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Abstract

A companion paper considers travelling and standing waves in cascaded, lumped, mass-spring systems, controlled by two boundary actuators, one at each end, when the system is uniform. It first proposes definitions of waves in finite lumped systems. It then shows how to control the actuators to establish desired waves from rest, and to maintain them despite disturbances. The present paper extends this work to the more general, non-uniform case, when mass and spring values can be arbitrary. A special “bi-uniform” case is first studied, consisting of two different uniform cascaded systems in series, with an obvious, uncontrolled, impedance mismatch where they meet. The paper shows how boundary actuator control systems can be designed to establish, and robustly maintain, apparently pure travelling waves of constant amplitude in either the first or the second uniform section, in each case with an appropriate, partial, standing wave pattern in the other section. Then a more general non-uniform case is studied. A definition of a “pure travelling wave” in non-uniform systems is proposed. Curiously, it does not imply constant amplitude motion. It does however yield maximum power transfer between boundary actuators. The definition, and its implementation in a control system, involves extending the notions of “pure” travelling waves, of standing waves, and of input and output impedances of sources and loads, when applied to non-uniform lumped systems. Practical, robust control strategies are presented for all cases.
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1. Introduction
This paper considers defining, creating and maintaining wave-like motion in systems consisting of strings of lumped masses and springs, connected in series, driven by two actuators, one at each end, such as in Fig.1. The lumped, cascaded system is not assumed to be uniform: the mass and stiffness values, mi and ki, can vary throughout. It is assumed that two boundary actuators are necessary and sufficient to achieve wave-like behaviour within the system [1]. The paper studies how to control these two actuators, first to establish, and then to maintain, any desired, physically possible, travelling wave, standing wave, or standing wave ratio, within the non-uniform system. It also considers how to maximise the power transfer between actuators, for example if Actuator 1 is considered to be a source and Actuator 2 a load, actively controlled.
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Fig.1 A lumped mass-spring string controlled by boundary actuators

Even when the cascade is uniform, with equal masses and springs, it proves surprisingly challenging to design actuator controllers which can achieve and maintain desired wave behaviour. A prior challenge is to define, for finite lumped systems, wave concepts such as pure travelling waves, standing waves, standing wave ratios, wave speed, wave power and wave impedance. A companion paper [2] addressed these issues for the uniform case and presented actuator control strategies to achieve any desired wave-like behaviour in a robust way. 

The present paper extends this work to the more testing non-uniform mass-spring case. Now simply defining a “pure travelling wave” becomes even more problematic. To develop the ideas in a relatively simple case,  a “bi-uniform” case is first considered, consisting of two different uniform systems in series, with an obvious discontinuity between them which is remote from the boundary actuators supplying the control. Then a periodic non-uniformity is studied consisting of alternating mass values. The extension to an arbitrary non-uniformity follows, although no results are presented.
In this work it will be assumed that the actuators are ideal and that the damping is negligible. These assumptions are not essential and could be relaxed if desired. They are adopted here simply for brevity. Furthermore, the analysis will focus mainly on achieving steady-state, harmonic, wave motion of a specified frequency.
A search of the literature revealed little or no work by other researchers on boundary control of travelling waves in short, lumped systems, such as Fig.1, and nothing for the bi-uniform or arbitrarily non-uniform cases. If such work exists, the authors are unaware of it.
2. Wave analysis of lumped systems

2.1 The challenge

Waves concepts are generally applied to distributed systems of various kinds. A key feature of that analysis is that there is a finite delay before motion in one part of a system affects another part. The analysis can, therefore, be purely local (uncoupled from the totality of the system). Mathematical modelling is characterised by PDEs, derived by analyzing vanishingly small system elements, whose inherent dynamics are independent of the rest of the system and of its boundaries. This local, spatial independence helps clarify and validate many classical wave concepts, such as wave speed and wave impedance.

By contrast, in the lumped cascaded system the motion and inherent dynamics of every part are instantaneously linked to that of all the other parts of the system, and to the boundaries. The analysis of all parts of such systems should be global rather than local, including all boundary conditions, static and dynamic. There is no propagation delay, at least not as generally understood. At first sight therefore, “waves” in lumped systems are not possible, certainly not as classically defined.  Defining such concepts as local wave speeds or wave impedances within a system such as Fig.1 is even more challenging.
The equations of motion of lumped systems are ODEs. The concept of a transfer function is often used with ODEs and can help the analysis. The coupling and immediate interaction among all lumped system components can be described by transfer functions relating the motion of any part of the system, or boundary, to that of any other part. This formulation highlights the absence of a locally definable propagation speed, as everything moves together in an interconnected way.
Despite all this, it is intuitively attractive to imagine waves propagating in a mass-spring string, and so to think about such concepts as travelling waves, superposition of waves, standing waves, and wave power transfer. Also, lumped models of distributed systems are widely used in Engineering and Physics. Indeed Newton (who did not have PDEs) used a lumped model to estimate the speed of sound in air, a distributed medium. So it seems worth seeing to what extent wave concepts can be developed, rigorously defined, and applied, in finite, lumped systems.
2.2 The proposed solution: wave models

Building on previous work [2 to 5], this paper defines waves in lumped systems using the notion of a “Wave Transfer Function” (WTF). Before considering them, first consider a standard, single-input, single-output transfer function, which relates (the Laplace transform of) an output of some system (or subsystem) to its input. A transfer function is inherently “one-way”, in that its output is determined by the input and by the transfer function itself, and is not affected by any dynamic loading on the output. For valid modelling, therefore, all dynamic loading must either be included in the development of the transfer function itself, or it must be modelled by a return path from the output which then modifies the input appropriately, which in turn modifies the output.
The case of Fig.1, for example, is complicated by the presence of two external inputs. The transfer function between, say, the motion of Actuator 1 and that of the first mass, m1, depends on the entire system, as well as depending on the motion of Actuator 2 which constitutes a second, independent input. Rather than considering a dual-input transfer function, we define a single-input, single-output “wave transfer function”, WTF, as follows. The WTF (called G1 below) is the transfer function from the motion of Actuator 1 to the motion of the first mass, or from X0 to X1, based on the motion X1 would have, in response to the motion of X0, if the remainder of the system to the right were replaced by a passive system extending rightwards to infinity. In other words, to develop this WTF, we imagine Actuator 2 to be replaced by an indefinite extension of the system to the right, as suggested in the upper part of Fig.2. Equivalently, we assume Actuator 2 can simulate such an extension, in response to the rightwards-propagating motion of the last mass, Xn. “Motion” here can mean time-varying position, velocity or acceleration, for example. In what follows it will mean displacement from an initial, equilibrium position, over time.
The notional, passive extension to infinity in the definition of the WTF could be chosen in many ways, with reasonable choices giving slightly different wave interpretations of the original system. The proposed choice here is motivated by seeking the closest correspondence with classical wave definitions, as well as considerations of maximum power transfer and matching of impedance between system input and output, in a way to be described below. The choice is to make Actuator 2 behave as if it was a repeat of the nth mass, followed by mass (n-1), and so on, in a mirror image of the real system, back to Actuator 1, followed by a repeat of this entire double sequence, ad infinitum. This defines a precise dynamic loading on mass m1, which should be built into the WTF from X0 to X1. The resulting WTF can be written down relatively easily for the uniform case (see companion paper [2] or [3, 5]). For the non-uniform case it will grow in order and complexity with the system length, but, at least in principle, it can be determined exactly [3], if required. For many purposes, an approximate WTF is sufficient. (The question of evaluating and modelling such WTFs is the topic of another paper in preparation. The main points are summarised in an appendix.)

[image: image2]
Figure 2. The two notional, wave components of Fig.1, one-way left-to-right (above) and right-to-left (below). The xi of Fig.1 equals ai + bi of this figure.
The dynamics of such a notional system can be described as “one-way”, in so far as motion originating at X0 will propagate through the system and leave (via Actuator 2), as if entering the extended system, never to return. Despite the inherent dispersion arising from the lumped nature of the system, eventually all the motion originating at Actuator 1 will find its way into the notional, infinite system, and be gone from the real system for ever. 

There is also a deeper sense in which this system is “one-way”. The source of the motion for each mass is to its left, and each mass has a purely passive load to its right. Under the resulting rightwards propagating motion, each successive mass acts as an actuator for the entire system to its right. So, for example, the rightwards motion of mass m2 is determined by the rightwards motion of mass m1, with no regard for what might have caused that rightwards motion, as if m1 were an actuator in its own right. The response of m2 in response to the rightwards motion of m1 will be determined by the dynamic load to its right, extending to infinity, passively. This aspect makes it possible to model the system as a string of (one-way) transfer functions.
In the upper part of Fig.2, the right hand actuator of Fig.1 has been replaced (at least notionally) by the extended system (unshaded), and to emphasise that the resulting one-way motion will generally be different from that of Fig.1, the motion variables are labelled Ai rather than Xi. The WTF G1 is shown, defined as A1(s)/A0(s) in this one-way system. Similarly, a succession of WTFs are shown, G2 to Gn+1, each giving the response of the following mass in terms of the motion of the given mass, under the action of the same one-way motion, travelling left to right, as if each mass was the actuator for the next mass.
As outlined in [3] and summarised in the appendix, the WTFs can be determined by writing down the equation of motion of each mass in terms of its neighbours’ motions, using the WTFs to relate these motions. This provides 2n equations in 2n+1 unknown WTFs. The required extra equation comes from the periodicity condition, G2n+1 = G1. When these equations are solved for the Gi, (i = 1, 2, …, 2n), two related solutions emerge, giving two sets of WTFs. Only one of the sets gives WTFs which are strictly proper, so these are chosen. (The physical interpretation of the other set is considered in [3]).
Now the whole argument can be applied going right to left. Actuator 2 can be considered the source, and Actuator 1 imagined to respond as if the system were extended to infinity to the left, again in a mirror-image, periodic way. A second set of WTFs, Hn+1 down to H1 can thus be obtained. These also describe one-way motion in the system, now from right to left. 
The arrows in the lower part of Fig.2 show the reference mass displacement directions, not the direction of propagation of the wave motion, which is right to left. The sign convention adopted here is that the reference direction for motion of masses and actuators is always positive to the right, even when caused by leftwards-propagating waves.  So these waves have positive instantaneous values when they contribute positive (rightwards) motion to a mass through which they are propagating. This implies that whereas positive outgoing (rightwards) waves are associated with compression of the springs, the leftwards waves (when positive) cause extension of the springs. 
Although not considered here, the WTFs so defined have many interesting properties, including the absence of finite poles or zeros, and a low frequency limiting value of unity. Also, under certain conditions, Hi(s) = Gi-1(-s).
Now, the entire motion of Fig.1 can be considered as the superposition of the two, counter-propagating, one-way wave systems represented in Fig.2 (or at least the shaded parts of the latter). This is because the equation of motion of each lumped element in each one-way system in Fig.2 is the same as that of the corresponding element in the original system, Fig.1, so their superposition obeys the same equation of motion. Regarding the two actuators in Fig.1, constituting the two moving boundaries of the system, whatever motion each has can also be considered as the superposition of two motions, so X0 = A0 + B0, and Xn+1 = An+1 + Bn+1. Each actuator obviously has only one motion, determined by its inherent subcontroller, its internal dynamics, and the external dynamic load due to the flexible system. But whatever that resulting motion is, it can still be considered as the superposition of two component motions, one propagating rightwards, the other leftwards. This is a key point of this work.
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Figure 3: A complete wave model of the system in Fig.1, based on the WTFs defined by Fig.2. Xi=Ai+Bi
If it is taken, then, that the motion in Fig.1 can thus be resolved into the component motions of Fig.2, this resolution provides a new model of the system, shown in Fig.3. Figure 3 presents a new way of decomposing the motion of Fig.1, comparable in some respects to the decomposing of the motion of vibrating systems into vibration modes, although now in the time domain without assuming synchronous motion. The relevance here is that this view provides a well-defined and logically consistent way to talk about propagating waves in such lumped systems, whether long or short, uniform or not, undergoing transient or periodic motion. It also gives a basis for generalising other classical wave concepts. Furthermore, if they can indeed be measured, the wave components at the actuators show how to control the system, to achieve practical effects, such as standing waves, travelling waves, maximum power transfer, as well as the reproduction of arbitrary boundary conditions.
The wave measurement problem will now be considered.
3. Measuring the waves

To measure the notional component motions of the actuator motion, consider the control arrangement for Actuator 1 in Fig.4. The WTFs G1 and H1 are the same as in Figs.2, 3. It is assumed they are known and can be modelled in the time domain. A0 is the component of X0 corresponding to the rightwards-going wave being launched into the system by Actuator 1. The notional motion A1 = G1.A0 is that which would be in m1 if the system extended indefinitely to the right, with actuation only from the left. The actual motion of m1, namely X1, will in general be different from A1 (because the real system does not extend rightwards to infinity, and Actuator 2 can have arbitrary motion, which generally will not simulate extension to infinity). This difference between A1 and X1 is considered to be a leftwards travelling wave motion in m1. It is called B1, labelled in the control diagram. It then passes through a second WTF, H1, to produce the leftwards wave component of X0, namely B0. (See Fig.2 lower system.) This is subtracted from X0 to get A0. In this way, the rightwards and leftwards components, A0 and B0, of the actuator motion X0, are determined.
 SHAPE  \* MERGEFORMAT 



Fig. 4 Resolving actuator motions into counter-propagating wave components, A & B.

A similar arrangement resolves the motion of Actuator 2, Xn+1, into two components, An+1 and Bn+1, going rightwards and leftwards, respectively.

Thus, to resolve the motion of the lumped system into counter-propagating wave components, whether at an actuator or at any other point, two variables must be measured and two WTFs implemented in real time. It transpires that the exact WTFs in the s-domain are not easily converted to the time domain. They can however be approximated by standard transfer functions with rational polynomials in s, becoming more exact with increasing order. These can be implemented in the time domain. Some details are given in the companion paper for the uniform case. The non-uniform case is more complex: the main ideas are summarised in an appendix. But in principal sufficiently accurate, real time models can be developed for all the WTFs.
Some practical applications of all these considerations will now be presented.

4. Control of a bi-uniform system

The first non-uniform system to be considered is a “bi-uniform” mass-spring system, consisting of two mass-spring sections in series, each uniform but differing from each other. In the examples considered, the first section has masses m1, the second masses m2, and all springs are equal. The entire string is to be controlled by two actuators. Clearly there is some kind of (increased) dynamic discontinuity where the two sections meet, but neither actuator has direct access to this interface. So any control of this interface must be indirect, mediated by the dynamics of the two sections.

A model of the system was created by numerically integrating the equations of motion of the masses, starting from rest. Motion was initiated by moving the actuators, assumed to be ideal. The actuator control systems were then applied to this system model, using where appropriate values measured in the model.
In the first arrangement, the WTFs in the control system of Actuator 1 were set to be those of a uniform system (extending to infinity) with mass m1; the WTFs for Actuator 2 also used a uniform system, but based on mass m2. A sinusoidal wave was given as the input to Actuator 1, at R in Fig.4. The control arrangement ensures R=A0. Added to this external (driving) input was the measured return wave, B0, to cause the actuator to absorb it (while simultaneously still launching the input motion), as shown in Fig.4. At Actuator 2, the only input was the measured outgoing wave, An+1, so that, in effect, it was acting as an absorbing boundary, simulating an m2-uniform extension to infinity. The results obtained are shown in Fig.5, starting from rest. There were 17 masses in total, 10 of mass m1=1kg, 7 of mass m2=4kg. The springs were all 1 N/m and the driving frequency is 0.2 rad/sec.   
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Fig. 5: After transient, partial standing waves in first system, X1-X10; pure travelling waves in second, X11-X17.
After the initial transient from rest, the system quickly settles to a steady pattern. In the first section of the system there is a partial standing wave pattern, with varying amplitudes. In the second, there is a wave of constant amplitude travelling rightwards, which might be described as a pure travelling wave (at least when it is within this section). Figure 6 shows the corresponding amplitude envelope along the system a short time after the start-up.  This result is consistent with the theory outlined above.
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Figure 6. The amplitude envelope for Fig.5, showing standing wave pattern in masses 1 to 10, and an almost pure travelling wave in masses 10 to 17.
Thus, in the first section, the standing wave arises because part of the launch wave from the left is being reflected at the interface, superposing on the outgoing wave, creating the varying amplitude pattern, or partial standing wave. The reflected part travels back to Actuator 1, where it is absorbed by the effect of adding B0 to the actuator input, as shown. Meanwhile the transmitted part enters the second uniform session, and sees a boundary ahead which, by dint to An+1 in the input to Actuator 2, mimics a uniform system extending to infinity with dynamics matching the second part of the real system. At steady state, therefore, this becomes a pure travelling wave, of constant amplitude, travelling to the right. 
This was a good beginning to the work. It may be the first time such an effect has been achieved deliberately. Note that the controller can achieve the desired condition quickly from rest, or from any initial condition. Also, it is found that, if the system is disturbed, the control system quickly reacts to overcome the disturbance and recreate the pattern. In other words, the control system is both rapid and robust.
The relative magnitudes of the waves transmitted and reflected at the interface at steady state correspond to the classical impedance mismatch condition, provided the appropriate impedance values are used (as described below). This is confirmed in the model by measuring the magnitude of the transmitted wave and the size of the standing wave ratio in the first section.
The next experiment was to try to eliminate the standing wave in the first section, to achieve a uniform amplitude there, like a travelling wave, propagating rightwards. To this end, a leftwards wave was launched at Actuator 2, input L, designed, with just the right magnitude, to cancel the reflected part of the wave arriving at the interface from Actuator 1. In this way a pure travelling wave, of constant amplitude, travelling rightwards could indeed be established in the first section. Meanwhile the second section displayed a partial standing wave pattern, due to the superposition of the bi-directional waves now present there. The result is shown in Fig.7, with the amplitude envelope in Fig.8. (The control arrangement ensures Bn+1=L.)
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Fig. 7: After transient, pure travelling waves in first system, X1-X10; standing waves in second, X11-X17.
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Fig. 8: Wave envelope corresponding to Fig.7, showing pure travelling wave and partial standing wave patterns.

Thus a uniform, pure travelling wave can be quickly established and maintained in either section of the bi-uniform system. But each case is always accompanied by non-uniform motion, or partial standing wave pattern, in the other section. So neither situation constitutes a pure travelling wave from Actuator 1 to Actuator 2, that is, across the entire bi-uniform system. In fact, it is not obvious how to define a pure travelling wave in such a non-uniform system, nor how it might be recognised once established. For example, it seems likely that the motion amplitudes will no longer be uniform in either section, as if there were partial standing waves in each of them. The question arising in this bi-uniform case is more general. How might (pure) travelling waves be defined in non-uniform systems in general?
The wave model provides an answer. Thus, a pure travelling wave in Fig.1 would cause it to move like the upper part of Fig.2. This in turn implies that the Xi = Ai, and that the Bi=0, for all i. In other words, there would be only a rightwards propagating wave in Fig.1 and zero leftwards wave, at every point in the system. To achieve this, the uniform WTFs used in G1 and H1 would have to be replaced by WTFs which modelled the bi-uniform system extending to infinity. As this is challenging to implement in practice, if not in theory, a simpler case was considered instead.

5. Periodic non-uniformity
The non-uniform system of Fig.1 was implemented with mass m1 followed by a different mass m2, followed by a repetition of the same m1 - m2 pattern. All the springs were the same. This choice of non-uniformity, with every second mass equal, was mainly to keep the modelling of the corresponding WTFs as simple as possible. The repeated unit has only two masses and two springs, which in turn keeps the order of the models of the WTFs to more manageable levels. The system, nevertheless, is still clearly non-uniform, at least locally. A similar pattern of non-uniform units, repeating periodically, might be found in certain, chain-like, flexible structures, so the case may be of more than academic interest.
The WTF G1 was set to model the transfer function between the actuator and the first mass in this system assumed to be extended to infinity. Similarly for H1, but with the order of masses reversed. The masses were chosen with m2 = 16m1, and 9 masses were used in total. Again a sinusoidal input was applied at R with the system initially at rest. The response is shown in Fig. 9. After the transient, a pattern of alternating amplitudes emerges. Curiously, the lighter masses have smaller amplitudes than the heavier. Even though the ratio of masses is 16, the difference in amplitudes is small. The small-scale periodicity in the response is not too surprising, given the small-scale periodic non-uniformity. This special case however confirms that pure travelling waves in non-uniform systems do not have uniform amplitudes.
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Fig. 6: Motion pattern in periodically non-uniform cascaded, lumped system
It is not expected that new difficulties will arise in extending this work to arbitrarily non-uniform systems, with arbitrarily varying springs and masses, other than the extra computational load in developing and implementing WTFs for these cases.
The problem is now considered from the perspectives of power and impedance.
6. Power and impedance
6.1 Power
In various engineering problems there is an interest in studying the power being transmitted through a flexible system, in this case from actuator to actuator. Actuator 1 might represent a power source, perhaps moving harmonically, and Actuator 2 an active load, in which case the question would arise: how might Actuator 2 be controlled to maximize the power arriving there from Actuator 1? For a given harmonic motion of Actuator 1, changing the motion of Actuator 2 (in magnitude or phase) affects the power being absorbed at Actuator 2 and also the power being reflected back into the system. But in addition it affects the power coming out of Actuator 1 and how much power returning to Actuator 1 is absorbed there. Again, an apparently simple question proves deeper than expected. 
The ratio of average power-out to average power-in, at steady state, is not a useful measure of power transfer. It will always be unity. This is simply because there can be no steady-state accumulation of energy within the system. So the average power leaving the system at one actuator will always equal that entering at the other, which will also be the average power flow measured at any point along the system.
It is here conjectured that the maximum power will be transferred, for minimum motion of any part of the system, when there is a pure traveling wave propagating from actuator to actuator, as defined above. In fact, this maximum power condition could provide an alternative criterion for, or even definition of, a pure traveling wave, with the advantage that it also applies to lumped, non-uniform systems.
In general there can be more motion with less power. In fact, in the limit there can be large motion with zero power transfer, corresponding to a pure standing wave. Maximum power corresponds to maximization of the traveling wave component, and a minimization of the standing wave component: that is, having a pure traveling wave and no standing wave. When the system is not uniform this target situation will not be immediately recognizable as a pure traveling wave, as the varying amplitudes along the system will give the impression of standing waves.

So if this power conjecture is valid, how might a pure traveling wave be recognized? One answer is that, with a pure traveling wave, the instantaneous power flow at every point will never be negative. By contrast, with a standing wave, the instantaneous power will be positive and negative at different points in a cycle. When these positive and negative values are equal, the average power will be zero, indicating a pure standing wave. But with a pure traveling wave, the instantaneous power flow at every point will oscillate, twice per cycle, between a maximum positive and zero, without ever going negative. Depending on the varying mass or spring values, the amplitude of the corresponding motion will vary by just the right amount to ensure that the average power, or rate of energy transfer along the cascaded system, will remain constant.
As noted above, a pure traveling wave in a non-uniform system could look like a partial standing wave. One might even grant that it is not just an appearance, but that there is some kind of standing wave really present, with associated energy staying in the system. But if so, the same argument applies even to the uniform case. Uniform, pure, travelling wave motion becomes possible only after a certain amount of energy has been stored in the system, during the transient phase needed to attain steady-state. In both the uniform and non-uniform cases, however, such arguable standing waves will be the minimum necessary to allow maximum power transfer by a traveling wave, and it is probably more logical to describe this situation as having no standing wave, despite the “standing” energy.
Now consider the establishment of “real” standing waves in non-uniform systems. Due to the non-uniformity, the usual measure of the standing wave ratio, as the ratio of the maximum to minimum amplitude in the standing wave envelope, will no longer apply. But again the wave model provides a possible context. In the control system of Fig.3, the input to Actuator 2 is shown as An+1, the measured outgoing wave. This causes the actuator to absorb waves arriving at the actuator, thereby creating travelling waves with no reflection. If instead An+1 is multiplied by a factor ranging between 0 and 2, before entering the actuator, different reflection conditions can be set up, causing a reflection coefficient ranging between -1 and +1. Associated with each value will be a precise standing wave ratio. The details will be exactly as in the uniform case, considered in [2]. This provides a way of both defining and achieving any desired standing wave ratio, as well as simulating any desired boundary condition at Actuator 2.
6.2 Impedance

Mechanical impedance can be defined as the ratio of force to velocity. But in a lumped system such as in Fig.1, the apparent impedance at any point (that is, the ratio of spring force to mass velocity), has little meaning or usefulness. This is especially true for transients in the time domain, when such a ratio is hard to define, but it applies even assuming harmonic excitation and steady state, when the ratio can be expressed as a complex number. That complex number will convey little useful information. 
In a wave context wave impedance and wave velocity are used to characterize a wave medium and especially to analyze propagation discontinuities at points where the impedance changes. However in a lumped system one could view each lumped element as causing a change in impedance and so as a source of dispersion, with partial transmission and partial reflection.

Finally, the concepts of input and output impedance are frequently invoked, in the context of power transfer and measurement. Again, in a lumped system, how these might be defined is not clear.

The proposed wave model provides clear and consistent answers to these challenges. From the wave perspective, the difficulties referred to above arise precisely because there is two-way motion happening in the lumped system. By separating the motion into one-way component waves, the three concepts of impedance, propagation power, and propagation velocity can be associated with the one-way, component waves, which in turn are described by the WTFs. Thus the impedance at a point, say to the immediate right, or to the immediate left, of any mass, has two values, one for each direction of propagation of the component waves. For example, the impedance at Actuator 1, looking forward, is defined as the force in the first spring associated with the rightwards travelling wave component divided by the actuator velocity associated with the same rightwards-travelling wave component. Ref [3] shows how to express this in terms of the relevant WTFs, in this case, G1.
This impedance looking to the right can be considered the input impedance to the flexible system as seen by Actuator 1 under the proposed control system. Clearly it is not constant during transient behavior, but it can become constant under harmonic excitation at steady state. In addition, the wave returning to Actuator 1 sees an impedance associated with H1. So the control system gives the (ideal) actuator an apparent input impedance for waves arriving to it from the right.
As previously noted, there is some degree of arbitrariness in defining the wave model, which can be associated with different ways of (notionally) extending the system to infinity. Another choice would lead to slightly different WTFs and so slightly different impedance values. But the proposed choice is the only one which, when implemented in the boundary control systems, leads to non-reversing instantaneous, energy flow (power transfer) throughout the system, and maximum power transfer (for a given motion at Actuator 1) when its version of a pure travelling wave is used. These two features are objective and measurable, and so their achievement, in retrospect, is an objective endorsement of the proposed wave model.

Note that the proposed choice also makes the impedance looking forward into Actuator 2 a mirror image of the impedance which the waves arriving at that point have just experienced. A dynamic symmetry is achieved which minimizes the impedance mismatch at the point and so maximizes the power transferred from the system into Actuator 2. This intuitively attractive result has been confirmed by the numerical simulation.
If Actuator 1 is considered to be an energy source, Actuator 2 is acting as an energy absorber, or load. The situation just described can be considered a generalization of the matching impedance criteria in electrical engineering, where maximum power is transferred when the load impedance is the complex conjugate of the source impedance. It is an extension which now applies to lumped, non-uniform systems.
At this point many results of classical wave and circuit theory can be seen to apply. Bringing together various viewpoints, it is proposed that the following concepts or conditions are exactly equivalent: a) maximum absorption of incident waves; b) minimum reflection of incident waves; c) pure traveling waves; d) no standing waves (or the minimum necessary to allow pure traveling waves); d) maximum power transfer; e) matching of input impedance of absorber to output impedance of system; f) the instantaneous power not going negative at any point; g) a standing wave ratio of unity. 
Without the concepts introduced above, and the notional resolving of Fig.1 into Fig.2, these results would not even have a defined meaning in the context of lumped, non-uniform systems. The work can therefore be seen as a generalization of wave theory, extending it from distributed systems to embrace lumped systems.
7. Conclusions
This paper has shown how pure travelling waves in cascaded, lumped, mass-spring systems can be a) defined, b) established, and c) maintained, by suitably controlling two boundary actuators, one at each end. These are not trivial challenges, despite first appearances, and despite the simple dynamical systems involved. 
A companion paper considered the uniform case. This paper extended this work to the non-uniform case. It proved necessary first to extend many classical wave concepts. The paper proposes specific ways to do this, defining such concepts as travelling waves, standing waves, input and output impedances, and impedance matching, all for non-uniform, lumped systems.
One of the practical benefits is the development of control strategies to enable real actuators to achieve desired wave effects in real systems, including a postulated maximum power transfer condition. The resulting control systems achieve the desired wave behaviour rapidly from rest, and maintain them robustly. 
Much of this work is believed to be novel.
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Appendix: Developing and modelling Wave Transfer Functions
In Fig. 2, A1=G1.A0, A2=G2.A1 = G2.G1.A0, etc. up to G2n=Gi.A0, i=1,2, … 2n, where the Gi are the WTFs which need to be found.
The equation of motion of each mass, m1, m2, … mn, and continuing into the extended system with, mn, mn-1, … back to m1, can be expressed, in the s-domain, in terms of the values of the masses and the springs, all of which are arbitrary. The equations will be of position variables Xi(s), or Ai(s), and neighbouring values Ai±1(s), (i=1,2, … 2n). These variables in turn can all be expressed in terms of, say, A0 and the Gi (cf. first sentence above). Assuming A0≠0, this provides 2n equations in 2n+1 unknown WTFs. The required extra equation comes from the periodicity condition, G2n+1 = G1. When these equations are solved for the Gi, (i = 1, 2, …, 2n), two related solutions emerge, giving two sets of WTFs. Only one of the sets gives WTFs which are strictly proper, so these are chosen. (The physical interpretation of the other set is considered in [3]). 
In the uniform case, because all the Gi are equal, only one equation of motion is needed, yielding a quadratic in G, with two solutions, only one of which is proper. It is 
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where 
. As this WTF G(s) is challenging to implement exactly, it can be approximated by the following recursive formula, with successively better approximations, Gi, obtained from the previous approximation, Gi-1, beginning with G0.   
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where 
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. The order of the WTF approximations G0, G1, G2,…is 2, 5, 11… Results presented in the paper used an 11th order (G2) approximation for the WTF (A.1). 
The paper describes how a non-uniform system can be considered as a periodic structure extending to infinity, where the repeating part of the structure corresponds to the finite uniform system with a mirror image appended. For an n-mass system, this substructure will have 2n masses, and so 2n WTFs, which are imagined to repeat in series, indefinitely. So, at a higher level, the non-uniform structure can be considered to be a uniform string of (equal) substructures (each with the same 2n WTFs), repeating uniformly and indefinitely. This view allows some of the techniques used for the simple uniform system to be extended to the non-uniform case, at least in principle, even if the practical implications quickly become challenging.

To limit the complexity, while testing the main idea, the paper limited the non-uniformity to an alternating mass structure, so that the repeated substructure had two (different) masses and two (equal) springs, described by two WTFs, say G1 and G2, imagined to repeat indefinitely. Following a similar technique to the above, the equations for these two WTFs gave 4 solutions
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where
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Thus, the repeating unit, G1.G2, can be expressed as:
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Again, this exact expression for the subsystem WTF G1G2 is not easily implemented in a real-time controller, but as before it can be approximated by a recursive formula (A. 7) with starting value (A. 8), as follows:
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To extend the same idea to higher order repeated units, symbolic maths software becomes very useful, if not essential. But the same ideas apply, and there are no problems in principle in going to larger non-uniform systems, with arbitrary mass and spring values, should it be required to approach perfection. In practice, very good control results (sufficiently good for most practical purposes) can be obtained with controllers based on lower order WTFs.
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