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  Development of  Occupancy-integrated Archetypes: 
Use of  Data Mining Clustering Techniques to embed 

occupant behaviour profiles in archetypes 
 

Buttitta Giuseppina, Turner William J.N., Neu Olivier, Finn Donal P. 

University College Dublin, Dublin D04 V1W8, Ireland 

Abstract 

Building stock modelling usually deploys representative building archetypes to obtain reliable results of annual 

energy heating demand and to minimise the associated computational cost. Available methodologies define 

archetypes considering only the physical characteristics of buildings. Uniform occupancy schedules, which 

correspond to national averages, are generally used in archetype energy simulations, despite evidence of occupancy 

schedules which can vary considerably for each building. This paper presents a new methodology to define 

occupancy-integrated archetypes. The novel feature of these archetype models is the integration of different 

occupancy schedules within the archetype itself. This allows building stock energy simulations of national 

population subgroups characterised by specific occupancy profiles to be undertaken. The importance of including 

occupant-related data in residential archetypes, which is different than the national average, is demonstrated by 

applying the methodology to the UK national building stock. The resultant occupancy-integrated archetypes are 

then modelled to obtain the annual final heating energy demand. It is shown that the relative difference between 

the heating demand of occupancy-integrated archetypes and uniform occupancy archetypes can be up to 30%.  
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1 Introduction 

This paper introduces a new methodology that utilises data-mining clustering techniques to augment building 

archetype definitions with occupancy schedule information. Occupancy schedules identify the time periods during 

which dwellings are unoccupied or actively occupied. Dwellings are considered to be actively occupied, when at 

least one person is in the house and not asleep. The proposed archetypes are classified as occupancy-integrated 

archetypes. To date building archetypes have been largely characterised on the basis of building form and fabric data 

[1–3]. The addition of occupancy information adds an important dimension to the archetype definition, as user 

behaviour is known to have a significant influence on energy usage within the residential sector [4]. In particular, 

capturing the wide variation in user behaviour leads to more accurate energy demand simulation of building stock 

models, which can be used to estimate the energy consumption and to evaluate the effects of potential energy 

policies.  

New energy policies are prompted by the increased penetration of renewable energy resources and the 

associated need to reduce the use of fossil fuels for space and domestic water heating loads in the residential sector. 



  
 

Within a European context,  the promotion of renewable energy measures and the reduction of energy 

consumption and greenhouse gas emissions are key policy components of European short and long-term strategic 

goals [5-7]. Improving the energy performance of the residential building sector represents a key pathway to 

achieving EU energy targets, as this sector accounts for approximately 25% of   energy consumption [8]. Amongst 

the different energy policies,  the development of smart grids with integrated energy-flexible buildings, has been 

identified as a critical target towards this goal [9]. Energy-flexible buildings have the capability of adjusting their 

electricity demand to produce desirable changes in the magnitude and shape of their electricity loads, while 

retaining customer satisfaction and occupant comfort [10].  

It is essential that building stock models provide reliable results in a transparent way in order to use them in 

the development of energy policies [4, 11]. The evaluation of the energy consumption of large building stock is 

challenging and has been approached in different ways by various researchers [12 – 16]. In these papers ([12 –16]), 

two distinct methodologies can be identified: top-down and bottom-up. The top-down approach is based on 

analysis of performance data of the entire building stock and does not distinguish individual end-users. In contrast, 

the bottom-up approach is based on the estimation of the energy consumption of individual buildings representing 

the building stock. For this reason, a bottom-up approach is useful when the aim of the analysis is the large-scale 

assessment of the contribution of each building towards the aggregate energy consumption of the entire building 

stock. The bottom-up approach can be used to examine the effect and impact of new policies and technologies, 

and to assess customer engagement at an individual level. The bottom-up approach includes the archetype 

approach [12]. This approach is based on the classification of stock buildings within groups which are defined by 

similar characteristics, and are then represented by unique buildings called archetypes [16]. Archetypes are statistical 

composites of building category features, identified considering simplifications that depend on the intended 

analysis [17]. The main advantage of this technique is the reduction of the simulation time and overhead, as the 

number of archetypes is reduced compared to the total number of buildings in the stock.   

Many methodologies to develop archetypes have been implemented in recent years [1–3]. A clear methodology 

is described in [1], where archetype characteristics are defined using four steps: 

1. Segmentation: the number of archetypes is determined by partitioning the building stock according to pre-

determined segmentation criteria, such as construction period and dwelling size/form; 

2. Characterisation: each archetype is described by its technical characteristics, such as fabric U-value; 

3. Quantification: the distribution of archetype buildings is determined in order to be representative of the 

building stock; 

4. Validation: the final energy demand of the building stock is calculated using the defined archetypes and it 

is compared with data. 

The methodology developed in [1] can be integrated with the one developed in [2], which can be used to define 

archetype technical characteristics which are part of  the “Characterisation” step. These technical characteristics 

can be gathered into four main data subsets: form, envelope, operation and heating system  [2]. The ‘form’ subset 

indicates the general geometry of the buildings, the ‘envelope’ subset considers the thermophysical properties of 

building envelopes, the ‘system’ subset includes the heating and cooling systems, as well as any HVAC and lighting 

systems, and the ‘operation’ subset indicates the parameters which affect the usage of the building and are 



  
 

expressed by means of a set of schedules, such as occupancy schedules. Once the building archetypes are defined, 

the energy consumption estimates of the archetypes can be scaled to be representative of the entire building stock, 

by multiplying the energy consumed by each archetype by the number of houses that it represents within the 

building stock [1]. 

The most common segmentation parameters used in literature are: shape, age, climate, heating system and 

primary energy [16, 18]. These parameters can define archetypes in just three (form, envelope, and system) of the 

four subsets which must be used according to [2]. However, archetypes must also be defined using data from the 

operation subset, but there is no developed methodology to classify residential archetypes considering operational 

schedules. From the reviewed literature, none of the available methodologies include occupant-related variables in 

their definition of residential archetypes, despite the observation that operation subset data should be included in 

the archetype definition process, as argued by [2]. The generalisation of occupancy schedules is considered one of 

the major shortcomings of current building stock energy models [11, 19], because energy consumption profiles are 

strongly correlated to occupancy schedules [20]. Additionally, several studies [3, 21] demonstrated that parameters 

which depend on occupancy schedules, such us heating patterns, have the strongest impact on building space 

heating energy demand. The analysis of measured living-room temperatures in the UK [22] showed that a large 

variability in internal temperature and heating pattern parameters exist between homes, challenging the assumption 

that one occupancy schedule fits all [23].  

The use of non-differentiated occupancy schedules could be justifiable to model energy consumption at 

national level, because the behavioural variations amongst the individual households tend to even out when 

considered at large scale. However, this approach is not appropriate when it is used in national population 

subgroups, as the deviation of occupancy schedules from the national average becomes more significant in smaller 

population groups [11, 24]. The implementation of differentiated heating patterns for subgroups of the population 

is crucial to predict heating energy demand correctly. Thus, in order to apply the archetype approach to population 

subgroups, it is important to understand how to include occupant-related variables (i.e., occupancy schedules) as 

operational inputs to residential archetypes.  

The aim of the present paper is to develop a methodology that identifies the population subgroups 

characterised by similar occupancy schedules. These schedules are further embedded into building archetype 

models to improve the estimation of annual final heating energy consumption in residential building stock, where 

the annual final heating energy consumption indicates the energy required to heat the building at the desired 

temperature, regardless of the deployed heating system.  These types of archetypes, hereafter called Occupancy-

integrated archetypes, can be used to improve building stock energy predictions when the occupancy profiles are 

different than the national average. The proposed methodology uses the k-modes clustering technique to achieve 

this aim [25]. Clustering is a common technique used for statistical data analysis, which partitions datasets into sets 

of well-defined groups (clusters), whose elements exhibit common similarities compared to other groups [26]. This 

technique has been presented in previous works of the authors [27 – 29] to group together population subgroups 

characterised by similar occupancy profiles. The k-mode technique has also been used in [20] to recognise 

behaviour patterns from the American Time Use Survey (ATUS), which was then used as input to the 

demographic-based probability neural networks to simulate occupancy behaviour, while hierarchical clustering has 



  
 

been used by other researchers [30]. The novelty introduced by the current paper is the use of the occupancy 

profiles obtained from clustering to characterise archetypes. In the current paper, the clustering approach is applied 

to datasets from national Time Use Surveys (TUS) in order to identify households characterised by similar 

occupancy schedules. These occupancy schedules are used to ascertain appropriate heating patterns, which are 

then integrated within the archetype to improve the estimation of annual final heating energy consumption in 

residential buildings. The heating patterns directly correlate to occupancy schedules, which are used as one of the 

segmentation parameters in the residential archetype definition. This proposed novel approach allows the 

definition of differentiated heating patterns in different archetypes, in order to capture the diversity of residential 

heating energy demand in building stock characterized by different percentage of households having different 

occupancy profiles. 

The methodology developed here is applied to existing UK housing stock data. The results of the energy model 

using the archetypes are further compared with results obtained using the standard heating patterns for the UK 

[31] and against data collected in the National Energy Efficiency Data-Framework (NEED) [32]. Moreover, 

because the adoption of a unique representative set-point for all the archetypes is not realistic, a sensitivity analysis 

on the influence of the required average internal temperature on energy consumption is also undertaken.  

The remainder of the paper is arranged as follows. Section 2 describes the methodology. Section 3 evaluates 

the developed archetypes by comparing the annual final heating energy consumption obtained from simulations 

of the archetypes against the NEED data. The results are obtained considering different required average internal 

temperature to evaluate the impact of this variable on the annual final heating energy consumption. Section 4 

presents the results of the described methodology. The potential applications and limitations of the methodology 

are described in Section 5. Section 6 concludes the paper. 

2 Methodology 

This section describes the methodology by which the occupancy-integrated archetype characteristics are 

defined, with a special focus on occupant-related characteristics. The introduced methodology is schematised in 

the “Archetype definition” sub-section of Figure 1. Archetype characteristics can be defined in three steps:  

i. Variable Identification: where all the relevant variables are identified;  

ii. Building Stock Segmentation: where the number of archetypes is determined by partitioning the building 

stock according to determined segmentation criteria, such as construction period and dwelling shape;  

iii. Characterisation: where each archetype is described by its technical characteristics, such as U-value. 

The final archetype characteristics chosen depend on the intended use of the archetype models [17]. For the 

current research, the intended use is to analyse the annual final heating energy demand of residential building stock. 

In the current paper, archetypes are defined using the “envelope” and “form” subsets by adapting and combining 

the methodologies presented in [1–3]. Occupancy schedules are developed to define archetypes in the “operation” 

subset. These correspond to the most common schedules of the building stock, which are obtained by applying 

the clustering technique to the data collected by national Time Use Surveys (TUSs), as in [20, 28].  This novelty 



  
 

significantly enhances the usefulness of the archetype approach and allows better discrimination of energy end-use 

based on household groups. The operation subset is also defined by the climate zone. Once occupancy-integrated 

archetypes are defined, they are modelled in EnergyPlus (Version 8.5) and the annual final heating energy 

consumption is analysed and compared with reference data to validate the archetype models.  

The terms which are used in the methodology are defined as follows: `occupant state' indicates the condition 

of the person who occupies the house, which can be active, non-active or absent; `active occupant' indicates a 

person who is in the house and not asleep; `non-active occupant' defines a person who is in the house and 

asleep; `absent' indicates a person who is not in the house; `household state' indicates the condition of the entire 

household, which depends on the individual occupant state (e.g., if the occupant state of all occupants is ‘non-

active’, the household occupant state will be ‘non-active’ as well); `household daily occupancy profile' indicates 

the sequence of the household states during one day.  

In the following sections, each of the three aforementioned steps of the methodology (Variable Identification, 

Segmentation, Characterisation) is described in further detail. 

 

Figure 1 Overview of the proposed archetype development model 

2.1 Step 1 - Variable Identification 

Step 1 is concerned with the identification of the variables which predominantly influence residential heating 

energy consumption. The process is fundamental as the number of variables which affects the heating demand of 

buildings is immense and it is not possible to take into account all of them in the archetype definitions. The variable 

identification has been previously performed in [3]. In the paper [3], the most important variables linked to the 



  
 

energy consumption are selected via a literature review, and then they are ranked in terms of impact by performing 

a regression analysis. The results of the regression analysis show that the most relevant variables affecting heating 

energy consumption, from highest to lowest impact, are: internal temperature; weekly occupancy schedules 

(occupancy schedules during the week); air change rate; domestic hot water (DHW) use frequency. However, these 

variables are not sufficient to provide the parameters to define representative archetypes, thus additional variables 

were selected from the literature review and included: wall, ceiling, floor and window U-values; dwelling geometry; 

heating system; DHW system; dwelling floor area; climate. 

In the current paper, the approach utilised in [3] to identify archetype variables is applied to the UK building 

stock. For their archetype characterisation, [3] did not include occupant-related variables. In order to improve the 

methodology, in the current research, weekly occupancy schedules are considered as one on the key inputs to 

identify occupancy-integrated archetypes. This inclusion of occupancy schedules is justified on the basis that energy 

load profiles are strongly influenced by household occupancy profiles, and in particular by the succession of 

occupied and unoccupied periods [29]. This relationship between occupancy and load, as demonstrated by previous 

researchers [3, 24], is due to the fact that only when occupants are home it is necessary to assure their thermal 

comfort in the house.  

However, as in [3], the variable “internal temperature” is excluded from the characterisation of the archetype 

because it is not possible to define a unique internal temperature for the entire building stock. The consequences 

of the omission of this variable is examined in Section 3, where a sensitivity analysis is performed to analyse the 

impact of the required average internal temperature on archetype energy consumption for heating. As the scope 

of the current paper is the archetype development to assess the annual final heating energy consumption, which is 

independent of the heating system used, heating systems are not considered in the archetype characterisation. In 

addition, DHW systems are not considered, as their use does not affect the space heating demand. 

Summarising, the variables identified to characterise heating demand for UK archetypes are:  

1. Weekly occupancy schedule 

2. Air change rate 

3. Wall U-value 

4. Ceiling U-value 

5. Floor U-value 

6. Window U-value 

7. Dwelling geometry 

8. Dwelling floor area 

9. Climate  

These nine variables allow the occupancy-related archetypes to be defined in all the main data subsets identified 

by Corgnati et al. in [2]: form, envelope and operation, as shown in Figure 1. 

2.2 Step 2 – Building Stock Segmentation 

In the segmentation process, the number of archetype buildings required to represent the building stock under 

consideration is outlined [1]. First, the segmentation criteria are identified. Then, the segmentation criteria are used 



  
 

to divide the building stock into segments. Each segment is associated with an archetype, the technical 

characteristics of which are defined in the characterisation step. The segmentation criteria must be identified to 

provide the archetype characterisation in the following data subsets: form, envelope and operation. Particular 

attention is given to the development of archetype characteristics in the operation subset.  

The segmentation criteria used in the current research are acknowledged to define all the building parameters 

identified in Section 2.1. The correlation between the identified building parameters and the segmentation criteria 

is summarised in Figure 1. The segmentation criteria used to define archetypes in the form subset is the dwelling 

type, which defines the dwelling geometry and the dwelling area. Parameters of the envelope subset (such as 

envelope U-value and air change rate) are a function of the construction year, which is used as segmentation criteria 

for the envelope subset.  The segmentation criteria applied to define archetypes in the operation subset are the 

occupancy schedule, which defines the amount of time the house is actively occupied, and the climate zone. 

The knowledge of the building construction year and the dwelling type is straight forward if adequate data are 

available from building stock surveys. The definition of the occupancy schedules requires data on the daily activities 

of occupants which is not always available. Valuable data on activities are provided by TUSs conducted in most 

European countries, the results of which are comparable thanks to the harmonisation process supported by the 

2008 Harmonised European Time Use Surveys guidelines [33].  

Climate zones are defined in accordance to the climate zoning available in the building regulation codes of the 

country. Meteorological data from the most densely populated city in the climate zone are obtained from 

Meteonorrm [34], as suggested by [1].  

In the UK case study, data to segment the building stock according to dwelling type and construction year are 

obtained from [33 – 38]. Five dwelling types (flat, bungalow, detached house, semi-detached house and terraced 

house) and five construction year are identified (Pre-1918, 1919-1964, 1965-1980, 1981-1990, Post-1991) (Table 

1).  

Occupancy schedules, used as segmentation criteria in the operation subset, are obtained from data collected 

by the Time Use Survey 2014-2015 (UK 2015 TUS) [39]. The UK 2015 TUS recorded the everyday routines of 

10,208 UK citizens belonging to 4,733 households. One household is defined as a person or group of people who 

have specified the accommodation as their only or main residence and share the living accommodation. The 

routine of survey respondents is described in detailed 24-hour diaries (household diaries), completed at ten-minute 

intervals. Additionally, data describing the working hours during a whole week are also available. From this data, 

it is possible to see that working hours related to an individual person are likely to be the same for all the working 

days. This leads to the assumption that it is reasonable to adopt the same daily occupancy profiles for all the 

working days for a determined household.  

In order to identify the most common occupancy schedules in the building stock, the clustering methodology 

previously developed in [27, 28] is applied on the available household daily occupancy profiles. The first step of 

the clustering methodology is the identification of the significant household states, the sequence of which 

determines the household daily occupancy profiles. To identify the unoccupied and occupied periods, three 

household states are sufficient: (i) all of the household occupants are at home and asleep (Non-Act), (ii) all of the 

occupants are absent (Abs), and (iii) at least one occupant is home and active (Act). The daily sequence of the 



  
 

household states defines the household daily occupancy profile. After the creation of the daily occupancy profiles 

for all the households considered in the TUS, the households with similar daily occupancy profiles are grouped 

together using the k-mode clustering technique [25]. The k-mode technique allows for the creation of clusters of 

daily occupancy profiles which are similar in composition. Each cluster is characterised by a mode, which is 

obtained considering the most recurrent household state inside the cluster for each time step. The representative 

occupancy profile for each cluster is identified as the daily occupancy profile inside the cluster which is closest to 

the mode. The correct number of total clusters is determined using two indices: the root-mean-squared standard 

deviation (RMSSTD) and R-squared (RS) [26]. The RMSSTD index measures the non-homogeneity of the clusters 

- if its value decreases, then the obtained clusters are more homogeneous. RS is considered as the measure of the 

degree of difference between clusters. It is bound within the range [0,1] and it is equal to zero when there is no 

difference between the clusters, while a value close to one indicates that there is a significant difference between 

the clusters. These two indices, which were defined for quantitative data, are used with categorical variables [28]. 

The most appropriate number of clusters corresponds to the one which determines a significant step in the value 

of both indices. This value is indicated as a ’significant knee’ [26], and it can be recognised by plotting the RMSSTD 

and RS indices as a function of the number of the clusters. In the present paper, the RMSSTD and RS indices 

dependence on the number of clusters is investigated by varying the number of clusters from 1 to 20. The 

maximum non-homogeneity and the minimum differentiation are obtained when a single cluster is considered. 

This case is used as a reference to represent the percentage variation of the two indices (Figure 2). 

  

Figure 2 RS and RMSSTD percentage variation as a function of number of clusters per weekday occupancy 
profiles 

 



  
 

Figure 2 indicates the percentage variation of the RS and RMSSTD indexes when the weekday occupancy 

profiles are clustered. In this figure, the ’significant knees’ of the indexes are not easily recognizable. It has been 

assumed that the minimum and maximum acceptable values are 70% and 40% for RS and RMSTTD, respectively. 

It is possible to see that by considering five clusters, the RMSSTD index is lower than the assumed threshold and 

RS index is higher than 70%, indicating that acceptable levels of diversity between clusters and homogeneity within 

them are reached considering five clusters. Additionally, Figure 2 shows that passing from five to six clusters, the 

improvement of the quality of the clusters is negligible because the incremental change of both indices (considered 

as the difference between the two indexes at five or six clusters) is just 1%. This means that the improvement of 

the quality of the clusters is not sufficient to justify the increased number of final archetypes which are obtained 

considering more than five clusters. Thus, the appropriate number of clusters is set equal to five.  

The modes associated with each cluster are shown in Figure 3, as obtained from the k-mode clustering of the 

weekday occupancy profiles. The modes are mainly differentiated by the period during which occupants are absent 

over a day, and they can be classified as follows: 

• Daily absence (cluster 1): unoccupied period from 09.00 to 04:00  

• Working hour absence (cluster 2): unoccupied period from 08:20 to 18:10 

• Lunch time absence (cluster 3): unoccupied period from 11:10 to 16:10 

• Constant presence 1 (cluster 4) 

• Constant presence 2 (cluster 5) 

 

Figure 3 Weekday household daily occupancy mode profiles for each cluster (1 to 5).  

 

Figure 3 illustrates that occupancy profiles can significantly vary amongst buildings, and this, once again, 

highlights the unsuitability of the use of a standard occupancy profiles in regular archetype characterisation.  

Households associated to Cluster 1 have a unique behavioural schedule; they are absent from early morning 

until late evening. This behaviour is representative of a small percentage of households. A similar behaviour was 

found in [20], where 10 distinctive behaviour patterns are identified from the American Time Use Survey (ATUS).  

Classification of the climate zones in the UK is done based on the climate maps presented by Meteorological 

Office [40].  



  
 

The cities which have been chosen to represent the four climate zones identified in UK are: London, 

Birmingham, Newcastle and Glasgow. These cities have been selected as they have the largest population and 

consequently the largest number of buildings per selected climate zone [1, 41]. 

Table 1 summarises the segmentation categories obtained for the national UK building stock. The total number 

of archetypes is given by the combination of segmentation categories and it is equal to 54 or 625. 

 

Table 1 Segmentation categories - UK building stock 

Dwelling type Construction year Occupancy schedule Climate zone 

1.  Flat 1.  Pre-1918 1.  Daily absence 1. London 

2.  Bungalow 2.  1919-1964 2.  Working hours absence 2. Birmingham 

3.  Detached 3.  1965-1980 3.  Lunch time absence 3. Newcastle 

4.  Semi-detached 4.  1981-1990 4.  Constant presence 1 4. Glasgow 

5.  Terrace 5.  Post 1991 5.  Constant presence 2  

2.3 Step 3 - Characterisation 

In the characterisation step, archetype characteristics are defined according to the segmentation parameters, as 

defined in Figure 1. The archetype characteristics can be defined as the result of the statistical analysis of the 

national building sample, in particular, they are the most common properties statistically detected in the building 

categories identified in the segmentation process [42].   

In the UK case study, the building data which were used to characterise archetypes in the form and envelope 

subsets are identifiable from national surveys [35–38, 43], and are reported in Table 2 and Table 3. From Table 2, 

it is possible to see, for example, that most of terraced houses built in the 1918-1964 period are characterised by 

uninsulated solid walls, a loft insulation greater than 150 mm and double-glazed windows. The wall type reflects 

the construction technique used when the dwelling was built, while the loft and window characteristics denote that 

most of the terraced houses built between 1918-1964 have been refurbished. These characteristics are in 

accordance with refurbishment trends as reported in the Energy Consumption in the United Kingdom (2015) data 

[32].     

 

 



  
 

Table 2 Archetype envelope characteristics    1 

Dwelling type 
Construction 
period 

Envelope characteristics 

External Wall [43] Ground floor [45, 46] Loft floor insulation (mm) [43] Window [43] 

Terraced 

Pre 1918 Uninsulated solid wall pre 1918 Suspended timber  >150 Double glazing 

1918-1964 Uninsulated solid wall pre 1918 Ground bearing concrete floors 60-90  >150 Double glazing 

1965-1980 Uninsulated cavity 1965-1980 Ground bearing concrete floors 60-90  > 150 Double glazing 

1981-1990 Uninsulated cavity 1981-1990 Ground bearing concrete floors 60-90  = 150 Double glazing 

Post 1990 Insulated cavity post 1991 Ground bearing insulated floors  >150 Double glazing 

Semi-detached 

Pre 1918 Uninsulated solid wall pre 1918 Suspended timber  >150 Double glazing 

1918-1964 Uninsulated cavity 1919-1964 Ground bearing concrete floors 60-90  >150 Double glazing 

1965-1980 Uninsulated cavity 1965-1980 Ground bearing concrete floors 60-90  > 150 Double glazing 

1981-1990 Uninsulated cavity 1981-1990 Ground bearing concrete floors 60-90  = 150 Double glazing 

Post 1990 Insulated cavity post 1991 Ground bearing insulated floors  >150 Double glazing 

Detached 

Pre 1918 Uninsulated solid wall pre 1918 Suspended timber  >150 Double glazing 

1918-1964 Uninsulated cavity 1919-1964 Ground bearing concrete floors 60-90  >150 Double glazing 

1965-1980 Uninsulated cavity 1965-1980 Ground bearing concrete floors 60-90  > 150 Double glazing 

1981-1990 Uninsulated cavity 1981-1990 Ground bearing concrete floors 60-90  = 150 Double glazing 

Post 1990 Insulated cavity post 1991 Ground bearing insulated floors  >150 Double glazing 

Bungalow 

Pre 1918 Uninsulated solid wall pre 1918 Suspended timber  >150 Double glazing 

1918-1964 Uninsulated cavity 1919-1964 Ground bearing concrete floors 60-90  >150 Double glazing 

1965-1980 Uninsulated cavity 1965-1980 Ground bearing concrete floors 60-90  > 150 Double glazing 

1981-1990 Uninsulated cavity 1981-1990 Ground bearing concrete floors 60-90  = 150 Double glazing 

Post 1990 Insulated cavity post 1991 Ground bearing insulated floors  >150 Double glazing 

Flat 

Pre 1918 Uninsulated solid wall pre 1918 - - Single glazing 

1918-1964 Uninsulated solid wall pre 1918 - - Double glazing 

1965-1980 Uninsulated cavity 1965-1980 - - Double glazing 

1981-1990 Uninsulated cavity 1981-1990 - - Double glazing 

Post 1990 Insulated cavity post 1991 - - Double glazing 

 2 

 3 

 4 



  
 

Table 3 Archetype characterisation 5 

Dwelling type 
Construction 
period 

Shape Envelope U-value (W/m-2K-1) Envelope Airtightness 

Building area (m2) 
[43] 

External Wall 
[35, 46] 

Ground floor 
[44, 45] 

Loft floor 
[35] 

Window  
[35] 

ACH (1/h) 
[47] 

Terraced 

Pre 1918 80 2.1 0.8 0.16 3.1 0.56 
1918-1964 80 2.1 0.6 0.16 3.1 0.76 
1965-1980 80 1.3 0.6 0.16 3.1 0.64 
1981-1990 80 0.6 0.6 0.3 3.1 0.64 
Post 1990 80 0.45 0.3 0.16 3.1 0.51 

Semi-detached 

Pre 1918 90 2.1 0.8 0.16 3.1 0.56 
1918-1964 90 1.6 0.6 0.16 3.1 0.76 
1965-1980 90 1.3 0.6 0.16 3.1 0.64 
1981-1990 90 0.6 0.6 0.3 3.1 0.64 
Post 1990 90 0.45 0.3 0.16 3.1 0.51 

Detached 

Pre 1918 150 2.1 0.8 0.16 3.1 0.56 
1918-1964 150 1.6 0.6 0.16 3.1 0.76 
1965-1980 150 1.3 0.6 0.16 3.1 0.64 
1981-1990 150 0.6 0.6 0.3 3.1 0.64 
Post 1990 150 0.45 0.3 0.16 3.1 0.51 

Bungalow 

Pre 1918 73 2.1 0.8 0.16 3.1 0.56 
1918-1964 73 1.6 0.6 0.16 3.1 0.76 
1965-1980 73 1.3 0.6 0.16 3.1 0.64 
1981-1990 73 0.6 0.6 0.3 3.1 0.64 
Post 1990 73 0.45 0.3 0.16 3.1 0.51 

Flat 

Pre 1918 60 2.1 N/A N/A 4.8 0.56 
1918-1964 60 2.1 N/A N/A 3.1 0.76 
1965-1980 60 1.3 N/A N/A 3.1 0.64 
1981-1990 60 0.6 N/A N/A 3.1 0.64 
Post 1990 60 0.45 N/A N/A 3.1 0.51 

 6 

 7 

 8 

 9 



  
 

Weather files corresponding to the different climate zones identified in Section 2.2 are obtained from the Shiny 10 

Weather Data [48], a web service making gridded hourly weather data available in times series formats using data 11 

from Copernicus Atmosphere Monitoring Service [49]. The utilised data are related to the year 2012.  12 

The weekly occupancy schedules, used to characterise archetypes, are shown in Figure 4. Each row indicates a 13 

different weekly occupancy profile (OP1 to OP5).  Daily occupancy profiles for working days are obtained in the 14 

“building stock segmentation” step (Section 2.2). They are the same during weekdays to incorporate the likelihood 15 

that the same household behaviour is repeated during the working days because of daily working routines. 16 

Occupancy profiles during the non-working days are more unpredictable than for working days, because the daily 17 

routine is not constrained by defined times, such as working schedules. However, to avoid overcomplicated 18 

models, it is assumed that the daily occupancy profiles during weekend are the same for all the weekly occupancy 19 

profiles and they are equal to the mode obtained by clustering all the non-working household daily occupancy 20 

profiles. A similar approach is also used in the BREDEM [31]. 21 

 22 

Figure 4 Weekly occupancy profiles (OP1 to OP5). 23 

 24 

From Figure 4, it is possible to see that occupancy profiles for working and non-working days are quite different 25 

for occupancy profiles 1-3, whereas they are broadly similar for occupancy profiles 4 and 5. These last two profiles 26 

represent almost 60% of the national occupancy profiles (Figure 3). The implication of this is that for most of the 27 

population, heating patterns do not necessarily follow the general assumption of a bimodal heating pattern for 28 



  
 

weekdays, and additionally the heating patterns are quite similar for weekdays and weekends. Similar results are 29 

found from the analysis of temperature profiles in UK houses [22, 23, 50].  30 

3 Archetype evaluation procedure 31 

The verification of model results is challenging because the developed archetypes do not correspond to 32 

building instances, thus it is difficult to assess the accuracy of the energy models. In general, for a single building 33 

simulation, differences can be observed between the predicted and the actual energy consumption [51]. However, 34 

while it may not be possible to validate the accuracy of predictions in a building stock modelling context [4] as 35 

would be done for a specific building instance, it is still crucial to verify whether relevant general trends are captured 36 

by the model.  37 

Evaluation of the archetypes is performed by utilising archetype energy models as outlined in Figure 5. The 38 

evaluation is based on the energy modelling of each individual archetype and the comparison of the results with 39 

available data from national surveys. The annual final heating energy consumption of archetypes is modelled using 40 

EnergyPlus (Version 8.5), a whole building energy simulation program which implements detailed building physic 41 

models. These models require additional inputs beyond Form/Envelope/Operational data, as shown in Figure 5. 42 

These include: heating control settings and internal heat gain profiles.  43 

Additionally, EnergyPlus is based on the assumption that all conduction through the building envelope is one-44 

dimensional, which is quite limiting because it does not consider the thermal bridge effects. For this reason, in the 45 

EnergyPlus models equivalent walls are used in order to take into account the additional heat flow per unit length 46 

and temperature difference caused by the thermal bridges. The procedure of generation of the equivalent wall is 47 

based on the distribution of bridge heat resistive components across the cross section of the wall assembly. Default 48 

values of linear thermal transmittance for the junction are obtained from SAP 2016 [35].  49 

 50 

 51 

Figure 5 Architecture of archetype energy model. 52 



  
 

3.1 Generation of archetype model inputs 53 

3.1.1 Heating control settings 54 

It is assumed that the overall system availability, which describes the time during which the heating system can 55 

be used, is continuous from 07:00 until 23:00 hrs However, in order to calculate a realistic annual final heating 56 

energy consumption, in the simulation, the heating system is turned on only when the building is occupied to reach 57 

the required average internal temperature. The required average internal temperature is considered as the average 58 

temperature desired inside the house by its occupants to achieve their comfort, and it is assumed to be constant 59 

on time and unvaried in space. In the sensitivity analysis, this variable is varied from 18°C to 21°C, which is the 60 

typical indoor temperature range in the UK houses [50], using incremental increases of 0.5°C. For comparison 61 

reasons, the heating demand is also calculated considering the standard heating time suggested by the BREDEM 62 

model, which is a consolidated model for calculating the energy use and fuel requirements of dwellings in the UK 63 

[31]. In this model, the heating patterns are differentiated per day type: 07:00-09:00 and 16:00-23:00 (9 hours) 64 

during weekdays and 07:00-23:00 (16 hours) during weekends. 65 

  66 

3.1.2 Generation of internal heat gain profiles 67 

Internal heat gains are mainly due to the presence of occupants, electric appliances, lighting and internal solar 68 

gains. Internal solar gains are estimated by EnergyPlus during the simulation, while the gains produced by other 69 

sources must be calculated in advance and inserted as inputs in the software. The methodologies used to determine 70 

the internal gains from the presence of occupants, electric appliances and lighting are outlined in the following 71 

three sub-sections.    72 

3.1.2.1 Occupant presence 73 

Internal heat gains correlated to occupant presence can be obtained considering the time during which the 74 

dwelling is occupied, the number of occupants in the dwelling and the performed activity.  The time during which 75 

the dwelling is occupied is available from the weekly occupancy profiles which characterise the archetypes. The 76 

occupant number is defined as a function of the dwelling type. The distribution of households, characterised by a 77 

different number of occupants for each dwelling type, is available from data collected in the English Housing 78 

Survey 2015 [52]. From this data, it is possible to calculate the weighted average number of occupants for each 79 

dwelling type. The number of occupants assumed in this research is the closest integer value to the weighted 80 

average (Table 4). The same results are obtained when the formula adopted by SAP2012 [53] is used, where the 81 

number of occupants is a function of the total floor area of the dwelling.  82 

 83 

Table 4 Occupant number according to the dwelling type 84 

Dwelling type Housing survey 2015 SAP 2012 
Terraced 2 2 
Semi-detached 3 3 
Detached 3 3 
Bungalow 2 2 
Flat 2 2 

  85 



  
 

In general, the heat generated by the human body is a function of the performed activity and it is assumed to 86 

be equal to 0.9 met, if the person is asleep and to 1.5 met if the person is active [54, 55]. These values represent 87 

typical metabolic rates per unit area of skin surface. Considering the average adult area equal to 1.8 m2 (DuBois 88 

area), the conversion factor is assumed to be equal to 108 W/met [56]. In the current research, when the household 89 

state is “Active”, it is assumed that each household occupant generates 162 W, and 97.2 W in the case the 90 

household state is “Non-Active”. 91 

 92 

3.1.2.2 Electric appliance internal heat gains 93 

Internal heat gains generated by electric appliances are strictly correlated to the use of these appliances, the 94 

number of occupants and the daily occupancy profiles [57]. The internal heat gains generated by electric appliances 95 

are a function of the archetype form and operation data subsets, which respectively, determine the number of 96 

occupants and the household state during the day. The appliance use, related to the different archetypes, can be 97 

simulated after developing a model which combines already existing stochastic models [57 – 59] with the data on 98 

daily occupancy available from the archetype characterisation in the operation archetype data subset. In this case 99 

a first-order Markov-Chain model is used, as in [57]. 100 

The first step for the development of the model is the data collection about the electric appliances installed in 101 

UK dwellings. These data are available from the Household Electricity Survey - a study of domestic electrical 102 

product usage [60], which presents the electric consumption data associated to 251 households in England over 103 

the period May 2010 to July 2011. The use of some appliances is independent from the occupant activity, while 104 

other appliances can be randomly used if the occupant is active, thus they are not related to any specific activity. 105 

For each of the appliances, the annual energy demand is measured [60]. The energy consumption correlated 106 

to some appliances (e.g., fridges) is strongly seasonal, while for other appliance groups, like audio-visual and 107 

computer equipment, or cooking devices, the annual energy consumption depends on the number of occupants. 108 

The use of the appliances can be unrelated to the occupant state (e.g., fridges), it can be dependent only on 109 

occupancy (e.g., mobile phones), or it can be related to a defined activity (e.g., oven use is linked to the activity 110 

"cooking"). Because of the strong correlation between some appliance use and occupant activities, daily activity 111 

profiles are developed for each of the weekly occupancy profiles which can characterise archetypes. Activity 112 

profiles show the probability that people perform different activities at different times of the day, as in [57]. In the 113 

current paper, the probability of a specified activity being performed takes into account the weekly occupancy 114 

profiles of the archetype. Figure 6 shows the activity probabilities related to weekly occupancy profile 2 (OP2) 115 

“Working hours absence” (Figure 6 (a)) and weekly occupancy profile 5 (OP5) “Constant presence 2” (Figure 6 116 

(b)) over the course of a working day. These curves exhibit significantly different behavioural patterns, because 117 

they reflect population subgroups which actively occupy the house during different periods of the day. This 118 

differentiation allows the simulation of the electric demand of specific population subgroups, represented by each 119 

archetype. 120 



  
 

 121 

Figure 6 Activity profiles (weekdays) for (a) occupancy profile 2 (OP 2) and (b) occupancy profile 5 (OP 5). 122 

 123 

In the current model, the switch-on probability, 𝑃𝑎, of any appliance, a, for any time step, t, is given by the 124 

following equation:  125 

 𝑃𝑎(𝑡) =  𝑆(𝑡) 𝐴𝑖(𝑜, 𝑡) 𝐶𝑎(𝑚, 𝑛, 𝑜) (1) 

where: 𝑆(𝑡) is a binary variable equal to 1 if the household state is “Act”; 𝐶𝑎(𝑚, 𝑛, 𝑜) is the calibration scalar; 126 

and 𝐴(𝑜, 𝑡) is the activity probability itself, which is dependent on the occupancy profile, 𝑜, and time, 𝑡. The 127 

calibration scalar is used to calibrate the number of switch-on events based on appliance data. This calibration 128 

scalar is dependent on the month, 𝑚, to consider the seasonal effect, the number of occupants, 𝑛, to consider the 129 

household size effect, and it is also dependent on the occupancy profile, 𝑜. The calibration scalar is calculated such 130 

that, over a very large number of stochastic simulation runs, the mean annual consumption of the appliance will 131 

correspond to the one presented in the data available from the Household Electricity Survey [60]. For the case 132 

where the use of the appliance is not a function of a specific activity  𝐴𝑖(𝑜, 𝑡) = 1. Additionally, if the use of the 133 

appliance is not dependent on the presence of an active occupant, 𝑆(𝑡) is also equal to 1. In this case, the final 134 

probability is equal to the calibration scalar. In order to determine if the switch-on event occurs, a random number 135 

between 0 and 1 is generated at each time step. The switch-on event occurs if the random number is smaller than 136 

the probability associated with the appliance at a specific time step. If the switch-on event occurs, the power 137 

demand of the appliance is set equal to the assigned power. The internal heat gains generated by each appliance 138 

are then calculated as a fraction of the power used by the electric appliance [61]. The total internal heat gains, 139 

generated by electric appliances in a dwelling, is the sum of the internal heat gains generated by each appliance for 140 

each time step.  141 

This model produces different results every time it is run because of its intrinsic stochasticity, but a 142 

characteristic profile must be used in the archetype model. For this reason, the average value which can be obtained 143 

by multiple runs of this model is calculated. The minimum number of households, which was needed to be 144 

simulated, in order to obtain the average demand (for electric equipment), was found to be the one which allows 145 



  
 

a percent relative standard deviation (PRSD) [62] of the internal heat gains lower than the limit threshold to be 146 

obtained, as in [63]. The PRSD threshold is assumed to be equal to 5%. The minimum number of households is 147 

not the same for all the clusters because it is a function of activities performed by the household occupants. When 148 

clusters are more homogenous (i.e., the household performs the same activities at the same time), the number of 149 

households required to obtain the average internal heat gain is lower than when the clusters are less homogenous. 150 

For example, the minimum number is equal to 115 households for operation profile 2, whereas it is equal to 215 151 

households for occupancy profile 5. The PRSD is calculated as per Equation (2); 152 

 max(𝑃𝑅𝑆𝐷(𝑖)) = max (
1

𝑂𝑎𝑣,𝑖
̅̅ ̅̅ ̅̅

√
𝜎𝑖

2

𝑛 ⋅ 100
) (2) 

where 𝑖 is the time step, 𝑛 is the number of households considered, which is incremented in each iteration, 153 

and 𝜎𝑖
2 is the variance the timestep 𝑖. 𝑂𝑎𝑣,𝑖

̅̅ ̅̅ ̅̅  is the average internal heat gain at the time step 𝑖.  154 

 155 

3.1.2.3 Lighting internal heat gains 156 

The use of electric lighting in the domestic sector depends mainly on the level of available natural light, coupled 157 

with the activity of the household residents. The model presented is largely based on the model developed by 158 

Richardson et al. (2009) [64]. In this model, the switch-on probability of lights in a dwelling, 𝑃𝑙 , for any time step, 159 

𝑡, is given by Equation (3); 160 

 𝑃𝑙(𝑡) =  𝑆(𝑡) 𝐼𝑟𝑟𝑖(𝑡)  (3) 

where: 𝑆(𝑡) is a binary variable equal to 1 if the household state is “Act”; and  𝐼𝑟𝑟𝑖(𝑡) is a binary variable 161 

which value is the result of the natural light condition test. In the natural light condition test, first the dwelling 162 

irradiance threshold is randomly determined from a normal distribution characterised by a mean of 60 W/m2 and 163 

a standard deviation of 10 W/m2 [64]. Then, the irradiance threshold is compared to the current level of outdoor 164 

irradiance at each time step. If the current irradiance is below the threshold, then the resulting value of this test is 165 

1, otherwise it is 0. Moreover, the model also allows for a five percent likelihood that a lighting unit may be used 166 

regardless of the current natural light conditions, to represent the unpredictable daytime use of lighting [64].  167 

If a switch-on event occurs, electric power is consumed by lighting. The consumed power is a function of the 168 

installed technology. The installed technology is randomly selected considering the national share of each type of 169 

lighting for which data are obtained from the Household Electricity Survey [60]. The power consumed when a 170 

switch-on event occurs is randomly determined from a normal distribution, characterised by a mean value equal 171 

to the average installed power of the technology. In addition, the duration of the switch-on event is randomly 172 

determined from the distribution introduced by Richardson et al. in [64]. If the chosen duration is longer than the 173 

prevailing period of active occupancy in a dwelling, then the duration is truncated at the time when the active 174 

occupancy becomes zero. The consumed power by lights is then converted into internal heat gains calculated as 175 

in [61]. Finally, for this case, an average scenario must be used as input in the archetype model. The average value 176 

is obtained running the model several times, in order to obtain also, in this case, a percent relative standard 177 

deviation of the internal heat gains produced by lighting lower than 5%.  178 



  
 

4 Results   179 

In this section the annual final heating energy obtained as a result of the archetype modelling is presented, and 180 

it is compared with data about the energy consumption of dwellings in the relevant country to evaluate the 181 

archetypes.  182 

Readily available data about consumed primary energy demand for heating in the UK is necessary to validate 183 

the developed archetypes. Moreover, in order to validate the individual archetypes, these data should be 184 

differentiated for different building types, construction periods, occupancy profiles and location.  185 

The energy use and energy efficiency of domestic buildings in England and Wales are studied by National 186 

Energy Efficiency Data-Framework (NEED) [32], which collects gas and electricity consumption data on a 187 

representative sample of data.  The energy consumption statistics which are available from NEED are particularly 188 

relevant because the energy consumption is classified by property attributes, household characteristics, geography 189 

and socio-demographic classifications. In the context of this research, the data which can be used to validate the 190 

archetype energy models is the annual median consumption of gas in 2012, demarcating for buildings differentiated 191 

by property type and construction age. According to statistical data available from the Energy Consumption in the 192 

United Kingdom (ECUK), the gas consumed for space heating in residential dwellings is about 85% of the total 193 

gas used is the residential sector [65], so a proportionate quantity considered from the total gas consumption 194 

available from NEED data is utilised. The reduced gas consumption, in kWh,  can be converted to final energy 195 

consumption through a conversion factor equal to 1.127 [35]. The resulting quantity can be considered as the 196 

closest value to the annual final heating energy required for space heating, which can be obtained from available 197 

UK datasets. This value can be compared to the annual final heating energy consumption of archetypes 198 

characterised by different dwelling types, construction periods and occupancy profiles, considering also the 199 

variation of required average internal temperature.  200 

In order to avoid redundant discussions, just results of the climate location “London” are presented in detail. 201 

However, the variations of the results due to the archetype location is analysed for the archetypes identified in 202 

dwelling type “flat”. 203 

4.1 Sensitivity analysis and archetype evaluation 204 

In general, a sensitivity analysis approach is capable of determining the effect of a building design variable on 205 

its overall performance [51]. In this work, a sensitivity analysis is used to assess the effect of the required average 206 

internal temperature on the annual final heating energy consumption. This variable is one of the parameters which 207 

has the strongest impact on building space heating energy demand [3], but it also has high variability in UK building 208 

stock [22], thus the assumption of a single internal heating temperature is not realistic. For this reason, a sensitivity 209 

analysis is performed on this parameter.  210 

This is undertaken by a one-parameter-at-a-time (OAT) method, where the individual effect of the design 211 

parameter “average internal temperature” on the building performance is evaluated [66]. The average internal 212 

temperature is varied between 18°C and 21°C, considering incremental increases of 0.5 °C, which is the acceptable 213 



  
 

range in UK [23, 56]. To determine the design parameter sensitivity, the ‘‘sensitivity index’’ (SI) related to the set 214 

point temperature is calculated as; 215 

 𝑆𝐼 =
𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥
  100% 

 

(4) 

where Emax and Emin represent the maximum and minimum energy requested for heating, respectively, resulting 216 

from varying the design parameter over its entire range [66]. Values of Sensitivity Indexes obtained for the different 217 

occupancy-integrated archetypes located in London (as identified in Sect. 2) are indicated in Figure 7.  218 

Analysing Figure 7, it is possible to see that the Sensitivity Index has a range between 35 and 60%, indicating 219 

that the required average internal temperature has a significant impact on the energy consumed for heating. This 220 

implies that the choice of a common required average internal temperature for all archetypes can bring significant 221 

errors in the estimation of energy consumption for heating, and thus it is necessary to collect accurate data about 222 

internal temperature distribution to obtain accurate estimation of energy consumed for heating in archetypes. As 223 

the required average internal temperature must be reached just when the building is occupied, the magnitude of 224 

the sensitivity index is proportionally correlated to the amount of time the household state of the building is active, 225 

which is a function of the weekly occupancy profiles.   226 

 227 

Figure 7 Sensitivity Index (%) for each occupancy-integrated archetype (OP1 to OP5) in the required average 228 
internal temperature range 18-21oC (London climate zone) 229 

 230 

The sensitivity index is also a function of the climate zone. In Figure 8, the indexes obtained for archetypes 231 

characterized by the dwelling type “flat” are shown for different climate zones. The same trends registered in 232 

Figure 7 are visible, although the values of the index are lower in colder area such as Glasgow.   233 



  
 

 234 

Figure 8 Sensitivity Index (%) for occupancy-integrated archetype (OP1 to OP5) characterised by dwelling type 235 
“flat” in different climate zones in the required average internal temperature range 18-21oC  236 

 237 

The annual final heating energy consumption which is obtained from energy models of the dwelling type 238 

“flat” located in the “London climate zone” is indicated in Figure 9, as a function of the required average internal 239 

temperature. The annual final heating energy consumption is differentiated for the different weekly occupancy 240 

profiles (OP 1 to OP 5). From this figure, it is clear that the consideration of different weekly profiles has a 241 

strong impact on the final model results. The resulting final heating energy required using the standard heating 242 

hours indicated in BREDEM (𝐸𝐵𝑅𝐸𝐷𝐸𝑀) is also indicated [31], and it is possible to observe that the use of 243 

standard heating hours leads to underestimation or overestimation of the final heating energy required, if 244 

compared to the energy required by archetypes characterised by specific occupancy profiles. 𝐸𝐵𝑅𝐸𝐷𝐸𝑀 can be 245 

directly compared to the average annual final heating energy consumption, calculated as the weighted average 246 

value of the heating demand corresponding to the five weekly occupancy profiles (𝐸𝑂𝑃̅̅ ̅̅ ). It is interesting to note 247 

that the average value is extremely close to the value which can be obtained using the standard hours indicated in 248 

BREDEM. The percentage difference (R1) is calculated using equation (5) and is never larger than 5% (Figure 249 

11) for archetypes located in the climate zone of London. The results obtained for archetypes located in other 250 

zones are almost identical.  251 

 252 

 𝑅1 =
𝐸𝑂𝑃̅̅ ̅̅ − 𝐸𝐵𝑅𝐸𝐷𝐸𝑀

𝐸𝐵𝑅𝐸𝐷𝐸𝑀
 𝑥 100 (5) 

 253 

This indicates that the adoption of standard heating hours is justifiable in building energy models at national 254 

level because the behavioural variations among the individual houses tend to even out when considered at scale. 255 

However, when national population subgroups are simulated, the consideration of specific occupancy profiles is 256 

critical to maximise accuracy in the estimation of annual final heating energy consumption in buildings [11, 20, 257 



  
 

24]. Thus, in order to use the archetype approach in the context of disaggregated and differentiated population 258 

subgroups, it is important to include occupant-related variables as residential archetype operational inputs. From 259 

the analysis of Figure 9 it is possible to see that the relative difference between the heat demand calculated 260 

considered specific occupancy profiles and the one calculated considered BREDEM occupancy profiles can be 261 

up to 30% for the flat located in London. Similar results are obtained for archetypes characterised by different 262 

forms.  263 

 264 

  265 

Figure 9 Annual final heating energy demand for flat archetype for different construction periods and 266 
different occupancy profiles (London climate zone) 267 

 268 

Results obtained for different climate zone are given in Figure 10, where the annual final heating energy 269 

demand for the archetypes characterised by dwelling type “flat” and construction year “post 1991” is shown. 270 

Compared to London, the annual final heating energy demand is higher for all the other climate zones, with 271 

Glasgow being the highest.  272 



  
 

 273 

Figure 10 Annual final heating energy demand for different climate zone (archetype characterised by 274 
dwelling type “flat” and construction period “post 1991”)  275 

 276 

 277 

Figure 11 Percentage difference (R1) (Equation 5) between average annual final heating energy demand in 278 
occupancy-integrated archetypes (𝐄𝐎𝐏̅̅ ̅̅ ) and annual final heating energy demand calculated using standard 279 
heating hours (𝐄𝐁𝐑𝐄𝐃𝐄𝐌) as a function of required average internal temperature (London climate zone) 280 

 281 

The percentage deviation (R2) of the average value of annual final heating energy consumption (𝐸𝑂𝑃̅̅ ̅̅ ), obtained 282 

by simulating the archetypes considering the different weekly occupancy profiles, and the annual final heating 283 

energy consumption (𝐸𝑁𝐸𝐸𝐷) available from NEED data [32] is calculated as: 284 

 285 

 𝑅2 =
𝐸𝑂𝑃̅̅ ̅̅ − 𝐸𝑁𝐸𝐸𝐷

𝐸𝑁𝐸𝐸𝐷
 𝑥 100 (6) 



  
 

 286 

R2 values for different average internal temperatures are indicated in Figure 12, as a function of the dwelling 287 

type and the construction year. Closer inspection shows that the R2 values are largely influenced by the internal 288 

comfort temperature. The difference between 𝐸𝑂𝑃̅̅ ̅̅  and 𝐸𝑁𝐸𝐸𝐷changes also according to the climate zone, as shown 289 

in Figure 13, where the R2 values for the archetypes characterized by the dwelling type “flat” are indicated for 290 

different locations. 291 

 292 

 293 

Figure 12 Percentage difference (R2) (Equation 6) between average annual final heating energy demand in 294 
occupancy-integrated archetypes (𝐄𝐎𝐏̅̅ ̅̅ ) and annual final heating energy demand extrapolated from NEED data 295 
(𝐄𝐍𝐄𝐄𝐃) as a function of required average internal temperature (London climate zone). 296 

 297 



  
 

 298 

Figure 13 Percentage difference (R2) (Equation 6) between average annual final heating energy demand in 299 
occupancy-integrated archetypes (𝐄𝐎𝐏̅̅ ̅̅ ) and annual final heating energy demand extrapolated from NEED 300 
data (𝐄𝑵𝑬𝑬𝑫) as a function of required average internal temperature for different climate zones (flat 301 
dwelling type). 302 

 303 

5 Discussion 304 

5.1 Application for the research 305 

The current paper presents a methodology to define occupancy-integrated building archetypes for building 306 

stock energy simulation, extending the definition of archetypes for stock modelling by including occupancy types. 307 

The description of a building stock by means of archetypes is widely used when the collection of accurate 308 

characteristics of individual buildings is not feasible or the computational cost of modelling individual buildings is 309 

too high. The energy consumption estimates of modelled archetypes can scaled up to be representative of building 310 

stock of variable size (neighbourhood, regional or national stock) by multiplying the energy demand of the 311 

archetypes by the number of houses which fit the description of each archetype. 312 

The use of occupancy-integrated archetypes allows the assumption that one standard pattern fits all homes to 313 

be addressed and associates houses to different archetypes by considering the occupancy profiles as well. In this 314 

way, even small national population subgroups, which are characterised by occupancy profiles which do not 315 

correspond to the national average can be modelled. In this case, the overall building stock space heating demand 316 

predictions are significantly different, if the proposed occupancy-integrated archetype models are used. The 317 

application of occupancy-integrated archetypes improves the diversification of the simulated final heating energy 318 

demand required by different household types, which cannot be achieved when a single heating profile is used in 319 

all archetypes.  320 



  
 

The aforementioned methodology has been applied to the UK building stock, but it can be readily be replicated 321 

for other building stock. The main challenge of applying the methodology to other housing stock is the availability 322 

of necessary data on building characteristics and daily activities of occupants.  323 

The energy model of the archetypes can contribute to the development of energy policies based on improved 324 

building energy predictions. A deeper knowledge of the segmentation of occupancy profiles within the building 325 

stock can help in the assessment of the most effective building fabric retrofits for different population subgroups. 326 

Additionally, the presented archetypes may be used to investigate the effects of the market penetration of 327 

different space heating technologies. For example, dwellings which are almost constantly occupied over the course 328 

of the day might be more suitable for heat pumps that are most efficient when delivering constant background 329 

heat. 330 

5.2 Limitations and future work 331 

One of the main limitations of this methodology is that it is based on the assumption that the heating schedule 332 

perfectly matches the period of occupancy of the buildings and that the required average internal temperature is 333 

constant. This assumption is established on the expectation that occupants seek to maintain comfort by turning 334 

on the heating system whenever the indoor temperature is lower than the required average internal temperature. 335 

Although the interaction with the heating system is the most common reaction to limit the thermal discomfort, 336 

occupants can react also in other ways to adjust their thermal conditions (e.g., adaptive comfort) [68]. Additionally, 337 

multiple different internal temperatures could be required in different areas of the house, causing a spatial variation 338 

of the internal temperature. Although these variables have an impact on the final heating load of buildings, they 339 

are not included in the archetype characterisation as they are case-specific. The aim of the methodology is the 340 

development of archetypes which are representative of a wide group of buildings, and as such they cannot replicate 341 

all the characteristics of specific individual buildings. In order to overcome these limitations, additional studies 342 

need to be undertaken to improve the correlation between occupancy profiles and heating schedules.  343 

Additionally, the archetype methodology has limitations in the use of fixed heating patterns. The use of these 344 

fixed patterns produces reliable results when the overall building stock heating energy demand is modelled, but 345 

produces unrealistic peak demand for heating when the model is used to obtain high temporal resolution energy 346 

demand profiles [27]. These profiles are necessary, for example, in the development of energy-flexible buildings 347 

capable of adjusting their electricity demand according to the needs of the power grid.  348 

 A logical extension to the outlined methodology would involve the integration of a stochastic occupancy 349 

model into the occupancy-integrated archetypes to capture the variability of human behaviour and avoid unrealistic 350 

peak demands in high-resolution energy heating models.  351 

6 Conclusions 352 

The current paper presents a new methodology to develop occupancy-integrated archetypes, which allows the 353 

annual final heating energy required by building stock characterised by different occupancy profiles to be modelled 354 



  
 

with better discrimination compared to the use of archetypes which do not include occupancy profiles in their 355 

characterisation. Occupancy profiles play a significant role in influencing heat demand in residential buildings. In 356 

this paper, it is shown that for UK residential archetypes, the discrepancy between the heat demand calculated 357 

using the proposed occupancy-integrated archetypes and BREDEM calculation procedures can be up to 30%. 358 

This means that the use of BREDEM occupancy profiles is not necessarily appropriate, particularly when energy 359 

profiles of disaggregated and differentiated national population subgroups is required.  360 

The sensitivity analysis on the influence of required average internal temperature on energy consumption 361 

shows that this parameter has a strong impact on the result of the building energy models, with values of Sensitivity 362 

Indexes that can reach 60%. The application of occupancy-integrated archetypes has the potential to improve the 363 

diversification of annual final heating energy demand predictions for different household types, which cannot be 364 

achieved when a single heating profile is used in all archetypes. This can be particularly useful when building stock 365 

includes population subgroups characterised by a different behaviour than the national average. Although the use 366 

of occupancy-integrated archetypes has the aforementioned advantages, further work is required to include the 367 

natural stochasticity of occupancy patterns, which would be required for energy demand profiles at high temporal 368 

resolution. 369 
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