
Title Using Ajax to Empower Dynamic Searching

Authors(s) Wusteman, Judith, O'hIceadha, Pádraig

Publication date 2006-06

Publication information Wusteman, Judith, and Pádraig O’hIceadha. “Using Ajax to Empower Dynamic Searching” 25, no.

2 (June, 2006).

Publisher Library and Information Technology Association

Item record/more

information

http://hdl.handle.net/10197/8070

Publisher's version (DOI) 10.6017/ital.v25i2.3332

Downloaded 2024-04-19 00:14:06

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=Using+Ajax+to+Empower+Dynamic+Searching&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F8070

First Published in
Information Technology and Libraries, Vol. 25, No. 2, June 2006, pp 57-64

Using Ajax to Empower Dynamic Searching
Judith Wusteman and Pádraig O’hIceadha
http://ojax.sourceforge.net/

Abstract
The use of Ajax, or Asynchronous JavaScript + XML, can result in Web applications
that demonstrate the flexibility, responsiveness and usability traditionally found only in
desktop software. To illustrate this, a repository metasearch user interface, OJAX, has
been developed. OJAX is simple, unintimidating but powerful. It attempts to minimise
upfront user investment and provide immediate dynamic feedback, thus encouraging
experimentation and enabling enactive learning.

This article introduces the Ajax approach to the development of interactive Web
applications and discusses its implications. It then describes the OJAX user interface
and illustrates how it can transform the user experience.

Introduction
With the introduction of the Ajax development paradigm, the dynamism and richness of
desktop applications become feasible for Web-based applications. OJAX [1], a
repository metasearch user interface, has been developed to illustrate the potential
impact of Ajax-empowered systems on the future of library software.

This article describes the Ajax method, highlights some uses of Ajax technology and
discusses the implications for Web applications. It goes on to illustrate the user
experience offered by the OJAX interface.

Ajax
In February 2005, the term Ajax acquired an additional meaning: Asynchronous
JavaScript + XML (Garrett, 2005). The concept behind this new meaning, however, has
existed in various forms for several years. Ajax is not a single technology but a general
approach to the development of interactive Web applications. As the name implies, it
describes the use of JavaScript and XML to enable asynchronous communication
between browser clients and server-side systems.

As explained by Garrett (2005), the classic Web application model involves user actions
triggering an HTTP request to a Web server. The latter processes the request and returns
an entire HTML page. Every time the client makes a request to the server, it must wait
for a response, thus potentially delaying the user. This is particularly true for large data
sets. But research demonstrates that response times of less than one second are required
when moving between pages if unhindered navigation is to be facilitated through an
information space (Nielsen, 1997).

1

First Published in
Information Technology and Libraries, Vol. 25, No. 2, June 2006, pp 57-64

The aim of Ajax is to avoid this wait. The user loads, not only a Web page, but an Ajax
engine written in JavaScript. Users interact with this engine in the same way that they
would with an HTML page except that, instead of every action resulting in an HTTP
request for an entire new page, user actions generate JavaScript calls to the Ajax engine.
If the engine needs data from the server, it requests this asynchronously in the
background. Thus, rather than requiring the whole page to be refreshed, the JavaScript
can make rapid incremental updates to any element of the user interface via brief
requests to the server. This means that the traditional page-based model used by Web
applications can be abandoned; hence, the pacing of user interaction with the client
becomes independent of the interaction between client and server.

XMLHttpRequest [2] is a collection of application programming interfaces (APIs) that
use HTTP and JavaScript to enable transfer of data between Web servers and Web
applications. Initially developed by Microsoft, XMLHttpRequest has become a de facto
standard for JavaScript data retrieval and is implemented in most modern browsers. It is
commonly used in the Ajax paradigm. The data accessed from the HTTP server is
usually in XML but another format, such as JavaScript Object Notation [3], could be
used.

Applications of Ajax
Google is the most significant user of Ajax technology to date. Most of its recent
innovations, including Gmail [4], Google Suggest [5], Google Groups [6] and Google
Maps [7], employ the paradigm.

The use of Ajax in Google Suggest improves the traditional Google interface by
offering real-time suggestions as the user enters a term in the search field. For example,
if the user enters xm, Google Suggest might offer refinements such as xm radio, xml and
xmods. Experimental Ajax-based auto-completion features are appearing in a range of
software (Binkley, 2005). Shanahan [8] has applied the same ideas to the Amazon
online bookshop. His experimental site, Zuggest, extends the concept of auto-
completion: as the user enters a term, the system automatically triggers a search without
the need to hit a search button.

The potential of Ajax to improve the responsiveness and richness of library applications
has not been lost on the library community (Rhyno, 2005; Tennant, 2005). Several
interesting experiments have been tried. At OCLC (Hickey, 2005), for example, a
“suggest-like service”, based on controlled headings from the worldwide union
catalogue, WorldCat, has been implemented. Ajax has also been used in the OCLC
DeweyBrowser [9]. The main page of this browser includes four iframes, or inline
frames, three for the three levels of Dewey Decimal Classification and a fourth for
record display (Hickey, 2005). The use of Ajax allows information in each iframe to be
updated independently without having to reload the entire page.

2

First Published in
Information Technology and Libraries, Vol. 25, No. 2, June 2006, pp 57-64

Implications of Ajax
There have been many attempts to enable asynchronous background transactions with a
server. Among alternatives to Ajax are Flash, Java Applets and the new breed of XML
user interface language formats such as XUL (Wusteman, 2005a) and XAML [10].
These all have their place, particularly languages such as XUL. The latter is ideal for
use in Mozilla extensions, for example. Combinations of the above can and are being
used together; XUL and Ajax are both used in the Firefox extension version of Google
Suggest [11]. The main advantage of Ajax over these alternative approaches is that it is
non-proprietary and is supported by any browser that supports JavaScript and
XMLHttpRequest, hence, by any modern browser.

It could be validly argued that complex client-side JavaScript is not ideal. Quite apart
from the errors to which complex scripting can be prone, there are accessibility issues.
Best practice requires that JavaScript interaction adds to the basic functionality of Web-
based content which must remain accessible and usable without the JavaScript (Adams,
2005). An alternative non-JavaScript interface to Gmail was recently implemented to
deal with just this issue.

A move away from scripting would, in theory, be a positive step for the Web. But, in
practice, procedural approaches continue to be more popular and attempts to supplant
them, as epitomised by XHTML 2.0 [12], simply alienate developers.

It might be assumed that the use of Ajax technology would result in a heavier network
load due to an increase in the number of requests made to the server. This is a
misconception in most cases. Indeed, Ajax can dramatically reduce the network load of
Web applications, as it enables them to separate data from the graphical user interface
(GUI) used to display it. For example, each results page presented by a traditional
search engine delivers, not only the results data, but also the HTML required to render
the GUI for that page. An Ajax application could deliver the GUI just once and,
subsequently, deliver data only. This would also be possible via the careful use of
frames; the latter could be regarded as an Ajax-style technology but without all of
Ajax’s advantages.

From Client-server to SOA
The dominant model for building network applications is the client/server approach
[13], in which client software is installed as a desktop application and data generally
resides on a server, usually in a database. This can work well in a homogenous single-
site computing environment. But institutions and consortia are likely to be
heterogeneous and geographically distributed. PCs, Macs and mobile phones will all
need access to the applications, and Linux may require support alongside Windows.
Even if an organisation standardises solely on Windows, different versions of the latter
will have to be supported, as will multiple versions of those ubiquitous Dynamic Link
Libraries (DLLs). Indeed, the problems of obtaining and managing conflicting DLLs
have spawned the term “DLL hell” [14].

3

First Published in
Information Technology and Libraries, Vol. 25, No. 2, June 2006, pp 57-64

In Web applications, a standard client, the browser, is installed on the desktop but most
of the logic, as well as the data, reside on the server. Of course, the browser developers
still have to worry about “DLL hell”, but this need not concern the rest of us.

“Speed must be the overriding design criterion” for Web pages (Nielsen, 1997). But the
interactivity and response times possible with client/server applications are still not
available to traditional Web applications. This is where Ajax comes in: it offers, to date,
the best of the Web application and client/server worlds. Much of the activity is moved
back to the desktop via client-side code. But the advantages of Web applications are not
lost: the browser is still the standard client.

Service-Oriented Architecture (SOA) [15] is an increasingly popular approach to the
delivery of applications to heterogeneous computing environments and geographically
dispersed user populations. SOA refers to the move away from monolithic applications
towards smaller reusable services with discrete functionality. Such services can be
combined and recombined to deliver different applications to users. Web Services
(Wusteman, 2005b) are an implementation of SOA principles. The term describes the
use of technologies such as XML to enable the seamless interoperability of Web-based
applications. Ajax enables Web Services and hence enables SOA principles. Thus, the
adoption of Ajax facilitates the move towards SOA and all the advantages of reuse and
integration that this offers.

ARC
ARC [16] is an experimental open-source metasearch [17] package available for
download from the SourceForge open source foundry [18]. It can be configured to
harvest Open Archives Initiative - Protocol for Metadata Harvesting (OAI-PMH)
compliant data [19] from multiple repositories. The harvested results are stored in a
relational database and can be searched using basic Web forms. ARC’s Advanced
Search form is illustrated in Figure 1.

4

First Published in
Information Technology and Libraries, Vol. 25, No. 2, June 2006, pp 57-64

FIGURE 1: ARC’s Advanced Search form

Applying Ajax to the search GUI
The use of Ajax has the potential to narrow the gulf between the responsiveness of
GUIs for Web applications and those for desktop applications. The flexibility, usability
and richness of the latter are now possible for the former. The OJAX GUI, illustrated in
Figure 2, has been developed to demonstrate how Ajax can improve the richness of
ARC-like GUIs. OJAX, including full source code, is available under the open source
Apache licence and is hosted on SourceForge [20].

OJAX comprises a client-side GUI, implemented in JavaScript and HTML, and server-
side metasearch Web Services, implemented in Java. The Web Services connect
directly to a metasearch database created by ARC from harvested repositories. The
database connectivity leverages several libraries from the Apache Jakarta project [21,
22, 23] which provides open source Java solutions.

FIGURE 2: The OJAX metasearch user interface

5

First Published in
Information Technology and Libraries, Vol. 25, No. 2, June 2006, pp 57-64

Development process
The OJAX GUI was developed iteratively using Agile software development methods
[24]. Features were added incrementally and feedback gained from a proxy user. In
order to gain an in-depth understanding of the system and the implications for the
remainder of the GUI, features were initially built from first principles. They were then
rebuilt using object-oriented JavaScript and three open source JavaScript libraries:
Prototype [25], script.aculo.us [26] and Rico [27].

Prototype provides base Ajax capability. It also includes advanced functionality for
object-oriented JavaScript, such as multiple inheritance. The other two libraries are built
on top of Prototype. The script.aculo.us library specialises in dynamic effects, such as
those used in auto-completion. The Rico library, developed by Sabre [28], provides
other key JavaScript effects, for example, dynamic scrollable areas and dynamic
sorting, as described later.

Storyboard
One of the aims of the NISO Metasearch Initiative is to enable all library users to
“enjoy the same easy searching found in web-based services like Google” [17].
Adopting this approach, OJAX incorporates the increasingly common concept of the
search bar, popularised by the Google Toolbar [29]. OJAX aims to be as simple,
uncluttered and unthreatening as possible. The goal is to reflect the “simple search”
experience while, at the same time, providing the power of an advanced search. Thus,
the user interface has been kept as simple as possible while maintaining equivalent
functionality with the ARC Advanced Search interface. All ARC functionality, with the
exception of the grouping feature, is provided.

To help the intuitive flow of the operation, the fields are set out as a sentence:
Find [term(s)] in [all archives] from [earliest year] until
[this year] in [all subjects]

Tool tips are available for text entry fields. By default, searching is on author, title and
abstract. These fields map to the creator, title and description Dublin Core metadata
fields [30] harvested from the original repositories. The search can be restricted by
deselecting unwanted fields.

ARC supports both MySQL [31] and Oracle databases. MySQL has been chosen for
OJAX as it is an open source database. Boolean search syntax has been implemented
in OJAX to allow for more powerful searching. The syntax is similar to that used by
Google in that it identifies AND/OR and exact phrase functionality by +/- and “ ”.
Hence it preserves the user’s familiarity with basic Google search syntax. However, it is
not as powerful as the full Google search syntax [32]; for example, it does not support
query modifiers such as intitle:.

The focus of our research is the application of Ajax to the search GUI and not the
optimisation of the power or expressive capability of the underlying search engine.
However, the implementation of an alternative back end that uses a full text search

6

First Published in
Information Technology and Libraries, Vol. 25, No. 2, June 2006, pp 57-64

engine, such as Apache Lucene [33], would improve the expressive power of advanced
queries. Full text search expressiveness is likely to be key to the usability of OJAX,
ensuring its adequacy for the advanced user without alienating the novice.

Unifying the user interface
One of the main aims of OJAX is the unification of the user interface. Instead of
offering distinct options for simple and advanced search and for refining a completed
search, the interface is sufficiently dynamic to make this unnecessary. The user need
never navigate between pages because all options, both simple and advanced, are
available from the same page. And all results are made available on that same page in
the form of a scrollable list. The only point at which a new page is presented is when the
resource identifier of a result is clicked. At this stage, a pop-up window, external to the
OJAX session, displays the full metadata for that resource. This page is generated by
the external repository from which the record was originally harvested.

Simple and advanced search options are usually kept separate because most users are
unwilling or unable to use the latter (Nielsen, 2001). Furthermore, the design of existing
search user interfaces is based on the assumption that the retrieval of results will be
sufficiently time-consuming that users will want to have selected all options
beforehand.

However, with OJAX, users do not have to make a complete choice of all the options
they might want to try before they see any results. As data is entered, answers flow to
accommodate it. Because the interface is so dynamic and responsive and because users
are given immediate feedback, they do not have to be concerned about wasting time due
to the wrong choice of search options. Users iterate towards the search results they
require by manipulating the results in real time. The reduced level of investment users
must make before they achieve any return from the system should encourage them to
experiment, hence promoting enactive learning.

Auto-completion
In order to provide instant feedback to the user, the search terms field and the subject
field use Ajax to auto-complete user entries. Figure 3 illustrates the result of typing
Smith in the search terms field. A list is automatically dropped down that itemises all
matches and the number of their occurrences. The user selects the term they want, the
entire field is automatically completed and a search is triggered.

The ARC system denormalises some of the harvested data before it saves it in its
database. For example, it merges all the author fields into one single field, each name
separated by a bar character. To enable the OJAX auto-completion feature, it was
necessary to renormalise the names. A new table is used to store each name in a
separate row; names are referenced by the resource identifier. To enable this, ARC’s
indexing code was updated so that it creates this table as it indexes records extracted
from the OAI-PMH feed.

7

First Published in
Information Technology and Libraries, Vol. 25, No. 2, June 2006, pp 57-64

In its initial implementation, OJAX uses a simple algorithm for auto-completion. Future
work will involve developing a more complex heuristic that will return results more
closely satisfying user requirements.

FIGURE 3: Auto-completion in the search terms field

Auto-search
As already mentioned, a central theme of OJAX is the attempt to reduce the
commitment necessary from the user before they receive feedback on their actions. One
way in which dynamic feedback is provided is the triggering of an immediate search
whenever an entire option has been selected. Examples of entire options include choice
of an archive or year and acceptance of a suggested auto-completion. In addition, the
following heuristics are used to identify when a user is likely to have finished entering a
search term and, thus, when a search should be triggered:

1. Entering a space character in the search terms field or subject field
2. Tabbing out of a field having modified its contents
3. Five seconds of user inactivity for a modified field

The third heuristic aims to catch some of the edge cases that the other heuristics may
miss. It is assumed likely that a term has been completed if a user has made no edits in
the last five seconds. As each term will be separated by a space, it is only the last term
in a search phrase that is likely not to trigger an auto-search via the first heuristic.

The user can click the search button whenever they wish but they should never have to
click it. The Zuggest system [8] abandons the search button entirely; OJAX retains it,
mainly in order to avoid confounding user expectations.

8

First Published in
Information Technology and Libraries, Vol. 25, No. 2, June 2006, pp 57-64

While a search is in progress, the search button is greyed out and acquires a red border.
This is particularly useful in alerting the user that a search has been automatically
triggered.

This is the only feature of OJAX that may have an impact on network load in terms of
slightly higher traffic. However, the increased number of requests is offset by a
reduction in the size of each response because the GUI is not downloaded with it. For
example, initiating a search in ARC results in a response of average size 57.32Kb. The
response is in the form of a complete HTML page. Initiating a search in OJAX results in
a response of average size 7.96 Kb. The latter comprises a Web Service response in
XML. In other words, more than seven OJAX auto-searches would have to be triggered
before the size of the initial search result in ARC was exceeded.

Dynamic archive list
The use of Ajax enables a static HTML page to contain a small component of dynamic
data without the entire page having to be dynamically generated on the server. OJAX
illustrates this: the contents of the drop-down box listing the searchable archives are not
hard-coded in the HTML page. Rather, when the page is loaded, an Ajax request for the
set of available archives is generated. This is a useful technique; static HTML pages
can be cached by browsers and proxy servers, and only the dynamic portion of the data,
perhaps that used to personalise the page, need be downloaded at the start of a new
session.

Dynamic scrolling
Searches commonly produce thousands of results. Typical systems, such as Google and
ARC, make these results available via a succession of separate pages, thus requiring
users to navigate between them. Finding information by navigating multiple pages can
take longer than scrolling down a single page (Baker, 2003) and users rarely look
beyond the second page of search results (Nielsen, 2001). To avoid these problems and
to encourage users to look at more of the available results, those results could be made
available in one scrollable list. But, in a typical non-Ajax application, accessing a
scrollable list of, say, two thousand items would require the entire list to be downloaded
via one enormous HTML page. This would be a huge operation and, if it did not crash
the browser, it would, at least, result in a substantial wait for the user.

The Rico library provides a feature to enable dynamic scrollable areas. It uses Ajax to
fetch more records from the server when the user begins to scroll off the visible area.
This is used in the display of search results in OJAX, as illustrated in Figure 4. To the
user, it appears that the scrollable list is seamless and that all 4,678 search results are
already downloaded. In fact, only 386 have been downloaded. The rest are available at
the server. As the user scrolls further down, say to item 396, an Ajax request is made for
the next 10 items. Any item downloaded is cached by the Ajax engine and need not be
requested again if, for example, the user scrolls back up the list.

9

First Published in
Information Technology and Libraries, Vol. 25, No. 2, June 2006, pp 57-64

A dynamic information panel is available to the right of the scroll bar. It shows the
current scroll position in relation to the beginning and end of the results set. In Figure 4,
the information panel indicates that there are 4,678 results for this particular search and
that the current scroll position is at result number 386. This number updates instantly
during scrolling, preserving the illusion that all results have been downloaded and
providing the user with dynamic feedback on their progress through the results set. This
means that users do not have to wait for the main results window to refresh to identify
their current position.

FIGURE 4: Display of search results and dynamic information panel

Auto-expansion of results
OJAX aims to provide a compact display of key information, enabling users to see
multiple results simultaneously. It also aims to provide simple access to full result
details without requiring navigation to a new Web page.

In the initial results display, only one line of the title, authors and subject and two lines
of the abstract are shown for each item. As the cursor is hovered over the relevant field,
the display expands to show any hidden detail in that field. At the same time, the
background colour of the field changes to blue. When the cursor is hovered over the bar
containing the resource identifier, all display fields for that item are expanded, as
illustrated in Figure 5.

This expansion is enabled via simple Cascading Style Sheet (CSS) features. For
example, the following CSS declaration hides all but the first line of authors:

1

First Published in
Information Technology and Libraries, Vol. 25, No. 2, June 2006, pp 57-64

#searchResults td div
{

overflow:hidden;
height: 1.1em

}

When the cursor is hovered over the author details, the overflow becomes visible and
the display field changes its dimensions to fit the text inside it:

#searchResults td div:hover
{

overflow:visible;
height:auto

}

FIGURE 5: Auto-expansion of all fields for item number 386

Sorting results
Another method used by OJAX to minimise upfront user investment is to provide initial
search results before requiring the user to decide on sort options. Because results are
available so quickly and because they can be re-sorted so rapidly, it is not necessary to
offer pre-search selection of sort options. Ajax facilitates rapid presentation of results;
after a re-sort, only the first screenful must be downloaded before they can be presented
to the user.

Results may be sorted by title, author, subject, abstract and resource identifier. These
options are listed on the grey bar immediately above the results list. Clicking one of
these options sorts the results in ascending order; an upward pointing arrow appears to
the right of the sort option chosen, as illustrated in Figure 6. Clicking on the option

1

First Published in
Information Technology and Libraries, Vol. 25, No. 2, June 2006, pp 57-64

again sorts in descending order and reverses the direction of the arrow. Clicking on the
arrow removes the sort; the results revert to their original order.

Functionality for the sort feature is provided by the Rico JavaScript library. Server-side
implementation supports these features by caching search results so that it is not
necessary to regenerate them via a database query each time.

FIGURE 6: Results being sorted in ascending order by title

Search history
Several experimental systems, for example Zuggest, have employed Ajax to facilitate a
search history feature. A similar feature could be provided for OJAX. A button could be
added to the right of the results list. When chosen, it could expand a collapsible search
history side-bar. As the cursor was hovered over one of the previous searches listed in
the side-bar, a callout, that is, a speech bubble, could be displayed. This could provide
further information such as the number of matches for that search and a summary of the
search results user clicked on. Clicking one of the previous searches would restore those
search results to the main results window.

This feature would take advantage of the Ajax persistent JavaScript engine to maintain
the history. Its use could help counter concerns about Ajax technology “breaking” the
back button (Garrett, 2005); the feature could be implemented so that the back button
returned the user to the previous entry in the search history. In fact, this implementation
of back button functionality could be more useful than the implementation in Google,
where hitting the back button is likely to take the user to an interim results page; for
example, it might simply take the user from Page 3 of results to Page 2 of results.

1

First Published in
Information Technology and Libraries, Vol. 25, No. 2, June 2006, pp 57-64

Scrapbook
A user browsing through search results on OJAX would require some simple method of
maintaining a record of those resource details that interested them. Ajax could enable
the development of a useful scrapbook feature to which such resource details could be
copied and stored in the persistent JavaScript engine. OJAX could further leverage a
shared bookmark Web Service, such as del.icio.us [34] or Furl [35], to persist the
scrapbook for use in future sessions and to share it with other members of a research or
interest group.

Potential developments for OJAX
As well as searching a database of harvested metadata, the OJAX user interface could
also be used to search an OAI-PMH compliant repository directly. With appropriate
implementation, all of OJAX’s current features could be made available, apart from
auto-completion.

A recent development has enabled the direct indexing of repositories by Google using
OAI-PMH. [36]. The latter provides Google with additional metadata that can be
searched via the Google Web Services APIs. The current OJAX Web Services could be
replaced by the Google APIs, thus eliminating the need for OJAX to host any server
side components. Hence, OJAX could become an alternative GUI for Google searching.

Conclusion
OJAX demonstrates that the use of Ajax can enable features in Web applications hither-
to restricted to desktop applications. In OJAX, it facilitates a simple, non–threatening
but powerful search user interface. Page navigation is eliminated; dynamic feedback
and a low initial investment on the part of users encourage experimentation and enable
enactive learning. The use of Ajax could similarly transform other Web applications
aimed at library patrons.

However, Ajax is still maturing and the barrier to entry for developers remains high. We
are a long way from an Ajax button appearing in Dreamweaver. Reusable, well-tested
components, such as Rico, and software frameworks, such as Ruby on Rails [37], Sun’s
J2EE framework [38] and Microsoft’s Atlas (LaMonica, 2005), will help to make
AJAX technology accessible to a wider range of developers.

As with all new technologies, there is a temptation to use Ajax simply because it exists.
As Ajax matures, it is important that its focus does not become the enabling of “cool”
features but remains the optimisation of the user experience.

1

First Published in
Information Technology and Libraries, Vol. 25, No. 2, June 2006, pp 57-64

Notes
[1] OJAX homepage: http://ojax.sourceforge.net/
[2] Dynamic HTML and XML: The XMLHttpRequest Object:

http://developer.apple.com/internet/webcontent/xmlhttpreq.html
[3] JavaScript Object Notation, Wikipedia definition: http://en.wikipedia.org/wiki/JSON
[4] Google Gmail: http://mail.google.com/
[5] Google Suggest: http://www.google.com/webhp?complete=1&hl=en
[6] Google Groups: http://groups.google.com/
[7] Google Maps: http://maps.google.com/
[8] Francis Shanahan (Zuggest): http://www.francisshanahan.com/zuggest.aspx
[9] OCLC DeweyBrowser: http://ddcresearch.oclc.org/ebooks/fileServer
[10] Cover Pages: Microsoft Extensible Application Markup Language (XAML):

http://xml.coverpages.org/ms-xaml.html
[11] Google Extensions for Firefox:

http://toolbar.google.com/firefox/extensions/index.html
[12] XHTML 2.0, W3C Working Draft 27 May 2005:
 http://www.w3.org/TR/2005/WD-xhtml2-20050527/
[13] Client/server model: http://en.wikipedia.org/wiki/Client/server
[14] DLL Hell: http://en.wikipedia.org/wiki/DLL_hell
[15] Service-Oriented Architecture:
 http://en.wikipedia.org/wiki/Service-oriented_architecture
[16] ARC - A Cross Archive Search Service, Old Dominion University Digital Library

Research Group: http://arc.cs.odu.edu/
[17] NISO MetaSearch Initiative:
 http://www.niso.org/committees/MetaSearch-info.html
[18] ARC download page, SourceForge: http://oaiarc.sourceforge.net/
[19] Open Archives Initiative Protocol for Metadata Harvesting:

http://www.openarchives.org/OAI/openarchivesprotocol.html
[20] OJAX download page, SourceForge: http://sourceforge.net/projects/ojax
[21] Apache Jakarta Project: http://jakarta.apache.org/
[22] Apache Jakarta Commons DBCP: http://jakarta.apache.org/commons/dbcp/
[23] Apache Jakarta Commons DbUtils: http://jakarta.apache.org/commons/dbutils/
[24] Agile software development definition, Wikipedia:

http://en.wikipedia.org/wiki/Agile_software_development
[25] Prototype JavaScript Framework: http://prototype.conio.net/
[26] script.aculo.us: http://script.aculo.us/
[27] Rico: http://openrico.org/rico/home.page
[28] Sabre: http://www.sabre.com/
[29] Google Toolbar: http://toolbar.google.com/
[30] Dublin Core Metadata Initiative: http://dublincore.org/
[31] MySQL: http://www.mysql.com/
[32] Google Help Center: Advanced Operators:

http://www.google.ie/help/operators.html
[33] Apache Lucene: http://lucene.apache.org/
[34] del.icio.us: http://del.icio.us/
[35] Furl: http://www.furl.net/

1

First Published in
Information Technology and Libraries, Vol. 25, No. 2, June 2006, pp 57-64

[36] Google Sitemaps (BETA) Help:
https://www.google.com/webmasters/sitemaps/docs/en/other.html

[37] Ruby on Rails: http://www.rubyonrails.org/
[38] Java 2 Platform, Enterprise Edition (J2EE): http://java.sun.com/j2ee/

References
Adams, C. (2005, July 13). Ajax: Usable Interactivity with Remote Scripting. SitePoint.
Retrieved November 11, 2005, from
http://www.sitepoint.com/article/remote-scripting-ajax

Baker, J. R. (2003). The Impact of Paging vs. Scrolling on Reading Online Text
Passages. Usability News, vol 5, issue1. Retrieved November 11, 2005, from
http://psychology.wichita.edu/surl/usabilitynews/51/paging_scrolling.htm

Binkley, P. (2005, May 18). Ajax and Autocompletion. Quædam cuiusdam blog.
Retrieved November 11, 2005, from http://www.wallandbinkley.com/quaedam/?p=27

Garrett, J. J. (2005, February 18). Ajax: A New Approach to Web Applications.
Retrieved November 11, 2005, from
http://www.adaptivepath.com/publications/essays/archives/000385.php

Hickey, T. (2005, March 31). Ajax and Web interfaces. outgoing blog.
Retrieved November 11, 2005, from
http://outgoing.typepad.com/outgoing/2005/03/web_application.html

LaMonica, M. (2005, June 27). Microsoft gets hip to AJAX. CNET News.com.
Retrieved November 11, 2005, from
http://news.com.com/Microsoft+gets+hip+to+AJAX/2100-1007_3-5765197.html

Nielsen, J. (2001, May 13). Search: Visible and Simple. Alertbox.
Retrieved November 11, 2005, from http://www.useit.com/alertbox/20010513.html

Nielsen, J. (1997, March 1). The Need for Speed. Alertbox.
Retrieved November 11, 2005, from http://www.useit.com/alertbox/9703a.html

Rhyno, A. (2005, April 10). Ajax and the Rich Web Interface. LibraryCog blog.
Retrieved November 11, 2005, from
http://librarycog.uwindsor.ca:8087/artblog/librarycog/1113186562

Tennant, R. (2005, June 22). Tennant’s Top Tech Trend Tidbit. LITA Blog.
Retrieved November 11, 2005, from http://litablog.org/?p=35

Wusteman, J. (2005a). From Ghostbusters to libraries: the Power of XUL. Library Hi
Tech, vol 23, no 1. Retrieved November 11, 2005, from http://www.ucd.ie/wusteman/

1

First Published in
Information Technology and Libraries, Vol. 25, No. 2, June 2006, pp 57-64

Wusteman, J. (2005b). Realising the Potential of Web Services. OCLC Systems &
Services: International Digital Library Perspectives, vol 22, issue 1.

1

