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Abstract
The use of Ajax, or Asynchronous JavaScript + XML, can result in Web applications 
that demonstrate the flexibility, responsiveness and usability traditionally found only in 
desktop software. To illustrate this, a repository metasearch user interface, OJAX, has 
been developed. OJAX is simple, unintimidating but powerful. It attempts to minimise 
upfront user investment and provide immediate dynamic feedback, thus encouraging 
experimentation and enabling enactive learning. 

This article introduces the Ajax approach to the development of interactive Web 
applications and discusses its implications. It then describes the OJAX user interface 
and illustrates how it can transform the user experience.

Introduction
With the introduction of the Ajax development paradigm, the dynamism and richness of 
desktop applications become feasible for Web-based applications. OJAX [1], a 
repository metasearch user interface, has been developed to illustrate the potential 
impact of Ajax-empowered systems on the future of library software. 

This article describes the Ajax method, highlights some uses of Ajax technology and 
discusses the implications for Web applications. It goes on to illustrate the user 
experience offered by the OJAX interface.

Ajax
In February 2005, the term Ajax acquired an additional meaning: Asynchronous 
JavaScript + XML (Garrett, 2005).  The concept behind this new meaning, however, has 
existed in various forms for several years. Ajax is not a single technology but a general 
approach to the development of interactive Web applications. As the name implies, it 
describes the use of JavaScript and XML to enable asynchronous communication 
between browser clients and server-side systems.

As explained by Garrett (2005), the classic Web application model involves user actions 
triggering an HTTP request to a Web server. The latter processes the request and returns 
an entire HTML page. Every time the client makes a request to the server, it must wait 
for a response, thus potentially delaying the user. This is particularly true for large data 
sets. But research demonstrates that response times of less than one second are required 
when moving between pages if unhindered navigation is to be facilitated through an 
information space (Nielsen, 1997).
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The aim of Ajax is to avoid this wait. The user loads, not only a Web page, but an Ajax 
engine written in JavaScript. Users interact with this engine in the same way that they 
would with an HTML page except that, instead of every action resulting in an HTTP 
request for an entire new page, user actions generate JavaScript calls to the Ajax engine. 
If the engine needs data from the server, it requests this asynchronously in the 
background. Thus, rather than requiring the whole page to be refreshed, the JavaScript 
can make rapid incremental updates to any element of the user interface via brief 
requests to the server. This means that the traditional page-based model used by Web 
applications can be abandoned; hence, the pacing of user interaction with the client 
becomes independent of the interaction between client and server. 

XMLHttpRequest [2] is a collection of application programming interfaces (APIs) that 
use HTTP and JavaScript to enable transfer of data between Web servers and Web 
applications.  Initially developed by Microsoft, XMLHttpRequest has become a de facto 
standard for JavaScript data retrieval and is implemented in most modern browsers. It is 
commonly used in the Ajax paradigm. The data accessed from the HTTP server is 
usually in XML but another format, such as JavaScript Object Notation [3], could be 
used.

Applications of Ajax
Google is the most significant user of Ajax technology to date. Most of its recent 
innovations, including Gmail [4], Google Suggest [5], Google Groups [6] and Google 
Maps [7], employ the paradigm.

The use of Ajax in Google Suggest improves the traditional Google interface by 
offering real-time suggestions as the user enters a term in the search field. For example, 
if the user enters xm, Google Suggest might offer refinements such as xm radio, xml and 
xmods. Experimental Ajax-based auto-completion features are appearing in a range of 
software (Binkley, 2005). Shanahan [8] has applied the same ideas to the Amazon 
online bookshop. His experimental site, Zuggest, extends the concept of auto-
completion: as the user enters a term, the system automatically triggers a search without 
the need to hit a search button. 

The potential of Ajax to improve the responsiveness and richness of library applications 
has not been lost on the library community (Rhyno, 2005; Tennant, 2005). Several 
interesting experiments have been tried. At OCLC (Hickey, 2005), for example, a 
“suggest-like service”, based on controlled headings from the worldwide union 
catalogue, WorldCat, has been implemented. Ajax has also been used in the OCLC 
DeweyBrowser [9]. The main page of this browser includes four iframes, or inline 
frames, three for the three levels of Dewey Decimal Classification and a fourth for 
record display (Hickey, 2005). The use of Ajax allows information in each iframe to be 
updated independently without having to reload the entire page. 

2



First Published in  
Information Technology and Libraries, Vol. 25, No. 2, June 2006, pp 57-64

Implications of Ajax
There have been many attempts to enable asynchronous background transactions with a 
server. Among alternatives to Ajax are Flash, Java Applets and the new breed of XML 
user interface language formats such as XUL (Wusteman, 2005a) and XAML [10]. 
These all have their place, particularly languages such as XUL. The latter is ideal for 
use in Mozilla extensions, for example. Combinations of the above can and are being 
used together; XUL and Ajax are both used in the Firefox extension version of Google 
Suggest [11]. The main advantage of Ajax over these alternative approaches is that it is 
non-proprietary and is supported by any browser that supports JavaScript and 
XMLHttpRequest, hence, by any modern browser. 

It could be validly argued that complex client-side JavaScript is not ideal. Quite apart 
from the errors to which complex scripting can be prone, there are accessibility issues. 
Best practice requires that JavaScript interaction adds to the basic functionality of Web-
based content which must remain accessible and usable without the JavaScript (Adams, 
2005). An alternative non-JavaScript interface to Gmail was recently implemented to 
deal with just this issue. 

A move away from scripting would, in theory, be a positive step for the Web. But, in 
practice, procedural approaches continue to be more popular and attempts to supplant 
them, as epitomised by XHTML 2.0 [12], simply alienate developers.

It might be assumed that the use of Ajax technology would result in a heavier network 
load due to an increase in the number of requests made to the server. This is a 
misconception in most cases. Indeed, Ajax can dramatically reduce the network load of 
Web applications, as it enables them to separate data from the graphical user interface 
(GUI) used to display it. For example, each results page presented by a traditional 
search engine delivers, not only the results data, but also the HTML required to render 
the GUI for that page. An Ajax application could deliver the GUI just once and, 
subsequently, deliver data only. This would also be possible via the careful use of 
frames; the latter could be regarded as an Ajax-style technology but without all of 
Ajax’s advantages. 

From Client-server to SOA 
The dominant model for building network applications is the client/server approach 
[13], in which client software is installed as a desktop application and data generally 
resides on a server, usually in a database. This can work well in a homogenous single-
site computing environment. But institutions and consortia are likely to be 
heterogeneous and geographically distributed. PCs, Macs and mobile phones will all 
need access to the applications, and Linux may require support alongside Windows. 
Even if an organisation standardises solely on Windows, different versions of the latter 
will have to be supported, as will multiple versions of those ubiquitous Dynamic Link 
Libraries (DLLs). Indeed, the problems of obtaining and managing conflicting DLLs 
have spawned the term “DLL hell” [14].  
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In Web applications, a standard client, the browser, is installed on the desktop but most 
of the logic, as well as the data, reside on the server.  Of course, the browser developers 
still have to worry about “DLL hell”, but this need not concern the rest of us. 

“Speed must be the overriding design criterion” for Web pages (Nielsen, 1997). But the 
interactivity and response times possible with client/server applications are still not 
available to traditional Web applications. This is where Ajax comes in: it offers, to date, 
the best of the Web application and client/server worlds. Much of the activity is moved 
back to the desktop via client-side code. But the advantages of Web applications are not 
lost: the browser is still the standard client. 

Service-Oriented Architecture (SOA) [15] is an increasingly popular approach to the 
delivery of applications to heterogeneous computing environments and geographically 
dispersed user populations.  SOA refers to the move away from monolithic applications 
towards smaller reusable services with discrete functionality. Such services can be 
combined and recombined to deliver different applications to users.  Web Services 
(Wusteman, 2005b) are an implementation of SOA principles. The term describes the 
use of technologies such as XML to enable the seamless interoperability of Web-based 
applications. Ajax enables Web Services and hence enables SOA principles. Thus, the 
adoption of Ajax facilitates the move towards SOA and all the advantages of reuse and 
integration that this offers.

ARC 
ARC [16] is an experimental open-source metasearch [17] package available for 
download from the SourceForge open source foundry [18]. It can be configured to 
harvest Open Archives Initiative - Protocol for Metadata Harvesting (OAI-PMH) 
compliant data [19] from multiple repositories. The harvested results are stored in a 
relational database and can be searched using basic Web forms. ARC’s Advanced 
Search form is illustrated in Figure 1.
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FIGURE 1:  ARC’s Advanced Search form

Applying Ajax to the search GUI
The use of Ajax has the potential to narrow the gulf between the responsiveness of 
GUIs for Web applications and those for desktop applications. The flexibility, usability 
and richness of the latter are now possible for the former. The OJAX GUI, illustrated in 
Figure 2, has been developed to demonstrate how Ajax can improve the richness of 
ARC-like GUIs. OJAX, including full source code, is available under the open source 
Apache licence and is hosted on SourceForge [20]. 

OJAX comprises a client-side GUI, implemented in JavaScript and HTML, and server-
side metasearch Web Services, implemented in Java.  The Web Services connect 
directly to a metasearch database created by ARC from harvested repositories. The 
database connectivity leverages several libraries from the Apache Jakarta project [21, 
22, 23] which provides open source Java solutions.

FIGURE 2:   The OJAX metasearch user interface
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Development process
The OJAX GUI was developed iteratively using Agile software development methods 
[24]. Features were added incrementally and feedback gained from a proxy user. In 
order to gain an in-depth understanding of the system and the implications for the 
remainder of the GUI, features were initially built from first principles. They were then 
rebuilt using object-oriented JavaScript and three open source JavaScript libraries: 
Prototype [25], script.aculo.us [26] and Rico [27]. 

Prototype provides base Ajax capability. It also includes advanced functionality for 
object-oriented JavaScript, such as multiple inheritance. The other two libraries are built 
on top of Prototype. The script.aculo.us library specialises in dynamic effects, such as 
those used in auto-completion. The Rico library, developed by Sabre [28], provides 
other key JavaScript effects, for example, dynamic scrollable areas and dynamic 
sorting, as described later.

Storyboard
One of the aims of the NISO Metasearch Initiative is to enable all library users to 
“enjoy the same easy searching found in web-based services like Google” [17]. 
Adopting this approach, OJAX incorporates the increasingly common concept of the 
search bar, popularised by the Google Toolbar [29]. OJAX aims to be as simple, 
uncluttered and unthreatening as possible. The goal is to reflect the “simple search” 
experience while, at the same time, providing the power of an advanced search. Thus, 
the user interface has been kept as simple as possible while maintaining equivalent 
functionality with the ARC Advanced Search interface. All ARC functionality, with the 
exception of the grouping feature, is provided.

To help the intuitive flow of the operation, the fields are set out as a sentence:
Find [term(s)] in [all archives] from [earliest year] until 
[this year] in [all subjects]

Tool tips are available for text entry fields. By default, searching is on author, title and 
abstract. These fields map to the creator, title and description Dublin Core metadata 
fields [30] harvested from the original repositories. The search can be restricted by 
deselecting unwanted fields.

ARC supports both MySQL [31] and Oracle databases. MySQL has been chosen for 
OJAX as it is an open source database. Boolean search syntax has been implemented 
in OJAX to allow for more powerful searching. The syntax is similar to that used by 
Google in that it identifies AND/OR and exact phrase functionality by +/- and “ ”. 
Hence it preserves the user’s familiarity with basic Google search syntax. However, it is 
not as powerful as the full Google search syntax [32]; for example, it does not support 
query modifiers such as intitle:.

The focus of our research is the application of Ajax to the search GUI and not the 
optimisation of the power or expressive capability of the underlying search engine. 
However, the implementation of an alternative back end that uses a full text search 

6



First Published in  
Information Technology and Libraries, Vol. 25, No. 2, June 2006, pp 57-64

engine, such as Apache Lucene [33], would improve the expressive power of advanced 
queries. Full text search expressiveness is likely to be key to the usability of OJAX, 
ensuring its adequacy for the advanced user without alienating the novice.

Unifying the user interface
One of the main aims of OJAX is the unification of the user interface. Instead of 
offering distinct options for simple and advanced search and for refining a completed 
search, the interface is sufficiently dynamic to make this unnecessary. The user need 
never navigate between pages because all options, both simple and advanced, are 
available from the same page. And all results are made available on that same page in 
the form of a scrollable list. The only point at which a new page is presented is when the 
resource identifier of a result is clicked. At this stage, a pop-up window, external to the 
OJAX session, displays the full metadata for that resource. This page is generated by 
the external repository from which the record was originally harvested.

Simple and advanced search options are usually kept separate because most users are 
unwilling or unable to use the latter (Nielsen, 2001). Furthermore, the design of existing 
search user interfaces is based on the assumption that the retrieval of results will be 
sufficiently time-consuming that users will want to have selected all options 
beforehand. 

However, with OJAX, users do not have to make a complete choice of all the options 
they might want to try before they see any results. As data is entered, answers flow to 
accommodate it. Because the interface is so dynamic and responsive and because users 
are given immediate feedback, they do not have to be concerned about wasting time due 
to the wrong choice of search options. Users iterate towards the search results they 
require by manipulating the results in real time. The reduced level of investment users 
must make before they achieve any return from the system should encourage them to 
experiment, hence promoting enactive learning.

Auto-completion
In order to provide instant feedback to the user, the search terms field and the subject 
field use Ajax to auto-complete user entries. Figure 3 illustrates the result of typing 
Smith in the search terms field. A list is automatically dropped down that itemises all 
matches and the number of their occurrences. The user selects the term they want, the 
entire field is automatically completed and a search is triggered.

The ARC system denormalises some of the harvested data before it saves it in its 
database. For example, it merges all the author fields into one single field, each name 
separated by a bar character. To enable the OJAX auto-completion feature, it was 
necessary to renormalise the names.  A new table is used to store each name in a 
separate row; names are referenced by the resource identifier. To enable this, ARC’s 
indexing code was updated so that it creates this table as it indexes records extracted 
from the OAI-PMH feed. 

7



First Published in  
Information Technology and Libraries, Vol. 25, No. 2, June 2006, pp 57-64

In its initial implementation, OJAX uses a simple algorithm for auto-completion. Future 
work will involve developing a more complex heuristic that will return results more 
closely satisfying user requirements.

FIGURE 3: Auto-completion in the search terms field

Auto-search 
As already mentioned, a central theme of OJAX is the attempt to reduce the 
commitment necessary from the user before they receive feedback on their actions. One 
way in which dynamic feedback is provided is the triggering of an immediate search 
whenever an entire option has been selected. Examples of entire options include choice 
of an archive or year and acceptance of a suggested auto-completion. In addition, the 
following heuristics are used to identify when a user is likely to have finished entering a 
search term and, thus, when a search should be triggered:

1. Entering a space character in the search terms field or subject field
2. Tabbing out of a field having modified its contents
3. Five seconds of user inactivity for a modified field

The third heuristic aims to catch some of the edge cases that the other heuristics may 
miss. It is assumed likely that a term has been completed if a user has made no edits in 
the last five seconds. As each term will be separated by a space, it is only the last term 
in a search phrase that is likely not to trigger an auto-search via the first heuristic. 

The user can click the search button whenever they wish but they should never have to 
click it. The Zuggest system [8] abandons the search button entirely; OJAX retains it, 
mainly in order to avoid confounding user expectations.
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While a search is in progress, the search button is greyed out and acquires a red border. 
This is particularly useful in alerting the user that a search has been automatically 
triggered.

This is the only feature of OJAX that may have an impact on network load in terms of 
slightly higher traffic. However, the increased number of requests is offset by a 
reduction in the size of each response because the GUI is not downloaded with it. For 
example, initiating a search in ARC results in a response of average size 57.32Kb. The 
response is in the form of a complete HTML page. Initiating a search in OJAX results in 
a response of average size 7.96 Kb. The latter comprises a Web Service response in 
XML. In other words, more than seven OJAX auto-searches would have to be triggered 
before the size of the initial search result in ARC was exceeded.

Dynamic archive list
The use of Ajax enables a static HTML page to contain a small component of dynamic 
data without the entire page having to be dynamically generated on the server. OJAX 
illustrates this: the contents of the drop-down box listing the searchable archives are not 
hard-coded in the HTML page. Rather, when the page is loaded, an Ajax request for the 
set of available archives is generated.  This is a useful technique; static HTML pages 
can be cached by browsers and proxy servers, and only the dynamic portion of the data, 
perhaps that used to personalise the page, need be downloaded at the start of a new 
session.

Dynamic scrolling
Searches commonly produce thousands of results. Typical systems, such as Google and 
ARC, make these results available via a succession of separate pages, thus requiring 
users to navigate between them. Finding information by navigating multiple pages can 
take longer than scrolling down a single page (Baker, 2003) and users rarely look 
beyond the second page of search results (Nielsen, 2001). To avoid these problems and 
to encourage users to look at more of the available results, those results could be made 
available in one scrollable list. But, in a typical non-Ajax application, accessing a 
scrollable list of, say, two thousand items would require the entire list to be downloaded 
via one enormous HTML page. This would be a huge operation and, if it did not crash 
the browser, it would, at least, result in a substantial wait for the user.

The Rico library provides a feature to enable dynamic scrollable areas. It uses Ajax to 
fetch more records from the server when the user begins to scroll off the visible area. 
This is used in the display of search results in OJAX, as illustrated in Figure 4. To the 
user, it appears that the scrollable list is seamless and that all 4,678 search results are 
already downloaded. In fact, only 386 have been downloaded. The rest are available at 
the server. As the user scrolls further down, say to item 396, an Ajax request is made for 
the next 10 items. Any item downloaded is cached by the Ajax engine and need not be 
requested again if, for example, the user scrolls back up the list.
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A dynamic information panel is available to the right of the scroll bar. It shows the 
current scroll position in relation to the beginning and end of the results set. In Figure 4, 
the information panel indicates that there are 4,678 results for this particular search and 
that the current scroll position is at result number 386. This number updates instantly 
during scrolling, preserving the illusion that all results have been downloaded and 
providing the user with dynamic feedback on their progress through the results set. This 
means that users do not have to wait for the main results window to refresh to identify 
their current position.

FIGURE 4:  Display of search results and dynamic information panel

Auto-expansion of results
OJAX aims to provide a compact display of key information, enabling users to see 
multiple results simultaneously. It also aims to provide simple access to full result 
details without requiring navigation to a new Web page.

In the initial results display, only one line of the title, authors and subject and two lines 
of the abstract are shown for each item. As the cursor is hovered over the relevant field, 
the display expands to show any hidden detail in that field. At the same time, the 
background colour of the field changes to blue. When the cursor is hovered over the bar 
containing the resource identifier, all display fields for that item are expanded, as 
illustrated in Figure 5.

This expansion is enabled via simple Cascading Style Sheet (CSS) features. For 
example, the following CSS declaration hides all but the first line of authors:
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#searchResults td div 
{

overflow:hidden; 
height: 1.1em

}

When the cursor is hovered over the author details, the overflow becomes visible and 
the display field changes its dimensions to fit the text inside it:

#searchResults td div:hover 
{

overflow:visible;
height:auto

}

FIGURE 5:  Auto-expansion of all fields for item number 386

Sorting results
Another method used by OJAX to minimise upfront user investment is to provide initial 
search results before requiring the user to decide on sort options. Because results are 
available so quickly and because they can be re-sorted so rapidly, it is not necessary to 
offer pre-search selection of sort options. Ajax facilitates rapid presentation of results; 
after a re-sort, only the first screenful must be downloaded before they can be presented 
to the user.

Results may be sorted by title, author, subject, abstract and resource identifier. These 
options are listed on the grey bar immediately above the results list. Clicking one of 
these options sorts the results in ascending order; an upward pointing arrow appears to 
the right of the sort option chosen, as illustrated in Figure 6. Clicking on the option 
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again sorts in descending order and reverses the direction of the arrow. Clicking on the 
arrow removes the sort; the results revert to their original order.

Functionality for the sort feature is provided by the Rico JavaScript library. Server-side 
implementation supports these features by caching search results so that it is not 
necessary to regenerate them via a database query each time. 

FIGURE 6:  Results being sorted in ascending order by title

Search history 
Several experimental systems, for example Zuggest, have employed Ajax to facilitate a 
search history feature. A similar feature could be provided for OJAX. A button could be 
added to the right of the results list. When chosen, it could expand a collapsible search 
history side-bar. As the cursor was hovered over one of the previous searches listed in 
the side-bar, a callout, that is, a speech bubble, could be displayed. This could provide 
further information such as the number of matches for that search and a summary of the 
search results user clicked on. Clicking one of the previous searches would restore those 
search results to the main results window.

This feature would take advantage of the Ajax persistent JavaScript engine to maintain 
the history. Its use could help counter concerns about Ajax technology “breaking” the 
back button (Garrett, 2005); the feature could be implemented so that the back button 
returned the user to the previous entry in the search history. In fact, this implementation 
of back button functionality could be more useful than the implementation in Google, 
where hitting the back button is likely to take the user to an interim results page; for 
example, it might simply take the user from Page 3 of results to Page 2 of results.
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Scrapbook
A user browsing through search results on OJAX would require some simple method of 
maintaining a record of those resource details that interested them. Ajax could enable 
the development of a useful scrapbook feature to which such resource details could be 
copied and stored in the persistent JavaScript engine. OJAX could further leverage a 
shared bookmark Web Service, such as del.icio.us [34] or Furl [35], to persist the 
scrapbook for use in future sessions and to share it with other members of a research or 
interest group. 

Potential developments for OJAX 
As well as searching a database of harvested metadata, the OJAX user interface could 
also be used to search an OAI-PMH compliant repository directly. With appropriate 
implementation, all of OJAX’s current features could be made available, apart from 
auto-completion. 

A recent development has enabled the direct indexing of repositories by Google using 
OAI-PMH. [36]. The latter provides Google with additional metadata that can be 
searched via the Google Web Services APIs. The current OJAX Web Services could be 
replaced by the Google APIs, thus eliminating the need for OJAX to host any server 
side components. Hence, OJAX could become an alternative GUI for Google searching.

Conclusion 
OJAX demonstrates that the use of Ajax can enable features in Web applications hither-
to restricted to desktop applications. In OJAX, it facilitates a simple, non–threatening 
but powerful search user interface. Page navigation is eliminated; dynamic feedback 
and a low initial investment on the part of users encourage experimentation and enable 
enactive learning. The use of Ajax could similarly transform other Web applications 
aimed at library patrons.

However, Ajax is still maturing and the barrier to entry for developers remains high. We 
are a long way from an Ajax button appearing in Dreamweaver. Reusable, well-tested 
components, such as Rico, and software frameworks, such as Ruby on Rails [37], Sun’s 
J2EE framework [38] and Microsoft’s Atlas (LaMonica, 2005), will help to make 
AJAX technology accessible to a wider range of developers. 

As with all new technologies, there is a temptation to use Ajax simply because it exists. 
As Ajax matures, it is important that its focus does not become the enabling of “cool” 
features but remains the optimisation of the user experience.
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