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LEVELS AND SUBLEVELS OF COMPOSITION ALGEBRAS

OVER p-ADIC FUNCTION FIELDS.

JAMES O’SHEA AND JAN VAN GEEL

Abstract. In [O’S], the level and sublevel of composition algebras are stud-

ied, wherein these quantities are determined for those algebras defined over
local fields. In this paper, the level and sublevel of composition algebras, of

dimension 4 and 8 over rational function fields over local non-dyadic fields, are

determined completely in terms of the local ramification data of the algebras.
The proofs are based on the “classification” of quadratic forms over such fields,

as is given in [PS1].

1. Introduction

The level and sublevel of composition algebras over local and global fields can be
determined, cf. [Le, Proposition 3] and [O’S, Proposition 3.15]. Since the level of
a non-dyadic local field is equal to the level of its residue field, cf. [L, Chap. 6,
Corollary 2.6], the level of a composition algebra over an extension of such a field is
less than or equal to 2. In particular, the level of octonion algebras over K(t), where
K is a local field of residue characteristic not 2, is either 1 or 2. In [PS1], Parimala
and Suresh gave a full classification of the octonion algebras over K(t), and indeed
more generally over K(C), where K is a local field of residue characteristic not 2
and C is a smooth projective curve over K. Using this classification, together with
some results in [O’S], we will describe exactly the classes of octonion algebras over
K(t) of level 1 and 2. For the sake of completeness, we also consider the level of
quaternion algebras.

Let F be a field of characteristic different from 2. A unital, not necessarily associa-
tive, F -algebra C is a composition algebra if it carries a non-degenerate quadratic
form q : C → F which allows composition, i.e. q(x)q(y) = q(xy), cf. [J]. An impor-
tant theorem of Hurwitz, cf. [J, p. 425], shows that the dimension of a composition
algebra is necessarily equal to 1, 2, 4 or 8. The composition algebras of dimension 2
are exactly the quadratic étale F -algebras, while those of dimension 4 are precisely
the quaternion algebras, and those of dimension 8 the octonion algebras.

With a composition algebra C over F , one associates different quadratic forms,
respectively the norm form, the trace form and the pure trace form of C. With
respect to a standard basis of C, the norm and trace forms are represented by
diagonal forms of type (cf. [J, p. 426,427])

NC ∼= 〈1〉 ⊥ −TP and TC ∼= 〈1〉 ⊥ TP .

The first author gratefully acknowledges funding from the European RTN network “Algebraic K-
Theory, Linear Algebraic Groups and Related Structures” (HPRN-CT-2002-00287), which made
possible an enjoyable stay at Ghent University.
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2 O’SHEA AND VAN GEEL

The quadratic form TP is called the pure trace form of C. If C is the quaternion

algebra
(
a,b
F

)
(with F -basis {1, i, j, ij}, where i2 = a and j2 = b), we have that

NC ∼= 〈1,−a,−b, ab〉 and TC ∼= 〈1, a, b,−ab〉.

Alternatively, if C is the octonion algebra
(
a,b,c
F

)
(with F -basis {1, i, j, ij, e, ie,

je, (ij)e}, where i2 = a, j2 = b and e2 = c), we have that

NC ∼= 〈1,−a,−b, ab,−c, ac, bc,−abc〉 and TC ∼= 〈1, a, b,−ab, c,−ac,−bc, abc〉.
A composition algebra that is not division is said to be split. A composition algebra
is division if and only if its norm form is hyperbolic. Two composition algebras are
isomorphic if and only if their norm forms are isometric, cf. [J, 7.6, Exercises 2, 3].

Definition 1.1. Let A be any F -algebra. The level of A, denoted s(A), is the least
integer n such that −1 is a sum of n squares in A. If no such integer exists, we say
that s(A) =∞.

The sublevel of A, denoted s(A), is the least positive integer n such that 0 is a sum
of n+ 1 squares in A. If no such integer exists, we say that s(A) =∞.

It readily follows from these definitions that s(A) ≤ s(A). In [O’S], the first author
studied the level and sublevel of composition algebras. We recall the following:

Proposition 1.2. Let C be a composition algebra over F .

(a) If −1 ∈ F ∗2, then s(C) = s(C) = 1.

(b) If −1 6∈ F ∗2, then s(C) = 1 if and only if TC is isotropic.

(c) If −1 6∈ F ∗2, then s(C) = 1 if and only if TC or 2× TP is isotropic.

Proof. (a) is trivial; (b) and (c) follow from [O’S, Proposition 3.12] and [O’S, The-
orem 3.5].

2. Exact sequences from Galois cohomology.

We recall some of the basic facts from the theory of quadratic forms. We refer to
the standard books, [L] and [S], for further details and proofs.

As above, F is a field of characteristic not equal to 2. Two quadratic forms over
F that become isometric after the addition of a number of hyperbolic planes are
Witt equivalent. The Witt equivalence classes of quadratic forms form a ring, called
the Witt ring of F and denoted W (F ). The addition is given by the orthogonal
sum and the multiplication by the Kronecker product of the matrices representing
the forms. The classes of forms of even dimension constitute the fundamental ideal
I(F ) in W (F ). The ideal I(F ) is generated by the forms 〈1, α〉, α ∈ F ∗. These
forms 〈1, α〉 are called 1-fold Pfister forms. The higher powers of the fundamental
ideal, In(F ), are additively generated by the n-fold Pfister forms,

〈〈α1, . . . , αn〉〉 := 〈1, α1〉 ⊗ · · · ⊗ 〈1, αn〉.
Pfister forms have very special properties. They are isotropic if and only if they
are hyperbolic. Moreover, a Pfister form π is a multiplicative form, i.e. DF (π) =
{α ∈ F ∗ | there exists x with π(x) = α} is a multiplicative subgroup of F ∗.
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Every Pfister form π is of type 〈1〉 ⊥ π′, where (the isometry class of) the quadratic
form π′ is known as the pure subform of π. We will invoke the following well-known
fact concerning Pfister forms (cf. [S, Chap. 4, Theorem 1.4]):

Lemma 2.1. Let π be an anisotropic n-fold Pfister form over F , and let π′ be its
pure subform. Then β ∈ DF (π′) if and only if π ∼= 〈〈β, β2, . . . , βn〉〉 for suitable
βi ∈ F ∗.

Corollary 2.2. Let F be a field, −1 6∈ F ∗2. Let C be a quaternion algebra, re-

spectively an octonion algebra, over F . Then s(C) = 1 if and only if C ∼=
(
−1,b
F

)
,

respectively C ∼=
(
−1,b,c
F

)
.

Proof. Since i2 = −1 for C ∼=
(
−1,b
F

)
or
(
−1,b,c
F

)
, we only have to prove the

converse.

Since −1 /∈ F ∗2, Proposition 1.2 implies that −1 ∈ DF (TP ), so 1 ∈ DF (−TP ). If C
is a quaternion algebra, respectively an octonion algebra, the above lemma yields
that the norm form is 〈1, 1,−b,−b〉, respectively 〈1, 1,−b,−b,−c,−c, bc, bc〉, for
some b, c ∈ F ∗. Since composition algebras are, up to isometry, determined by their

norm forms, it follows that C is isomorphic to
(
−1,b
F

)
, respectively

(
−1,b,c
F

)
.

Let K denote a non-dyadic local field. We will invoke the following exact sequences,
which essentially yield a classification of the 2- and 3-fold Pfister forms over the
rational function field K(t).

0→ I2(K)→ I2(K(t))/I3(K(t))
∏
∂2,x→

∏
x∈P1

K

κ(x)∗/κ(x)∗2
∏
Nκ(x)/κ→ K∗/K∗2 → 1

(ES1)
and

0→ I3(K(t))
⊕∂2,x→ ⊕x∈P1

K
I2(κ(x))

∑
→ I2(K)→ 0 (ES2)

where x runs over the closed points of P1
K , and κ(x) is the residue field of the

discrete valuation vx associated to x. The map ∂2,x sends a quadratic form over
K(t) to its second residue form over κ(x).

Both exact sequences are obtained from Galois cohomology. They are special cases
of the sequence

0→ Hi(K,Z/2Z)→ Hi(K(t),Z/2Z)→
⊕
x∈P1

K

Hi−1(κ(x),Z/2Z)

. . .→ Hi−1(K,Z/2Z)→ 0,

cf. [Se, page 122].

In formulating the exact sequences (ES1) and (ES2), we made use of the isomor-
phism Ii(K(t))/Ii+1(K(t)) ∼= Hi(K(t),Z/2Z). For i = 1, this identification follows
from Kummer theory. A well-known theorem of Merkurjev gives the isomorphism
in the case where i = 2, with Rost establishing the cases where i = 3 and 4. (For
all i, the isomorphism corresponds to the Milnor conjecture, as established by Vo-
evodsky.) These important results also yield, in light of the Arason-Pfister main
theorem, that I3(K) = 0 and I4(K(t)) = 0. In (ES1), we additionally identified
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I(K(t))/I2(K(t)) with κ(x)∗/κ(x)∗2. In (ES2), identifying the group of order 2,
I2(κ(x)), with Z/2Z, allows one to define the map

∑
as addition in Z/2Z.

The exact sequence (ES1) also describes the 2-torsion part of the Brauer group
of K(t) since H2(F,Z/2Z) ∼= 2Br(F ), with the isomorphism given by the map

(a, b) 7→
(
a,b
F

)
, between the generators of both groups. (This fact is a reformulation

of the aforementioned theorem of Merkurjev.) After this identification, the sequence
becomes

0→ 2Br(K)→ 2Br(K(t))
∏
∂x→
∏
x∈P1

K

κ(x)∗/κ(x)∗2
∏
Nκ(x)/κ→ K∗/K∗2 → 1. (ES3)

The morphisms ∂x now correspond to the ramification maps in the points x, which
are defined on the generators by

∂x

(
f, g

K(t)

)
= (−1)v(f)v(g)

(
fv(g)

gv(f)

)
mod κ(x)∗2,

with v the normalized discrete valuation onK(t) corresponding to the point x ∈ P1
K .

It follows from a theorem of Saltman, cf. [PS1, Corollary 2.2], that all the elements
of 2Br(K(t)) are of index ≤ 4, so the division algebras of exponent 2 over K(t) are
quaternion or biquaternion algebras.

3. The level of composition algebras over K(t), where K is a local
non-dyadic field.

Throughout this section, we let K denote a non-dyadic local field, i.e. a finite
extension of a p-adic field, with residue field Fq, or a Laurent series field over Fq,
where q = ps and p 6= 2. The uniformizing element, for the non-dyadic valuation
on K, is denoted by π. We recall that if ε is a non-square unit in the valuation
ring, then {1, π, ε, επ} represent all square classes in K. As a consequence, the

quaternion division algebra
(
π,ε
K(t)

)
is the unique non-trivial element in 2Br(K).

We will proceed to give explicit results on the level and sublevel of composition
algebras C over K(t). As was mentioned previously, both the level and sublevel of
these algebras are less than or equal to 2. Also, in the case of commutative compo-
sition algebras, i.e. the one and two dimensional algebras, the level and sublevel are
equal. If C = K(t), then s(C) = s(K) = s(Fq), so the level is equal to 1 if and only
q ≡ 1 mod 4. For C a quadratic extension of K(t), the same holds true excepting
the case where C = K(

√
−1)(t), which is clearly always of level 1.

So we only have to consider the cases of quaternion and octonion algebras over
K(t). We start with the latter.

Theorem 3.1. Let K be a local non-dyadic field such that −1 6∈ K∗2.

(a) The sublevel of an octonion algebra O over K(t) is equal to 1.

(b) The level of an octonion algebra O over K(t) is equal to 2 if and only if there
is an x ∈ P1

K such that K(
√
−1) ⊂ κ(x) and ∂2,x(NO) 6= 0.
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Proof. (a) The quadratic form 2 × NO is a 4-fold Pfister form over K(t). Since
I4(K(t)) = 0, 2 × NO is hyperbolic. The 14-dimensional subform −2 × TP is
therefore isotropic, whereby s(O) = 1 by proposition 1.2 (c).

(b) Assume firstly that for some x ∈ P1
K , K(

√
−1) ⊂ κ(x) and ∂2,x(NO) 6= 0 ∈

Z/2Z. This means that ∂2,x(〈1〉 ⊥ −TP ) is a non-trivial element in I2(κ(x)). Thus,
we have that

∂2,x(〈1〉 ⊥ −TP ) ∼=κ(x) 〈1,−εx,−πx, εxπx〉,
where εx is a non-square unit and πx is a uniformizing element in κ(x).

We consider the form

NO ⊗K(t) K(
√
−1)(t) ∼= (〈1〉 ⊥ −TP )⊗K(t) K(

√
−1)(t).

Since K(
√
−1) ⊂ κ(x), x is not equal to the point at infinity in P1

K , so it corresponds
to an irreducible polynomial p(t) ∈ K[t]. This irreducible polynomial p(t) factorises
over K(

√
−1) into two polynomials, p1(t) and p2(t), each of degree [κ(x) : K(

√
−1)].

So there are two closed points y1, y2 ∈ P1
K(
√
−1) above x. For both points, we have

that

∂2,yi((〈1〉 ⊥ −TP )⊗K(t) K(
√
−1)(t)) = 〈1,−εx,−π, εxπ〉 ⊗κ(x) κ(yi)

is anisotropic over κ(yi), since κ(yi) = κ(x) for i = 1, 2. It follows from the
injectivity of ⊕∂2,x in the exact sequence (ES2) (over the field K(

√
−1)(t)) that

(〈1〉 ⊥ −TP ) ⊗ K(
√
−1)(t) ∼= (〈1〉 ⊥ TP ) ⊗ K(

√
−1)(t) is anisotropic. Hence

TO ∼= 〈1〉 ⊥ TP is anisotropic over K(t), implying that s(O) 6= 1 by Proposition 1.2
(b), whereby s(O) = 2.

Assume now that for all closed points x ∈ P1
K such that ∂2,x(NO) 6= 0, one has that

K(
√
−1) 6⊂ κ(x). We have to show that s(O) = 1.

Let S = {x ∈ P1
K | ∂2,x(NO) 6= 0}. Then, since −1 is not a square in κ(x), for all

x ∈ S,

∂2,x(〈1〉 ⊥ −TP ) ∼=κ(x) 〈1, 1,−πx,−πx〉,
where πx is a uniformizing element in κ(x).

Again, we consider the form

(〈1〉 ⊥ −TP )⊗K(t) K(
√
−1)(t).

We have the following exact diagram

0→ I3(K(t)) → ⊕x∈P1
K
I2(κ(x))

∑
→ I2(K) → 0

↓ ↓ ↓
0→ I3(K(

√
−1)(t)) → ⊕y∈P1

K(
√
−1)(t)

I2(κ(y))
∑
→ I2(K(

√
−1)) → 0,

where the second vertical arrow is defined by ϕ 7→ ⊕y lying over xϕ ⊗κ(x) κ(y). For

all y ∈ P1
K(
√
−1) lying over a point x 6∈ S, ∂2,y(〈1〉 ⊥ −TP ⊗K(t) K(

√
−1)(t)) = 0,

since ∂2,x(〈1〉 ⊥ −TP ) = 0. For all y ∈ P1
K(
√
−1) lying over a point x ∈ S, we have

that

∂2,y(〈1〉 ⊥ −TP ⊗K(t) K(
√
−1)(t)) = 〈1, 1,−πx,−πx〉 ⊗κ(x) κ(y) = 0,

since
√
−1 ∈ κ(y). So ∂2,y(〈1〉 ⊥ −TP ⊗K(t) K(

√
−1)(t)) is trivial for all y ∈

P1
K(
√
−1). The injectivity of ⊕∂2,y in the second line of the exact diagram implies
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that (〈1〉 ⊥ −TP )⊗K(t)K(
√
−1)(t) is hyperbolic over K(

√
−1)(t). Hence, we obtain

that 1 ∈ DK(t)(−TP ) (cf. [S, Chap. 2, Theorem 5.2]). Lemma 2.1 thus implies

that O ∼=
(
−1,b,c
F

)
, and consequently that s(O) = 1.

Examples 3.2. Theorem 3.9 in [PS1] states that for K a non-dyadic local field,
the elements of I3(K(t)) are in one-to-one correspondence with the 3-fold Pfister
forms. Hence, the elements of I3(K(t)) are in one-to-one correspondence with the
isomorphism classes of octonion algebras over K(t). Therefore Theorem 3.1 implies
the existence of octonion algebras over K(t) of level 1, and of level 2. Moreover,
the theorem can be used to obtain families of examples for both cases.

Let S be a set containing an even number of closed points, xi ∈ P1
K , i = 1, . . . 2n,

such that κ(xi) is an unramified extension of odd degree over K (for example, we
can take S to be any set of an even number of K-rational points in P1

K). The
following algebras O are octonion division algebras of level 1:

O =


(
−1,

∏2n
i=1 pi,π

K(t)

)
if ∞ 6∈ S,(

−1,
∏2n
i=2 pi,π

K(t)

)
if x1 =∞ ∈ S,

where pi is the irreducible polynomial corresponding the point xi, if xi 6= ∞. For
both definitions of O , ∂2,xi(NO) = 〈1, 1, π, π〉 ⊗K κ(xi) is an anisotropic form over
κ(xi) for all i, since the hypotheses on the xi yield that −1 is not a square in κ(xi)
and that π is a uniformizing element in κ(xi). For all the other points, x ∈ P1

K ,
∂2,x(NO) = 0.

To obtain examples of octonion division algebras of level 2, let x be a closed point
in P1

K such that κ(x) is an unramified extension of K containing K(
√
−1). Let

px(t) be the irreducible polynomial associated to x. Choose x so that a root γx of
px(t) is a non-square unit in the discrete valuation ring of κ(x). Then Theorem 3.1
implies that the algebra

O =

(
π, px, t

K(t)

)
is an octonion division algebra of level 2, since the hypotheses on x imply that
∂2,x(NO) = 〈1,−π,−γx, πγx〉 is an anisotropic quadratic form over κ(x). We note
that there are infinitely many x ∈ P1

K satisfying the above hypotheses, since there
are infinitely many unramified extensions of K containing K(

√
−1).

For example, px = (t2 − 2t + 2) ∈ Q3(t) corresponds to a point of degree 2 in P1
Q3

with residue field Q3(i+ 1) = Q3(i), where i2 = −1. The root i+ 1 of px is a unit
for the 3-adic valuation on Q3(i), but it is non-square, since i+ 1 is not a square
in F9 = F3(i). By the above observations, the algebra(

3, t2 − 2t+ 2, t

Q3(t)

)
is an octonion division algebra of level 2.

We now consider the case of quaternion algebras. If we identify I2(F )/I3(F ) as
the two component of the Brauer group, via Merkurjev’s theorem, then (ES3)
shows that every quaternion division algebra H over K(t) is “almost” defined by
local data, namely by its ramification data, i.e. the non-trivial residues ∂x(H).
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Theorem 3.4 shows how the level and the sublevel of a quaternion algebra H depend
on this local data.

Definition 3.3. Let H be a quaternion algebra over K(t). The ramification data
of H is the set RH = {αx ∈ κ(x)∗/κ(x)∗2 | αx = ∂x(H) 6≡ 1 mod κ(x)∗2}. The
ramification locus of H is the set SH = {x ∈ P1

K | αx ∈ RH}. The exact sequence
(ES3) tells us that SH is a finite set. (We will also use the term “ramification data”
to refer to the couple (SH , RH).)

In addition, we will employ the following subset of the ramification locus, S−1H =
{x ∈ SH | −1 6∈ κ(x)∗2}.

Theorem 3.4. Let K be a non-dyadic local field such that −1 6∈ K∗2.

(a) The level of a quaternion algebra H over K(t), with ramification data RH , is
equal to 2 if and only if there is an x ∈ SH such that αx 6≡ −1 mod κ(x)∗2.

(b) The sublevel of a quaternion algebra H over K(t) is equal to 2 if and only if
there is an x ∈ S−1H such that αx 6≡ −1 mod κ(x)∗2.

Proof. (a) In light of Corollary 2.2, we have to show that K(t)(
√
−1) is not a

splitting field for H if and only if there is a point x ∈ SH with αx 6≡ −1 mod κ(x)∗2.

Let x ∈ SH with αx 6≡ −1 mod κ(x)∗2. Consider the exact sequence (ES3) after
extending from K to K(

√
−1). We claim that for every point y in P1

K(
√
−1) lying

over x, we have

∂y(H ⊗K(t) K(t)(
√
−1)) = αx 6≡ 1 ∈ κ(y)∗/κ(y)∗2.

If this is true, H is not split over K(t)(
√
−1), proving the “if” part of the statement.

Proof of the claim. If
√
−1 ∈ κ(x), the claim holds since there are two points

y1, y2 over x with residue fields κ(y1), κ(y2) equal to κ(x). If
√
−1 6∈ κ(x), then, by

assumption, the square class of αx, being non-trivial and not equal to that of −1, is
not a unit in κ(x), and hence must be the class of a uniformising element πx ∈ κ(x).
For y ∈ P1

K(
√
−1) lying over x we have κ(y) = κ(x)(

√
−1). Since κ(x)(

√
−1) is an

unramified quadratic extension of κ(x) (the residue fields being non-dyadic fields),
it follows that πx is not a square in κ(x)(

√
−1) either.

We now assume that for all x ∈ SH , αx ≡ −1 mod κ(x)∗2. The element ∂y(H⊗K(t)

K(t)(
√
−1)) can only be non-trivial for points y ∈ P1

K(
√
−1) lying above a point

x ∈ SH . Since −1 6∈ κ(x)∗2 by assumption, it follows that for all points x ∈ SH ,
there is one point y lying over x, with residue field κ(y) = κ(x)(

√
−1). But for such

y, ∂y(H) ≡ αx ≡ −1 mod κ∗2y ≡ 1 mod κ∗2y , implying that ∂y(H ⊗K(t) K(t)(
√
−1))

is trivial for all y ∈ P1
K(
√
−1). The exact sequence (ES2) (viewed over K(

√
−1))

implies that

(1) H ⊗K(t) K(t)(
√
−1) ∼= M2(K(t)(

√
−1))

or (2) H ⊗K(t) K(t)(
√
−1) ∼=

(
π,α

K(
√
−1)

)
⊗K(

√
−1) K(

√
−1)(t),

where
(

π,α
K(
√
−1)

)
is the unique quaternion division algebra over K(

√
−1). If (1)

holds, it follows that K(t)(
√
−1) is a splitting field of H, whereby s(H) = 1, proving

part (a). We will show that the other alternative, (2), leads to a contradiction.
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By local class field theory (cf. [N, Chap. 5, Corollary 1.2]), we may choose α such
that NK(

√
−1)/K(α) = −1. It follows, by a well-known formula (cf. [T, (3.2)]), that

the corestriction of H⊗K(t)K(t)(
√
−1) is equal to

(
π,−1
K(t)

)
. However,

(
π,−1
K(t)

)
is non-

trivial in the Brauer group of K(t), whereas the corestriction of H⊗K(t)K(t)(
√
−1)

is trivial, since the composition, cor◦ res, is the zero map. This completes the proof
of (a).

(b) While the following argument is similar in nature to that employed in (a), it is
more efficient to invoke the exact sequence (ES1) in this case.

Firstly, assume that for all x ∈ S−1H , αx ≡ −1 mod κ(x)∗2. For all x ∈ SH , consider

the second residue form ∂2,x(2 × NH) = 2 × ∂2,x(NH) ∈ I(κ(x)). If x ∈ S−1H ,
then, by hypothesis, we have that 2 × ∂2,x(NH) ∼ 2 × 〈1, 1〉 ∼ 0 in W (κ(x)). If

x ∈ SH \ S−1H , then 2 × ∂2,x(NH) ∼ 0, since it contains the subform 〈1, 1〉. As all
the second residue forms of 2 × NH are trivial, the exact sequence (ES1) implies
that the 3-fold Pfister form 2 × NH is hyperbolic. Thus 2 × TP is isotropic, since
2 × (−TP ) is a subform of 2 × NH , with dim 2 × (−TP ) > 1

2 dim 2 × NH . Hence,
s(H) = 1 by Proposition 1.2 (c).

To prove the converse, we assume that there is an x ∈ S−1H such that αx 6≡ −1 mod

κ(x)∗2. We have to show that s(H) must be 2. The existence of x ∈ S−1H implies
that the second residue form ∂2,x(2 ×NH) is Witt equivalent to the 2-fold Pfister

form 〈1, 1, uπx, uπx〉, for some unit u ∈ κ(x). Since
√
−1 6∈ κ(x)∗, it follows that

this form is the unique anisotropic 2-fold Pfister form over κ(x). So 2 × NH has
a non-trivial second residue form, and therefore cannot be hyperbolic. Arguing as
above, we see that 2×TP is anisotropic. Moreover, part (a) of the theorem implies
that TH is also anisotropic. Invoking Proposition 1.2, we obtain that s(H) = 2.
This proves part (b) of the theorem.

Corollary 3.5. Let K be a non-dyadic local field such that −1 6∈ K∗2.

(a) There exist quaternion division algebras H over K(t) with s(H) = 1 (whereby
s(H) = 1).

(b) There exist quaternion division algebras H over K(t) with s(H) = 2 and s(H) =
1.

(c) There exist quaternion division algebras H over K(t) with s(H) = 2 (whereby
s(H) = 2).

Proof. (a) Any quaternion algebra of the form
(
−1,p(t)
K(t)

)
, where p(t) is an irreducible

polynomial such that −1 6≡ 1 mod (K[t]/(p(t)))∗2, is a quaternion division algebra
of level 1, and therefore also of sublevel 1.

(b) Let L/K be any finite unramified extension of K containing
√
−1. Then, for

some irreducible polynomial q(t), L ∼= K[t]/(q(t)), and −1 ≡ 1 mod (q(t)). Let x

be the closed point in P1
K associated to q(t). The quaternion algebra H =

(
π,q(t)
K(t)

)
,

is a quaternion division algebra since ∂x(H) = π 6≡ 1 mod κ(x)∗2. As q(t) is of even
degree, it follows that SH = {x}. Theorem 3.4 thus implies that s(H) = 2 and
s(H) = 1.
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(c) We first note that it is possible to construct finite sets S ⊂ P1
K and R =

{αy ∈ κ(y)∗/κ(y)∗2 | y ∈ S, αy 6≡ 1 mod κ(y)∗2} such that for some x ∈ S, −1 6∈
κ(x)∗2 and αx 6≡ −1 mod κ(x)∗2. In addition, we may assume that such S and R
correspond to the ramification data of some element in 2Br(K(t)), in accordance
with the exact sequence (ES3). If this element in the Brauer group is the class of
a quaternion division algebra, Theorem 3.4(b) implies that it must be a quaternion
division algebra of sublevel 2, as desired.

Now assume that the element in the Brauer group is not the class of a quater-
nion division algebra over K(t). Hence, it is the class of a biquaternion division
algebra over K(t), say H1 ⊗K H2, where H1 and H2 are both quaternion division
algebras. Let y ∈ S. Since ∂y(H1) · ∂x(H2) = ∂x(H1 ⊗K H2) 6≡ 1 mod κ(x)∗2, it
follows that either ∂x(H1) 6≡ −1 mod κ(x)∗2 or ∂x(H2) 6≡ −1 mod κ(x)∗2. Thus,
Theorem 3.4(b) implies that s(H1) = 2 or s(H2) = 2.

Remark 3.6. Actually, it is possible to describe all quaternion division algebras
over K(t) of level 1 explicitly. From Theorem 3.4(a), it follows that there is a
correspondence between quaternion division algebras over K(t) of level 1 and ram-
ification data (S,R) such that for all x ∈ S, −1 /∈ κ(x)∗2 and for all αx ∈ R,
αx ≡ −1 mod κ(x)∗2. The exact sequence (ES3) implies that for such data (S,R),∑
x∈S deg x ∈ 2Z holds, because 1 ≡

∏
x∈S Nκ(x)/K(−1) ≡ (−1)

∑
x∈S deg x mod

K∗2.

The exact sequence (ES3) also implies that for every couple (S,R) with these
properties, there are up to isomorphism two different division algebras of exponent
2 having (S,R) as ramification data. This is the case since 2Br(K) is a group of
order 2.

These division algebras can be explicitly described, and it turns out that they are
both quaternion algebras. Let S ⊂ P1

K be such that for all x ∈ S, −1 6∈ κ(x)∗2,
and such that

∑
x∈S deg x ∈ 2Z. Let Sf := S \ {∞} be the set of finite points in

S. Let px(t) be the monic irreducible polynomials corresponding to x ∈ Sf . Then,
it is easy to check that the quaternion division algebras(

−1,
∏
x∈S p(x)

K(t)

)
and

(
−1,π

∏
x∈S p(x)

K(t)

)
in the case where ∞ 6∈ S,

(
−1,−

∏
x∈Sf

p(x)

K(t)

)
and

(
−1,−π

∏
x∈Sf

p(x))

K(t)

)
in the case where ∞ ∈ S,

have ramification locus S and, for all x ∈ S, the residue αx ≡ −1 mod κ(x)∗2.
Hence these algebras represent all quaternion division algebras of level 1.

It is not possible to similarly offer an exhaustive list of all the quaternion division
algebras over K(t) of level 2. This is the case since the ramification data, of the
type given in Theorem 3.4(a), define division algebras in 2Br(K), which need not
to be quaternion algebras, but can instead be biquaternion algebras. (In [KRTY],
the relation between the ramification data and the index of division algebras over
rational function fields is investigated. There are some partial results in that paper,
but a criterion for the index to be equal to 2, in terms of the ramification data, is
not available, as is also the case when K is a local field.)

Still, it is possible, using Theorem 3.4, to list some families of quaternion division
algebras over K(t) of level 2.
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Let x ∈ P1
K be such that κ(x)/K is an extension with odd ramification index. If x

is a finite point and p(t) the corresponding monic irreducible polynomial in K[t],
then for every f(t) ∈ K[t], with gcd(p(t), f(t)) = 1,(

π, p(t)f(t)

K(t)

)
is a quaternion division algebra of level 2.

If x =∞, then for f(t) a polynomial of odd degree in K[t],(
π, f(t)

K(t)

)
is also a quaternion division algebra of level 2. Both cases follow from Theorem 3.4,
since the residue map in x applied to such algebras equals π 6≡ −1 mod κ(x)∗2.
Moreover, if we take x such that −1 6∈ κ(x)∗2, then the sublevel of these algebras
also equals 2. On the other hand, it follows from the proof of Corollary 3.5(b) that

Theorem 3.4 also implies that the algebra
(
π,t2+1
K(t)

)
is a quaternion division algebra

of level 2 and sublevel 1. The latter can be seen directly by taking α = ti and

β = i+ k ∈
(
π,t2+1
K(t)

)
, whereby

α2 + β2 = πt2 + π − π(t2 + 1) = 0.

Although our prime interest in this paper was the level and sublevel of composition
algebras, the results we obtained do raise the question as to what can be said about
the level and sublevel of biquaternion division algebras over K(t). For the sublevel,
the fact that all quadratic forms over K(t) of dimension > 8 are isotropic (cf. [PS2])
immediately yields

Proposition 3.7. The sublevel of a biquaternion algebra over K(t) is equal to 1.

Proof. Consider the biquaternion algebra D =
(
a1,b1
K(t)

)
⊗K(t)

(
a2,b2
K(t)

)
, with standard

basis {x ⊗ y | x ∈ {1, i1, j1, k1}, y ∈ {1, i2, j2, k2}}. Consider the subset P of D
consisting of elements of the form

α1(i1 ⊗ 1) + α2(j1 ⊗ 1) + α3(k1 ⊗ i2) + α4(k1 ⊗ j2) + α5(k1 ⊗ k2),

α1, . . . , α5 ∈ K(t). For p ∈ P ,

p2 = (a1α
2
1 + b1α

2
2 − a1b1a2α2

3 − a1b1b2α2
4 + a1b1a2b2α

2
5)(1⊗ 1).

Since 2 × 〈a1, b1,−a1b1a2,−a1b1b2, a1b1a2b2〉 is of dimension > 8, the form is
isotropic over K(t), (cf. [PS2, Theorem 4.6]). Hence there exist p1 and p2 ∈ P
such that p1

2 + p2
2 = 0.

Examples 3.8. Let K be a local non-dyadic field such that −1 6∈ K∗2. Let a, b ∈ K
such that a+ b

√
−1 is a non-square unit in K(

√
−1).

Proposition 3.5 in [KRTY] states that the biquaternion algebra

A =

(
π, t2 + 2

K(t)

)
⊗K(t)

(
a+ bt, t2 + 1

K(t)

)
is of index 4 over the quadratic extension K(

√
−1). It follows that K(

√
−1) is not

isomorphic to a subfield of A, and hence that s(A) 6= 1, whereby we may conclude
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that s(A) = 2. Clearly, the level of both factors must also equal 2, as can be verified
via Theorem 3.4.

In general it is not the case that a biquaternion division algebra H1 ⊗K(t) H2 over
K(t), with s(H1) = 2 and s(H2) = 2, has level 2. For example, consider

B =

(
t− π,−π
K(t)

)
⊗K(t)

(
(t+ 1)(t− π), π

K(t)

)
.

Invoking Theorem 3.4, we see that both factors have level 2, since they have residue
−π, respectively π, in the point t = π. But B is a biquaternion division algebra
over K(t) of level 1, (cf. [KRTY, Lemma 3.10]), since considering classes in the
Brauer group we have

[B] = [
(
t−π,−π
K(t)

)
⊗K(t)

(
π,(t−π)
K(t)

)
⊗K(t)

(
π,t−π
K(t)

)
⊗K(t)

(
(t+1)(t−π),π

K(t)

)
]

= [
(
t−π,−1
K(t)

)
⊗K(t)

(
π,t+1
K(t)

)
].
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