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Abstract
The autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in
reciprocal social interaction and communication, and the presence of restricted and repetitive
behaviors1. Individuals with an ASD vary greatly in cognitive development, which can range from
above average to intellectual disability (ID)2. While ASDs are known to be highly heritable
(~90%)3, the underlying genetic determinants are still largely unknown. Here, we analyzed the
genome-wide characteristics of rare (<1% frequency) copy number variation (CNV) in ASD using
dense genotyping arrays. When comparing 996 ASD individuals of European ancestry to 1,287
matched controls, cases were found to carry a higher global burden of rare, genic CNVs (1.19 fold,
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P= 0.012), especially so for loci previously implicated in either ASD and/or intellectual disability
(1.69 fold, P= 3.4×10−4). Among the CNVs, there were numerous de novo and inherited events,
sometimes in combination in a given family, implicating many novel ASD genes like SHANK2,
SYNGAP1, DLGAP2 and the X-linked DDX53-PTCHD1 locus. We also discovered an enrichment
of CNVs disrupting functional gene-sets involved in cellular proliferation, projection and motility,
and GTPase/Ras signaling. Our results reveal many new genetic and functional targets in ASD
that may lead to final connected pathways.

Twin and family studies indicate a predominantly genetic basis for ASD susceptibility and
provide support for considering these disorders as a clinical spectrum. Some 5–15% of
individuals with an ASD have an identifiable genetic aetiology corresponding to known rare
single-gene disorders (e.g., fragile X syndrome) and chromosomal rearrangements (e.g.,
maternal duplication of 15q11-q13). Rare mutations have been identified in synaptic genes,
including NLGN3, NLGN4X4 and SHANK35, and microarray studies have revealed copy
number variation (CNV) as risk factors6. CNV examples include de novo events observed in
5–10% of ASD cases7–9, de novo or inherited hemizygous deletions and duplications of
16p11.29–11 and NRXN17, and exceptionally rare homozygous deletions in consanguineous
families12. Genome-wide association studies using single nucleotide polymorphisms (SNPs)
have highlighted two potential ASD risk loci at 5p14.113 and 5p15.214, but these data
suggest common variation will account for only a small proportion of the heritability in
ASD.

To further delineate the contribution of rare genomic variants to autism we genotyped 1,275
ASD cases and their parents using the Illumina Infinium 1M-single SNP-microarray (Fig.
1). A set of 1,981 controls used for comparison studies was genotyped on the same
platform15 and both data sets were subjected to the same quality control (QC) procedures.
Ultimately, we analyzed 996 ASD cases (876 trios) and 1,287 controls of European ancestry
(EA) to minimize confounds due to population differences (Supplementary Fig. 1–2 and
Supplementary Table 1)16.

Two CNV prediction algorithms (QuantiSNP17 and iPattern (unpublished)) and additional
extensive QC were used to establish a stringent dataset of non-redundant CNVs called by
both algorithms in an individual (Fig. 1, Supplementary Tables 1–3 and Supplementary Fig.
3). This stringent dataset of 5,478 rare CNVs in 996 cases and 1,287 controls of EA
(Supplementary Table 4) had the following characteristics: (i) CNV present at <1%
frequency in the total sample (cases and controls), (ii)≥CNV 30 kb in size (because >95% of
these could be confirmed) and (iii) all CNVs further verified using combined evidence from
the PennCNV algorithm18 and child-parent intensity fold-changes, genotype proportions (to
verify deletions) and visual inspection (for chromosome-X).

We assessed the impact of rare CNV in cases compared to controls using three primary
measures of CNV burden: the number of CNVs per individual, the estimated CNV size, and
the number of genes affected by CNVs (Table 1). No significant difference was found in the
former two measures (Supplementary Tables 4a and 5), even after controlling for fine-level
ancestry differences by pair-matching cases and controls (Supplementary Information)16. In
contrast, we discovered a significant increase in the number of genes intersected by rare
CNV in cases when focusing on gene-containing segments (1.19-fold increase, empirical P=
0.012). This ASD association with genic CNV was stronger for deletions (1.26-fold
increase, empirical P= 8.0×10−3). These differences remained after we further controlled for
potential case-control differences that could be present due to biological differences or
technical biases. Restricting our analysis to autosomal CNVs (ie. after removing CNVs
located on chromosome X) resulted in a consistent enriched gene count in ASD cases
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compared to controls. Single-occurrence CNV deletions had increased rates in ASD over
controls, suggesting some could be pathogenic.

We then examined parent-child transmission and confirmed that 5.7% (50/876) of ASD
cases had at least one de novo CNV with >0.6% carrying two or more de novo events
(Supplementary Tables 4a, 6 and 7). The de novo CNV rate in our simplex and multiplex
families was 5.6% (22/393) and 5.5% (19/348), respectively, in contrast with previous
studies showing a higher rate in simplex families8,9. A total of 226 validated de novo (7) and
inherited (219) CNVs not observed in controls and affecting single genes were found
(Supplementary Table 8).

Numerous novel candidate ASD loci such as SHANK2, SYNGAP1, and DLGAP2, were
identified based on the observation that de novo CNV affects these genes in cases and not
controls (Supplementary Table 6). The relatedness of SHANK2 to the causal ASD gene
SHANK35, involvement of SYNGAP1 in ID19, and interaction of DLGAP family proteins
with SHANK proteins20 further support their role in ASDs. Maternally-inherited X-linked
deletions at DDX53/PTCHD1 (7 cases) implicated this locus in ASD. We tested an
additional 3,677 EA controls (Fig. 1) and again found no CNV at these genes, and DDX53/
PTCHD1 emerged as a significant ASD risk factor (P= 3.1×10−3 with the initial 1,287
controls; P= 3.6×10−6 with combined controls; Supplementary Fig. 4).

Association studies of individual rare CNV often have insufficient power to discriminate
benign from disease-causing variants. Here, we assessed whether genes and CNVs
previously associated with ASD and/or ID were enriched in cases compared with controls,
in order to help identify pathogenic events. We defined three gene-lists based on evidence
from previous studies of their involvement in ASDs (Supplementary Table 9): (i) ‘ASD
implicated’ list consisting of 36 disease genes and 10 loci strongly implicated in ASD and
identified in subjects with ASD or ASD and ID; (ii) ‘ID’ consisting of 110 disease genes and
17 loci implicated in ID but not yet in ASD; and, (iii) ‘ASD candidates’ including 103 genes
from previous studies of common and rare variants.

We observed a higher proportion of cases with rare CNVs overlapping ‘ASD implicated’
disease genes compared to controls (4.3% versus 2.3%, Fisher exact test P= 5.4×10−3; Fig.
2a), corresponding to a significant enrichment for genes in this set (OR= 1.8; 95% CI 1.3–
2.6, empirical P= 2.6×10−3; Fig. 2b, see also Supplementary Information). This effect was
stronger for duplications, which may also disrupt genes (OR= 2.3; 95% CI 1.4–3.8,
empirical P= 9.4×10−4). Enrichment was also found for rare CNVs overlapping ID genes,
more notably for deletions (OR= 2.1; 95% CI 1.1–4.2, empirical P= 5.3×10−2). In contrast,
there was no evidence of enrichment among case-CNVs compared to control-CNVs for
genes in the ‘ASD candidates’ set (empirical P >0.3). When the two disease gene-sets ‘ASD
implicated’ and ‘ID’ were combined, we observed 7.6% of cases with rare CNVs
preferentially affecting ASD/ID genes compared to 4.5% in controls (Fisher exact test P=
1.2×10−3, Fig. 2a). The observed enrichments did not change when potential case-control
genome-wide differences for CNV rate and size were considered.

Our global analyses of these putative pathogenic loci use somewhat subjective boundaries
for CNV overlap. Manual inspection of the data yields more accurate results. After
eliminating CNVs that are less likely to have an aetiological role (heterozygous CNVs that
disrupt autosomal recessive loci, events outside the critical region of overlap of genomic
disorders, X-linked genes in females inherited from non-ASD fathers, duplications inherited
from non-ASD parents, and intronic CNVs in NRXN1), 25 CNVs remained in the ASD
group, compared to only four in the controls (P= 3.6×10−6; Supplementary Table 10).
Moreover, the latter four CNVs were all duplications at 1q21.1, 16p11.2 or 22q11.2, loci
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known to exhibit incomplete penetrance and variable expressivity6. The population
attributable risk provided by the combination of all ASD-CNVs that overlap ASDs and/or
ID genes is estimated to be 3.3% (Supplementary Table 11). We also identified rare de novo
chromosomal abnormalities and large CNVs likely to be aetiologic (Supplementary Table
10).

We then tested for functional enrichment of gene-sets among those genes affected by CNVs
to identify biological processes involved in ASD (Fig. 3). Here, the term gene-set refers to
groups of genes that share a common function or operate in the same pathway. Such a
functional enrichment mapping approach can combine single-gene effects into meaningful
groups21.

We compiled comprehensive collections of gene-sets (Supplementary Table 12) and used
the Fisher’s exact test to assess which gene-sets were more frequently affected by rare CNV
events in ASD cases compared to controls. An estimate of the false-discovery rate (FDR) at
each gene-set was obtained by random permutation of case and control labels
(Supplementary Information). To visualize enriched gene-sets, overlap scores were used to
graphically organize these sets into a functional enrichment map (or network) using
Cytoscape22. We identified the ‘seed’ genes for the network at an FDR q-value of 5% and
further relaxed the thresholds to 12.5% to better capture the network topology23.

Using these criteria only deletions were found significantly enriched in gene-sets in cases
over controls (Supplementary Fig. 5), consistent with the global burden results (Table 1).
Specifically, 76 gene-sets affected by deletions (2.18% of sets tested) were found enriched
and used to construct a functional map (Figure 3a, Supplementary Fig. 6–7). We tested for
possible bias, including measures of CNV size and number for cases versus controls per
gene-set, as well as genome proximity, but no differences were found that might explain the
observed enrichments (Supplementary Fig. 8–9).

We identified enrichments in gene-sets known to be involved in ASDs and also discovered
new candidate ASD pathways (Fig. 3a, Supplementary Table 13). For example, gene-sets
involved in cell and neuronal development and function (including projection, motility, and
proliferation) previously reported in ASD-associated phenotypes, were identified24. Novel
observations included gene-sets involved in GTPase/Ras signaling, with component Rho
GTPases known to be involved in regulating dendrite and spine plasticity and associated
with ID. We also found a tentative link to sets in the kinase activity/regulation functional
group where only minorities of these sets meet a stringent 5% FDR q-value threshold
(Supplementary Fig. 10).

We further assessed the relationship of our functional enrichment map with known ASD/ID
genes (Fig. 3b, Supplementary Fig. 11) and found genes enriched in sets linked to
microtubule cytoskeleton, glycosylation and CNS development/adhesion25. The two groups
of genes found enriched in deletions (Fig. 3a) also displayed connectivity to the ASD/ID
disease gene-sets, either directly or through intermediates (Fig 3b, Supplementary Fig. 12).
Although ASD genes appear to be enriched in different subsets of genes compared to ID-
only genes, we cannot discount the possibility that this is the result of selection bias, and we
expect that more ID genes may yet be linked to ASD.

Our findings provide strong support for the involvement of multiple rare genic CNVs, both
genome-wide and at specific loci, in ASD. These findings, similar to those recently
described in schizophrenia26, suggest that at least some of these ASD-CNVs (and the genes
that they affect) are under purifying selection27. Genes previously implicated in ASD by rare
variant findings have pointed to functional themes in ASD pathophysiology6,28. Molecules
such as NRXN1, NLGN3/4X and SHANK3, localized presynaptically or at the post-
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synaptic density (PSD), highlight maturation and function of glutamatergic synapses. Our
data reveal SHANK2, SYNGAP1 and DLGAP2 as new ASD loci, which also encode proteins
in the PSD. We also found ID genes to be important in ASD29. Furthermore, our functional
enrichment map identifies new groups such as GTPase/Ras, effectively expanding both the
number and connectivity of modules that may be involved in ASD. The next steps will be to
relate defects or patterns of alterations in these groups to ASD endophenotypes. The
combined identification of higher-penetrance rare variants and new biological pathways,
including those identified in this study, may broaden the targets amenable to genetic testing
and therapeutic intervention.

Methods Summary
Cases were classified using the Autism Diagnostic Interview-Revised (ADI-R) and Autism
Diagnostic Observation Schedule (ADOS) instruments and those with known karyotypic
abnormalities or genetic disorders were excluded. Informed consent was obtained from all
families and procedures had approval from institutional review boards. DNA was obtained
from blood or buccal-swabs (73% of cases; 75% of controls) or cell-lines (22% of cases;
25% of controls) (in 5% of cases the DNA source was not identified). The 1,287 EA
controls passing all QC-filters included 1,261 individuals recruited as controls for the study
of addiction (SAGE)15 and 26 HapMap samples (from Illumina). An additional 3,677 EA
controls from three separate studies genotyped on other platforms were also used. Raw data
from ASD family (Accession pending) and SAGE control (Accession: phs000092.v1.p1)
genotyping are at NCBI dbGAP. CNVs were analysed using PLINK v1.0730, R stats and
custom scripts. Primary analyses were robust to potential systematic measurement
differences between cases and controls; it was not possible to control for site but we
controlled for the overall extent and number of CNVs for all burden comparisons, and
obtained a consistent enriched gene count in ASD cases compared to controls.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. CNV discovery and characterization
Comprehensive procedures were used to identify the rare CNV dataset (boxed). Dashed
arrows indicate CNVs not included in downstream analyses. 1 SNP and intensity quality
control (QC) with ancestry estimation. 2 QC for CNV calls. 3 Pilot validation experiments
using quantitative-PCR were used to evaluate the false discovery-rate. 4 Rare CNVs in
samples of EA ancestry were defined as 30 kb in size and present in the total sample set at a
frequency <1%. 70/996 (17%) of ASD cases were analyzed on different lower-resolution
arrays in previous studies9,10,28. 5 All CNVs were computationally verified and at least 40%
of case-CNVs were also experimentally validated by qPCR and/or independent Agilent or
other SNP microarrays. 63,677 additional EA controls were used to test specific loci from
the primary burden analyses. Additional details are in the Methods Summary and
Supplementary Information
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Figure 2. CNV burden in known ASD and/or ID genes
a, Proportion of samples with CNVs overlapping genes and loci known to be associated in
ASD with or without ID or ID only, as well as published candidate genes and loci for ASD
(Supplementary Table 9). To select for CNVs with maximal impact, they needed to intersect
genes, and overlap the target loci by ≥50% of their length. Fisher’s exact test P-values for
significant differences (P≤0.05, one tailed) are shown. b, enrichment analysis for genes
overlapped by rare CNVs in cases compared to controls for the three gene-sets in panel a,
relative to the whole genome. Odds ratio (OR) and 95% confidence intervals are given for
each gene set. Empirical P-values for gene-set enrichment are indicated above each OR. All
P-values <0.1 are listed.
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Figure 3. A functional map of ASD
Enrichment results were mapped into a network of gene-sets (nodes) related by mutual
overlap (edges), where the color (red, blue, or yellow) indicates the class of gene-set. Node
size is proportional to the total number of genes in each set and edge thickness represents the
number of overlapping genes between sets. a, Gene-sets enriched for deletions are shown
(red) with enrichment significance (FDR q-value) represented as a node color gradient.
Groups of functionally related gene-sets are circled and labeled (groups, solid line; sub-
groups, dashed line). b, An expanded enrichment map shows the relationship between gene-
sets enriched in deletions (panel a) and sets of known ASD/ID genes. Node color hue
represents the class of gene-set (i.e. enriched in deletions, red; known disease genes (ie.
ASD and/or ID genes), blue; enriched only in disease genes, yellow). Edge color represents
the overlap between gene-sets enriched in deletions (green), from disease genes to enriched
sets (blue), and between sets enriched in deletions and in disease genes or between disease
gene-sets only (orange). The major functional groups are highlighted by filled circles
(enriched in deletions, green; enriched in ASD/ID, blue).
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