
Title Impact of non-deterministic software execution times in SmartGrid applications

Authors(s) Smith, David, Olariu, Cristian, Perry, Philip, Murphy, John

Publication date 2015-06-25

Publication information Smith, David, Cristian Olariu, Philip Perry, and John Murphy. “Impact of Non-Deterministic 

Software Execution Times in SmartGrid Applications.” IEEE, June 25, 2015. 

https://doi.org/10.1109/ISSC.2015.7163775.

Conference details 2015 26th Irish Signals and Systems Conference (ISSC), 24 - 25 June 2015

Publisher IEEE

Item record/more 

information

http://hdl.handle.net/10197/7520

Publisher's statement © © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be 

obtained for all other uses, in any current or future media, including reprinting/republishing this 

material for advertising or promotional purposes, creating new collective works, for resale or 

redistribution to servers or lists, or reuse of any copyrighted component of this work in other 

works.

Publisher's version (DOI) 10.1109/ISSC.2015.7163775

Downloaded 2025-06-06 09:26:20

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=Impact+of+non-deterministic+software+...&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F7520


Impact of Non-Deterministic Software Execution 

Times in SmartGrid Applications 
David Smith, Cristian Olariu, Philip Perry, John Murphy  

University College Dublin, Ireland 

 
Abstract—Electricity companies will only allow customers to 

inject power into the grid network if the customer’s system is in 

synch with both frequency and phase as the grid itself. This is 

normally achieved using a specialised machine sold by the energy 

provider. It may be possible to achieve this via low cost, low power 

nodes such as a Raspberry Pi, to synchronize frequency and phase 

as well as voltage and current. In order to synchronize to 

microsecond or nanosecond precision, the hardware being 

deployed must in itself be able to achieve said precision when 

coupled with software. In this paper we evaluate the level of non-

deterministic execution times in two versions of a widespread 

embedded compute platform, namely Raspberry Pi. 
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I.  INTRODUCTION 

The deployment of renewable power sources using the 
concept of microgeneration systems connected to microgrids is 
becoming an important tool in the diversification of energy 
sources, but requires considerable control [1]. The use of such 
systems can be somewhat enhanced through the use of low cost 
hardware with embedded software at the distributed nodes both 
for monitoring the microgeneration system and implementing 
adaptations requested by the central controller. In AC systems, 
the nodes must measure voltage, current, frequency and phase, 
while DC systems need to measure voltage and current. 

Although measured data and control signals can be 
communicated between the nodes using a number of 
communications protocols [2], it seems likely that the increasing 
emphasis on the Internet of Things motivates the use of a TCP/IP 
approach to communications which, in turn, motivates the use 
of readily available platforms such as Raspberry Pi (Pi), 
Arduino, Beaglebone or ODROID. Until recently such systems 
used single core CPUs, but the use of quad-core CPUs is now a 
possibility and this may make such platforms more reliable for 
SmartGrid and microgrid control. In particular, variation in the 
execution time of software embedded in the node can have a 
significant impact on the monitoring accuracy. 

The non-deterministic execution time for any given 
computer programme has historically been of little concern in 
the majority of applications. However, as software moves 
towards physical systems through the concept of Cyber Physical 
Systems (CPS), the question of how to make the software be 
synchronised to some real world events or clocks becomes 
increasingly important [3]. 

In this paper, the level of variability of the software 
execution is explored for two comparable compute platforms, 
one with a single core and one with a quad core, viz. the RPi B+ 
and the RPi 2. This will form a basis for deciding which types of 
compute platform are likely to be able to satisfy the requirements 
of a microgrid controller implementation. 

II. SOURCES OF VARIABILITY 

The most obvious source of variability in software execution 
time is the inherent drift of the CPU’s clock frequency with 
temperature. This is caused by the small frequency drift of the 
crystal oscillator that provides the CPU with a reference 
frequency for its Phase Locked loop (PLL). This can be 
corrected by using a synchronisation protocol such as the 
Network Time Protocol (NTP) [4]. The RPi platforms 
investigated here typically exhibit frequency errors of the order 
of 100 parts per million (ppm) which translates to an error of less 
than 12.5ns in the period of the 8kHz signals investigated here. 

Another source of variation arises mainly in single core 
CPUs which must do a number of housekeeping activities as 
well as perform the function specified in the software 
programme. These activities include running the Operating 
System (which can be either command line Unix or a Graphical 
User Interface (GUI)) and managing the interfaces to the 
network and peripheral devices. With a multicore system, these 
overhead activities can be managed by one core, while the 
software programme is executed by a second core and further 
programmes can be executed by other cores if they are available. 
Since the type of control function envisaged here is a periodic 
polling of a sensor or Analogue to Digital Converter (ADC), 
each iteration of the code will have an approximately constant 
execution time required for the loop that can be calibrated by 
adjusting the time delays in the “wait” functions of the code. 
However, the variation caused by slightly different timing of 
events at the CPU are unavoidable, so there will be some 
irreducible jitter associated with the execution time. 

This paper presents preliminary measurements of the 
variability of the execution of a simple measurement trigger 
process to evaluate the impact of the variability in software 
execution time on the ability to perform such triggering reliably. 

 
 

 



 
Fig. 1 Histograms from set of tests carried out on both Pi's showing frequency each period. (X-Axis scale in us) 

 

 

 

III. EXPERIMENT 

Testbed: 

The testbed consisted of two Raspberry Pi’s (PI’s), the older 
B+ model, and the newer Pi 2 model. The B+ has a single 
700MHz broadcom processor and 512MB of RAM. The Pi 2 has 
a quad core 900MHz broadcom processor and 1GB of RAM. 
These were connected to a 100MHz Oscilloscope via their 
General Purpose Input Output (GPIO) pins and they were 
connected via ssh on another machine. 

 

Setup: 

To assess the timing differences associated with a single core 
CPU vs. a quad core we utilized the GPIO pins on both Pi’s. 
These pins allow the user to set them to High (3.3V) or Low 
(0V). The 8kHz frequency was chosen because it is often used 
in voice sampling applications so there are many low cost chips 
available to capture and process this sampling rate. Since the 
compute platforms selected are similar to the CPUs used in 

smartphones, the test results could also be relevant to the 
performance of a low cost, low power Voice over IP node. In the 
context of smartgrid control, this sampling rate equates to a 
sample every 2.25 degrees of phase at 50Hz which seems 
adequate for the control system envisaged. 

 

Software: 

The trigger signal uses the rising edge of an 8kHz square 
wave (period=125usec) which was generated on the GPIO pin 
by running this simple loop: 

 

While() 

   Assert Pin.0 “High” 

   Wait 62us 

   Assert Pin.0 “Low” 

   Wait 63us 
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Endwhile 

 

 

 

 

Fig. 2 Boxplot from set of tests carried out on both Pi's (Scale in us). 

 

 

 

Although many programmers use Python to programme 
their RPi’s, most (if not all) libraries used in Python to assert 
GPIO pins are not suitable for time critical applications. 
Therefore the tests here used the C programming language by 
leveraging the WiringPi Library. The period of the square wave 
was set to 125usec and made no attempt to correct for any 
inherent latency in the system execution. This was connected to 
a 100MHz Oscilloscope to measure the period of the switching 
of states.   

The tests consisted of two configurations for each Pi, one 
with the GUI turned off and the other with the GUI left on. This 
allows for both cases where a Pi might not just be used as a 
sensor to some central system but also as a monitoring hub in 
itself. For each configuration the system was allowed to warm 
up to stabilise any thermal influence and then ran the loop 

constantly and took 100 measurements of the period of the 
square wave.   

 
 

IV. RESULTS 

 

After collecting and analysing the results it was clear that the 
quad core CPU was significantly more stable than the single core 
case. This could be clearly seen by the outliers and higher jitter 
which appeared in the Raspberry Pi B+ data. The outliers were 
so far outside of the data range that it completely skewed the rest 
of the plots, so they have been omitted. In the Pi B+ with no GUI 
running it had just one major outlier, which was 12us from the 
median. When the GUI was turned on with the Pi B+ it produced 
6 outliers, ranging from 15us to 30us from the median. Despite 
only measuring 6 outliers, significant jitter was apparent on the 
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oscilloscope when the Pi B+ was running the GUI. These 
outliers occur every few seconds and lasted for milliseconds 
which would have severe impact on the microgrid monitoring 
system. 

Despite the Pi B+ having a slower CPU clock speed than the 
Pi 2, it still managed to output the 8KHz signal with relatively 
high precision. The C program that generates the 8KHz signal 
loop runs on a single core, since the Pi B+ and Pi 2 have a similar 
clock speed, 700MHz vs 900MHz respectively and similar 
GPIO circuitry, it is unlikely that the timing variations are due 
to the hardware performance. The difference lies with the 
Raspbian OS (R Pi version of Debian) which is running in the 
background. In the case of the Pi B+ the same core that is 
running the loop is also running the OS, whereas with the Pi 2 
another separate core looks after the OS and any housekeeping 
that needs to be done or running the ssh client.  Both the Pi’s 
were connected to another machine via ethernet and an ssh 
connection was established to control and monitor them. This is 
representative of how a Pi would be used in a smartgrid 
application as the monitor data will be relayed to a central hub 
via the Internet.  

The results are presented in Figure 1 and 2. Figure 1 is the 
set of tests across the two Pi’s plotted on the same axes. Fig. 1 
shows the frequency of the specific time interval for each test. 
Where the y-axis shows the number of instances and the x-axis 
is the microsecond periods. Fig. 2 is the same results but it 
boxplot format. Y-axis in microseconds.  

The first two plots are the Pi B+ without a GUI and with, the 
3rd and 4th are the Pi 2 without a GUI and with, and the last 
result is the Pi 2 with 4 threads running concurrently. From the 
histogram it can be seen that a significant right shift has occurred 
with the Pi B+ both with and without GUI with respect to the Pi 
2. This shows that running the OS and running the ssh client 
causes increased jitter and further delay in software execution 
time. The jitter can be seen by the spread of the histogram, with 
much more outliers than the Pi 2 also. 

The Pi 2’s results are less spread, this illustrates that the other 
cores were able to manage the OS and ssh client without 
impacting on the timing as much. There were no major outliers 
with the Pi 2 and all of the periods were within 2.5us of the 
specified period. 

Despite the program setting the transition to occur at 125us 
intervals, it is noted that a few of the results returned less that 
125us periods. This is because of the delayMicroseconds() 
function which is used to force the program to wait a fixed 
period of time. This function has a rounding function built into 
it, whereby the delay will be rounded either up or down to the 
nearest clock cycle, thus causing about 6 results with less than 
125us period.  

When the Pi B+ was given any other task to do, its 
performance deteriorated to an unacceptable level. In this test, a 
second thread was created which generated another clock signal 
on a second GPIO pin. It was clear that the Pi B+ swapped 
between threads at 10ms intervals which resulted in 10ms bursts 
of clock cycles on the pins punctuated by 10ms of inactivity 
while the CPU processed the other thread. When similar tests 
were performed on the Pi 2, up to four simultaneous threads 

were mapped to the four cores with no thread swapping required. 
The core that was running the C programme and also managing 
the housekeeping showed a small degradation of performance 
relative to the other cores. This is illustrated in the last plot of 
Figure 1 where the jitter is more similar the Pi B+ but that is to 
be expected since all four cores are fully occupied. Despite this 
the median remained constant with respect to the previous two 
tests performed on the Pi 2.  

In Figure 2 the outliers are more clearly distinguished and 
the differences between the two Pi’s is much easier to make. The 
boxplots show the median, the upper and lower quartiles and the 
min and max excluding outliers. It is to be noted that once again 
not all of the outliers for the Pi B+ are shown on the plots, this 
is because they would skew the plots to make them unreadable. 
From the plot it may seem that the Pi B+ with GUI is in fact 
performing better than the Pi B+ without GUI, but the reality is 
that the GUI made the number of outliers increase significantly, 
and they are not shown. 

It is easy to see the median across the tests remained the 
same, the difference between the two Pi’s is 1us, this 1us of extra 
delay is a mixture of the slightly slower clock speed, coupled 
with the OS and ssh client loading the single core. When the 
quad core test with four concurrent threads was run, it produced 
many outliers, but this was expected, all these outliers are in the 
graph below and none are omitted. However when as few as two 
threads were ran on the Pi B+, the results had such bad jitter that 
the tests couldn’t be completed conclusively and to the same 
degree. 

Further tests were carried out to validate the results produced 
above. Since the Pi B+ and Pi 2 run at different base clock speeds 
700MHz and 900MHz respectively, the Pi 2 was locked to 
700MHz. The result from this test showed a ~22% increase in 
the median overhead. That was an extra delay of 250ns. This 
result was expected as it further illustrated that the Pi B+ was 
slower due to its single core having to run the OS and also 
perform any housekeeping, and that the different clock speed 
only marginally affected the results because during this test, no 
major outliers were found. 

In order to ensure the clocks of the Pi's were not skewing 
apart during the previous tests, they were both synchronized 
using NTP for at least 24 hours, and the tests were redone. These 
now synchronized systems produced the same results that we 
have shown above, so the clock skew was not impacting on the 
results in any significant way.   

The ODROID-C1 is another embedded system which is very 
similar to the Raspberry Pi, however, it runs a 1.5GHz quad core. 
The increased clock speed offered a chance to evaluate the 
limitations of the lesser powered cpu's of the Pi B+ and Pi 2. 
Using the Odroids, the same test was performed and the median 
cycle time was 125.4us, versus 126.15 on the Pi 2. This result, 
showed clock speed was inversely proportional to overhead 
within these two very similar systems. The Pi 2 having a 
900MHz clock and Odroid with 1.5GHz, a 66% increase in 
clock speed produced a 65% decrease in overhead. The Odroid 
C1 did not produce any significant outliers.                                        
 



V. CONCLUSION 

In this work we have shown that the newer quad core 
processors which have become ubiquitous among low cost, low 
power nodes such as the Raspberry Pi, Arduino, Beaglebone and 
ODROID are far superior in terms of reducing the non-
deterministic software execution times. We mentioned that jitter 
in execution time can be caused by a number of factors, namely 
the temperature variations of the crystal oscillator used in the 
system. As well the OS and other housekeeping tasks or 
networking such as an ssh connection or WiFi can affect the time 
taken for a simple loop to execute. By paying particular attention 
to the outliers that appeared in the Pi B+ tests we have shown 
that handling the OS as well as any other mildly demanding task 
is just too much for the Pi B+, also when a GUI is introduced it 
further increases the variability. In general, any low power single 
core processor which has to run even a lightweight OS, such as 
a SmartGrid controller, would be unreliable to maintain and 
monitor phase and frequency when its own software has 
variations of microseconds. Even keeping their own time 
correctly would be a problem, when the variation in such a 
simple loop is in the tens of microseconds with a GUI running, 
it is to be expected the microsecond precision offered by NTP 
for example would not be achievable at all.  

In the future we plan to adopt quad core nodes as part of a 
SmartGrid controller which will be used to monitor and 
synchronize the phase, frequency, voltage and current of itself 
with respect to the grid, and to possibly synchronize 
neighbouring nodes also. This research has been useful to 

establish the impact of running low cost, low power, single CPU 
nodes on a timing sensitive software deployment. 
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