecules were kept rigid with the SETTLE 

algorithm[138] and all other bonds with hydrogen atoms were kept fixed with the 

SHAKE algorithm.[139] The cut off distance for non-bonded interactions was 12 Å and 

the Particle Meshed Ewald method was used to sum the electrostatic interactions.[140] 

The timestep was 1 fs. The final configurations of the equilibrated structures were used 

as the reactant and product states for pathway generation, with root mean square 

distances of the equilibrated structures relative to the initial structure were 0.9 Å and 

1.1 Å, respectively. 

 
Generation and optimization of pathway 

Examining the active and inactive conformations (Fig. 4.1) we realize that the major 

differences between the two conformations are concentrated at the activation loop 

(from residue number 380 to 400). 
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Figure 4.1.  A schematic representation of the Abl kinase protein. The active and inactive 

states of the activation loop is shown in yellow and red, respectively. The C helix is green. The 

magnified region shows the start of the activation loop that includes the DFG switch. The image 

was generated by the software VMD.[1] 

 

Therefore, the reaction space or the coarse variables that guide the reaction 

path calculations were selected from this region. First, the backbones of the two 

structures were aligned for a best overlap for the entire structures excluding the 

activation loop. Then 24 atoms along the loop were selected to represent the coarse 

space. The selected 24 atoms include both alpha carbon and atoms from the side 

chains of the residues with the highest RMSD values between the reactant and 

product. These atoms are listed in Table 4.1. The actual number of degrees of freedom 

in the coarse space is smaller than 3 × 24 = 72  since bond lengths and bond angles 

do not vary significantly in the calculations and may be considered fixed. We define an 

active torsion in the reaction space if at least one atom from the coarse space is 

included in the definition of the torsion, and the torsion changes along the reaction 

coordinate by at least 60 degree.  The number of such torsions that have significant 

contribution to the coarse space is 22. The reaction space that we considered is 

therefore quite large compared to other studies in the field. 
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Val379(CA) Val379(CB) Ala380(CA) Ala380(CB) 

Asp381(CA) Asp381 (CG) Phe382 (CA) Phe382 (CG) 

Gly383(CA) Leu384(CA) Leu384(CG) Ser385(CA) 

Arg386(CA) Arg386(CZ) Leu387(CA) Leu387(CG) 

Met388(CA) Met388(CE) Thr389(CA) Thr389(CB) 

Asp391(CA) Tyr393(CA) His396(CA) Ala397(CA) 

 
Table 4.1. List of the 24 atoms used to define the coarse space in the calculations of the 

pathway. The final 12 atoms that are used in the Milestoning calculations are indicated in red. 

See text for more details about the selection. 

 

The method of Milestoning is used to compute kinetic and thermodynamic 

observables. As a first step in a Milestoning calculation we require a rough sample of 

the space linking the reactant and product. The number of intermediate configurations 

that we use as a sample varies depending on the system characteristics. It is between 

a few tens to several thousand structures. These configurations form centers of 

Voronoi cells and their interfaces are used as Milestones, either in the Markovian 

Milestoning approach,[70] or in other variants of Milestoning.[141] The choice of the 

Voronoi cells impact the rate of convergence of the calculation but should not impact 

the final results if the system is close to equilibrium, or if iterations of the exact 

Milestoning approach are used.[67] 

 

One way of generating centers of Voronoi cells that cover the relevant space is 

by a reaction path calculation. There are multiple studies of generating reaction 

coordinates in complex systems, starting with the study of a conformational transition 

in myoglobin [142] and continuing to a number of other complex systems [143, 144]. 

In these approaches, and variants of them [145, 146], a guess is generated for the 

path using methods like, self-penalty walk method [147], and then optimized. Other 

Path sampling algorithms have be summarized in ref [148, 149]. Unfortunately, the end 

result may be biased by the initial guess, especially on rough energy landscapes in 

which multiple pathways exist. This problem was discussed in Ref. [128] in the context 

of kinase conformational transitions. The activation loop is highly flexible and 

transitions in a space of several dimensions. Nevertheless, our current interest is 
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focused on the DFG transition, which is spatially small. The transition is also activated, 

and is expected to be a rare event. Determining the pathway is challenging for 

conventional MD, but it is more straightforward to compute with reaction path 

calculations.  

 

Recently we introduced a new method for computing reaction coordinate in 

complex systems that does not require an initial guess (Rock Climbing[130]). The local 

optimization of the path were carried with implicit solvent, using a Generalized Born 

method[150] with ion concentration of 0.15M and solvent dielectric of 78.5 while the 

global optimization was done in explicit solvent. During the pathway generation only 

two regions of the protein are allowed to move. The first region is of residues 376 to 

405 that includes the activation loop. The second region is of residues 278 to 299 that 

contains the C helix. The backbone of the rest of the structure was restrained with 

harmonic potentials to their initial positions during the pathway calculations.  

 

We divide the path calculation into two steps. First, using a local and greedy 

algorithm we generate a pathway from the coordinates of the reactant to the product 

as follows: The generation of the pathway starts with adding a displacement vector, 𝛿, 

along the vector connecting reactant to product. By providing information about the 

end points we made the process global. However, we do not provide an initial guess 

for the entire path and the path generation follows a local procedure. To begin with, 

each atom of the coarse space of the reactant is shifted by 𝛿 = 0.25 𝐴 toward the 

product (equilibrated inactive kinase). Then harmonic restraints with force constant of 

2000 kcal/mol A2 were applied on the selected atoms of the coarse space and the rest 

of the system was minimized for 500 steps followed by 5000 steps of MD at 310 K. 

Finally, the harmonic restraints were released, and the system was minimized for 50 

steps.  

 

The last configuration is used to generate a new displacement vector, , toward 

the product configuration. The displacement is added to the current coordinate set and 

the relaxation process described above follows. The process is repeated until the 

product is reached. The value of 𝛿 is tuned during the process to allow for faster 

convergence or better accuracy. We obtained 850 structures interpolating between the 
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reactant and product, with an average displacement length of about 0.1 Å. Out of these 

850 structures, 50 structures were selected that are approximately equidistant in the 

coarse space. These structures are used in the next step of path refinement.  

 

In the second step, the path is globally optimized. All the 50 structures including 

the reactant and product, are solvated and equilibrated for 1ns in the NPT ensemble 

using Nose-Hoover Langevin piston[136, 137] followed by 5 ns in the NVT at 310 K. 

The coarse variables are restrained to their corresponding positions along the path 

using harmonic force constants of 150 kcal/mol. After equilibration of the bath 

coordinates (coordinates that are not included in the coarse space), we refine the 

pathway. Each configuration along the pathway in the coarse space is represented by 

the vector xi. The following target function is optimized: 
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The norm of the force in coarse space, | ∇𝑈(𝑥𝑖)|,  is an average over all coordinates of 

the bath, i.e. the coordinates that are not included in the coarse space. The first term 

in Eq. (1) is a discrete approximation to a functional of the path: 

S x l( )éë ùû = ÑU x l( )( ) dl
x(0)

x(L )

ò                                                       (2) 

The path that minimizes S x l( )éë ùû  is the Steepest Descent Path (SDP) in the free energy 

landscape of the coarse variables, x.[151] 

 

Eq. (1) is a discrete version of Eq. (2) in which we must ensure that the configurations 

are distributed uniformly along the path. Therefore, we added the second term. The 

norm of the distance vector between the structures xi and xi-1, is ∆𝑙𝑖−1,𝑖 and < ∆𝑙 > is 
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the average distance over all the neighbor distances of the path (〈∆𝑙〉 =
1

𝑛
∑ ∆𝑙𝑖−1,𝑖𝑖=1,…,𝑛  

). Using < ∆𝑙 > allows the path to gradually expand or shrink in every iteration, if 

required, and keeping the points equally spaced along the pathway. The force constant 

k is 200 kcal/mol.A2.  

 

Another difference between the discrete and continuous paths is that the 

discrete path can makes sharp turns of high curvature that reduce the value of the 

discrete functional. The third term prevents large path curvatures. It is applied only 

when the angle, qi-1,i,i+1
, between three sequential configurations of the path is larger 

than a threshold value, cos (𝜃0). cos qi-1,i,i+1( ) = xi+1 - xi( ) × xi - xi-1( ) xi+1 - xi( ) × xi - xi-1( )( ). 

Here we use 𝜃0 = 60𝑜and k’=5 kcal/mol.deg2.  

 

With the above definition of the target function of the path, the optimization is 

conducted in iterations. In every iteration, the 48 intermediate structures are simulated 

for 1ns to compute the average force. Harmonic restraints with force constants of 150 

kcal/mol/Å2 are applied on the atoms of the coarse space during the 1ns simulations 

and the mean forces at each structure are computed. The coordinates of the coarse 

variables of the path are then adjusted by a small step (typically 0.01-0.03Å) to 

minimize the function of Eq. (1) and to move toward the minimum free energy path. 

This procedure is repeated one hundred times. Convergence is assumed when the 

norm of the force gradient does not vary significantly. Only the force component 

parallel to the reaction path remains when the SDP is reached (Fig. 4.2). 
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Figure 4.2. The reduction in the norm of force, averaged over the entire reaction path, as a 

function of iteration number. The norm of the force drops rapidly in the first ten minimization 

steps and then decays more gradually. It seems to stabilize at around 100 iterations. The final 

gradient is around 0.35 kcal/mol Å-1. It is not zero since the norm of the force along the reaction 

coordinate is included. 

 

After the calculations of the optimized path were complete, we found that some 

of the atoms included in the coarse space were hardly moving. We therefore adjusted 

the coarse space to include only coordinates that were modified significantly along the 

optimal reaction pathway. This reduces the number of coarse variables that define the 

coarse space from 72 to 36. The final list of atoms that determine the coarse space is 

given in Table 4.1. 

 

Milestoning 

 

Milestoning is a versatile theory and algorithm to compute thermodynamics and 

kinetics of complex systems using a large number of short trajectories. It was 

discussed extensively in the literature[67, 152, 153] and a review article is 

available.[154] We therefore described it below only briefly. 

 

In the first step of a Milestoning application we provide a sample of 

configurations from the coarse space between the reactants and products (Fig. 4.3). 



 61 

In the present study the sample consists of the configurations along the reaction 

coordinate, xi{ },  described in the previous section. Each configuration is called an 

anchor and is a center of a Voronoi cell in coarse space. The boundaries between the 

Voronoi cells (say cells i  and j ) are called milestones 𝑀𝑖𝑗 ≡ 𝑀𝛼. Milestone M ij
 is the 

set of points with equal minimal distances to anchors i  and j  and larger distances 

from all other anchors. For brevity we index milestones also by a single Greek letter, 

e.g. Ma
 . 

 

 

Figure 4.3. A schematic representation of the discretization of the coarse space following the 

transition pathway. R and P represent the reactant and product states, respectively. The black 

line shows the reaction pathway. The red dots are the anchors, and the blue lines are the 

milestones. Every milestone is numbered by its corresponding anchors. For example, 

milestone (j,k) is the boundary between cells j and k. The green arrows show 4 unbiased 

trajectories initiated from milestone (i,j). The trajectories are terminated when they hit any other 

milestone for the first time. Re-crossing the original milestone does not lead to trajectory 

termination. 

 

In the second step of Milestoning we sample configurations from the Boltzmann 

distribution using MD simulations constrained to the milestones. We generate 

configurations from the conditional probability density 

 𝑝(𝑋|𝑀𝑖𝑗) = [exp(−𝛽𝐻(𝑋))𝑋 ∈ 𝑀𝑖𝑗]  where X  denotes the phase points constrained 

to milestone M ij . 
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In the third step we launch unbiased MD trajectories from the sampled 

configurations at the milestone generated in the second step. We terminate these 

trajectories when they hit for the first time a milestone different from the milestone they 

started from. We recorded the identities of the milestones and the time of termination. 

In one variant of Milestoning, which is not used here, (exact Milestoning[67]) we also 

retain the terminating phase space configuration at the b  milestone. 

 

In the fourth step we use the information gathered in the first step to compute 

two functions 𝐾𝛼𝛽, the probability that a trajectory initiated in milestone 𝛼  will terminate 

at milestone 𝛽 and ta
, the lifetime of milestone 𝛼. Let na

 be the number of trajectories 

initiated at milestone 𝛼. Let nab  be the number of trajectories that were initiated at 

milestone 𝛼 and were terminated at milestone 𝛽. We estimate the transition probability 

also called the kernel as 𝐾𝛼𝛽 ≅ 𝑛𝛼𝛽 ⁄ 𝑛𝛼   and the lifetime 𝑡𝛼 =
1

𝑛𝛼
∑ 𝑡𝑙𝑙=1,…,𝑛𝛼

, where l  is 

the index of the trajectory, and the time length of trajectory l  is tl
 . 

 

In the final and fifth step we compute the thermodynamic and kinetic 

observables. The stationary flux of trajectories through a milestone is the eigenvector, 

q , of the matrix K  with an eigenvalue of one: qtK = qt
 where we used bold face for 

vectors and matrices. The free energy of a milestone a  is given by Fa = -kBT log qata[ ]  

and the mean first passage time (MFPT, t  ) is given by t = p0 I - K '( )
-1

t   , p0
 is 

the vector of the initial distribution and I is the identity matrix. The matrix K ' is an 

adjusted K  matrix in which absorbing boundaries are placed at the product state.[67] 

 

More computational details on the implementation of the Milestoning method to 

the kinase problem are given below. 

Step 1: We use 50 structures equally distributed along the path to define the anchors. 

Sequential anchors are separated by a distance of 0.5 Å along the reaction coordinate 

(RMSD of the coarse variables) which is a typical value for a Milestoning calculation.  

 

Step 2: Since the anchors are sampled along a one-dimensional reaction coordinate, 

it is suggestive to place the initial milestones between sequential anchors. We 
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therefore initiate trajectory sampling for 49 milestones between each of two 

consecutive anchors along the path. We conduct 1ns MD simulation at a constant 

temperature while two restraints were applied to keep the sampling trajectory 

restrained to the milestone. The first restraint is a harmonic term k(di-dj)2=0  to keep 

the distances di and dj (in coarse space) between the current configuration and the two 

anchors i and j equal. The restraining force constant is 2000 kcal/mol.A2. A second set 

of half-harmonic restraints are k’.(dm-dl)2 when dm<dl, l=i,j and zero otherwise with 

k’=1000 and m being any milestone other than i or j. This restraint prevents the system 

from getting closer to any other milestone, m. 100 samples were kept from the final 

0.5ns of the restrained simulation at each milestone.  

 

Step 3: We release all the restraints and conduct unbiased short MD trajectories at the 

NVE ensemble starting from the configurations at each milestone that were sampled 

in step 2. The trajectories are terminated when they hit a milestone different from the 

one that they were initiated at. The typical length of each of the unbiased trajectories 

is 10 ps. The trajectories could either reach one of the initial 49 milestones we started 

from or they may reach a new milestone. For example, in Fig. 4.3 one of the trajectories 

initiated from the milestone (i,j) reaches a new milestone (j,k) that connects non-

sequential milestones along the path. We therefore add the new milestone to the list 

and sample configurations at the newly discovered milestones. Finally, we launch 

unbiased trajectories from these new samples. The process is continued until we do 

not visit new milestones, or a connected network is observed in which the MFPT value 

for the transition between reactant and product converges to a finite value. The final 

number of milestones we ended up with in the current project was 171 (Fig. 4.4).  
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Figure 4.4. Representation of all the 171 milestones considered for computing the transition 

matrix. Every point corresponds to one milestone. The red points are the initial milestones 

between the consecutive anchors along the transition path. The blue points represent the 

milestones discovered during the analysis of the free trajectories that are used to enrich the 

sampling of the pathways.  

 

4.4 Results 
 

Fig. 4.5 shows the free energy landscape of all the milestones in two dimensions 

where the dimensions are the anchor indices. To achieve a better qualitative 

understanding of plausible transition paths between the active and inactive states, we 

determine optimal pathways in the milestones space. Every milestone is a node in a 

network and we assign weights to the network’s edges as rate coefficients for 

transitions between milestones. Rate coefficients are computed from the transition 

matrix K and average lifetimes of the milestone, t. The rate coefficient for a transition 

between a milestone pair (i,j) is given by 

                                     𝑘(𝑖, 𝑗) =
𝐾𝑖𝑗

𝒕𝒊
 

                                                     (3) 

It was shown that choosing rate coefficients between the milestones in this way 

leads to a Master Equation where the milestones are the states. It was also shown that 

the exact MFPT is obtained with this Master Equation (but not higher moments of the 

first passage time).[155] Using the rate coefficients, global maximum weight paths 



 65 

(GMWP) from reactant to product and vice-versa, were obtained from the network, 

shown in Fig 4.4, using recursive Dijkstra’s algorithm[156] (Fig. 4.5). In other words, 

these are the pathways on the network with the fastest rates. 1D free energy profiles 

are shown in Fig. 4.6 for the two GMWPs between the active and inactive states. 

According to these plots, the free energy landscape consists of multiple barriers with 

a maximum height of ~15.7 ± 2.5 kcal/mol with respect to the active state. Also, the 

free energy of the inactive state is 2.8±2.0 kcal/mol higher than the active state, 

suggesting that the active state is more stable.  

 

The local minima and maxima that are observed along the paths follow bond 

rotations of different loop segments. These rotations are roughly independent, and they 

are observed at different positions along the reaction coordinate. For example, the 

rotation of the DFG motif contributes to the first barrier along the pathway near position 

13 in Fig 4.6a. The local minima between positions 16 and 24 correspond to states 

where the rotation of DFG and residue 385 are complete. Finally, the rotations of 

Leu387 and Met388 contribute to the free energy hump from positions 24 to 31.  

 

 

Figure 4.5. Free energy of pairs of anchors as computed from the Milestoning theory. The 

energy values are in Kcal/mol. The two paths with maximum flux from the reactant to the 

product are lines in red and in magenta. Note that the significantly off-diagonal “jumps” on the 

surface are a consequence of long-range connection between milestones that are not in 

sequence along the reaction pathway (see also Fig. 4.4). 



 66 

 

Figure 4.6. Two optimal free energy profiles along the two max-flux pathways from active to 

inactive state. In panel a, the milestones are numbered from 1 to 41 for the corresponding 

points along the red path shown in figure 4.5 starting from active state, and from 1 to 32 for 

the magenta path in figure 4.5, starting from the inactive state for panel b. 

Note that Fig. 4.6 is plotted as a function of the index of the milestones, which 

is different from the anchor number. This is because we consider nodes and edges on 

a network that are labelled separately. The mapping between anchor pairs and 

milestones can be found in Fig. 4.5. The mapping is not trivial since the path is not 

monotonic in the index of the anchor and is monotonic in the milestone index. 

The committor function is another useful quantity that can be calculated directly 

from Milestoning.[157] The committor function, C, at every milestone, is the probability 

that a complete trajectory initiated at that milestone will reach the product before 

reactant. Interesting milestones are those with values close to C≈0.5 that can serve 

as a definition of the transition state. According to Fig. 4.7 this occurs near milestones 

(21,22), (22,23), and (23,24). Fig. 4.8 shows the conformations of the first residues of 

the activation loop for anchor 23, and the active and inactive states. At anchor 23 

residue Arg386 already moved to its final state while Asp381 did not change its 
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configuration significantly. The sidechains of Phe382 from the DFG switch and of 

Leu384 are rotated approximately half of the way through. Their significant motions at 

the transition state and their intermediate structures suggest them as a bottleneck for 

the transition. 

 

Figure 4.7. Color-coding the committor function at every milestone. The committor of a 

milestone is the probability of a complete trajectory initiated at that milestone to reach the 

product before the reactant state.  

 

Figure 4.8. A stick model of residues 381 to 386 for active (yellow), inactive (red), and a sample 

configuration at anchor 23 where the committor value is near 0.5 (blue). Note that Arg386 

already reached its final position at the transition state, while Asp381 did not change its 

configuration significantly. The residue Phe382 is found at half of the way of the transition. 



 68 

Although the DFG-in and extended conformations of the A-loop are essential 

elements for a kinase to be active, active conformations are also associated with other 

features such as β3Lys271 to α-ChelixGlu286 salt-bridge. The orientation of Lys interacting 

with both Glu and the DFG-Asp with the assistance of ions provides a proper network 

for coordinating the ATP phosphate in active kinase structures.[133] Detailed structural 

investigation of the DFGout-A-loopminimally-perturbed structures indicates that this salt-

bridge is not always maintained due to differences in the orientation of the DFG-Phe 

side chain.  There are three possibilities: 1) DFG-Phe is located between the Lys and 

Glu, in a way that Glu is free to interact with the HRD-Arg or DFG-Gly amide groups. 

Therefore, the salt-bridge is broken. 2) The DFG-Phe points to the back-pocket and 

the salt-bridge is maintained. 3) The DFG-Phe points out to the solvent and the salt-

bridge is maintained. Abl kinase structures are observed in all three groups, 2G2F 

chain B belongs to the second group for which the salt bridge is present in the inactive 

state. For the structures studied in this paper, this salt bridge exists at both, active and 

inactive states. With the reaction coordinates between the two states at hand, we are 

able to probe the status of this salt bridge at different steps. Our results show that the 

rotation of the DFG residues and more specifically, Phe382, requires breakage of this 

salt bridge. This was pointed out already in Ref.[120]. The salt bridge breaks between 

anchors 22 to 28 along the reaction pathways, which the committor analysis suggests 

to be close to C~0.5. Fig 4.9 shows a sample configuration from anchor 27 in which 

the distance between the charged groups of Lys271 and Glu286 reaches ~7 

Angstroms. When the Phe382 reaches its final destination, the salt bridge reforms.  
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Figure 4.9. Changes in the salt bridge between Lys271 and Glu286 for inactive (A), an 

intermediate state (B), and active (C) states. The salt bridge exists in the active state and 

inactive states but during the transition from active to inactive state, the salt bridge breaks. The 

intermediate state shown is anchor 27. The DFG residues are shown in red, blue, and yellow 

for inactive, intermediate, and active states, respectively.     

 

Non-Markovianity and MFPT 

One of the advantages of the Milestoning method is that the description of the 

dynamics is not required to be Markovian. The assumption of Markovianity fails in 

numerous biological processes. As an illustration, Fig. 4.10 shows the distribution of 

the lifetimes for a few milestones. If the kinetics is Markovian, then the probability 
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distribution of the transition time between two states (in our case milestones) must 

follow an exponential behavior of the type: 

𝑃(𝑡) = 𝐴𝑒−𝑡/<𝑡> (4) 

Where P(t) is the distribution of the lifetime, A is a constant, and <t> is the average 

lifetime of a milestone. In Fig. 4.10, we first calculated the average lifetime from the 

distribution and then fitted an exponential curve to the computed histograms. The R2 

values are shown in every window. The distributions deviate significantly from a 

Markovian behaviour. A deviation from a  single exponential behaviour for the binding 

of imatinib was pointed out experimentally.[116] 

 

Figure 4.10. Distribution of lifetime for (a) milestone (21,22), (b) milestone (22,23), (c) 

milestone (24,25) and (d) milestone (40,41).  

 

Finally, the MFPT for the transition can be calculated from Milestoning by 

sampling transition matrices and lifetimes from their known distributions. The sampling 

procedure was discussed in details in reference [158]. Fig. 4.11 shows the distribution 

of the MFPTs obtained from 1,000 sample transition matrices and lifetimes. The 

averaged MFPTs for forward and backward processes are 1.0±0.9 s and 0.2±0.1 s, 

respectively. These values are obtained by ignoring the bins containing values less 

than 5 % of the bin with the maximum population.  
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It can be seen that the mean transition time for going from active to inactive 

state is slightly higher than the reverse process since the active state is located 

approximately 2.8 kcal/mol lower than the inactive state.  

 

Figure 4.11. Distributions of MFPT for transition from active to inactive states (top) and the 

reverse process (bottom). The insets show the corresponding distributions for 1/MFPT which 

are estimates of the rate coefficients consistent with the simulation data and the error analysis. 

We quote the mean values of the rate coefficients for the forward and backward transition. 

 

In the present study, we investigate computationally the kinetics of the DFG-in 

to DFG-out transition. There are two main observables that we discuss below. The first 

is the time scale for the process and the second is the mechanism or the structural 

features of the reaction. Since significant variations were observed in the measured 

and computed rates for different kinases, there is a significant uncertainty in the 

comparisons. 

The time-scale for the DFG-in to DFG-out transition in Abl-kinase. 

Milestoning simulations provide an estimate of the Mean First Passage Time 

without assuming the existence or the need to identify a bottleneck or a transition state. 

The only assumption invoked in the present version of Milestoning is that the system 

remains close to equilibrium.[154] Even though we have used a set of coarse variables 

to guide the calculations, the calculations are exact provided that the equilibrium 
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assumption is satisfied and the coarse variables are able to differentiate between 

reactants and products. This theory is different from other approaches in the field to 

study kinetics[120] and it is interesting to compare its results to those of related 

calculations and experiments.  

Experimentally, there are a few indirect observations about the rate of the DFG 

flip that we discuss below.[116, 121] One observation is an NMR measurement of the 

dynamics of p38 kinase.[118] The NMR spectrum of the DFG motif was found to be 

very broad suggesting an intermediate NMR time scale (milliseconds). Fast processes 

in NMR are characterized by a single averaged peak while multiple peaks of different 

conformations correspond to a slow process by NMR scale.  

Combined NMR and flow experiments on Abl kinase provide an alternative 

picture.[116] The first is fast and was associated with the local binding of imatinib, and 

the second, a slower process. The second process was interpreted as an induced fit 

that follows the binding event. The experiment does not provide a direct structural 

information on the DFG dynamics during those events, however, a reasonable 

assumption is that the fast process includes the DFG flip. The measurements that 

include the insertion of the inhibitor are significantly different from our study that 

focuses only on the DFG flip. We therefore declined to analyse our results in the 

context of reference [116].  

From computational point of view, a Markov State Model was used to estimate 

the transition rate of the DFG flip at milliseconds.[120] The model was based on 

samples of significantly shorter MD trajectories (similar to Milestoning). A small number 

of transitions was detected making the uncertainty of the longer time scale significant, 

as noted by the authors. The estimates of the kinetics that use unbiased trajectories, 

MSM and Milestoning, provide answers close to each other and close to the 

experimental finding. 

Structural features of the reaction pathways from DFG-in to DFG-out in Abl 

In this section we discuss in more details the structural features of the transition 

from DFG-in to DFG-out. In Fig. 4.13 we show the residue root mean square difference 

(RMSD) between the reactant, and several structures along the reaction pathway. We 
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include a comparison of the reactant and of the product to anchor 27, which is near a 

committor value of 0.5 (Fig. 4.7).  

We overlap optimally all the heavy atoms (atoms that are not hydrogens) of the 

entire structures and compute the heavy-atom RMSD between the individual residues. 

We plot the residue RMSD as a function of the residue number. For comparison we 

also plot the B factor (also called temperature factor) extracted from the PDB 

coordinates of the reactant (PDB 2F4J) and the product (PDB 2G2F). The B factor 

measures the displacement of the atomic positions from its mean position, thus makes 

it possible for us to identify residues that are flexible, and/or are present in multiple 

static conformational states. In contrast, residues that contribute to the spatial progress 

of the reaction may have displacements not detected by the B factors which are 

coupled to the DFG flip. Several of the peaks at residues F382, L384, R386, M388 and 

A397 are part of the A loop.  

 
Figure 4.13. Fluctuations and systematic drifts of residues in Abl-kinase. Top panel reports 

the B factors of the reactant and product structures as a function of the residue index to identify 

flexible domains. In the lower panel we compare the structure of Anchor 27 with the reactant 

and product using RMSD between all the heavy atoms of the residues in the protein. The two 

pink arrows point to Glu286 and Lys271 that forms a blocking salt bridge. Note that the 

transition state differs about equally from the reactant and from the product structures. There 

are several spikes at Phe382, Leu384, Arg386, Met388 and Ala397 that belongs to the A loop 

and are included in the set of coarse variables. 
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We mark with pink arrows the locations of the salt bridge residues: Glu286 

shows significant deviation from both, the reactant and the product, but Lys271 is 

closer to the position of the product state. 

There are several residues that interact strongly with the DFG motif.  Two of 

them form the salt bridge that we already discussed. The side chain of Phe401 is highly 

flexible. It flips between rotational states several times along the reaction coordinate. 

It is not coupled to the reaction coordinate. Therefore, the sharp spike we observe in 

Fig. 4.13 has no impact on the progress of the reaction. Another important residue is 

Met290 that was discussed extensively in reference [121]. Flips of the DFG were 

observed using conventional MD only after the mutation of the Met290 residue to 

alanine, reducing the barrier to enter the binding site. To appreciate the coupling 

between different residues and Phe382 and the order of events during the transition 

we plot the distance between the Phe382 ring (the CZ atom) and the edges of the side 

chains of the other residues (Glu286 min(Oe1, OE2), Met290 SD, and  Lys271 NZ) in 

Fig 4.14.  The distance between Phe382 and Glu286 shows significant fluctuations 

between 6 and 8Å but not overall drift. The distance between Phe382 and Lys271 is 

decreasing near anchors 20 to 32, which is close to the committor value of 0.5 (Fig. 

4.7) and hence to a transition state. The motions of Met290 come late in the process 

and significant displacement is observed after the system is leaving the transition state 

and continue forward. Hence, the Met 290 transition is a late event in the DFG flip. 

 
Figure 4.14. The distances between atom CZ of Phe382 to atoms representing the ends of 

the sidechain of residues Met290, Glu286, and Lys271 are shown. For Glu286, the minimum 

distance two both oxygens OE1 and OE2 was measured. Lys271 and Glu286 are the salt 

bridge residues. Around anchor 30, the Phe382 reaches as close as possible to the salt bridge, 

(Lys 271) breaks it and then goes away from this residue.  The distance to Glu286 remains 

roughly a constant throughout the transition. 
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4.5 Conclusions 

 

The activation loop (A-loop) in kinases attracted considerable experimental and 

theoretical attention, being highly flexible and able to adopt multiple conformations, 

which hinders its accurate computational investigation with commonly used sampling 

methods. Here we investigated in detail a transition pathway in Abl-kinase from its 

active to its inactive form. While we investigated the transition of the entire A-loop, 

which includes multiple rotational events, we focus our analysis on the kinetics of the 

activated transition of the DFG motif from a DFG-in to a DFG-out state. Quantifying 

accurately the kinetics of this transition is, however, difficult from both experimental 

and computational viewpoints. The long transition time (estimated by NMR[118]) 

makes the direct atomistic simulations of these rare events challenging. Enhanced 

sampling techniques such as meta dynamics[122] and the string method[128] were 

applied to the system and were used to primarily investigate its equilibrium 

conformations. Simulations with Milestoning, [154] suggest that the time scales for the 

DFG flip are milliseconds to seconds. The extensive information that we gather from 

the reaction coordinate calculations as well as from the short Milestoning trajectories, 

allows us to propose a detailed molecular mechanism for the events of the reaction 

and their coupling to different residues. 

 

We also note that the calculations reported in this paper are conducted with 

unprotonated Asp381. Previous simulations highlighted the importance of the 

protonation state of this residue for the conformational transition.[121] Our study will 

enable future work to examine the impact of the protonation state on the transition 

pathway. 

 

One should keep in mind the significant conceptual and sampling challenges 

that calculation of kinetics in the Abl kinase molecular system poses. We cannot be 

sure that our set of coarse variables is complete, and we are uncertain if all significant 

transition pathways were sampled. It is expected that the impact of missing alternative 

pathways will be to reduce the estimated time scale. Nevertheless, the overall 

agreement of this calculation and experimental estimates is encouraging and it opens 
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the way for quantitative comparisons between simulations and experimental 

measurements of long-time events in complex and activated biomolecular systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4.  This chapter has been adapted from reference [20].  
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5. Dissociation Mechanism of 

Gleevec from Abl Kinase using 

Milestoning4 

 

 

5.1 Overview 

 

Here, I use atomically detailed simulations within the Milestoning framework to 

study the molecular dissociation mechanism of Gleevec from Abl Kinase. I compute 

the dissociation free energy profile, the mean first passage time for unbinding, and 

explore the transition state ensemble of conformations. The milestones form a 

multidimensional network with average connectivity of about 2.93, which is significantly 

higher than the connectivity for a one-dimensional reaction coordinate. I examined the 

transition state conformations using both, the committor and transition function. I show 

that near the transition state the highly conserved salt bridge of K217 and E286 is 

transiently broken. Together with the calculated free energy profile, these calculations 

can advance the understanding of the molecular interaction mechanisms between 

Gleevec and Abl kinase and play a role in future drug design and optimization studies. 

 

5.2 Introduction 

 

Kinases are a family of enzymes that catalyze the transfer of the ɤ-phosphate 

group from ATP to the hydroxyl group of a serine, threonine, or tyrosine residue.[159] 

They act effectively as switches along cellular transduction pathways due to their ability 

to alternate between catalytically active and inactive state in response to specific 
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signals. Hence kinases play an important role in cell growth, proliferation and 

differentiation.  

 

Uncontrolled division of cells and malignant transformations are a direct 

consequence of kinase deregulation.  A mutation in Abl has been associated with 

chronic myelogenous leukaemia.[160] The use of small molecular inhibitors for 

selective inhibition of a kinase is an effective first-line therapeutic method for treatment 

of several cancers, including leukemia. Finding a specific drug for kinase inhibition is, 

however, challenging since this protein family serves diverse functions while retaining 

high structural similarity. Gleevec (a.k.a., imatinib) is a successful drug which is highly 

specific to the Abl kinase. Despite the ~54% sequence identity between the Abl to the 

Src kinases, and the presence of highly similar binding pockets in both kinases, 

Gleevec has almost 3000 times stronger affinity towards Abl.[161] This anomaly has 

puzzled researchers for many years and a number of computational[162-165] and 

experimental[116, 118, 127] studies have been made to understand the underlying 

mechanism. Comprehensive studies by Lin et al.[163, 166] provided significant insight 

to the thermodynamics of binding to Abl and Src. Emphasis was made on the free 

energy of Gleevec binding and its dependence on the conformation of the DFG motif. 

Here, we focus, however, on the unbinding kinetics of Gleevec from the Abl kinase.  

 

Selectivity in biology is sometimes controlled by intermediate states and 

kinetics, and not only by thermodynamic considerations. The suggestion for kinetic 

selectivity is, of course, valid in non-equilibrium states, but selectivity by kinetics plays 

a significant role also in equilibrium. A trivial example is an enzymatic reaction that 

reduces the barrier for the correct substrate. In more general terms, the binding 

constant, L, is determined by the ratio of the forward and the backward rates, kon/koff. 

If the backward rates of the same reaction by two different proteins (or ligands) are 

different, while the forward rates are the same, the selectivity is determined by the 

kinetics of the backward reaction. In this case, an alternative and potentially more 

detailed picture of the selectivity is provided by kinetics. 

 

In the past, Elber et al. illustrated that the protein HIV reverse transcriptase 

selects a correct substrate by variation in the backward rate of an induced fit 

transition.[167] Here we simulate the dissociation pathway of Gleevec from Abl kinase 
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at atomistic detail using the Milestoning method. During the unbinding process, while 

Gleevec is in the protein matrix, we expect the DFG motif to remain fixed in the DFG-

out inactive conformation. Differences in the rates of the unbinding of Gleevec to Abl 

or to Src kinases in that case are unlikely to originate from the DFG flip. Therefore, this 

calculation presents a test to the DFG hypothesis and may be able to point out 

alternative sources of selectivity. For example, formation of a transient barrier. 

 

Kinetic calculations are, however, more computationally expensive than 

calculations of thermodynamic properties of the binding-unbinding process.[18, 19, 

168-172] Due to these limitations, and the special significance of the off-rate discussed 

in the previous paragraph, in this manuscript we focus only on the dissociation 

pathway. We compute first passage times as well as free energies for the unbinding 

pathway of Gleevec from the Abl kinase. 

 

In a recent study we investigated the DFG-in to DFG-out transition in Abl 

kinase.[18] This prior study motivated the present investigation, exploring further the 

mode of action of this protein. We emphasize however, that the DFG transition does 

not play a significant role in Gleevec dissociation as we show in the present paper and 

was also argued experimentally.[116] Therefore the present paper supplements our 

previous study and is not a direct extension. 

 

Molecular Dynamics is an increasingly useful tool to study kinetics of complex 

biological systems at atomistic level. However, the MD integration time step (on the 

order of 10-15 s) is much shorter than observation times in many biological processes 

and it makes the calculation of events at the milliseconds or longer computationally 

difficult. As the kinetics of kinases extend to milliseconds and seconds,[116] methods 

for enhanced sampling of kinetics are desired. One such method that has been 

designed to bridge this gap is Milestoning, used already extensively to investigate long-

time processes.[168] 

 

In the Milestoning approach,[154] the conformational space between the 

reactant and product is partitioned by a set of dividing hypersurfaces, or milestones. 

An ensemble of initial conditions is prepared at each milestone. From each of these 

initial points trajectories are simulated until another milestone is reached. These 
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trajectories are shorter compared to a reactive trajectory of the overall process 

(picoseconds versus milliseconds). Moreover, these Milestoning trajectories are easily 

parallelized. For every short trajectory, we record the starting milestone, the milestone 

where the trajectory terminates and the time lengths of the trajectories. With this 

information we construct a transition probability matrix (K), where Kij is the probability 

of transition from milestone i to milestone j.  Kij is estimated from the short trajectories 

initiated at milestone i: 𝐾𝑖𝑗 = 𝑛𝑖𝑗 𝑛𝑖⁄  where nij is the number of trajectories initiated at 

milestone i that terminate at milestone j and ni is the total number of trajectories 

launched from milestone i. The average lifetime of a milestone i, ti, is the average time 

length of all the ni trajectories launched from the milestone i:  𝑡𝑖 = ∑ 𝑡𝑖𝑙1,..,𝑛𝑖
𝑛𝑖⁄ , where 

til is the time length of the l trajectory initiated at milestone i and terminated at any other 

milestone. Observables of interest are listed below. The Mean First Passage time 

(MFPT) (Eq. (1)), the free energy of the trajectories passing milestone i (Eq. (2)), the 

committor (Eq. (3)), and the transition function (Eq. (4)) are given below. The 

expression for MFPT or t  is 

< 𝜏 > =  𝑝0(𝐈 − 𝐊′)−1𝒕                                                  (1) 

Here 𝑝0 is the initial population, I is the identity matrix, K' is the transition probability 

matrix with absorbing boundary at the product and reflecting boundary at the reactant. 

t is the lifetime vector.[67] 

The free energy of a trajectory passing milestone i is given by 

  𝐹𝑖  =  −𝑘𝐵𝑇 log(𝑞𝑖𝑡𝑖)                    (2) 

 Here 𝑞𝑖 is the steady state flux at milestone i, which is obtained from the linear 

equation 

 𝑞𝑡𝑲 = 𝑞𝑡 and 𝑡𝑖 is the lifetime of milestone i.[67] 

The committor value can be calculated as 

𝑪 =  lim
𝑛→∞

(𝐊𝑐)𝑛𝒆𝒑       (3) 

Here 𝐊𝑐 is the adjusted transition probability matrix with terminating boundaries at the 

reactant (r) (every trajectory that reaches the reactant disappears) and absorbing 

boundaries at the product (p) (every trajectory that reaches the product remains there), 

Krr=0 & Kri=0;  Kpp =1 & Kpi=0; 𝒆𝒑 = (𝟎,… , 𝟎, 𝟏).[173] At the transition state, CTSE=0.5. 
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Finally, as an alternative estimate for the transition state conformations, we also use 

the following expression for the transition function, T
i

e  

𝑇𝑖
𝑒 = log[𝜏𝑖→𝑃

𝑒 𝜏𝑖→𝑅
𝑒⁄ ]                        (4) 

here 𝜏𝑖→𝑃
𝑒  is the exit time from milestone i to the product and 𝜏𝑖→𝑅

𝑒  is the exit time to the 

reactant.[174] The exit times are computed from any milestone in reaction space to 

terminating boundaries at the product or the reactant. For conformational states in the 

transition state ensemble (TSE),  𝑇𝑇𝑆𝐸
𝑒 → 0. 

 

5.3  Method 

 
 

The crystal structure 2HYY[175] of human Abl kinase with the drug Gleevec 

bound was used to initiate the present study. The structure was solvated with TIP3P 

water molecules. Ions were added to obtain 0.15 M NaCl solution. The system was 

minimized for 10000 steps, followed by an NPT run for 5ns and an NVT run for 20ns 

using periodic boundary conditions at 300K. The integration timestep was 1fs. All 

simulations have been done using the program NAMD[134] with the CHARMM36 

forcefield.[135] 

 

To initiate a Milestoning calculation we need a rough sampling of the space 

between the reactant and product. This sample is provided here by a pulling trajectory. 

Seventy-six nanoseconds of constant-velocity Steered Molecular Dynamics (SMD) 

simulation pulled the center of mass distance of the ligand out of the final structure of 

the NVT run. The distance was the only restraint and therefore the bias was not 

directional. Three 𝐶𝛼 protein atoms of residues GLU 238, ASP 325, and Pro 465 were 

constrained to fix the overall translations and rotations of the protein.  The distance 

between the initial and final centers of mass of the Gleevec is 38Å (Figure 5.1 and 5.2).  

The constant velocity pulling was slow enough to allow the system to relax to local 

equilibrium and avoid significant stresses due to the external pulling force. In Fig. 5.1, 

we show the potential energy during the steering simulation to illustrate that the pulling 

perturbation is small. The average and the fluctuations of the potential energy are 
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roughly constant during the entire trajectory. Note, however, that the distance to the 

binding pocket is growing non-linearly in time, indicating that the trajectory is strongly 

influenced by the specific molecular forces (as compared to the external pulling). 

 

 
 

Figure 5.1. The potential energy (kcal/mol) and the distance of Gleevec from the binding 

pocket as a function of pulling time (ns). Gleevec is pulled out of the binding pocket at a small 

constant velocity (0.5 Å/ns) to reduce system strain, providing a flat sampling of the underlying 

potential energy (top panel). The lower panel shows the center of mass distance (in Å, see 

main text for the definition) as the function of time (ns). 43 configurations are selected from 

this SMD trajectory to serve as anchors in the Milestoning calculations. 

 
 

From the SMD trajectory, 43 configurations, including reactant and product, 

were selected as anchors for the Milestoning run. These configurations were selected 

such that (i) they are separated sequentially by ~0.1 Å and (ii) that the Gleevec’s center 

of mass distance from the binding pocket is monotonically increasing.  

 

Gleevec is bound to the kinase in the first anchor, and the last anchor represents 

the unbound state with Gleevec entirely exposed to the aqueous solution (Figure 5.2). 

In Milestoning the anchors form centers of Voronoi cells. The interface between the 
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Voronoi cells (say cells i and j) is called a milestone - Mij. Milestone, Mij, is the set of 

points with equal distances to anchors i and j and larger distances from all the other 

anchors. To commence, we defined initially 42 milestones, each between two 

consecutive anchors (Fig. 5.3). 

 

 

Figure 5.2. Abl kinase in complex with Gleevec. Abl kinase with Gleevec bound (reactant) is 

shown in red. Abl kinase with unbound Gleevec (product) is shown in green. Gleevec has been 

highlighted by representing it as opaque and using a translucent/shaded texture for the kinase 

matrix.  

  

In the following step, we sample configurations on the milestones using 1ns 

Molecular Dynamics simulations. The trajectories were restrained to the milestone. We 

use two restraints. The first restraint is a harmonic term k(di - dj) 2 = 0 to keep equal the 

distances di and dj (in coarse space) between the current configuration and the two 

anchors i and j. Here, di is the difference between the center of mass distance of 

Gleevec at current configuration and the center of mass distance of Gleevec at anchor 

i. The restraining force constant is 1500 (kcal/mol)/Å2. A second set of half-harmonic 

restraints are k’(dm-dl)2 when dm<dl, l=i,j and zero otherwise with k’=1000 and m being 

any milestone other than i or j. 

100 samples were kept from the final 0.5ns of the restrained simulation at each 

milestone.  
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Then all restraints were removed, and unbiased MD trajectories were initiated 

from configurations sampled on each milestone. The trajectories terminate when they 

reach a milestone other than the one that they were initiated on. The average time 

length of these trajectories is about 60 ps, a time easily accessible by conventional 

MD.  

 

 
 
Figure 5.3. Schematic representation of the reaction space in two dimensions. The axes 

represent coarse variables. The unfilled circles represent reactant (R) and product (P) 

conformations. The filled blue circles are the anchors, obtained by exploratory Steered 

Molecular Dynamics calculation, and serving as centers of Voronoi cells. The dashed lines are 

the milestones or the boundaries of the Voronoi cells. Note that anchors placed on a straight 

reaction pathway segment appear connected to only two neighboring milestones, forward and 

backwards. However, in more dimensions, a milestone can be connected to more than two 

milestones. 

 

If a trajectory is terminated on a milestone that was not sampled before, we add 

it to the list, sample at the new milestones and launch a new set of trajectories. This 

process of launching new trajectories and adding to the list newly discovered 

milestones is repeated until we obtain a connected transition matrix and a finite MFPT. 

An alternative is to continue the iterations until no new milestone is found. The last 

process is considerably more expensive and was not used in the present study. We 

started with a set of 42 milestones. After sampling the first set of milestones, we 

R 

P 
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discovered 84 new milestones. In the next round, we sampled these 84 new 

milestones. Thus, in total we sampled 126 milestones.  

 

The overall computational cost for a system of this complexity is relatively 

modest. In summary, the system was minimized for 10,000 steps, followed by an NPT 

run for 5 ns and an NVT run for 20 ns. SMD pulling was completed in 76 ns. Sampling 

on all the milestones required 126 ns (1 ns per milestone). Total simulation time for all 

the free trajectories from all the milestones is 0.816 s. Thus, a total simulation time of 

1.043 s MD was required to complete the calculations. We also note that the unbiased 

trajectories are independent and are trivially parallelized. 

 

 
 
Figure 5.4. Representation of the 126 milestones used in the present study. The axes are the 

anchor indices. A milestone between anchors i and j is represented by the point (i, j). The red 

dots are the initial milestones between the consecutive anchors along the transition path. The 

blue dots represent the 84 new milestones discovered during the analysis of the free 

trajectories from the initial set of only 42 milestones.  
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5.4 Results 

 

           Fig. 5.4 suggests that the reaction is better described with a network than in 

one dimension. In Fig. 5.5 we show a typical graph representation of the milestones’ 

space. If the system was exactly one dimensional then the number of edges of a node 

(also called the degree of a node) would be exactly 2, excluding the nodes at the 

boundaries. If the system is embedded in a square two-dimensional lattice, we expect 

four edges per node.  The average of the degrees of all the nodes in Fig. 5.5 is about 

3. The reaction space dimensionality is, therefore, between one and two if we use the 

square lattice example.  

 

 
 
Figure 5.5. Network representation of the anchors’ space. Each node represents an anchor, 

there are 43 anchors in total. The first node represents the reactant (1st anchor, shown in red). 

The last node represents the product (43rd anchor, is shown in green). A connection between 

any two anchors is represented by a straight black line. There are 126 connections (or 

milestones) in total.  

 

The free energy landscape of all the milestones is shown in Fig. 5.6. The two 

axes are the anchor indices, and the free energy of the milestone is color coded (Eq. 

2). Hence the free energy landscape is illustrated in two dimensions. The zero is taken 

to be the lowest energy value. The diagonal lattice points are not defined since an 

anchor cannot connect directly to itself. Therefore, the diagonal elements are colored 
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with the highest energy values. There are two domains that have significant width near 

the diagonal. One domain is near the minimum (anchor 1-8) and the second is between 

19-25. The bound Gleevec is in a deep minimum, but the location of the transition state 

and its characteristics are difficult to grasp. We therefore conduct further analyses as 

described below.  

 

Figure 5.6. Free energy plot for 126 milestones. The free energy of every milestone is colored 

according to its numerical value in kcal/mol (see color-bar). The maximum flux (Max Flux) 

pathway is shown in red (see text for details).  

 

Identifying a significant and representative one-dimensional reaction coordinate 

in a larger reaction space is a useful analysis tool and a common practice. One 

possible definition of a reaction coordinate is the Max Flux Pathway (MFP).[176]  We 

have used the MFP to estimate important coordinates in the milestone space, 

represented on a network.[156] To determine the MFP we need to assign weights to 

different edges in a network. We consider a network in which every milestone is a node 

(note that the milestones’ network is different from the anchors’ network of Fig. 5.5). 
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We assign weights to the network’s edges as the rate coefficients for transitions 

between milestones.  

Rate coefficients are computed from the transition matrix K and average 

lifetimes of the milestones, t. The rate coefficient for a transition between milestones i 

and j is given by Kij /ti.[177] We used these rate coefficients to obtain the global 

maximum weight path (GMW)[156] from the Gleevec bound state (reactant) to the 

Gleevec unbound state (product). To compute the GMW a recursive Dijkstra’s 

algorithm was used, which has been discussed in the context of Milestoning in Refs. 

[156, 178, 179].  

The free energies of the milestones, on the GMW path (Eq. (2)), are shown in 

Figure 5.6. The free energies of the reactant and product are 6.05  0.91 and 10.99  

0.94 kcal/mol, respectively. Clearly, the reactant and the nearby metastable state are 

favored over other intermediate configurations, that is, the inactive conformation of Abl 

kinase with Gleevec bound is more stable with respect to other conformations in the 

reaction space. Note, however, that we do not have a reliable estimate of the free 

energy of the unbound Gleevec that requires an estimate of the entropy in the aqueous 

solution. As stated in the introduction, we focus on the off rate. A combination of a 

reduced model and atomically detailed Milestoning can be used to provide this 

estimate.[1] After the initial displacement of Gleevec, from the binding site of the crystal 

structure, the free energy drops by about 4 kcal/mol with a minimum near milestone 

12 (Figure 5.7).  
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Figure 5.7. Free energy profile (kcal/mol) along the maximum weight path. To estimate the 

mean values (dots, red) and the errors (standard deviation, red vertical lines) we sampled the 

transition matrices and lifetimes from their Milestoning model distribution, using a set of 1000 

samples.  The committor-estimated transition state (TS) appears to be located late and broad 

between milestone 20 and 30 along the reaction coordinate. The energy minimum for Gleevec 

unbinding is seen near milestone 12. Structural differences between the reactant (shown in 

yellow) and the structure at milestone 12 (shown in pink) have been illustrated in the inset 

figure. At this minimum, we observe the outward displacement of Gleevec (IMA), show with 

blue arrow. We also observe an outward rotation in the C helix (see inset blue arrow). There 

is an RMSD difference of 2.6Å. The center of mass distance of Gleevec between the two 

structures is ~4.5Å. 

 
 

Another approach to estimate reaction coordination uses a manifold of hyper 

surfaces.  The committor function, Ci, at a milestone i, is the probability that a complete 

trajectory initiated at that milestone will reach first the product before the reactant. With 

the transition matrix K at hand the committor function is computed in a closed form 

(Eq. (3)) with no need to run additional trajectories.20 The committor is a function of all 

coarse variables and the hypersurface with the same value of C is the reaction 

coordinate. The transition state (hypersurface) is when C is equal 0.5. Milestones 

between the anchor pairs (27,28), (27,30), (28,30), (29,30) and (29,31) have a 

committor value close to 0.5 (Fig. 5.8). A representative structure from the ensemble 
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of trajectories initiated from a milestone with a value of C ~ 0.5, is shown in Fig. 5.9. 

The location of the iso-committor surface was further tested by generating an additional 

set of unbiased trajectories initialized at the transition state of the ABl-Gleevec 

complex. We label this transition state conformations as transition state 1 (TS1). 

 

 
 
Figure 5.8. Color-coded committor function at each milestone. The committor function, Ci, is 

defined as the probability that a trajectory initiated at milestone i will reach the product before 

the reactant. Milestones with committor values close to 0.5 are candidates for the transition 

state and have been highlighted with red squares. 

 

 

 

Testing the iso-committor surface predicted by Milestoning. We initiated unbiased 

trajectories starting from the transitions state ensemble in order to test how many of 

these trajectories made progress towards the reactant versus the product. 10 unbiased 

trajectories, 4ns-long each, were initiated from the TS1. As shown in Table 5.1, we 

observed 4 trajectories going towards the binding pocket (inbound) and 6 trajectories 
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moving away from the binding pocket. Thus, approximately 40% of the trajectories 

moved towards the binding pocket. Anchor 1 is the bound state. 

 
 

INBOUND 

 Starting Anchor Final Anchor 

1 27 16 

2 27 19 

3 27 22 

4 27 25 

OUTBOUND 

1 27 29 

2 27 43 

3 27 31 

4 27 30 

5 27 43 

6 27 32 

 
 

Table 5.1. Starting and final anchors for 10 unbiased test MD trajectories launched 

from the TS1 conformation.  
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Figure 5.9. Representative structure from the Transition State Ensemble (TSE) estimated 

using the committor function (called TS-1). The image was generated using the VMD 

software.32 At this position, the probability to return to the bound state is equal to the probability 

of escaping the protein to the aqueous solution. 

 

 
Another useful approach to define a transition state is by using the transition 

function (Eq. (4)).[174] The transition state estimated using the committor function is 

based on probability and is time independent. In contrast the transition state of the 

transition function is based on escape times. The transition state is defined as the set 

of points that have the same exit times to the reactant and the product states. The 

transition function (Eq. (4)) is zero at the transition state. Milestones (14,15), (15,16), 

(16,17), (16,18) and (17,18) have transition function value close to zero, that is, Te
i   

0, see Figure 5.10. A representative structure for transition state estimated from 

transition function is shown in Figure 5.11. This candidate of transition state is referred 

to as transition state 2. The striking difference between transition state 1 and 2 is a 

result of the high asymmetry of the transition state with respect to the reactant and 

product. 
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Figure 5.10: Transition function (defined as the logarithm of the ratio of the exit times towards 

the product and the reactant (Eq. (4)).[174] Milestones with similar exit times to both the 

product and the reactant, are close to the transition state. The region highlighted by the blue 

contains milestones (marked with small blue squares) near the transition state with the 

transition function close to zero. The R and P states are located inside the red and the green 

boxes, respectively, representing reactant and products. 
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Figure 5.11. A representative TSE structure found using the transition function (Eq. 4). By 

construction, the transition function value is ~0 for TSE conformations, as the exit times to the 

product and reactant are equal. The image was generated using VMD.[1] 

 
 

During the process of Gleevec unbinding, we observe several conformational 

changes in Abl Kinase close and far from the binding pocket (P-loop). For example, 

close to binding pocket, the distance between GLU282-LYS274 is reduced from ~17Å 

to only ~2Å (Fig. 5.12); far from the binding pocket (P-loop) the distance between 

GLU466-ARG460 increases from ~3Å to ~8Å and then decreases again to ~3Å. 

 

 

Figure 5.12. Conformational changes along the Gleevec dissociation reaction pathway. 

GLU282-LYS274 is shown in green and Gleevec is shown in yellow. Gleevec, when inside the 

binding pocket blocks the direct interaction between GLU282 and LYS274, shown in (a). Panel 

(b) represents the configuration at the transition state 2. (c) Finally, when the Gleevec molecule 

is out of the kinase matrix, the distance reduces to ~2Å.  
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It is interesting to compare the pathways for Gleevec’s escape in Abl and Src 

kinase. We search for critical residues along the pathway of Gleevec escape which are 

significantly different in Src kinase and therefore may contribute to alternative binding 

properties. The Abl and Src sequences were aligned using the Smith-Waterman 

algorithm[180] and BLOSUM62 substitution matrix.[181] In Fig. 5.13 we show the Abl 

kinase sequence compared to corresponding Src sequence (presenting 50.6% 

sequence identity and 69.0% sequence similarity).  

 

 

Figure 5.13. The Abl kinase sequence - comparison with the corresponding residues from Src. 

The two kinase sequences have 50.6% sequence identity and 69.0% sequence similarity. 

Identical residues are colored in red. P-loop, C helix and A-loop are highlighted in yellow, 

cyan and green, respectively. 

 

 

Four salt-bridges that are not conserved and eight conserved salt-bridges were 

identified. The spatial changes of the non-conserved salt-bridges along the GMW path 

is in Fig. 5.14 in the top insets, whiles in lower insets of each part list the corresponding 

mutations in Src kinase. These residues illustrate significant variations along the 

pathway and are therefore likely to impact the kinetics. 
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Figure 5.14. Significant differences in salt bridge interactions are observed between Abl and 

Src kinases. We show salt bridges that are formed in the Abl kinase, making significant 

contribution to the reaction pathway, and are modified in Src kinase. P-Loop, A-Loop, C helix, 

salt bridges and Gleevec are shown in blue, green, red, magenta, and yellow, respectively. 

Inset graphs show the changes in the salt bridge distance as a function of milestone positions 

along GMW path. At the bottom left of each panel are shown the salt-bridges for the Abl-kinase 

case (highlighted with green), and the corresponding residues for Src-kinase (cyan). The 

corresponding Abl and Src residues that are not similar have been boxed in red.  

 

One of the highly conserved salt-bridge identified is LYS271-GLU286. The 

LYS271-GLU286 salt-bridge breaks close to the 2nd transition state and forms again, 

as a result of the change in alpha helix (Fig. 5.15). The C helix goes from inward 

rotated conformation to outward rotated conformation and finally back to inward rotated 

conformation. The distance between the two residues increases from ~3Å (Fig. 5.15a) 
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to ~7.8Å (Fig. 5.15b). The bond is formed again when Gleevec is completely out of the 

kinase (Fig. 5.15c).  

 

 

Figure 5.15. Highly conserved LYS271-GLU286 salt-bridge. For the kinase to be active, DFG 

needs to be in the ‘in’ conformation, LYS271-GLU286 salt bridge should be formed, the 

catalytic spine that involves the residues Asp421, His361, Phe382, Met290, and Leu301 needs 

to be formed, and the binding site should be accessible to ATP. Thus, the integrity of the 

LYS271-GLU286 salt bridge is central to kinase activity. Shown above is the LYS271-GLU286 

salt bridge in green, Gleevec (yellow), and the kinase (cyan). During the unbinding of Gleevec, 

this salt bridge breaks near the transition state 2 (panel b). The distance between the two 

residues increases from ~3Å (panel a) to ~7.8Å (panel b). The bond is formed again when 

Gleevec is completely out of the kinase matrix (panel c). 

 

Along the GMW path, the DFG motif remains in out-conformation. This suggests 

that Gleveec inhibits the activity of Abl kinase even after getting displaced from the 

initial binding position. Inside the kinase matrix, the average end-to-end distance (dEE), 

that is the distance between C8 and C37 atom of Gleevec, is ~20Å.  A cis-type 

conformation, with dEE of ~16Å, is observed outside the kinase. Significant structural 

fluctuations of Gleevec are observed after transition state 2. The dihedral angle as a 

function of the center of mass distance of Gleevec and the binding pocket (which is 

equivalent to the dihedral angle as the function of milestone position) shows, not 

surprisingly, an increase in the flexibility of Gleevec outside of the kinase (shown with 

red bars in Fig. 5.16). 
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Figure 5.16. Dihedral angles along the GMW path. As Gleevec moves away from the binding 

pocket to slide out of the Abl kinase, the steric hinderance decreases, and an increase in the 

movement and rotation is observed. The dihedral angle, Θ, defined by the C8, C15, C32 and 

C37 atoms of Gleevec, was recorded for the milestones along the GMW path from reactant to 

product. Larger ranges of dihedral angles at milestones outside the binding pocket suggests 

greater flexibility and entropy. The onset of larger flexibility is near transition state 2.  

 

We compute the Mean First Passage Time (MFPT), the residence time in the 

binding site, or the inverse of the off rate 1/koff, using Eq. (1) and the data from the 

Milestoning runs. To estimate the mean and the errors, we sampled transition matrices 

and lifetimes from their model distribution.[158] The distribution of MFPTs from a set 

of 1000 samples is shown in Fig. 5.17. The averaged MFPT is 0.055s.  

  

Agafonov et al. in their experimental studies[116] suggest the process of 

Gleevec binding and unbinding to be a two-step process. 

𝐸𝑜𝑢𝑡 + 𝐼 ⟺ 𝐸𝑜𝑢𝑡 . 𝐼 ⟺ 𝐸𝑜𝑢𝑡
∗ . 𝐼                                           (5) 

The first step is the binding which is relatively fast. The second step, which is slower, 

has been attributed to either being an induced fit step, or to the presence of a significant 

number of binding intermediate states along the transition patheway.[116, 182] Here 

we are studying the unbinding process to unveil mechanistic details about these 

kinetically different steps. To find the experimental residence time, we use the koff 

reported by Agafonov et al. (Table S5.1 in the supplementary information) which is 

1/koff = 1/(25  6) = 0.04  0.01 s. Our results are consistent with the experimental 
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value. To further assess the time scale, we also evaluated the kinetics in the mutant 

Y253F[182] and found it to be similar to the wild type. 

 

 
 
Figure 5.17: Distribution of first passage times for Gleevec dissociation from the Abl kinase. 
The corresponding MFPT value derived from Milestoning calculations is 0.055 s. Note the 
broad distribution of predicted MFPT values suggesting significant uncertainties in the 
calculations. 

 
 

After the simulation work of the present study was essentially complete, a 

related manuscript was published.[183] This study used multiple long molecular 

dynamics trajectories in conjunction with Markovian modelling to depict the mechanism 

of Gleevec escape from the protein matrix. Their approach generates and examines a 

broader range of pathways than in our case. [183] Here, we have used a single SMD 

pathway as a starting point, due to the focus on estimating kinetics with Milestoning, 

while they used several. Their study is therefore more comprehensive, and the 

sampling of alternative pathways is more complete. However, our statistics for 

transition along the single pathway is larger and was obtained at lower computational 

cost. Here, we choose to focus on a single pathway determined by unbiased pulling 

which is also one of the main pathways examined in their studies (below the C helix), 

and we provide detailed kinetics and analysis of the underlying reaction mechanism 

along this pathway.  

 

The current study has a number of new contributions. Our analysis of the 

kinetics is based on the Milestoning approach, which is an alternative, computationally 

efficient, procedure to study slow kinetics. The time courses in Milestoning do not have 

a time lag like in the Markov State Model. Since the Milestoning simulations rely on 
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short trajectories they are considerably more efficient than long trajectories. Our 

statistics for the non-directional path are better than what one can obtain from a few 

long trajectories and are obtained at less computational resources. With a total 

simulation of only 1.043 s, we are able to estimate an exit-time on the order of tens 

of ms. The pathway under the C helix, and the overall time scale of milliseconds agrees 

quite well with the Markov modelling-based investigations. Also, the observation of 

long-lived intermediate is consistent with the prediction of the Milestoning calculations 

of a broad intermediate free energy minimum. 

 

Our analysis of the committor and transition functions adds additional insight to a 

particular important dissociation pathway that does not involve the DFG motif directly 

and opens the possibility of comparison with drug interactions in other kinases, such 

as the Src (Fig. 5.13). Our Milestoning-based study allows the efficient identification 

and analysis of TSE conformations, as well as the calculation of detailed kinetic 

properties along the dissociation pathway, unveiling the underlying distribution of first 

passage times (Fig. 5.17).  

 

5.5 Conclusions 

 
Using the Milestoning method,[154, 168] we computed detailed kinetic and 

thermodynamic information on the molecular dissociation of Gleevec from the Abl 

kinase protein matrix. Building on previous work,[18, 168] Milestoning simulations 

allow us to focus on calculating slow kinetic timescales (i.e., associated slow processes 

on the order of tens to hundreds of milliseconds) from atomistic MD trajectories, while 

sampling the unbinding pathway of Gleevec from Abl, currently beyond the reach of 

conventional MD-based simulations. [18, 19, 168] We focus on the off rate as a critical 

measure of drug activity. Our study unveils significant insight into the dissociation 

kinetics. Interestingly, we found that the transition state ensemble appears to be late 

and broad according to the committor function approach, while being located rather 

early (i.e., closer to the Gleevec bound “reactant” state) according to the transition 

function (i.e., equal escape times towards both ends of the reaction pathway).  
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The reaction mechanism shows that Gleevec slides under the C helix during 

dissociation. Subsequently, critical salt bridges are broken along the pathway in 

dissociation intermediates and reform once Gleevec has exited the protein matrix (Fig. 

5.14). The LYS271-GLU286 salt bridge breaks at the transition state 2 (Fig. 5.11). 

During dissociation, Gleevec is held tightly in the binding pocket but as it is starting to 

emerge from it, its flexibility significantly increases. The entire pathway is conducted 

with the DFG motif in the DFG-out, inactive conformation. This observation provides 

the opportunity to examine kinetic effects of selectivity. Our results suggest that future 

investigations should study the details of the corresponding Gleevec escape pathway 

in different cases, such as the Src kinase, which presents significant sequence identity 

and similarity with Abl (Fig. 5.13). These calculations, conducted with a DFG-out 

conformation, can serve as a further test for the impact of the DFG flip on the selectivity 

for Gleevec binding.  

 

Our calculations indicate that Milestoning can play a central role in studies that 

facilitate the rational design of specific kinase inhibitors, by unveiling both kinetic and 

thermodynamic details of the rather complex kinase-drug molecular interactions. This 

is expected to be particularly important for relatively large and complex drug molecules, 

such as Gleevec, that can adopt several relatively long-lived distinct intermediate 

conformations in their TSE, in agreement with other recent experimental and 

computational studies.[18, 116, 182, 183] 

 

 

 



* This chapter has been adapted from submitted work; Narayan B., Buchete N.V., Kiel C., 2022  102 

6. K-Ras4B GTP-dependent 

activation/inactivation mechanistic 

reaction coordinates* 

 

 

6.1 Overview 

 

I probe the equilibrium conformations adopted by GTP-bound K-Ras4B proteins 

using long-time atomistic molecular dynamics (MD) simulations. I analyse the 

underlying free energy landscape of wildtype K-Ras4B projected on two important 

distances, labelled d1 and d2 (i.e., coordinating the P atom of the GTP ligand with two 

key residues, T35 and G60), that are useful reaction coordinates for discussing the K-

Ras4B activation/inactivation mechanism. However, the detailed inspection of the K-

Ras4B conformational landscape reveals a more complex network of underlying 

equilibrium states. I show that including a new reaction coordinate to account for the 

orientation of acidic K-Ras4B sidechains such as D38, with respect to the interface 

with binding effectors such as RAF1, is needed to rationalize the activation/inactivation 

propensities. I also show that a relatively minor mutation, D33E, in the switch 1 region 

can lead to significantly different activation propensities of monomeric K-Ras4B.  This 

study shades new light on the role of residues located at the K-Ras4B–RAF1 interface 

on its underlying GTP-dependent activation/inactivation mechanism. 

 

6.2 Introduction 

 

Kristen rat sarcoma viral oncogene homologue (K-Ras), known as an oncogene 

for almost four decades,[184] is a small GTPase that controls cellular proliferation by 

playing an important role in many cancer signal transduction pathways.[8] It acts as a 

molecular switch, flipping between an inactive guanine diphosphate (GDP) bound 
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state and an active form of guanine triphosphate (GTP) bound state.[8, 9] There are 

many known K-Ras mutations that have been associated with many fatal cancers such 

as colorectal cancer, pancreatic ductal adenocarcinoma, and lung cancer (Fig. 1b).[9-

13] Many computational and experimental efforts have been made to understand the 

conformational dynamics of K-RAS, the effects of its mutations, and to find mutation-

specific drugs.[8, 14, 15] Understanding the detailed thermodynamic and equilibrium 

kinetic behavior of wildtype K-Ras4B proteins remains an important, outstanding aim 

due to its involvement in a variety of cancers.[8, 9]  

K-Ras has two splice variants, namely K-Ras4A and K-Ras4B. Both variants 

are oncogenic but have distinct mechanism of membrane trafficking. K-Ras4A has 189 

amino acids, like H-Ras and N-Ras. However, K-Ras4B has 188 amino acids.  The 

two variants of K-Ras have a high degree of sequence identity of their catalytic 

domains, but a very low degree of sequence identity of their hypervariable region. In 

this paper, focus of our study is K-Ras4B. In this paper, K-Ras4B (the focus of this 

study) and K-Ras notations are used interchangeably, both referring to the K-Ras4B 

splice variant. K-Ras when bound to GDP is inactive as it makes an unstable complex 

with downstream effectors such as RAF1.[185] However, GTP-bound K-Ras can bind 

to downstream effectors, leading to signal transduction via pathways like Ras-Raf-

MEK-ERK pathway.[2, 186] A major difference between GDP-bound K-Ras and GTP-

bound K-Ras is in the regions switch I (residues 30-38) and switch II (residues 59-76) 

( Fig. 6.1a). In GDP-bound K-Ras, switches are more flexible and their distance from 

the GDP ligand is large. Experimental observations suggest that switch regions in the 

GTP-bound K-Ras structures are less flexible and tighter packed to the ligand.  

Computational studies of K-Ras have shown existence of GDP-bound K-Ras like 

conformations in the GTP-bound structures.[8]  This suggests that even when K-Ras 

is bound to GTP, it can still adopt conformations which are not favorable for RAF1 

binding, suggesting existence of both active and inactive states for GTP-bound K-Ras. 

Here, we computationally probe the detailed atomistic conformational dynamics of 

GTP-bound K-Ras4B proteins solvated with explicit water molecules, and the GTP-

dependent activation and inactivation mechanism or K-Ras4B (WT) and K-Ras4B 

(D33E).  The unexpected large effect of D33E (i.e., since both the charge are size 

properties are preserved to a good approximation) was also observed in Ref. [187]. 
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Figure 6.1. (a) K-Ras4B structural elements.  The switch I and switch II regions are highlighted 

in yellow and magenta, respectively. The GTP ligand is shown in licorice and coloured by atom 

type. The Ca (for residues T35 and G60) and Pb (for GTP) atoms are shown as blue spheres. 

d1 is the distance (dashed black line) between the Ca atom of G60 and the Pb atom of GTP. d2 

is the distance between the Ca atom of T35 and the same Pb atom of GTP (dashed black line).  

The D33 residue is circled in red. (b) Schematic representation of the GTP-dependent 

activation of K-Ras4B and the hypothesized relationship between its active/inactive states and 

the d1 and d2 distances. 

 

 

6.3 Method 

 

To model wild type K-Ras4B bound to GTP, the structure of human K-Ras 

(Q61H) in complex with the GTP analogue GNP (PDB ID 3GFT) was used, and residue 

61 was mutated to GLN and GNP was replaced by GTP. The system was solvated 

with 16274 transferable intermolecular potential with 3 points (TIP3P) water molecules. 

NaCl ions were to neutralize and set the ion concentration to physiological conditions 

(0.15 mol/L). The system was minimized for 10,000 steps, followed by an isothermal-

isobaric run (NPT) of 5 ns and a canonical ensemble run (NVT) of 20 ns using periodic 

boundary conditions at 300 K with 1 fs timestep. For data collection, 40 ns long 40 MD 

trajectories were launched from S1, S4 and S6 initial conformations (see figure). S1 is 

the crystal structure state with small d1 and d2 value. S4 and S6 are states already 

observed in first 25 ns run. A total of 4.8 ms of K-Ras4B(WT) MD simulation data was 

used for final analysis. D33E model was prepared by mutating the K-Ras(WT).GTP 
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prepared above. Same minimization and equilibration protocol was followed as 

explained for K-Ras(WT).GTP.  

 

For data collection, 14 trajectories 100 ns long each were launched from the 

high energy area between S2 and S4 of WT free energy map (see Fig. 6.2a). This is a 

different sampling approach than previous MD studies of K-Ras that allows us to 

extract a detailed and fully converged landscape in (d1,d2) coordinates.[8, 15] A total 

of 1.4 ms of MD simulation data was used for analysis.  The CHARMM 36 force field 

was used for all simulations and NAMD (2.13 multicore CUDA version) was used for 

MD simulations.   

 

For the docking experiment, the PatchDock program[188] was used. RAF1 from 

the crystal structure[2] (the Ras binding and cysteine rich domains; PDB ID 6XI7) was 

used to dock to MD-generated K-Ras4B-GTP structures. A list (not exhaustive) of 

potential binding sites residues on RAF1 and Ras were provided to the program (see 

supplementary material). This list included residues from both Ras binding domain 

(RBD) and cysteine rich domain (CRD), as CRD increases the binding affinity to K-Ras 

and CRD K-Ras interaction is necessary for RAF1 activation, thus downstream 

signaling. However, RBD is more significant for RAF-RAS binding. Unlink RBD which 

primarily binds with switch region of K-Ras, CRD interacts with inter-switch region of 

K-Ras and C-terminal alpha helix via nonbonded interactions and hydrogen bonds. 

Binding interface (alpha carbons on RAF1 which are within 5 Å of K-Ras atoms) RMSD 

for top 5 structures, generated by the docking program, was computed. RMSD was 

calculated with respect to the 6XI7 crystal structure,[2] after aligning K-Ras. The 

minimum RMSD value out of 5 values in each case has been reported (see Table 6.1). 

VMD was used for generating representative structures. Python was used for data 

analysis and for generating plots. 

 

6.4 Results 

 

To check the suitability of using d2 (see Figs. 6.1 and 6.2) as an reaction 

coordinate, we computed the corresponding distances between alpha carbon of 

several residues in the 32-40 sequence range and the Pb atom of GTP from our long 
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MD trajectories (Fig. S6.2). The distributions for of residues 32-34, and 36-40 clearly 

show a single peak (located at approximately 6.5, 8.5, 8, 10.2, 12, 14, 15 and 15 Å, 

respectively, see Fig. S6.2). However, the distribution for d2 (residue T35) captures 

clearly the most structural states (i.e., three peaks at approximately 6.5, 8.2 and 12 Å, 

see Fig. S6.2). Clearly, the d2 distance can capture more conformational metastable 

states as compared to other options.  

 

 
 

Figure 6.2. (a) The detailed K-Ras4B wild type (WT) free energy landscape (G, kcal/mol) for 

its GTP-bound structure in d1 and d2 (Å) coordinates (see Fig. 1a). The six main conformational 

states of K-Ras4B WT are labelled S1 to S6, (yellow). (b) The corresponding G landscape 

calculated for the GTP-bound K-Ras4B D33E mutant, with the new conformational basins 

labelled S1’ to S6’.  
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Similarly, to check the suitability of using d1 as a reaction coordinate, residues 

G60, Q61 and E62 located on switch 2 were selected, and the corresponding distance, 

(defined as the distance between the Ca atom of G60 and the Pb atom of GTP, dashed 

black line, Fig. 6.1a) is computed. The corresponding distance distributions for 

residues Q61 and E62 have only a single peak (at ~10.5 and ~13 Å, respectively, see 

Fig. 6.2). However, the distance distribution for residue G60 shows at least two clearly 

defined peaks at ~6.5 and ~8.5 Å (see Fig. 6.2c). Once again, the choice of using the 

d1 distance as an RC seems to be the best choice. 

 

Convinced that, for the force field use here, d1 and d2 are reasonable (Figs. 6.2c 

and S6.2), we extracted the underlying free energy landscape by measuring the 

population density in (d1, d2) space (Fig. 6.2a).  We identified six representative 

conformations as the centers of free energy minima (highest population density), 

illustrated in Fig. S6.1. These six centers of energy minima represent states labeled, 

S1, S2, S3, S4, S5 and S6 (Fig. 6.2a).  This more detailed free energy map suggests 

that GTP bound K-Ras (WT) has higher resolution than previously described.  d1 and 

d2 distances were measured for various GTP analogue/ GTP bound K-Ras and GDP 

analogue/GDP bound K-Ras crystal structures (see Fig. S6.3). These corresponding 

distances for crystal structures show that most GTP bound K-Ras WT and mutant 

structures cluster closer to the S1 state on our computational free-energy map.  

 

Using the six centers of free energy minima, identified above, Markov state 

model was built. Area within a radius of 0.5 Å around all six centers of free energy 

minima was assigned as the for-sure-zone for the respective state. To assign states to 

the conformations outside for-sure-zone, we used transition-based assignment (TBA) 

method. TBA method has been described in detail in ref. [54] A window length of 20 

ns was selected to ensure Markovianity (see supplementary fig. S6.4). Using the 

sliding window of carefully selected window length, we estimated both populations and 

transition rates between the active and inactive states unveiled by this study, which 

suggest a more complex equilibrium molecular dynamics than previously reported (see 

figure 6.3). Detailed transition rate matrix and relative population of each state has 

been reported in figure 6.3. Our calculations showed that S2 is the most populous state 

with a population of about 46.7%. S6 is the least populated state (~3.6%) and S1 is 

the second least populated state (~3.8%).  
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Figure 6.3. Visual representation of the rate matrix with rates (ns-1) shown.  The relative 

population (%) of each state is shown near the nodes. S2 is the most populated state with 

46.648 % population and S6 is the least populated state with 3.579 %.  Estimates of errors for 

rates and populations are shown in supplementary Table S6.1.  

 

Structural analysis of RAF1 and K-Ras complex from the crystal structure PDB 

ID 6XI7,[2] shows that the acidic residues of K-Ras (e.g., residue D38) interacts with 

the basic residues of RAF1 creating strong salt bridges. To measure the orientation of 

D38, we computed the distribution of values of the dihedral angle 𝜃38 (i.e., defined as 

the C-Ca-Cb-Cg dihedral angle for residue D38, in degrees, see Fig 6.4). For the 6XI7 

crystal structure[2] dihedral angle for residue D38 is 151.63. The D38 dihedral angle 

distribution for MD generated trajectories shows two clear peaks (Fig 6.4).  Distribution 

of dihedral angle, 𝜃38, in states S1, S2, S3, S4, S5 and S6 shows the presence of both 

peaks in all six (d1, d2) conformational states.   
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Figure 6.4. (a) The positions of atoms defining the angle q (i.e., the C-Ca-Cb-Cg dihedral angle 

for residue D38, in degrees) used for measuring the relative orientation (w.r.t. the local 

backbone) of the D38 side chain in the K-Ras4B WT with respect to the local backbone. The 

GTP ligand is shown as licorice and the D38 atoms as balls-and-sticks. (b) The corresponding 

overall distribution of 𝜃38 values for K-Ras4B WT. (c) Dihedral angle (𝜃38) distributions in each 

of the six states of K-Ras4B WT. (d) The corresponding dihedral angle (𝜃38) distributions in 

each of the six states of K-Ras4B D33E. 

 

 
Based on these observations, which are supported by other studies that 

suggested that the orientations of interface residues such as are important descriptors 

of K-Ras binding propensity to effector molecules,[189, 190] we hypothesize that for 

K-Ras4B GTP bound to be active, it should be able (i.e., have a high propensity) to 

bind to RAF1. To determine which possible combination of d1, d2 and theta is good for 

binding we dock RAF1, extracted from the 6XI7 structure, to peak 1 and peak 2 
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representative structures for all 6 (S1 to S6) states.  We can safely assume that if the 

high scoring docked structure is close to the crystal structure orientation, then the 

binding is more likely and thus the K-Ras4B GTP conformation is active. Binding 

interface RMSD for top 5 structures, generated by the docking program, was 

computed. RMSD was calculated with respect to 6XI7 crystal structure, after aligning 

K-Ras.  Low RMSD value means closer to crystal structure and higher propensity of 

RAF1-Ras binding. Smallest of the 5 RMSD values has been reported in Table 6.1. 

Clearly, S1 state conformation with large dihedral angle (i.e., peak 2) binds to RAF1 

better than S1 state conformation with small dihedral angle (i.e., peak 1).  Previous 

studies showed that if d1 and d2 distances are small then K-Ras-GTP is active and 

binds to RAF1.[8]  Our study, shows that even for small values for d1 and d2, not all 

structures (including S1) are always active. We also note that theta alone is not 

sufficient for establishing RAF1 binding propensity. For example, states, like S2, large 

theta doesn't give a low RMSD. Importantly, from the docking calculations reported in 

Table 6.1, we can conclude that structures with small d1 and d2, and large theta values 

have the highest propensity to bind to RAF1.  However, other reaction coordinates, 

besides d1, d2 and 𝜃38 may be able to also correlate with the K-Ras(GTP)-RAF1 binding 

propensity. Interestingly, 𝜃38 has the advantages over d1 and d2 that (i) it presents a 

largely bimodal distribution overall. and (ii) one of its two modes (peak 2) is much more 

compatible with RAF1 binding, as it promotes interfacial salt bridges between the acidic 

D37 and D38 residues of K-Ras and the basic residues of RAF1such as R89. 
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Table 6.1. Results of docking-based modelling. RMSD values (in Å) obtained for comparing 

the docking interface of K-Ras4B and RAF1 obtained experimentally (PDB code 6XI7 with the 

dimer structures corresponding to the two peaks (denoted here by q1 and q2, respectively) of 

the angle 𝜃38 (i.e., the C-Ca-Cb-Cg dihedral angle for residue D38, in degrees) used for 

measuring the relative orientation (w.r.t. the local backbone) of the D38 side chain in the K-

Ras4B WT with respect to the local backbone. See text for discussion. 

 

 
Figure 6.5. RAF-RAS binding interface. (a) Crystal structure of K-Ras4B-GNP in complex with 

RAF1 (from PDB ID 6XI7)[2]. The binding interface for RAF1is shown with surface 

representation and colored with residue type and binding interface residues of K-Ras are 

shown with sticks and colored with residue type. Acidic residues of K-Ras like residue 37 and 

38 (shown in red and circled) binds with the basic interface residues (shown in blue) on RAF1 

binding surface. (b) RAF1 docked to S2’ peak1 and peak2 structures. RAF1 shown in cyan is 

docked to S2’ peak 1 and RAF1 shown in purple is docked to S2’ peak 2. The two structures 

share only a small part of binding interface. RAF1bound to peak 2 structure is closer to the 

crystal structure RAF1.     
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In Fig. 6.5 are illustrated important residues located at the binding interface 

between K-Ras4B and its RAF1 effector (from PDB ID 6XI7).[2] Our analysis shows 

that a main stabilizing factor is the network of complementary acidic (red) and basic 

(blue) amino acids located at this interface (Fig. 6.5a). Neutralizing mutations such as 

acting on D38 would have a destabilizing effect. However, our analysis of the 𝜃38 angle 

shows that mutations such as D33E, can in fact increase the K-Ras affinity to RAF1 

by allowing the D33 side chain (and thus the switch 1 region) to interact more closely 

to RAF1. 

 

6.5 Conclusions 

 

To sum up, we have designed and used a new set of MD trajectories, initialized 

from various regions of the (d1, d2) conformational space of K-Ras4B to extract high-

resolution, converged free energy maps of both the K-Ras4B WT protein and of its K-

Ras4B WT D33E mutant (Fig. 6.2a and 6.2b).  

 

For the K-Ras4B WT molecule, the new map showcases six distinct (d1, d2) 

states that cannot be fully correlated with activation/inactivation propensities of K-

Ras4B WT and mutated structures, demonstrating the need of additional reaction 

coordinates. The basins of the new ∆𝐺 map in (d1, d2) coordinates appears to correlate 

well with experimental information available on the structures of crystal structures that 

are either likely to be active (i.e., GTP or GTP-analogue bound) or known as inactive 

(GDP or GDP-analogue bound) as shown in Fig. S6.3. This is not unexpected as the 

d1, and d2 RCs were constructed to capture active-like conformations in regions such 

as S1 and S2. However, we find that some inactive-like conformation can also 

correspond to small (d1, d2) coordinates (e.g., labeled 8 in Fig. S6.3) while some active-

like cases (e.g., labeled 7 and 9 in Fig. S6.3) correspond to rather large (d1, d2) values. 

To address this issue, we showed that the dihedral angle, 𝜃38, of an acidic interface 

residue, D38, has a rather bimodal distribution in all the six main conformational states 

evidenced in the (d1, d2) coordinates, with conformations corresponding to its two 

peaks correlating well to activity propensity (see data in Fig. S6.3b). This aspect was 

also supported by our docking results that showed that both high scores and small 

RMSD values for the docking interface are obtained by S1 and S2 structures that are 
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docked to RAF1. Interestingly, including the 𝜃38 conformations in the analysis showed 

that experimental-like (i.e., small RMSD values from the experimental interface 

structure in 6XI7, in the range of ~2 to ~3 Å) can be obtained for states S1 and S2 if 

the 𝜃38 conformations are also similar to active-like conformations (i.e., peak 2, Fig. 

6.4). These observations highlight a new paradigm in analyzing the effect of K-Ras 

(WT) conformations and its mutant for inferring propensities of activation/inactivation, 

namely that a more complex collective variable such as obtained by monitoring all 

three RCs discussed (d1, d2, and 𝜃38) simultaneously, is necessary. This ability would 

be particularly useful in quantifying the effects of mutations on K-Ras propensities of 

activation/inactivation. As shown here, using the (d1, d2, 𝜃38) triad, we can explain the 

otherwise puzzling observation that a rather minor mutation, D33E, can have a rather 

dramatic effect by significantly increasing the K-Ras activation propensities for its S1 

and S2 confirmational states. The unexpected large effect of D33E was also observed 

in Ref. [187]. Our MD and docking-based analysis approach can help both identify and 

validate in silico assessment of activation/inactivation propensities and shed new light 

on the underlying molecular mechanisms (i.e., in this case, the modulation of the 

network of salt bridges at the binding interface with the RAF1 downstream effector).  

 

Our new and more complex mechanistic reaction coordinates provide an 

explanation as to how Ras uses the same binding site to engage with multiple effectors 

forming diverse binding interfaces through modulation of intermolecular interactions, 

such as salt bridges. Indeed, binding affinities between Ras and effectors vary a 

lot,[191] as do contributions of individual amino acid contacts (e.g. ‘hot-spots’) in the 

different Ras-effector interface.[191, 192] Our analysis also paves the way for a better 

mechanistic understanding of Ras oncogenic mutations that are suggested to 

differentially impact binding to effectors.[193]  
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7. Conclusions 

 
 
 The unifying theme of the work presented in this thesis is that we aim to 

contribute to the development and application of new advanced statistical methods 

that can be used to extend current kinetic and thermodynamic analysis models to 

larger and more complex cancer related proteins and, thus, paving the way to a better 

understanding of cancer-related systems (i.e., including K-Ras4B, Abl and Src studied 

here).  

The basic methods and concepts that are employed throughout this work are 

summarized in Chapter 2. I summarize the theory guiding MD simulations and also 

discuss our application of the replica exchange molecular dynamics (REMD) method 

to studying the conformational dynamics of piezoelectric amyloid peptides in water. I 

also discuss how two reaction coordinates can be combined in a simple yet effective 

way to give a better collective reaction coordinate. Finally, the theory of the two 

approaches, Markov State Modelling (MSM) and the Milestoning method, is discussed.  

The first approach, MSMs, relies on identifying a set of configuration states in which 

the system resides sufficiently long to relax and loose the memory of previous 

transitions, and on using simulations for mapping the underlying complex energy 

landscape on a network of Markovian transitions. The independence of the underlying 

transition probabilities creates the opportunity to increase the sampling efficiency by 

using sets of appropriately initialized sets of short simulations rather than more typical 

long MD trajectories, which leads to both enhanced sampling and higher accuracy. 

This allows MSM studies to unveil bio-molecular mechanisms and to estimate free 

energy barriers with high accuracy, in a manner that is both systematic and relatively 

automatic, which accounts for their increasing popularity. The second approach, 

Milestoning, is focused on accurate studies of the ensemble of pathways connecting 

two specific end-states (e.g., reactants and products) in a similarly systematic and 

highly automatic and highly accurate manner. Conceptually, both methods are 

theoretically identical for transition paths between Markovian states, however 
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Milestoning can be generalized and applied to studies of non-Markovian transitions as 

well. 

 

In chapter 3, I showed that replica exchange molecular dynamics (REMD) 

trajectories of explicitly solvated FF peptides can be used to probe in detail the 

interplay between temperature and electric field effects on the detailed thermodynamic 

and kinetic properties of the conformational dynamics of FF peptides in the presence 

of explicit water molecules.[66, 74] I showed that the thermodynamics and kinetics of 

the ensemble of conformations adopted by amyloid FF peptides solvated in explicit 

water molecules - an environment relevant to biomedical applications - can be 

analysed in detail by using REMD to enhance sampling, while simultaneously applying 

external electric fields and probing temperature ranges relevant to earlier studies.[74, 

79, 80, 84, 85]  Here I highlighted possible artifacts and how to overcome these 

artifacts that may occur during the setup of REMD simulations of explicitly solvated 

peptides in the presence of external electric fields, a problem particularly important in 

the case of short peptides such as FF. The presence of the external fields could over-

stabilize certain conformational states in one or more REMD replicas, leading to 

distortions of the underlying potential energy distributions observed at each 

temperature. This cause is different from REMD artifacts reported and documented by 

earlier studies, which were due to modified underlying energy distributions caused, for 

example, by the use of weak-coupling thermostats.[107, 108] In this case, I showed 

that the resulting artifacts can be overcome by correcting the REMD initial conditions 

to include the lower energy conformations induced by the external field.  

In chapter 4 and chapter 5, I combined a reaction path algorithm with the theory 

and algorithm of Milestoning to study kinetics of the DFG flip and disassociation of 

Gleevec from ABL kinase. I computed the mechanism, the rate of the transition in ABL 

kinase and MFPT for unbinding of Gleevec. The activation of kinases includes a 

conformational transition of the DFG motif that is important for enzyme activity but is 

not accessible to conventional Molecular Dynamics. I proposed a detailed mechanism 

for the transition, at a timescale longer than conventional MD, using a combination of 

reaction path and Milestoning algorithms. The mechanism includes local structural 

adjustments near the binding site as well as collective interactions with more remote 

residues.  Milestoning simulations allowed to calculated slow kinetic timescales (i.e., 
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associated slow processes on the order of tens to hundreds of milliseconds) from 

atomistic MD trajectories, while sampling the unbinding pathway of Gleevec from Abl, 

currently beyond the reach of conventional MD-based simulations. 13-15 We focus on 

the off rate as a critical measure of drug activity. This study unveiled significant insight 

into the dissociation kinetics. Interestingly, I found that the transition state ensemble 

appears to be late and broad according to the committor function approach, while being 

located rather early (i.e., closer to the Gleevec bound “reactant” state) according to the 

transition function (i.e., equal escape times towards both ends of the reaction 

pathway).  These two studies indicate that Milestoning can play a central role in studies 

that facilitate the rational design of specific kinase inhibitors, by unveiling both kinetic 

and thermodynamic details of the rather complex kinase-drug molecular interactions. 

Finally in chapter 6, I use the new short-trajectory approach to analyze the 

underlying free energy landscape of K-Ras4B and obtained states never discovered 

before and then using Markov State Modelling, I obtain the kinetic insight into the 

system. The new map showcases six distinct (d1, d2) states that cannot be fully 

correlated with activation/inactivation propensities of K-Ras4B WT and mutated 

structures, demonstrating the need of additional reaction coordinates. The basins of 

the new ∆𝐺 map in (d1, d2) coordinates appears to correlate well with experimental 

information available on the structures of crystal structures that are either likely to be 

active (i.e., GTP or GTP-analogue bound) or known as inactive (GDP or GDP-

analogue bound). However, I found that some inactive-like conformation can also 

correspond to small (d1, d2) coordinates (e.g., labeled 8 in Fig. S6.3) while some active-

like cases (e.g., labeled 7 and 9 in Fig. S6.3) correspond to rather large (d1, d2) values. 

To address this issue, I showed that the dihedral angle, 𝜃38, of an acidic interface 

residue, D38, has a rather bimodal distribution in all the six main conformational states 

evidenced in the (d1, d2) coordinates, with conformations corresponding to its two 

peaks correlating well to activity propensity (see data in Fig. S6.3b). This aspect was 

also supported by the docking results that showed that both high scores and small 

RMSD values for the docking interface are obtained by S1 and S2 structures that are 

docked to RAF1. Interestingly, including the 𝜃38 conformations in the analysis showed 

that experimental-like (i.e., small RMSD values from the experimental interface 

structure in 6XI7, in the range of ~2 to ~3 Å) can be obtained for states S1 and S2 if 

the 𝜃38 conformations are also similar to active type conformations (i.e., peak 2, Fig. 
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6.4). These observations highlight a new paradigm in analyzing the effect of K-Ras 

(WT) conformations and its mutant for inferring propensities of activation/inactivation, 

namely that a more complex collective variable such as obtained by monitoring all 

three RCs discussed (d1, d2, and 𝜃38) simultaneously, is necessary. This ability would 

be particularly useful in quantifying the effects of mutations on K-Ras propensities of 

activation/inactivation. By using the (d1, d2, 𝜃38) triad, one can explain the otherwise 

puzzling observation that a rather minor mutation, D33E, can have a rather dramatic 

effect by significantly increasing the K-Ras activation propensities for its S1 and S2 

confirmational states. The unexpected large effect of D33E was also observed in Ref. 

[187]. The MD and docking-based analysis approach presented in chapter 6 can help 

both identify and validate in silico assessment of activation/inactivation propensities 

and shed new light on the underlying molecular mechanisms (i.e., in this case, the 

modulation of the network of salt bridges at the binding interface with the RAF1 

downstream effector). This new and more complex mechanistic reaction coordinates 

provide an explanation as to how K-Ras can use the same binding site to engage with 

multiple effectors forming diverse binding interfaces through modulation of 

intermolecular interactions, such as salt bridges.  

 

The methods developed and presented in this thesis could be extended to even 

larger systems and to more complex problems of biological relevance. When the 

problem involves estimating the thermodynamics and kinetics along transition 

pathways that connect two known metastable states of complex and large system, the 

multi-dimensional Milestoning approach, as introduced, discussed and applied in 

chapters 4 and 5, could be used. If the problem involves sampling the underlying 

dynamics of a very complex system, with no knowledge of the transition end points or 

a corresponding connecting path, then the second approach developed in chapter 6 

could be used. With the new short trajectory-based approach, we were able to obtain 

converged and more detailed energy landscape and kinetics for a relatively large 

cancer-relevant system such as K-Ras4B. 
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Appendix 1- Supplementary material 

for Chapter 5  

 
In this Supplementary Material we provide additional tests of our results. To 

assess the prediction of the Gleevec off rate, we compute the changes in the free 

energy barrier upon mutation. In Figure S5.1, we illustrate the thermodynamic cycle 

that we consider, and in Table S5.1 we report the corresponding results. 

 
 
 

 
  
 

Figure S5.1. Thermodynamic cycle for alchemical free energy calculations. We 

compare the free energy changes of the bound (left) and transition states (right) for 

Gleevec interactions with the wild-type Abl Kinase and Y253F mutant. The mutated 

residue and the ligand (green) are shown using a CPK representation, in color.  
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Table S5.1. Alchemical free energy differences for the transformation from wild-type (WT) to 
Y253F, at bound (∆𝐺1) and transition (∆𝐺2) state conformations.  

 

 
VALUE  

(kcal/mol) 
ERROR 

(kcal/mol) 

∆𝑮𝟏 -1.20 0.09 

∆𝑮𝟐 -1.64 0.07 

 
 
 

All alchemical calculations were implemented in NAMD using a single-dual topology 

approach1. For the wild type to Y253F transformation, 20 windows (window length = 

0.05) were used, 𝜆 = 0 represents the wild type and 𝜆 = 1 represents the fully mutated 

state. In each window, 50,000 steps were used for equilibration and 150,000 steps 

were used for FEP data collection.  The same strategy was used for the backward 

transformation. Thus, the total simulation time for forward and backward 

transformations at the bound state was 8 ns. The BAR estimator was used to obtain 

the final ∆𝑮𝟏 and ∆𝑮𝟐 values. A similar procedure was followed for calculation at the 

transition state.  

 
  



 120 

Testing the iso-committor surface predicted by Milestoning. We initiated unbiased 

trajectories starting from the transitions state ensemble in order to test how many of 

these trajectories made progress towards the reactant versus the product. 10 unbiased 

trajectories, 4ns-long each, were initiated from the TS1.  

 

A  
 

B  
 

    C  
 

Figure S5.2. Initial and final Abl (ribbon) and Gleevec (licorice) structures and relative 

positions for the three inbound (i.e., moving towards the binding pocket)  trajectories. 
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Appendix 2- Supplementary material 

for Chapter 6  

 
 
 
 

 
 

Figure S6.1. Representative structures for the six conformational states of K-Ras4B WT, S1 

to S6, evidenced by the corresponding free energy map of GTP-bound K-Ras4B in the d1-d2 

coordinates (in Å, see Fig. 6.2). Note differences in the relative positions of the switch I and 

switch II regions highlighted with red and blue arrows, respectively (see also Fig. 6.1). The 

sets of (d1, d2) coordinates of the representative structures selected here as centers of the S1 

to S6 regions are (6.07, 6.45), (6.1, 8.58), (8.16, 10.45), (8.66, 8.82), (11.86, 8.57) and (9.01, 

6.52), respectively. 
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Figure S6.2.  Distributions of the distances from switch I to GTP. Shown is the distribution of 

distance between alpha carbon of residues 32-40 and beta phosphate of GTP. Clearly, the d2 

distance (i.e., using the alpha carbon of T35) is the best reaction coordinate as it can 

discriminate more states. 
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(a) (b) 

 
Figure S6.3. (a) Corresponding locations of the d1 and d2 values from experimental crystal 

structures overlapped on the free energy map of GTP-bound K-Ras4B WT (see also Fig. 2a). 

The positions of crystal structures of K-Ras and H-Ras bound to GTP (or GTP analogue), and 

to GDP (or GDP analogue) are highlighted in black and blue, respectively. The corresponding 

PDB codes for these structures are shown in the legend, using superscript K or H to distinguish 

between K-Ras and H-Ras structures, respectively. Wild type structures are marked with *. (b) 

Values of the corresponding d1 and d2 distances (in Å) and of the angle 𝜃38 (the C-Ca-Cb-Cg 

dihedral angle for residue D38, in degrees) for experimental PDB structures. 
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Figure S6.4.  Slowest relaxation time with respect to change in window length. A sliding 

window was used to build the transition probability matrix and slowest relaxation time was 

estimated using the second eigenvalue. For final analysis, window length of 20 ns was used. 

Inset is the error in slowest relaxation time, for 20 ns window, with change in the diameter of 

for-sure-zone.  

 
 
 

 
Figure S6.5.  Distribution of docking scores, using PatchDock,[188] obtained for docking the 

K-Ras4B representative structures S1 and S6 (see Fig. 2) to the CRAF1 (from PDB ID 6XI7). 

Note that PatchDock is appropriate as it successfully at predicts only a few complex structures 

with high scores, including structures of the binding interface that have a small RMSD from the 

experimental interface (PDB ID 6XI7). 
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(a) (b)  
 
 
Table S6.1. Error estimated as standard deviation. Data was split in four equal part and rate 
and population was calculated for each data set and the whole data set. Error reported here is 
the standard deviation of calculated  (a) rate and (b) population values.  

 

 
Table S6.2. Binding-cite residues. (a) RAF1 residues on RBD and CRD provide to the 

docking software PatchDock. (b) K-Ras residues provided to the docking software.  
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