
Title Impact of non-deterministic software execution times in SmartGrid applications

Authors(s) Smith, David, Olariu, Cristian, Perry, Philip, Murphy, John

Publication date 2015-06-25

Publication information Smith, David, Cristian Olariu, Philip Perry, and John Murphy. “Impact of Non-Deterministic

Software Execution Times in SmartGrid Applications.” IEEE, June 25, 2015.

https://doi.org/10.1109/ISSC.2015.7163775.

Conference details 2015 26th Irish Signals and Systems Conference (ISSC), 24 - 25 June 2015

Publisher IEEE

Item record/more

information

http://hdl.handle.net/10197/7520

Publisher's statement © © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing this

material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.

Publisher's version (DOI) 10.1109/ISSC.2015.7163775

Downloaded 2025-06-06 09:26:20

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=Impact+of+non-deterministic+software+...&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F7520

Impact of Non-Deterministic Software Execution

Times in SmartGrid Applications
David Smith, Cristian Olariu, Philip Perry, John Murphy

University College Dublin, Ireland

Abstract—Electricity companies will only allow customers to

inject power into the grid network if the customer’s system is in

synch with both frequency and phase as the grid itself. This is

normally achieved using a specialised machine sold by the energy

provider. It may be possible to achieve this via low cost, low power

nodes such as a Raspberry Pi, to synchronize frequency and phase

as well as voltage and current. In order to synchronize to

microsecond or nanosecond precision, the hardware being

deployed must in itself be able to achieve said precision when

coupled with software. In this paper we evaluate the level of non-

deterministic execution times in two versions of a widespread

embedded compute platform, namely Raspberry Pi.

Keywords—SmartGrid, IoT, Timing, Software

I. INTRODUCTION

The deployment of renewable power sources using the
concept of microgeneration systems connected to microgrids is
becoming an important tool in the diversification of energy
sources, but requires considerable control [1]. The use of such
systems can be somewhat enhanced through the use of low cost
hardware with embedded software at the distributed nodes both
for monitoring the microgeneration system and implementing
adaptations requested by the central controller. In AC systems,
the nodes must measure voltage, current, frequency and phase,
while DC systems need to measure voltage and current.

Although measured data and control signals can be
communicated between the nodes using a number of
communications protocols [2], it seems likely that the increasing
emphasis on the Internet of Things motivates the use of a TCP/IP
approach to communications which, in turn, motivates the use
of readily available platforms such as Raspberry Pi (Pi),
Arduino, Beaglebone or ODROID. Until recently such systems
used single core CPUs, but the use of quad-core CPUs is now a
possibility and this may make such platforms more reliable for
SmartGrid and microgrid control. In particular, variation in the
execution time of software embedded in the node can have a
significant impact on the monitoring accuracy.

The non-deterministic execution time for any given
computer programme has historically been of little concern in
the majority of applications. However, as software moves
towards physical systems through the concept of Cyber Physical
Systems (CPS), the question of how to make the software be
synchronised to some real world events or clocks becomes
increasingly important [3].

In this paper, the level of variability of the software
execution is explored for two comparable compute platforms,
one with a single core and one with a quad core, viz. the RPi B+
and the RPi 2. This will form a basis for deciding which types of
compute platform are likely to be able to satisfy the requirements
of a microgrid controller implementation.

II. SOURCES OF VARIABILITY

The most obvious source of variability in software execution
time is the inherent drift of the CPU’s clock frequency with
temperature. This is caused by the small frequency drift of the
crystal oscillator that provides the CPU with a reference
frequency for its Phase Locked loop (PLL). This can be
corrected by using a synchronisation protocol such as the
Network Time Protocol (NTP) [4]. The RPi platforms
investigated here typically exhibit frequency errors of the order
of 100 parts per million (ppm) which translates to an error of less
than 12.5ns in the period of the 8kHz signals investigated here.

Another source of variation arises mainly in single core
CPUs which must do a number of housekeeping activities as
well as perform the function specified in the software
programme. These activities include running the Operating
System (which can be either command line Unix or a Graphical
User Interface (GUI)) and managing the interfaces to the
network and peripheral devices. With a multicore system, these
overhead activities can be managed by one core, while the
software programme is executed by a second core and further
programmes can be executed by other cores if they are available.
Since the type of control function envisaged here is a periodic
polling of a sensor or Analogue to Digital Converter (ADC),
each iteration of the code will have an approximately constant
execution time required for the loop that can be calibrated by
adjusting the time delays in the “wait” functions of the code.
However, the variation caused by slightly different timing of
events at the CPU are unavoidable, so there will be some
irreducible jitter associated with the execution time.

This paper presents preliminary measurements of the
variability of the execution of a simple measurement trigger
process to evaluate the impact of the variability in software
execution time on the ability to perform such triggering reliably.

Fig. 1 Histograms from set of tests carried out on both Pi's showing frequency each period. (X-Axis scale in us)

III. EXPERIMENT

Testbed:

The testbed consisted of two Raspberry Pi’s (PI’s), the older
B+ model, and the newer Pi 2 model. The B+ has a single
700MHz broadcom processor and 512MB of RAM. The Pi 2 has
a quad core 900MHz broadcom processor and 1GB of RAM.
These were connected to a 100MHz Oscilloscope via their
General Purpose Input Output (GPIO) pins and they were
connected via ssh on another machine.

Setup:

To assess the timing differences associated with a single core
CPU vs. a quad core we utilized the GPIO pins on both Pi’s.
These pins allow the user to set them to High (3.3V) or Low
(0V). The 8kHz frequency was chosen because it is often used
in voice sampling applications so there are many low cost chips
available to capture and process this sampling rate. Since the
compute platforms selected are similar to the CPUs used in

smartphones, the test results could also be relevant to the
performance of a low cost, low power Voice over IP node. In the
context of smartgrid control, this sampling rate equates to a
sample every 2.25 degrees of phase at 50Hz which seems
adequate for the control system envisaged.

Software:

The trigger signal uses the rising edge of an 8kHz square
wave (period=125usec) which was generated on the GPIO pin
by running this simple loop:

While()

 Assert Pin.0 “High”

 Wait 62us

 Assert Pin.0 “Low”

 Wait 63us

 0

 5

 10

 15

 20

 25

 30

 35

 125 126 127 128 129 130

RPi B+, no GUI

 0

 5

 10

 15

 20

 25

 30

 35

 125 126 127 128 129 130

RPi B+, with GUI

 0

 5

 10

 15

 20

 25

 30

 35

 125 126 127

RPi 2, no GUI

 0

 5

 10

 15

 20

 25

 30

 35

 125 126 127

RPi 2, with GUI

 0

 5

 10

 15

 20

 25

 30

 35

 124 125 126 127

RPi 2, no GUI, 4 threads

Endwhile

Fig. 2 Boxplot from set of tests carried out on both Pi's (Scale in us).

Although many programmers use Python to programme
their RPi’s, most (if not all) libraries used in Python to assert
GPIO pins are not suitable for time critical applications.
Therefore the tests here used the C programming language by
leveraging the WiringPi Library. The period of the square wave
was set to 125usec and made no attempt to correct for any
inherent latency in the system execution. This was connected to
a 100MHz Oscilloscope to measure the period of the switching
of states.

The tests consisted of two configurations for each Pi, one
with the GUI turned off and the other with the GUI left on. This
allows for both cases where a Pi might not just be used as a
sensor to some central system but also as a monitoring hub in
itself. For each configuration the system was allowed to warm
up to stabilise any thermal influence and then ran the loop

constantly and took 100 measurements of the period of the
square wave.

IV. RESULTS

After collecting and analysing the results it was clear that the
quad core CPU was significantly more stable than the single core
case. This could be clearly seen by the outliers and higher jitter
which appeared in the Raspberry Pi B+ data. The outliers were
so far outside of the data range that it completely skewed the rest
of the plots, so they have been omitted. In the Pi B+ with no GUI
running it had just one major outlier, which was 12us from the
median. When the GUI was turned on with the Pi B+ it produced
6 outliers, ranging from 15us to 30us from the median. Despite
only measuring 6 outliers, significant jitter was apparent on the

 124

 125

 126

 127

 128

 129

 130

RPi B+, no GUI RPi B+, with GUI RPi 2, no GUI RPi 2, with GUI RPi 2, no GUI, 4 threads
 124

 125

 126

 127

 128

 129

 130

RPi B+, no GUI RPi B+, with GUI RPi 2, no GUI RPi 2, with GUI RPi 2, no GUI, 4 threads
 124

 125

 126

 127

 128

 129

 130

RPi B+, no GUI RPi B+, with GUI RPi 2, no GUI RPi 2, with GUI RPi 2, no GUI, 4 threads
 124

 125

 126

 127

 128

 129

 130

RPi B+, no GUI RPi B+, with GUI RPi 2, no GUI RPi 2, with GUI RPi 2, no GUI, 4 threads
 124

 125

 126

 127

 128

 129

 130

RPi B+, no GUI RPi B+, with GUI RPi 2, no GUI RPi 2, with GUI RPi 2, no GUI, 4 threads

oscilloscope when the Pi B+ was running the GUI. These
outliers occur every few seconds and lasted for milliseconds
which would have severe impact on the microgrid monitoring
system.

Despite the Pi B+ having a slower CPU clock speed than the
Pi 2, it still managed to output the 8KHz signal with relatively
high precision. The C program that generates the 8KHz signal
loop runs on a single core, since the Pi B+ and Pi 2 have a similar
clock speed, 700MHz vs 900MHz respectively and similar
GPIO circuitry, it is unlikely that the timing variations are due
to the hardware performance. The difference lies with the
Raspbian OS (R Pi version of Debian) which is running in the
background. In the case of the Pi B+ the same core that is
running the loop is also running the OS, whereas with the Pi 2
another separate core looks after the OS and any housekeeping
that needs to be done or running the ssh client. Both the Pi’s
were connected to another machine via ethernet and an ssh
connection was established to control and monitor them. This is
representative of how a Pi would be used in a smartgrid
application as the monitor data will be relayed to a central hub
via the Internet.

The results are presented in Figure 1 and 2. Figure 1 is the
set of tests across the two Pi’s plotted on the same axes. Fig. 1
shows the frequency of the specific time interval for each test.
Where the y-axis shows the number of instances and the x-axis
is the microsecond periods. Fig. 2 is the same results but it
boxplot format. Y-axis in microseconds.

The first two plots are the Pi B+ without a GUI and with, the
3rd and 4th are the Pi 2 without a GUI and with, and the last
result is the Pi 2 with 4 threads running concurrently. From the
histogram it can be seen that a significant right shift has occurred
with the Pi B+ both with and without GUI with respect to the Pi
2. This shows that running the OS and running the ssh client
causes increased jitter and further delay in software execution
time. The jitter can be seen by the spread of the histogram, with
much more outliers than the Pi 2 also.

The Pi 2’s results are less spread, this illustrates that the other
cores were able to manage the OS and ssh client without
impacting on the timing as much. There were no major outliers
with the Pi 2 and all of the periods were within 2.5us of the
specified period.

Despite the program setting the transition to occur at 125us
intervals, it is noted that a few of the results returned less that
125us periods. This is because of the delayMicroseconds()
function which is used to force the program to wait a fixed
period of time. This function has a rounding function built into
it, whereby the delay will be rounded either up or down to the
nearest clock cycle, thus causing about 6 results with less than
125us period.

When the Pi B+ was given any other task to do, its
performance deteriorated to an unacceptable level. In this test, a
second thread was created which generated another clock signal
on a second GPIO pin. It was clear that the Pi B+ swapped
between threads at 10ms intervals which resulted in 10ms bursts
of clock cycles on the pins punctuated by 10ms of inactivity
while the CPU processed the other thread. When similar tests
were performed on the Pi 2, up to four simultaneous threads

were mapped to the four cores with no thread swapping required.
The core that was running the C programme and also managing
the housekeeping showed a small degradation of performance
relative to the other cores. This is illustrated in the last plot of
Figure 1 where the jitter is more similar the Pi B+ but that is to
be expected since all four cores are fully occupied. Despite this
the median remained constant with respect to the previous two
tests performed on the Pi 2.

In Figure 2 the outliers are more clearly distinguished and
the differences between the two Pi’s is much easier to make. The
boxplots show the median, the upper and lower quartiles and the
min and max excluding outliers. It is to be noted that once again
not all of the outliers for the Pi B+ are shown on the plots, this
is because they would skew the plots to make them unreadable.
From the plot it may seem that the Pi B+ with GUI is in fact
performing better than the Pi B+ without GUI, but the reality is
that the GUI made the number of outliers increase significantly,
and they are not shown.

It is easy to see the median across the tests remained the
same, the difference between the two Pi’s is 1us, this 1us of extra
delay is a mixture of the slightly slower clock speed, coupled
with the OS and ssh client loading the single core. When the
quad core test with four concurrent threads was run, it produced
many outliers, but this was expected, all these outliers are in the
graph below and none are omitted. However when as few as two
threads were ran on the Pi B+, the results had such bad jitter that
the tests couldn’t be completed conclusively and to the same
degree.

Further tests were carried out to validate the results produced
above. Since the Pi B+ and Pi 2 run at different base clock speeds
700MHz and 900MHz respectively, the Pi 2 was locked to
700MHz. The result from this test showed a ~22% increase in
the median overhead. That was an extra delay of 250ns. This
result was expected as it further illustrated that the Pi B+ was
slower due to its single core having to run the OS and also
perform any housekeeping, and that the different clock speed
only marginally affected the results because during this test, no
major outliers were found.

In order to ensure the clocks of the Pi's were not skewing
apart during the previous tests, they were both synchronized
using NTP for at least 24 hours, and the tests were redone. These
now synchronized systems produced the same results that we
have shown above, so the clock skew was not impacting on the
results in any significant way.

The ODROID-C1 is another embedded system which is very
similar to the Raspberry Pi, however, it runs a 1.5GHz quad core.
The increased clock speed offered a chance to evaluate the
limitations of the lesser powered cpu's of the Pi B+ and Pi 2.
Using the Odroids, the same test was performed and the median
cycle time was 125.4us, versus 126.15 on the Pi 2. This result,
showed clock speed was inversely proportional to overhead
within these two very similar systems. The Pi 2 having a
900MHz clock and Odroid with 1.5GHz, a 66% increase in
clock speed produced a 65% decrease in overhead. The Odroid
C1 did not produce any significant outliers.

V. CONCLUSION

In this work we have shown that the newer quad core
processors which have become ubiquitous among low cost, low
power nodes such as the Raspberry Pi, Arduino, Beaglebone and
ODROID are far superior in terms of reducing the non-
deterministic software execution times. We mentioned that jitter
in execution time can be caused by a number of factors, namely
the temperature variations of the crystal oscillator used in the
system. As well the OS and other housekeeping tasks or
networking such as an ssh connection or WiFi can affect the time
taken for a simple loop to execute. By paying particular attention
to the outliers that appeared in the Pi B+ tests we have shown
that handling the OS as well as any other mildly demanding task
is just too much for the Pi B+, also when a GUI is introduced it
further increases the variability. In general, any low power single
core processor which has to run even a lightweight OS, such as
a SmartGrid controller, would be unreliable to maintain and
monitor phase and frequency when its own software has
variations of microseconds. Even keeping their own time
correctly would be a problem, when the variation in such a
simple loop is in the tens of microseconds with a GUI running,
it is to be expected the microsecond precision offered by NTP
for example would not be achievable at all.

In the future we plan to adopt quad core nodes as part of a
SmartGrid controller which will be used to monitor and
synchronize the phase, frequency, voltage and current of itself
with respect to the grid, and to possibly synchronize
neighbouring nodes also. This research has been useful to

establish the impact of running low cost, low power, single CPU
nodes on a timing sensitive software deployment.

VI. ACKNOWLEDGEMENTS

Supported, in part, by Science Foundation Ireland grant
10/CE/I1855 and by Science Foundation Ireland grant
13/RC/2094.

References

[1] [1] Dragicevic, T.; Guerrero, J.M.; Vasquez, J.C.; Skrlec, D.,
"Supervisory Control of an Adaptive-Droop Regulated DC Microgrid
With Battery Management Capability," Power Electronics, IEEE
Transactions on , vol.29, no.2, pp.695,706, Feb. 2014.

[2] [2] Sedghisigarchi, K.; Eslami, Y.; Davari, A.; Wilkerson, S., "A real-time
testbed for coordinated control of inverters in LV microgrids," Energy
Conference (ENERGYCON), 2014 IEEE International , vol., no.,
pp.147,152, 13-16 May 2014.

[3] [3] Lee, E.A., "It's about Time: Leveraging Clock Synchronization for
Distributed Real-Time Programming," Object/Component/Service-
Oriented Real-Time Distributed Computing (ISORC), 2014 IEEE 17th
International Symposium on , vol., no., pp.213,213, 10-12 June 2014.

[4] D. Mills,’Internet Time Synchronization : The Network Time Protocol’,
IEEE Trans. on Comm. vol.39, no.10, :pp.1482-1493, October 1991.

