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Abstract—Slepian’s variant I permutation coding has been
recently shown to be a fundamental steganographic tool, as it im-
plements optimum perfect steganography of memoryless sources.
Although real host signals are not memoryless, a decorrelating
energy-preserving transform can always be applied before a
method that assumes a memoryless source, as is usually done in
the dual problem of source coding. A further constraint is needed
in practice: the information-carrying signal must be close to the
host, according to some distance measure. Thus steganography of
memoryless sources using permutation coding is a rate-distortion
problem. Here we delve deeper in the study of the embedding
distortion of permutation coding, and we show that the rate-
distortion tradeoff for partitioned permutation coding is near-
optimum according to the Gel’fand and Pinsker capacity formula.

I. INTRODUCTION

According to Cachin’s criterion [1] perfect steganography
is implemented by preserving the distribution of a host signal.
If the warden is passive (i.e., the channel is noiseless), then
fulfilling this criterion is all that is required by an ideal
steganographic algorithm. In practice, Cachin’s criterion raises
an important question: what is the distribution to be preserved
when using a real signal as the host? The current consensus in
steganography research is that the distribution of real signals
is incognisable [2]. Although this seems reasonable, taking
this claim literally implies that only heuristic steganographic
methods are feasible, at best loosely inspired in Cachin’s
criterion. In fact, a heuristic path based on exploiting embed-
ding distortion functions that perform well under machine-
learning detection has been widely followed in mainstream
steganography research in recent times. But no matter how
successful this approach may be in the short term, it will
always leave fundamental questions unanswered. Most signif-
icantly, it cannot unambiguously engage with the theory of
channel coding with side information at the encoder —which
is essential to determine the optimum steganographic rate—
nor with a wealth of key results from source coding.

It is actually source coding, which has been acknowledged
as a dual problem of steganography since the early days of
this discipline [1], that lays bare the trouble with taking the
incognisability claim above at face value. If this claim were
absolutely true, then the following issue would be faced by
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source coding: an optimum encoder must rely on the distri-
bution of the signal to be compressed, but if the distribution
of real signals were completely incognisable then they could
only be compressed using heuristic algorithms. However, as
evinced by universal (or distribution-free) source coding [3],
the pragmatic answer to this question is that the empirical
distribution of the signal can always act as a proxy for
its underlying distribution. Similarly, universal steganography
(i.e., oriented to preserving the empirical host distribution)
is the matter-of-fact approach to perfect steganography, as
already noted by Cachin [1]. Distribution-free steganography is
particularly appealing from the embedder’s viewpoint, because
if the empirical distribution of the host is preserved then the
warden can never exploit a better host model.

Developing near-optimum universal source coding or
steganographic methods for signals with memory is a tall
order, since this requires taking into account all higher-order
statistics (intersample dependencies). However if the signal
is memoryless (i.e., formed by independently drawn samples)
then both optimum lossless source coding and optimum perfect
steganography need only consider its first-order statistics. In
the source coding field, arithmetic coding implements near-
optimum lossless (i.e., with near-maximum compression rate
and with perfect decompression) source coding of memoryless
sources [3] using adaptive estimation of the empirical first-
order statistics. In the steganography field, we showed in [4]
that Slepian’s variant I permutation coding [5] implements
optimum perfect (i.e., with maximum embedding rate and
histogram-preserving) steganography of memoryless sources,
and, underlining the duality between steganography and source
coding, we gave a near-optimum practical implementation of
permutation coding based on arithmetic coding and adaptive
estimation of the empirical first-order statistics. The compres-
sion rate and the embedding rate are in both cases the entropy
of the signal to be compressed or to be used as a host.

Real sources are not memoryless. Conspicuously, it is well
known that arithmetic coding does a poor job of compressing
signals with memory when relying on a memoryless adaptive
model. For this reason, lossless compression schemes proceed
in two steps: 1) application of a reversible energy-preserving
decorrelating transform; 2) compression in the transformed
domain using a near-optimum lossless source coding algorithm
for memoryless sources. The same procedure is essentially ap-
plicable in steganography, where step 2) now entails optimum



perfect steganography of memoryless sources (permutation
coding). The decorrelating transform must map integers to
integers for reversibility; the reversible Karhunen-Loève trans-
form (RKLT) [6] would appear to be the best choice, although
context-based prediction may be a more practical approach to
decorrelation. This two-step procedure decouples the problem
of optimum perfect steganography (which is addressed here)
from the problem of reversible decorrelation, thus enabling a
systematic approach to steganography of real signals.

A further constraint is needed in practice in universal
steganography: the information-carrying signal must be close
to the host signal, according to some distance measure. This
distortion constraint, not considered in Cachin’s proposal for
universal ε-secure steganography [1], is necessary in order to
approximately preserve the semantics of the host, and thus it
implicitly follows from universal steganography relying on an
empirical estimate of the host distribution1. Hence steganog-
raphy of memoryless sources using permutation coding is
a rate-distortion problem—insofar as devoid of detectability
concerns. In this paper we extend the study of the embedding
distortion of permutation coding that was started in [4], taking
a closer look at its asymptotics and at its geometric aspects.
We also show that partitioned permutation coding (introduced
in [4]) allows for a near-optimum rate-distortion tradeoff,
according to the Gel’fand and Pinsker capacity formula.

Notation and framework. Boldface lowercase Roman let-
ters are column vectors. The special symbols 1 and 0 are
the all-ones vector and the null vector, respectively. Capital
Greek letters denote matrices; the entry at row i and column
j of matrix Π is (Π)i,j . For the sake of keeping standard
conventions, the only two exceptions to this notation are the
identity matrix I and the exchange matrix J (defined later).
(·)t denotes a vector or matrix transpose. The 2-norm of a
vector u is ‖u‖ =

√
utu. Calligraphic letters are sets; |X |

is the cardinality of X . The indicator function is defined
as 1{A} = 1 if event A is true, and zero otherwise. All
logarithms are base 2. Random variables are represented by
capital letters. E{X} and Var{X} are the mean and variance
of X , respectively, H(X) is its entropy, and I(X;Y ) the
mutual information between X and Y .

A host is denoted by the vector x = [x1, x2, . . . , xn]t ∈ Vn
where V = {v1, v2, . . . , vq} ⊂ Z. We assume that x 6= 0 and
that v = [v1, v2, . . . , vq]

t gives the elements of V in increasing
order, that is, v1 < v2 < · · · < vq . The histogram of x is a
vector h = [h1, h2, . . . , hq]

t such that hk =
∑n
i=1 1{vk=xi},

and then ht1 = n; v is therefore the vector containing the or-
dered histogram bins. Let Sn be the group of all permutations
of {1, 2, . . . , n}. We denote a permutation σ ∈ Sn by means of
a vector σ = [σ1, σ2, . . . , σn]t where σi ∈ {1, 2, . . . , n} and
σi 6= σj for all i 6= j. This vector can be used in turn to define
a permutation matrix Πσ with entries (Πσ)i,j = 1{σi=j}. The
rearrangement of x using σ is the vector y = Πσ x, for which
yi = xσi

for i = 1, 2, . . . , n. Notice that two or more different

1A distortion constraint would be unnecessary if a distribution of the host
exclusively modelling semantically meaningful outcomes were available.

permutations may lead to the same rearrangement of x; we will
follow the convention that a rearrangement of x is a unique
ordering of its elements. A special case is the rearrangement
of x in nondecreasing order, which we denote by −→x . The
rearrangement of x in nonincreasing order can be obtained
from −→x as ←−x = J−→x , where J is the exchange matrix with
entries (J)i,j = 1{j=n−i+1}.

II. PERMUTATION CODES AS STEGANOGRAPHIC CODES

Any information-carrying vector y that preserves the his-
togram of x is a rearrangement of x, and thus any first-
order perfectly steganographic code must be chosen from the
set of all Slepian’s variant I permutation codes with base
codeword x [5]. If x can be rearranged into r different
vectors y(1),y(2), . . . ,y(r) then there are at most r histogram-
preserving watermarks given by w(m) = y(m) − x for
m = 1, 2, . . . , r (and hence at most r different messages);
we will drop the superindex m from y(m) and w(m) hereafter
whenever this is unambiguous from the context. The number
r of rearrangements of x only depends on its histogram h,
and it is given by the following multinomial coefficient:

r =

(
n

h

)
=

n!

h1!h2! · · ·hq!
. (1)

In the remainder we will consider Sx ⊂ Sn to be any
set of permutations leading to the r = |Sx| rearrangements
of x. The steganographic embedding rate associated to a
permutation code is ρ , (1/n) log r bits/host element. We
showed in [4] that ρ ≈ H(X), where X is a random variable
with distribution p = (1/n)h (type of x), and we also
gave therein an efficient encoding/decoding method, based
on adaptive arithmetic coding. This method allows us to
obtain y = e(x,m) = Πσx and m = d(y) for m =
1, 2, · · · , 2blog rc, sidestepping the exponential complexity of a
naive table lookup encoder/decoder inherent in (1); therefore
we assume in the remainder that any given permutation code
is implementable.

A. Embedding Distortion
A very useful way to measure the embedding distortion

is by means of the squared Euclidean distance between a
codeword y and the host x, that is, ‖w‖2 = ‖y − x‖2. It is
important to remark that if x is a decorrelated signal, then this
amount is the same in the original domain when the decor-
relating transform is energy-preserving (unitary), and so the
distortion analysis can be considered to be completely general.
Using the fact that all histogram-preserving codewords y have
the same norm ‖y‖ = ‖x‖, the squared norm (or power) of a
histogram-preserving watermark can be put as

‖w‖2 = 2 (‖x‖2 − xty) = 2 (‖x‖2 − xtΠσx) (2)

for some σ ∈ Sx. The two following embedding distortion
parameters were obtained in [4]:
• Average watermark power. With equally likely messages

this amount is ‖w‖2 , 1
r

∑r
m=1 ‖w(m)‖2, which yields

‖w‖2 = 2

(
‖x‖2 − 1

n
(xt1)2

)
= 2n s2x, (3)



where s2x is the (biased) sample variance. The centrality
of this amount in permutation coding for steganography
will become apparent throughout this paper.

• Maximum watermark power. This amount can be put as
(‖w‖2)max , maxm∈{1,2,··· ,r} ‖w(m)‖2, which yields

(‖w‖2)max = 2
(
‖x‖2 −−→x t←−x

)
.

As discussed in [4] the following two theoretical figures of
merit for the embedding distortion of permutation codes can be
put forward: 1) document-to-average watermark power ratio,
ξ , ‖x‖2/‖w‖2 and 2) document-to-worst-case watermark
power ratio ξmin , ‖x‖2/(‖w‖2)max. Obviously, ξ ≥ ξmin.
In keeping with standard conventions and where convenient
throughout the paper, we will also refer to ξ ratios in terms of
decibels (dB), by which the amount 10 log10 ξ is understood.

B. Asymptotic Behaviour of the Embedding Distortion

We will study next the asymptotic behaviour, for large n, of
the embedding distortion of a histogram-preserving codeword
drawn at random. Our purpose is to quantify a condition
under which (3) is a good predictor of the power of any
watermark, via the weak law of large numbers. A way to do
so is by obtaining Chebyshev’s bound for the random variable
‖W‖2 = 2(‖x‖2−xtΠx), which is just (2) assuming that Π is
a random permutation matrix following a uniform distribution
(for uniformly distributed messages). We know already that
E{‖W‖2} = ‖w‖2, and therefore we just need to obtain the
second moment of ‖W‖2 in order to compute its variance.
Noting that xtΠx = xtΠtx, this moment can be put as

E
{
‖W‖4

}
= 4

(
‖x‖4 − 2‖x‖2xt E{Π}x + xt E

{
ΠxxtΠt

}
x
)
,

and hence the desired variance is

Var
{
‖W‖2

}
= 4

(
xt E

{
ΠxxtΠt

}
x−

(
xt E{Π}x

)2)
. (4)

We showed in [4], as a step in the derivation of (3), that the
second expectation in (4) is

E{Π}=
1

n!

∑
σ∈Sn

Πσ =
1

n
11t, (5)

whereas the first expectation in (4) can be obtained using
the general procedure described by Daniels in [7] to eval-
uate E {Π∆Πt}. In the special case ∆ = xxt relevant to
us, Daniels’ result E {ΠxxtΠt} = a I + b11t uses b =

1
n(n−1) ((x

t1)2 − ‖x‖2) and a + b = 1
n‖x‖2. Employing this

result, after some algebraic manipulations (4) becomes

Var
{
‖W‖2

}
=

4

n− 1

(
‖x‖2 − 1

n
(xt1)2

)2

=

(
‖w‖2

)2
n− 1

.

Finally, we just use Var{‖W‖2} and E{‖W‖2} to obtain
Chebyshev’s bound for ‖W‖2. For any γ > 0, this yields

Pr
{∣∣∣‖W‖2 − ‖w‖2∣∣∣ ≥ γ‖w‖2} ≤ 1

γ2(n− 1)
. (6)

This inequality can be informally read as saying that, inde-
pendently of the host x, the embedding distortion associated
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Fig. 1. Asymptotic behaviour of embedding distortion

to a randomly drawn permutation codeword is not likely to
be too different from the average ‖w‖2 for large n. Figure 1
compares (6) to Monte Carlo computations using three hosts
randomly sampled from Lena 512× 512, for different values
of n. The actual values of x are largely irrelevant to verify (6),
because of its lack of dependence with the host. Adaptive
arithmetic decoding [4] is used to empirically generate rear-
rangements of x for messages generated uniformly at random.
Chebyshev’s bound is known to be loose, although it is
completely general and it illustrates the asymptotic behaviour.
Despite these considerations, one might still be concerned
about the rare instances in which ‖W‖2 is much larger than
the average. We will see next that these concerns will be
dispelled by the fact that the geometry of permutation coding
strictly confines the worst-case distortion.

C. Geometry and Embedding Distortion

As noted by Slepian [5] the two basic geometric properties
of permutation codes are: 1) as ‖y‖ = ‖x‖, all codewords
lie on an n-dimensional permutation sphere with center 0 and
radius ‖x‖; and 2) the codewords are really n−1 dimensional,
as they also lie on the permutation plane yt1 = xt1.

As we will show next, relevant geometric insights for
the embedding distortion analysis can be obtained from the
covering sphere of the permutation code. This is a sphere
with centre c ∈ Rn and minimum radius Rc such that for any
codeword y it holds that ‖y−c‖2 ≤ R2

c . Since the intersection
of the permutation plane and the permutation sphere is a sphere
in n − 1 dimensions that contains all histogram-preserving
codewords, then this intersection must also be the intersection
of the covering sphere with the permutation plane. In order to
obtain c and Rc we first compute the average of all codewords
y = 1

r

∑r
m=1 y

(m), or, equivalently, the barycenter of the
convex hull (polytope) spanned by all the rearrangements of x.
Using (5), this centroid is

y =
1

r

∑
σ∈Sx

Πσx =
1

n!

∑
σ∈Sn

Πσx =
1

n
(xt1)1. (7)

Since all codewords lie on the permutation plane, so does y
(yt1 = xt1). Also, y is always a point with equal coordinates,
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in the positive or negative orthant depending on the sign of
xt1 6= 0. Now, the square of the Euclidean distance of an
arbitrary codeword y to y is ‖y − y‖2 = ‖x‖2 − ‖y‖2,
where we have used yt1 = xt1. As this squared distance
is independent of y, then it must also be the square of the
covering radius, R2

c , and y must be the centre c of the covering
sphere. Using (3) and (7) we can thus write

R2
c =

1

2
‖w‖2. (8)

Note that, in passing, we have also shown that when xt1 6=
0 all codewords lie simultaneously on two different spheres:
the covering sphere centered at y with radius Rc, and the
permutation sphere. Observing (3) and (8) we can see that
Rc ≤ ‖x‖, with equality when xt1 = 0. This is the reason
why the covering sphere was not obtained in previous works
applying permutation codes to channel/source coding: in these
scenarios x can be chosen and xt1 = 0 is usually necessary for
energy minimisation purposes (see [5, equation (19)]). Clearly,
when Rc < ‖x‖ the two spheres intersect at the permutation
plane yt1 = n

√
‖x‖2 −R2

c = xt1.
Using the triangle inequality we can verify next that

‖w‖ = ‖(y − y)− (x− y)‖ ≤ 2‖y − y‖ = 2Rc, (9)

or, equivalently, that ‖w‖ cannot be greater than the diameter
of the covering sphere. Combining (8), (9) and Rc ≤ ‖x‖, we
may then write the following inequalities for the worst-case
scenario:

(‖w‖2)max ≤ 2‖w‖2 ≤ 4‖x‖2. (10)

As it can be seen from (3), equality occurs in the second
inequality in (10) when xt1 = 0. In this case, if there exist
two antipodal codewords (i.e., y = −y′), then there is also
equality in the first inequality in (10). This happens when −→x
is such that −→x i = −−→x n−i+1 for all i = 1, 2, · · · , n, the
antipodal codewords being −→x and←−x . If x is not zero sum then
there can only be equality in the first inequality in (10) when
x = v1. This fact follows from the identity (1/n)−→x t11−→x t =−→x tJ−→x t that must hold in this case, in which we also have
that ‖w‖2 = (‖w‖2)max = 0 and null embedding rate.

If x lies in the nonnegative (or nonpositive) orthant then
we can improve the second inequality in (10), as the greatest
possible diameter of the covering sphere in this special case
implies that (‖w‖2)max ≤ 2‖x‖2 (with equality when x =
[v, 0, . . . , 0]t, or any of its n rearrangements), and thus we
may replace (10) by (‖w‖2)max ≤ 2 min(‖x‖2, ‖w‖2).

The two main consequences of the geometric analysis for
the figures of merit are:
• The document-to-worst-case watermark power ratio is

lower bounded as follows:

ξmin ≥ ξ/2 ≥ 1/4. (11)

In decibels, the first inequality in (11) is ξmin ' ξ−3 dB.
Lastly, if x is in the nonnegative (or nonpositive) orthant
then we can sharpen (11) using ξmin ≥ max(1/2, ξ/2).

• The document-to-average watermark power ratio can be
expressed as a sole function of the angle θ between x
and 1 (equivalently, between any codeword y and y).
Since cos θ = xt1/(‖x‖‖1‖), we have from (3) that

ξ =
1

2 sin2 θ
.

The facts discussed in this section are schematically illus-
trated in Figure 2.

III. RATE-DISTORTION TRADEOFF

A permutation code based on x may not directly meet
a preestablished constraint ξ′ on the minimum value of ξ.
For instance, (3) implies ‖w‖2 ≤ 2‖x‖2, and thus it can
be seen that in the worst case ξ = 1/2 (≈ −3 dB). Also
from the second inequality in (11) we know that at worst
ξmin = 1/4 (≈ −6 dB) —although we have seen that this case
is vanishingly unlikely for large n. Therefore, in spite of the
fact that a permutation code does implement first-order perfect
steganography with maximum embedding rate, some form of
embedding distortion control is needed in practice, which will
lead to a decrease of the maximum rate ρ ≈ H(X).

A. Partitioned Permutation Coding
As described in [4], ξ can always be raised by restricting the

codewords to a judiciously chosen subset from the ensemble
of all histogram-preserving codewords as follows: 1) parti-
tion x into p disjoint subvectors x1,x2, · · · ,xp with lengths
n1, n2, · · · , np such that

∑p
j=1 nj = n, following some

partitioning strategy; and 2) undertake permutation coding
within each xj independently, that is, yj = Πσjxj with
σj ∈ Sxj

for j = 1, 2, · · · , p. This strategy still preserves
the histogram of x, as trivially y = Πσx for some σ ∈ Sx.
Geometrically, the permissible codewords must now lie on the
permutation ellipsoid

∑p
j=1 ‖yj‖2/‖xj‖2 = p, as well as on

the loci discussed in Section II-C.
The number of embeddable messages with partitioning is

r =
∏p
j=1 rj , where rj =

(
nj

hj

)
is the multinomial coefficient

associated to xj , and hence the embedding rate becomes

ρ =

p∑
j=1

nj
n
ρj , (12)



where ρj = (1/nj) log rj is the embedding rate for the j-
th partition. The average watermark power with partition-
ing is ‖w‖2 = (1/r)

∑r1
m1=1 · · ·

∑rp
mp=1

∑p
j=1 ‖w

(mj)
j ‖2.

This expression can be developed as follows: ‖w‖2 =∑p
j=1(1/r)

(∏p
i=1
i6=j

ri

)∑rj
mj=1 ‖w

(mj)
j ‖2 =

∑p
j=1 ‖wj‖2.

Therefore

‖w‖2 = 2

(
‖x‖2 −

p∑
j=1

1

nj
(xtj1)2

)
= 2

p∑
j=1

nj s
2
xj
, (13)

where s2xj
= ‖wj‖2/(2nj) is the sample variance of xj .

The maximum watermark power is now (‖w‖2)max =

maxm1,m2,··· ,mp

∑p
j=1 ‖w

(mj)
j ‖2 =

∑p
j=1(‖wj‖2)max.

Thus, we have that

(‖w‖2)max = 2

(
‖x‖2 −

p∑
j=1

−→xjt←−xj
)
. (14)

From expressions (13) and (14) one obtains ξ and ξmin for
the partitioned problem (see Section II-A). Importantly, the
inequalities (11) still hold for partitioned permutation coding,
because (10) holds for each of the p summands into which (13)
and (14) can be decomposed. Hence, considering the fact that
ξmin ≥ ξ/2 still holds with partitioning, it is reasonable to
focus on the rate-distortion problem for the average distortion
only, especially when recalling the asymptotic analysis in
Section II-B.

B. Near-optimality of Partitioned Permutation Coding

The optimum rate-distortion tradeoff in a problem of com-
munications with side information at the encoder, such as
steganography, is given by Gel’fand and Pinsker’s formula [8].
In a noiseless channel (passive warden) the best achievable
rate is ρ∗ = maxp(y,ũ|x) I(Y ; Ũ) − I(Ũ ;X) bits/host sample
subject to an embedding distortion constraint between Y
and X , and where Ũ is an auxiliary random variable. As
shown in [8], it is enough to consider Y = g(X, Ũ), where
g(·, ·) is a deterministic function. An additional constraint in
perfect steganography is that the distribution of Y must be
identical to the distribution of X . Hence the difference of
mutual informations in Gel’fand and Pinsker’s formula can
be developed for this problem as follows:

I(Y ; Ũ)− I(Ũ ;X) = H(X|Ũ)−H(Y |Ũ) ≤ H(X|Ũ) (15)

where the equality is because H(Y ) = H(X), and the in-
equality because the discrete entropy is nonnegative. Equality
is achieved when Y = g(Ũ), as in this case H(Y |Ũ) = 0.

Let us next analyse the embedding rate (12) of partitioned
permutation coding. As we did in [4] to approximate the
embedding rate of the unpartitioned problem, we can use
Stirling’s formula for the factorial to write ρj ≈ H(X|U = j)
bits/host sample, where U is a random variable with support
set {1, 2, · · · , p} and such that p(U = j) = nj/n (which
is the probability that X belongs to the j-th partition), and

X|(U = j) is a random variable with probability mass
function pj = (1/nj)hj . We can then approximate (12) as

ρ ≈
p∑
j=1

p(U = j) H(X|U = j) = H(X|U).

Hence, the theoretical rate of partitioned permutation coding
has the same mathematical form as the upper bound (15).
Moreover, as in the condition for equality in the inequality
in (15), the codeword sample yi is chosen nearly independently
of xi, and only depending on the partitioning strategy, which
is modelled by U . For the reasons above, U plays the same
role as Ũ in (15), and hence a careful choice of the partitioning
strategy can lead to a near-optimum rate-distortion tradeoff.

To conclude this section, note that Comesaña and Pérez-
González [9] previously pointed out that H(X) is the absolute
upper limit to the embedding rate of perfect steganography.
This is correct, since H(X|U) ≤ H(X), but the observation
in [9] does not consider an embedding distortion constraint.
Thus in [9] a high embedding distortion follows from en-
forcing the rate H(X): in fact, when E{X} = 0, the
same worst case of the average embedding distortion for
unpartitioned permutation coding given at the start of this
section (ξ = 1/2), which applies when xt1 = 0. Naturally,
if one obviates the distortion constraint in permutation coding
then ρ ≈ H(X|U) = H(X) is achievable by using one single
partition (or, equivalently, unpartitioned permutation coding).

C. Upper Bound on Rate-distortion Function

A closed-form approximate upper bound to the optimum
rate ρ∗ is possible using the Djackov-Massey-Willems dif-
ferential entropy upper bound on the discrete entropy [10]2,
which is H(X) < (1/2) log(2πe(σ2

X + 1/12)) for a discrete
random variable with support set Z and variance σ2

X . The
utility of such a bound is in letting us know the goodness of
a given partitioning strategy with respect to ρ∗, for a given
constraint on ‖w‖2. For unpartitioned permutation coding,
using the entropy approximation to the embedding rate, and
observing that the support set of X ∼ p is Z and that, from (3),
its variance is s2x = ‖w‖2/(2n), we have that the Djackov-
Massey-Willems bound yields

ρ / ρu ,
1

2
log

(
2πe

(
‖w‖2

2n
+

1

12

))
. (16)

For unpartitioned permutation coding ‖w‖2 is fixed, which
would appear to limit the interest of (16). However we will
verify next that (16) also holds for partitioned permutation
coding (i.e. for (12) and (13)), in which ‖w‖2 can be tuned
almost at will by choosing a suitable partitioning. To see
this, one just needs to apply (16) individually to each of the
partition rates ρj in (12), and then use the concavity of the

2This result is incorrectly cited as unpublished in [3, Problem 8.7].



logarithm and Jensen’s inequality, which yields

ρ/
p∑
j=1

nj
n

1

2
log

(
2πe

(
s2xj

+
1

12

))

≤ 1

2
log

2πe

p∑
j=1

nj
n

(
s2xj

+
1

12

) . (17)

Using next (13) in (17) we recover (16), and hence ρ∗ / ρu.
Importantly, (16) holds for any host, even if not memoryless if
we take into account energy-preserving decorrelation, and thus
is a fundamental rate-distortion limit in perfect steganography.

D. Optimum Partitioning Selection

The remaining question is the choice of an optimum parti-
tioning. If encoder and decoder share a partitioning strategy,
then all theoretical predictions for the partitioned problem
given in Section III-A are achievable in practice. In order to
do so the encoder partitions x and then, for j = 1, 2, · · · , p,
produces yj by undertaking adaptive arithmetic decoding of
blog rjc bits of the message to be embedded relying on the
histogram hj of xj , as discussed in [4]. The decoder partitions
y and then, for j = 1, 2, · · · , p, undertakes adaptive arithmetic
encoding of each subvector yj , thus retrieving the message.

As it will be seen later, the class of histogram-induced
partitionings is of practical utility in the optimisation problem.
The condition for a partitioning to be histogram-induced is
that the subvectors v1,v2, · · · ,vp, which contain the bins
associated with the histograms h1,h2, · · · ,hp, be pairwise
disjoint. Before discussing optimum partitioning, see that
the simplest option for encoder and decoder is to preagree
a static partitioning. In general this implies a suboptimum
rate-distortion tradeoff. However, particular static partitionings
can be practical if they almost surely lead to guaranteed
rates and small distortions. In fact, we showed in [4] that
simple histogram-induced static partitionings suffice for per-
mutation coding to outdo popular steganographic techniques
such as LSB matching (±1 steganography) and model-based
steganography, in the sense of essentially providing the same
embedding rate, distortion and efficiency as these techniques
while, unlike them, exactly preserving the first-order statistics.

An optimum rate-distortion tradeoff requires adaptive (host-
dependent) partitioning. This can be achieved as follows: 1)
encoder and decoder preagree a embedding distortion target ξ′;
2) the encoder chooses the partitioning with optimum rate
among all histogram-induced partitionings for which ξ ≥ ξ′

when applied to x, and uses it to produce y; and 3) the
decoder chooses a partitioning as in 2) but relying on y instead
of x (i.e., as if y were the host), and uses it to decode the
information embedded in y. If the optimum partitioning is
unique, both parties will agree on it through the procedure
above: crucially, the theoretical analysis yields identical results
when the host is either x or any rearrangement y for any
tentative histogram-induced partitioning —even if y was not
obtained from x through that tentative partitioning (see (12-
13)). If the optimum is not unique, both parties will still

find the same partitioning by following the same sequence
of optimisation steps. Notice that, in any case, the partitioning
used by the encoder never needs to be sent to the decoder.

The two issues with this procedure are: 1) achieving ρ∗

might require a general partitioning (i.e. not histogram-
induced); and 2) both encoder and decoder must solve a
combinatorial optimisation problem of the generalised as-
signment class, but this is known to be NP-hard (cf. the
optimal embedding function in [1]). Fortunately, an important
clue to optimum partitioning is concealed in plain sight
in (17): Jensen’s inequality is met with equality if and only if
s2xj

= ‖w‖2/(2n) for all j = 1, 2, · · · , p, that is to say, when
all partitions have the same sample variance. The adaptive
partitioning strategy proposed at the end of Section 3.2 in [4]
approximates this principle, and thus yields a rate not far away
from ρu (which is a strict upper bound, and thus unattainable).
For s = 2, assuming any host x with slowly varying histogram,
this strategy can be shown to yield ρ ≈ 1 bits/host sample and
‖w‖2 ≈ n/2, for which ρu = 1.2546 bits/host sample.

IV. CONCLUSION

We have extended the embedding distortion analysis of
permutation coding for perfect steganography of memoryless
sources started in [4]. We have also shown the near-optimality
of partitioned permutation coding in terms of its rate-distortion
tradeoff. All the facts considered, permutation coding shows
the potential to be the basis of a systematic solution to near-
optimum perfect steganography of real signals, in conjunction
with invertible decorrelation.
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