

Research Repository UCD

Title	Increasing Legume and Soil Moisture Content Increases N2O Emissions from Soil Following Fertiliser N Application
Authors(s)	Bracken, Conor, Lanigan, Gary, Richards, Karl, Müller, Christoph, Tracy, Saoirse, Grant, Jim, Murphy, Paul
Publication date	2018-12-05
Publication information	Bracken, Conor, Gary Lanigan, Karl Richards, Christoph Müller, Saoirse Tracy, Jim Grant, and Paul Murphy. "Increasing Legume and Soil Moisture Content Increases N2O Emissions from Soil Following Fertiliser N Application," 2018.
Conference details	Soils for Society, University College Dublin, Ireland, 5 December 2018
Item record/more information	http://hdl.handle.net/10197/12425

Downloaded 2024-03-28T04:02:09Z

The UCD community has made this article openly available. Please share how this access benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

Increasing Legume and Soil Moisture Content Increases N₂O Emissions from Soil Following Fertiliser N Application

Conor Bracken^{a,b,c}, Gary Lanigan^c, Karl Richards^c, Christoph Müller^{b,d}, Saoirse Tracy^{a,b}, James Grant^e, Paul Murphy^{a,b}

^aUCD School of Agriculture and Food Science; ^bUCD Earth Institute; ^cTeagasc, Environmental Research Center, Johnstown Castle; ^dDepartment of Plant Ecology, Justus-Liebig University; ^eTeagasc, Food Research Center, Ashtown

Introduction

- N₂O potent greenhouse gas
- Linked to N inputs, soil moisture and land management practices¹
- Sources of N₂O emitted from soil nitrification or denitrification.²⁻³

Materials and Methods

Figure 1: Conceptual drawing of restricted simplex-centroid design⁴, field plots at UCD Lyons Research Farm, and sampling of gas from static chambers to determine N₂O fluxes.

Results

- N₂O emissions greater from wet soil conditions (Fig. 2).
- Significant interaction of grass with soil moisture (p<0.05).
- Increasing legume proportions significantly increase emissions (p<0.01, Fig. 3).

Soil Moisture

Wet

Ambient

Soil Moisture

Wet

Ambient

Figure 2: Temporal N₂O fluxes

Figure 3: Legume effect on N₂O

containing N-fixing legumes.

Discussion and Conclusion

- Legume-rich swards had greater N₂O emissions. (However, uniform fertilizer N).
- N₂O emissions higher under wetter soil conditions.

References

- ¹Liang, L. *et al.* (2016). "Multivariate regulation of soil CO₂ and N₂O pulse emissions from agricultural soils." Global Change Biology **22**: 1286-1298.
- ²Nõmmik, H. (1956). "Investigations on denitrification in soil." <u>Acta Agriculturæ Scandinavica</u> **6**: 195-228.

 ³Davidson, E. A. (1991). "Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes." J. E. Rogers and W. B. Whitman. Washington DC, American Society for Microbiology: 219-235.
- ⁴ Grace, C., *et al.* (2018). "The effect of varying levels of nitrogen input on the annual and seasonal dry matter yield of multispecies mixtures compared to a perennial ryegrass monoculture." Under review.

Acknowledgements

conditions.

The authors would like to thank the Teagasc Walsh Fellowship Scheme and the UCD Seed Funding Scheme for financially supporting this work. Many thanks to E Brennan, D Krol, L Roche, M Harty and C Somers who contributed technical advice and support to this work.

Important to adjust N fertiliser rates for swards

Time applications to avoid overly wet soil

UCD Earth Institute

Better understand today's world. Inform solutions for tomorrow.

