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Abstract

Historical persistence studies andother regressions using spatial data com-
monly have severely inflated t statistics, and different standard error adjust-
ments to correct for this return markedly different estimates. This paper pro-
poses a simple randomization inference procedurewhere the significance level
of an explanatory variable is measured by its ability to outperform synthetic
noise with the same estimated spatial structure. Spatial noise, in other words,
acts as a treatment randomization in an artificial experiment based on cor-
related observational data. Combined with Müller and Watson (2021), ran-
domization gives a way to estimate credible confidence intervals for spatial
regressions. The performance of twenty persistence studies relative to spatial
noise is examined.

1 Introduction

It is only necessary to notice the number of maps that now appear in leading jour-
nals to recognize how popular spatial data have become among economists, no-
tably in the area of historical persistence. These studies find that many modern
outcomes such as income or social attitudes are strongly correlated with the char-
acteristics of the same places in the more or less distant past, often centuries or
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millennia previously. Notable examples include how the mortality of European
colonists determines the quality of modern institutions; how the slave trade re-
tards modern African development; how colonial boundaries still predict poverty
in Peru, and how medieval pogroms prefigured Nazi zealotry.1

Naturally, such findings are open to various charges of p hacking, of publication
bias, of answers in search of questions, of scepticism aboutmonocausal and largely
atheoretical explanations of complex phenomena, about the mechanisms driving
persistence, and so on. However, all of these objections crumble into irrelevance in
the face of one blunt fact: the unusual explanatory power of these persistence vari-
ables. While a judicious choice of variables or time periods might coax a t statistic
past 1.96, there would appear to be no way that the t statistics of three, four, or
even larger that appear routinely in this literature could be the result of massag-
ing regressions, no matter how assiduously. Such persistence results must instead
reflect the workings of the deep structural characteristics that underlie historical
processes: the enduring legacies of the past.

However, persistence studies are spatial regressions—being based on observa-
tions for the same places at different times—and spatial regressions bring us into
the domain of Tobler’s First Law of Geography: “Everything is related to every-
thing else, but near things are more related than distant things.” Spatial data, in
other words, tend to be strongly autocorrelated. If you take some towns dotted
across a landscape and represent their incomes by elevation on a map, you will
usually find a gently rolling landscape where rich areas border on rich areas, and
poor areas on poor ones.

Next take some unrelated variable where neighbour again resembles neigh-
bour, say trials for heresy in the middle ages, leading to another rolling landscape.
If you regress one variable on the other, peaks in one landscape will often tend
either to correspond to peaks in the other, giving positive t statistics, or to hollows
leading to negative ones.

1These are, in turn, Acemoglu, Johnson and Robinson (2001), Nunn (2008), Dell (2010), and
Voigtländer and Voth (2012).
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These t statistics are not trivial. The next Section will show regressions where
both variables are spatial noise generated with an empirically realistic correlation
structure. These regressions return t values beyond±3.8 (nominal significance p =

0.0002) twenty per cent of the time; and to reach five per cent significance requires
a t of 6 (nominal p = 2× 10−9). The high t statistics of persistence regressions may
actually be a cause of concern rather than of reassurance.

This may all sound like a lot of fuss about nothing. Inflated t statistics simply
mean that standard errors have been underestimated, and there is no shortage of
spatial standard error corrections to deal with this. Commonest is a swift nod in
the direction of the problem by grouping neighbouring residuals into small clus-
ters. However for spatial data such clustered standard errors are typically incon-
sistent and to be avoided as such.

Standard errors that are consistent are easily estimated bymethods that include
Conley’s (1999) kernelweighting; large clusters (Ibragimov andMüller 2010, Bester,
Conley andHansen 2011, and Canay, Romano and Shaikh 2017); or principal com-
ponents (Müller and Watson, 2021). However, as we will see below, these cor-
rections, although all consistent, return estimates that differ not so much widely
as wildly. Kernel standard errors rarely differ too much from uncorrected ones
(which may explain their popularity), while clustered ones are often several times
as large, with principal components somewhere in between.

Ultimately, spatial data are not only messy, but each dataset is messy in its own
way: fairly low numbers of strongly autocorrelated observations located in distinc-
tive patterns, usually accompanied by substantial outliers and marked directional
trends. This means that, regardless of its Monte Carlo performance or desirable
asymptotic properties, it is hard to know how well a consistent standard error ad-
justment will hold up when faced with the idiosyncrasies of your particular re-
gression.

Given the uncertainties that surround one size fits all, asymptotic inference
based on standard errors, how arewe to evaluate spatial regressions? One possible
approach that is tailored to individual samples and places no reliance on idealized
population distributions is Fisher randomization.
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The idea of randomization is simple. Given a vector of assigned treatments X
and observed outcomes Y for each subject, we have a statistic T (Y,X) giving the
treatment effect. If we now shuffle the treatment records into a vector X̃ we can
again compute the virtual effect T

(
Y, X̃

)
, and we can keep on shuffling like this

to come up with a distribution of these effects. Under the null hypothesis that the
treatment is useless, any of these permutations should be just as effective as the real
treatment, so the fraction of permutations where the actual treatment had a more
extreme value gives its significance level. This significance level is exact, being
based entirely on the data at hand. It does not rely on asymptotic distributions or
standard errors which, we know, may be problematic for spatial data.

However, if we simply charge ahead and try to shuffle spatially correlated data
we hit an immediate barrier in the form of exchangeability: the requirement that
the joint distribution of the data be unchanged by permutation. Exchangeability
clearly cannot hold for spatially correlated observations: taking per capita income
for instance, if we reassignMali’s income to Argentina and Switzerland’s to Brazil,
we have shredded the very spatial structure that concerns us. So how are we to
proceed?

We saw earlier how regressions of one spatial noise series on another often gen-
erate spuriously strong significance. The idea of this paper is to turn this nuisance
to our advantage. Rather than permuting the explanatory variable X , what I pro-
pose instead is to replace it with drawings of synthetic noise from a distribution
that has the same estimated spatial structure. (To be exact, with noise that has
the same spatial structure as the component ofX that is orthogonal to any control
variables Z: otherwise we violate the ancillary principle.)

Because they are drawings froma common spatial distribution, these noise sim-
ulations are exchangeable by construction. The significance of X is measured by
the fraction of simulations where it outperforms this noise. Spatial noise, in other
words, acts as a treatment randomization in an artificial experiment based on cor-
related observational data.

For this exercise to be meaningful we need our simulated noise to approximate
the spatial structure of the explanatory variable as exactly as possible. Fortunately,
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this estimation problem has already been solved for us, and is in fact the defining
problem of geostatistics. Deriving a maximum likelihood estimate of the spatial
parameters of an explanatory variable comes down to a textbook exercise in spatial
statistics, an operation known as kriging.

The proposed randomization procedure then is extremely simple and involves
nothing harder than estimating the spatial parameters of X and simulating noise
with the same structure. The significance level of X is the fraction of regressions
where the replacement synthetic noise has a more extreme t statistic than the orig-
inal estimate.2

I illustrate these approaches using regressions taken from twenty studies of
historical persistence that have appeared in the American Economic Review, Econo-
metrica, Journal of Political Economy, andQuarterly Journal of Economics. In each case
I reproduce the regression that used the full set of controls in the original paper.
The sole concern of this analysis is with comparing randomized and asymptotic es-
timates of significance. It is not concernedwith issues of data construction. It is not
concerned with the plausibility of the mechanism that is said to drive the claimed
persistence, or possible alternative explanations, orwith the quality of the underly-
ing historical scholarship (although inmost cases this is extremely high, especially
in regional studies). Above all, and this cannot be emphasized too strongly, it is not
concerned with somehow “validating” or “disproving” the findings of particular
studies. Although I do identify the studies in the graphs and tables, at no stage do
I make reference to any study in the body of the text.

I find that the null randomization distributions of t statistics in most cases have
far heavier tails than the normal distributions assumed in the original studies. As a
consequence, randomized significance levels are frequently several orders of mag-
nitude larger than the asymptotic ones reported. As mentioned earlier, heavy out-
liers and strong directional trends are rarely absent from spatial data, and I also
examine what happens when we include systematic controls for these.

2A tutorial giving a one line R command to do this, and also estimate average correlation for
Müller and Watson (2021) principal components, can be found at https://rpubs.com/Morgan_
Kelly
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Returning to population based inference, how well do asymptotic standard er-
ror corrections perform compared with randomized inference? Using simulations
based on empirically realistic parameters, I find that Conley standard errors pro-
duce far too many false positives whereas large clusters err equally in the opposite
direction. By contrast, Müller and Watson (2021) principal components have ac-
curate size and substantial power, at least for well behaved simulated data.

For real data, when I compare randomized andMüller-Watson significance for
persistence regressions three patterns emerge. First, when spatial trends are not
controlled for, Müller-Watson estimates are notably fragile and tend to return spu-
rious significance. Next, after controlling for trends Müller-Watson p values are
quite often below the original, nominal ones, and by extension randomized ones.
This indicates that the small sample properties of the estimator are poor for those
particular regressions, meaning that it is not possible to estimate reliable confi-
dence intervals in those cases. However, whenMüller-Watson significance is above
nominal levels it tends to match randomized significance levels closely. The fact
that two estimators constructed in entirely different ways return similar values can
greatly increase our confidence in each.

Besides generating a robust significance level in all circumstances, randomiza-
tion thus acts as a first stage reliability check for whether asymptotic inference is
possible. If a Müller-Watson p value is markedly below the randomised estimate it
indicates either a failure to control for spatial trends, or that asymptotic inference
is not robust for that particular regression. Without this check it can be easy for a
careless researcher to report Müller-Watson estimates that are spuriously signifi-
cant.

The contribution of this paper is in bringing together two previously unrelated
literatures in randomization inference and geostatistics. Randomization inference
goes back to Fisher (1935), and Imbens and Rubin (2015, 57–81) provide a re-
cent overview. Its use in economics has been strongly advocated by Imbens and
Wooldridge (2009) and Athey and Imbens (2017) and, following Young’s (2019)
demonstration of its robustness to outliers, randomization has become increas-
ingly popular in experimental work. The systematic analysis of randomization in
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regressions with observational data starts with Freedman and Lane (1983). Geo-
statistics originated from the need in mineral prospecting and meteorology to in-
terpolate between observations taken at points (ore concentrations in bore holes
or pressure readings at weather stations) to drawmaps across a region, an exercise
that comes down to estimating the pattern of correlation between these points. A
comprehensive survey is Gelfand et al. (2010).

The rest of the paper is as follows. The next Section shows how realistic spatial
noise regressions can return spuriously high t statistics. Randomization inference
in regressions is outlined in Section 3 and spatial parameter estimation 4. The
procedure is illustrated for some persistence studies in Section 5 and Section 6
analyses the performance of standard error corrections.

2 Fitting Spatial Noise

Aswe noted at the beginning, regressions of one spatial noise series on another one
commonly return the large t statistics that are a hallmark of persistence and other
spatial studies. This is illustrated in Figure 1. The parameters used to generate the
simulations are the maximum likelihood estimates of the spatial structure of the
orthogonalized explanatory variable from Row 4 in Table 1 below, and the values
are taken at the white dots which correspond to the locations of historical African
tribes.

If we regress the values from the “Modern Outcome” map on those from the
“Historical Variable” one, we get a t = −3.8 with nominal significance p = 0.0002.
The randomized significance is, in fact, 0.2 (200 of 1000 simulations had t values
at least as extreme); and 5 per cent significance requires a t of 6 with nominal
p = 2× 10−9.

This implies that uncorrected standard errors are one third as large as they
should be. Only one ninth of the observations are contributing to improving the
precision of the coefficient estimates, while the remainder resemble their neigh-
bours too closely to be of much use.
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Figure 1: Regressions of one spatial noise series on another can appear highly
significant. Ifwe regress values at thewhite dots (the locations of historicalAfrican
tribes) on each other we get t = −3.8 with nominal significance p = 0.0002. The
randomized significance level is 0.2 (200 of 1000 simulations had t values at least
as extreme); and 5 per cent significance requires a t of 6 with nominal p = 2×10−9.
The simulationswere generated using themaximum likelihood estimates of spatial
parameters from the first African study in Table 1 below: κ = 0.5, 2θ = 750, ρ =
0.99.

Statistics is the exercise of extracting structure from data. As Figure 1 illus-
trates, because spatial noise contains considerable apparent structure it is easy to
fit spurious relationships and and mistake them for deep historical truths. We
now examine how randomization inference may serve as a check against such a
possibility.
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3 Randomization Inference in Regressions with Ex-
changeable Observations

The systematic study of randomization inference in regressions goes back to Freed-
man andLane (1983), with developments byKennedy andCade (1996), Anderson
and Robinson (2001) and others, surveyed byWinkle et al. (2014). We suppose for
now that the observations are exchangeable so the that joint distribution of the data
is unchanged under permutation. Sufficient conditions for this are that the obser-
vations are independent, or are Gaussian with identical variances and covariances
(Good, 2006, 268).

We consider the regression

Y = βX + Zγ + ε (1)

where Y , X and ε are vectors of length n, β is a scalar, Z is anm× nmatrix and γ
is a vector of lengthm. The null hypothesis is H0 : β = 0.

In the case where there are no nuisance covariates Z it is possible to permute
either Y orX , and to base the test statistic on t statistics or correlation coefficients.
However, when there are other variables Z that are correlated withX (something
that cannot happen in properly randomized experiments, but will usually be the
case with observational data), simply permuting the raw X or Y variables is not
permissible.

If X is shuffled, we are changing the relationship between X and Z, causing γ̂
to vary each time despite the null hypothesis thatX has no effect, and so violating
the ancillary principle (Anderson and Legendre, 1999). If we permute Y we are
testing the far stronger null hypothesis that Y is unrelated to both X and Z, in
other words that both β and γ are zero. As a result, tests are based on permuting
the components of Y or X that are orthogonal to Z.

The Freedman and Lane (1983) procedure involves estimating the reduced
model under the null hypothesis Y = Zγ + ε. This gives the residuals ε̂Y⊥Z =

Y − Zγ̂ and the fitted value Ŷ = Zγ̂. The permuted value of Y is Ỹ = Ŷ + P ε̂Y⊥Z
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where P is the permutation matrix that reorders ε̂Y⊥Z . We then repeatedly carry
out the permutation regressions

Ỹ = βX + Zγ + ε (2)

and derive the significance level of the null hypothesis as the fraction of permuta-
tions where the absolute t value is higher than in estimated absolute value from
(1).

The complementary procedure (whichWinkle et al. 2014 call the Smithmethod)
is to permute the component of X that is orthogonal to Z. If we have X = Zδ + ν

then we define ν̂X⊥Z = X − Zδ̂. The permuted value of X is X̃ = P ν̂X⊥Z in the
regression

Y = βX̃ + Zγ + ε. (3)

The validity of randomization rests on the exchangeability of ε̂Y⊥Z or ν̂X⊥Z :
the joint distribution of the variables remains the same under permutation so all
shuffles are equally likely. A relaxation of this requirement is what Good (2006,
128) calls weak exchangeability. Instead of the joint distribution being invariant
under all rearrangements of subscripts, it is only invariant under a subset of them
which are used for the permutation test.

This idea underlies the clustered spatial permutations used in economics by
Barios et al. (2012) and in neuroscience byWinkle et al. (2014): tiles such as Amer-
ican states are fixed, but observations within each tile, such as workers, can be
permuted. However, most observational data lack this hierarchical structure so a
different approach is needed.

4 Randomization with Spatial Noise

The approach to generating exchangeable observations for randomization that I
propose is to generate synthetic noise that has the same spatial correlation param-
eters as ε̂Y⊥Z or ν̂X⊥Z . We will let Ṽ Y⊥Z denote drawings of synthetic noise with
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the same correlation structure (as well as mean and standard deviation) as ε̂Y⊥Z
and similarly drawings Ṽ X⊥Z will have the same correlation structure as ν̂X⊥Z . By
construction, these simulations will satisfy exchangeability. We are then looking
at the explanatory power of X in the artificial regression

(
Ŷ + Ṽ Y⊥Z

)
= βX + Zγ + ε (4)

and Ṽ X⊥Z in
Y = βṼ X⊥Z + Zγ + ε. (5)

Again, the significance level is the fraction of these artificial regressions where
the t statistic has a more extreme value than the one originally estimated in (1). To
apply this randomization we need to generate synthetic noise variables Ṽ Y⊥Z and
Ṽ X⊥Z that have the same spatial distribution as ε̂Y⊥Z and ν̂X⊥Z .

Estimating these distributions is a textbook exercise in geostatistics. Let V de-
note either ε̂Y⊥Z or ν̂X⊥Z . We have a vector of observations of V at n sites s. The
additive spatial model to be estimated is

V (s) = T (s) + g (s) + η (s) . (6)

T (.) is a deterministic spatial trend surface that acts as a mean function, g (.) ∼
N (0, ρK) is a spatial correlation process, and η (.) ∼ N (0, σ2I) is idiosyncratic
noise (Zimmerman and Stein, 2010). In other words, observations are decom-
posed into low frequency trends, local correlations, and idiosyncratic noise.

The matrix K with ij-th element K (si, sj) gives the correlation between sites
si, sj . It follows that the observations V are Gaussian

V (s) ∼ N
(
T (s) , ρK (s) + σ2I

)
. (7)

The magnitude of ρ relative to σ2 gives the degree of systematic spatial structure
relative to idiosyncratic noise in the observations. We suppose for now that the
data have been detrended so T (s) = 0.

11



0.00

0.25

0.50

0.75

1.00

0 2 4 6
Distance h.

Smoothness
κ = 0.5

κ = 1.5

κ = 4.0

Figure 2: The flexible formof theMatérn function (drawnwith range θ = 1) allows
it to fit a wide variety of spatial kernels. For the studies analysed here, correlation
among residuals tends to fall off exponentially with distance, corresponding to
κ = 0.5.

To estimate the covariance matrix of V requires that a kernel function K (.) be
specified. It will be assumed to be isotropic so that correlation between two points
depends only on the distance h between them. Because of its adaptable functional
form, robust empirical performance, and the fact that it is guaranteed to be positive
definite, the workhorse kernel of spatial statistics is the Matérn function.

Correlation between sites si, sj at distance h apart is

M (h; θ, κ) =
21−κ

Γ (κ)

(
h

θ

)κ
Bκ

(
h

θ

)
(κ > 0, θ > 0) (8)

where Γ is a gamma function andBκ is a Bessel function of the second kind (Gneit-
ing and Gutthorp, 2010). The parameter θ is a range parameter controlling how
fast correlation decays with distance, and κ is a smoothness parameter. For κ = 1

2
,

correlation decays exponentially so M (h) = exp (−h/θ), and as κ → ∞, M be-
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comes Gaussian. The flexibility of the Matérn function is illustrated in Figure 2
where range θ is set to 1 and smoothness κ takes on values from 0.5 to 4.

We have then a matrix giving the covariance between observations

Σ (si, sj) = ρM (h; θ, κ) + σ21ij (9)

The parameters θ, ρ, κ and σ2 can be estimated by maximum likelihood or cross
validation using standard geostatistical software giving us an estimated covariance
matrix Σ̂.

For this estimated covariance matrix, define its Cholesky decomposition L as

LL
′
= Σ̂. (10)

If φ ∼ N (0, I) is an n× 1 vector of Gaussian noise, the synthetic vector

Ṽ = Lφ (11)

has a spatial correlation structure identical to Σ̂, the estimated covariance of V .
These simulations Ṽ can thus serve as synthetic exchangeable variables that have
the same joint distribution as the variables of interest ε̂Y⊥Z or ν̂X⊥Z . They can thus
be used in their place in (4) and (5) to carry out randomizations.

Whereas in randomized experiments, the null hypothesis is that the treatment
X has no effect, here the null hypothesis is contingent on the randomization pro-
cess, in other words the synthetic noise used. Specifically, the null hypothesis is
that X has no more explanatory power than spatial noise with a given set of gen-
erating parameters.3

For concreteness of exposition in the empirical analysis that follows, when esti-
mating the parameters of V we can also estimate the parameters when it is scaled
to have a standard deviation of one. The covariance matrix of the scaled data is a

3The dependence of the null on the randomization mechanism is implicit in randomized exper-
iments. If we are testing an experiment with treatments levels doses of, say, 0, 1 and 2, we could in
principle randomize on imaginary doses of 0, 1, 2, and 3 and obtain different significance levels.
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correlation matrix where ρ+σ2 = 1. This normalized ρ is what will be reported in
what follows: a value of one means that all observations lie exactly on the spatial
correlation surface, and a value of zero implies no spatial correlation in the data.

5 Historical Persistence

To illustrate this spatial randomization inference, I will examine twenty studies on
historical persistence that have appeared in leading journals. A single regression
from each paper is analyzed which includes the main explanatory variable of in-
terest along with the largest set of controls that were used: this is usually located
towards the right of table 2 or 3. Details of each regression are given in Appendix
B.

For each case I generate synthetic versions of the components of the dependent
and explanatory variable that are orthogonal to any controls used. A property of
the Matérn function is that when two sites are separated by a distance h =

√
8κ θ,

the correlation between them is 0.14: this distance is commonly called the effective
range. The estimated effective range and structure of each variable is given in Table
1 for κ = 0.5: exponential decay of correlation.4

The R2 of the spatial trend surface T for each variable is given based on a
quadratic trend in longitude and absolute latitude: higher order terms did not
affect the results materially. For a well specified regression, there should be no
systematic spatial trends remaining in the orthogonalized variables: R2 should be
zero.

4Given that effective range is
√

8κ θ , range θ and smoothness κ cannot be reliably estimated
together. The standard procedure is to set κ in increments of 0.5 running from 0.5 to 2.5 and to
choose the one that returns the highest likelihood. For the regressions here, using values of κ
running from 0.5 to 1.5 return effectively identical likelihoods and randomized significance levels.



Table 1: Maximum likelihood estimates of the spatial structure of (orthogonalized) explanatory and dependent vari-
ables in persistence studies. These parameters are used to generate synthetic noise for randomization inference in Table
2 and Figure 3.

Explanatory X⊥Z Dependent Y⊥Z
Moran

I
Trend
R2

Range√
8κθ

Struct.
ρ

Trend
R2

Range√
8κθ

Struct.
ρ

Global
Acemoglu, Colonial. 2.19 0.43 4500 0.52 0.37 1000 0.14
Acemoglu, Reversal. 2.57 0.13 9800 0.99 0.33 800 0.86

Alesina, Plough. 6.98 0.23 2100 0.92 0.05 800 0.96
Arbatli, Conflict. 1.87 0.08 6100 0.94 0.01 900 0.48
Ashraf, Africa. 5.65 0.05 12000 0.95 0.01 16 0.00

Galor, Time. 1.48 0.08 3400 0.98 0.09 2800 0.57
La Porta, Law. 0.87 0.11 9400 0.66 0.08 1000 0.96

Michalopoulos, Folklore. 6.56 0.01 400 0.96 0.02 2200 0.65
Spolaore, Diffusion. 8.49 0.14 5900 0.88 0.00 2000 0.68

Africa
Alsan, TseTse. 9.10 0.10 750 0.99 0.01 1250 0.79

Michalopoulos, Precolonial. 7.29 0.00 300 0.72 0.00 500 0.22
Nunn, Mistrust. . 0.01 400 0.13 0.00 400 0.00
Nunn, Slavery. -0.15 0.02 900 0.20 0.06 1200 0.06

Spatial structure of the components of the explanatoryX⊥Z and dependent variable Y⊥Z that are orthogo-
nal to any control variables Z. Moran’s I is a measure of the spatial correlation of residuals. Trend R2 gives
the explanatory power of a regression of the variable on a quadratic in longitude and latitude. Effective
range

√
8κθ is the distance in kilometres where the correlation between locations of the detrended variable

has fallen to 0.14; and structure ρ is its spatial signal to noise ratio. θ and ρ are computed by maximum like-
lihood with exponential decay of correlation κ = 0.5, except in cases where effective range does not end in
0 or 5 when κ = 1.5 was used.

Continued on next page



Table 1: Maximum likelihood estimates of spatial parameters.(cont.)

Explanatory X⊥Z Dependent Y⊥Z
Moran

I
Trend
R2

Range√
8κθ

Struct.
ρ

Trend
R2

Range√
8κθ

Struct.
ρ

Europe and Latin America
Ambrus, Cholera. 8.51 0.15 44 0.99 0.03 9 0.97

Becker, Weber. 13.48 0.00 60 0.28 0.00 200 0.37
Dell, Mita . 0.49 45 0.90 0.02 10 0.01

Hornung, Huguenots. 9.16 0.02 60 0.41 0.05 100 0.01
Squicciarini, Devotion. 5.63 0.23 960 0.87 0.49 180 0.78

Valencio, Mission. 22.62 0.33 207 0.99 0.02 120 0.85
Voigtlaender, Persecution. 12.45 0.09 40 0.97 0.13 207 0.57

Spatial structure of the components of the explanatoryX⊥Z and dependent variable Y⊥Z that are orthogo-
nal to any control variables Z. Moran’s I is a measure of the spatial correlation of residuals. Trend R2 gives
the explanatory power of a regression of the variable on a quadratic in longitude and latitude. Effective
range

√
8κθ is the distance in kilometres where the correlation between locations of the detrended variable

has fallen to 0.14; and structure ρ is its spatial signal to noise ratio. θ and ρ are computed by maximum like-
lihood with exponential decay of correlation κ = 0.5, except in cases where effective range does not end in
0 or 5 when κ = 1.5 was used.



The Table also gives the Moran’s I statistic for the regression, a standard mea-
sure of the degree of spatial correlation in the residuals that is estimated here using
five nearest neighbours. It is not reported for two studies that have multiple obser-
vations at each location. This statistic has an asymptotic normal distribution but
should not be viewed as a yes-no, significant-insignificant test for autocorrelation,
but rather as an approximate indicator of its strength.

Nearly all the variables in Table 1 display a similar spatial structure. Correlation
falls off exponentially with distance and the effective range relative to the study
area is usually large, as is the spatial structure ρ. The orthogonalized explanatory
variables usually show more structure than dependent variables. In several cases,
spatial trends have high explanatory power for the persistence variable, suggesting
that these variables are acting as proxies for omitted directional trends, something
that will be examined below.

The Moran statistic is substantial in many cases indicating heavy spatial corre-
lation in regression residuals. The magnitude of this statistic is usually a moder-
ately reliable guide to of how far apart nominal and randomized significance will
be, but not always. For instance the Moran statistic in the first row of the Table is
only 2.2, but the corresponding asymptotic and randomized significance levels are
0.0002 and 0.3 respectively.

Once we have estimates of these spatial parameters we can construct synthetic
dependent and explanatory variables with the same joint distribution as the orig-
inal variables, and use drawings from these in the randomization regressions (4)
and (5). The significance level of the explanatory variable is the fraction of these
drawings there the original t statistic is larger in absolute value than the artificial
ones.

Figure 3 gives the null randomizationdistributions for the regressions (5)when
the X variable is replaced by spatial noise based on 10,000 simulations. The red
line denotes the original, unadjusted t value (in one case in row 2 the explana-
tory variable enters quadratically, so the null hypothesis is that quadratic terms
jointly have no explanatory power, giving an F distribution). It can be seen imme-
diately that, with few exceptions, the randomization distribution has heavy tails
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Table 2: Randomized significance levels of persistence variables using orthogo-
nalized explanatory and dependent variables.

Randomized p

Asymptotic p X⊥Z Y⊥Z

Acemoglu, Colonial. 1.9× 10−4 0.280 0.239
Acemoglu, Reversal. 2.1× 10−3 0.114 0.252

Alesina, Plough. 1.5× 10−4 0.033 0.055
Alsan, TseTse. 9.7× 10−6 0.007 0.070

Ambrus, Cholera. 2.5× 10−6 0.051 0.037
Arbatli, Conflict. 2.0× 10−2 0.066 0.067
Ashraf, Africa. 8.4× 10−2 0.246 0.094
Becker, Weber. 1.1× 10−6 0.000 0.000

Dell, Mita 2.0× 10−7 0.107 0.069
Galor, Time. 1.0× 10−3 0.016 0.018

Hornung, Huguenots. 5.0× 10−4 0.031 0.009
La Porta, Law. 2.2× 10−3 0.005 0.003

Michalopoulos, Folklore. 3.2× 10−3 0.009 0.020
Michalopoulos, Precolonial. 1.7× 10−2 0.050 0.034

Nunn, Mistrust. 1.9× 10−65 0.000 0.000
Nunn, Slavery. 1.8× 10−3 0.002 0.001

Spolaore, Diffusion. 9.6× 10−9 0.004 0.021
Squicciarini, Devotion. 9.1× 10−4 0.374 0.627

Valencio, Mission. 2.4× 10−2 0.538 0.534
Voigtlaender, Persecution. 8.2× 10−3 0.092 0.040

Asymptotic and randomized significance levels for persistence regressions. The synthetic noise
for the orthogonalized explanatory (X⊥Z) variable and dependent (Y⊥Z) variables was gen-
erated using the maximum likelihood estimates of spatial parameters from Table 1.

compared with the assumed asymptotic normal distribution on which population
based inference was originally made. In two cases the original t values of 8 and 15
lie, literally, off the chart. In the first case the randomized significance of 6×10−6 is
the same as the original one but does not appear in the diagramwhich is based on
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10,000 simulations. In the second case, the fact that the estimated spatial surface
fails to come remotely close to matching the spatial pattern of the original data
suggests that the reported regression is fitting some heavy outliers that are not
being mapped by our kriging estimation. I will return to this below.

Table 2 compares the reported results of the original studies with the signifi-
cance levels generated with noise based on the explanatory and dependent vari-
ables. In most cases the new significance levels differ from the original ones by
several orders of magnitude. The two artificial regressions based on the X⊥Z and
Y⊥Z variables tend to return similar significance levels, with the simulated explana-
tory variable usually being somewhat higher. These results are graphed in Figure
4: to be conservative it reports the higher significance level of the two calculated.

Naturally, in contrast to a designed experiment, there is no such thing here as
the significance level, any more than there is in a regression where coefficients and
standard errors change as covariates are added or removed. The goal of the exer-
cise is to be roughly right rather than precisely wrong. It is increasingly realized in
economics that sharp “significant-insignificant” distinctions are unhelpful at best:
an elasticity estimate of 0.15 with standard error of 0.025 is “highly significant”
whereas one of 2 with a standard error of 1.5 is “insignificant” even though it has
a 90 per cent chance of being larger. The randomized significance levels reported
here mainly serve as a guide to the likely precision of the coefficient estimates, not
necessarily to their importance in any meaningful sense.



Figure 3: Null randomization distributions of t-statistics derived by replacing the explanatory variableX with noise that has the
same spatial structure. Light grey denotes a 95% confidence interval. Red lines are the nominal t or F statistics, and significance
PX is the tail area beyond these.
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5.1 Controlling for Outliers and Spatial Trends

Besides inflated t statistics, the findings of spatial regressions may be distorted
by failing to control for spatial trends or outliers. The high explanatory power
of spatial trends for orthogonalized explanatory variables we saw earlier in Table
1 suggest that some results may be artefacts of failing to control for directional
trends in the data. At the same time, the results of any cross-sectional regression,
spatial or otherwise, may be driven by substantial outliers. This section analyses
the robustness of persistence findingswhen these are systematically controlled for.

The robustness checks for spatial trends are simple, and commonly used in
practice. For regressions on a global scale, I add distance from the equator and
dummies for World Bank regions. For all other regressions I add a quadratic in
longitude and latitude. Regarding outliers, in one case I omit eight of 157 locations,
and in another six of 325, that lie far from the other observations on a scatterplot
of the historical and outcome variables. Malaria prevalence is a routine control
for African regressions and I add it to the one African regression where it was
omitted. To the extent that any proposed check appears unreasonable or unduly
ad hoc it should, naturally, be ignored.

Figure 5 shows the original, reported significance levels of the studies (after
clustering if applied), and the randomized significance levels after the directional
and outlier controls were added.

6 Consistent Spatial Standard Errors

When it comes to spatial regressions, the commonest way that researchers try to
control for potentially inflated t values is to cluster standard errors at some ar-
bitrary level, typically one administrative level above the original observations.
However, for clustered standard errors to be consistent requires that residuals be
uncorrelated between clusters, whichwill usually not be true for spatial data: think
of US towns on opposite sides of a state line. Ignoring this requirement leads to
the distortions analyzed by Barios et al. (2012).
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Turning to consistent estimators, the most popular is the spatial heteroskedas-
ticity and autocorrelation consistent (SHAC)procedure, pioneered byConley (1999),
where the researcher picks a weighting kernel (usually triangular or rectangu-
lar) describing how the correlation between regression residuals falls with dis-
tance. Although standard errors estimated with many small clusters are typically
inconsistent, Ibragimov andMüller (2010), Bester, Conley and Hansen (2011) and
Canay, Romano and Shaikh (2017) derive estimators that are consistent undermild
assumptions by grouping data into G large clusters (these will be referred to as
BCH, IM, and CRS in what follows). The last I will examine here is the Müller
and Watson (2021) procedure of maximizing the estimated variance of residuals
by averaging the first few principal components of the covariance matrix.

6.1 Size and Power of Spatial Standard Error Corrections

Figure 6 shows the size and power of standard error corrections using simulated
data with an empirically realistic structure. The points correspond to historical
African tribes and correlation has an effective range of 500 km: varying this does
not affect results materially.

The top panel shows the percentage of regressions that are significant at five per
cent when one spatial noise series is regressed on another. For high structure (ρ =

0.95)we can see that about 60 per cent of unadjusted regressions are significant at 5
per cent, and if Conley corrections are applied (using uniform and Bartlett kernels
with ranges of 500 and 1000 km) this falls somewhat to about 45 per cent. When
spatial structure is reduced to ρ = 0.75, both unadjusted and Conley standard
errors are significant about one fifth of the time.

By contrast, CRS and IM have accurate size. The observations are placed suc-
cessively in six to eight clusters using k-means clustering, and regardless of spatial
structure, five per cent are significant at five per cent. By contrast, BCH cluster-
ing returns too many false positives. Müller-Watson has correct size when average
correlation is set to what they consider to be a high value of 0.05 (the true average
correlation of these simulations ranged from 0.04 for ρ = 0.5 to 0.07 for ρ = 0.95).
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Figure 6: Consistent standard error adjustments for spatial noise simulations.
Conley cutoffs 1 and 2 equal 500 and 1000 km. BCH, IM and CRS are followed by
number of clusters, and MW by average spatial correlation. Conley standard er-
rors overfit spatial noise regressions; CRS and IM have correct size but low power;
and MW has correct size and better power at higher correlations.
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ThedifficultywithCRS and IMcomeswith power: they are effective at rejecting
true relationships as well as spurious ones. The lower panel takes two regressions
where the dependent variable y = bx+ewhere x is spatial noisewith a range of 500
km and structure of 0.5 (changing either has little impact here) and the residual e
is Gaussian noise. Both x and e have mean of zero and standard deviation of one.
For b = 0.2, a five per cent significant relationship is found almost every time with
Conley standard errors, in only 60 per cent of cases by IM and CRS; but almost 90
per cent withMWat 0.05 correlation. When b is reduced to 0.1, the unadjusted and
Conley standard errors are significant in about half the simulations, but CRS and
IM find a relationship only half as often, and MW about 40 per cent of the time. It
can be seen then that, among adjustments with correct size, MW has considerably
more power than CRS and IM.

6.2 Comparing Randomized and Müller-Watson Estimates

For well behaved, simulated data we can see that large clusters are much too hard,
and kernels aremuch too soft, butMüller-Watson is just right. It is therefore useful
to examine how randomized andMüller-Watson estimates compare when used on
real data from persistence studies.5

It is worth recalling how differently constructed these estimators are. Müller-
Watson is based on the asymptotic distribution of a statistic derived from themean
of the eigenvectors of an assumed covariance matrix of residuals. Randomization
by contrast relies on the the estimated covariance of detrended and orthogonalized
explanatory or dependent variables. Getting similar results from such different
estimators can greatly increase our faith in each.

5Kernel and cluster corrections are reported in Appendix A.



Table 3: Comparison of Müller-Watson and randomized significance levels. When spatial trends have been ignored, the default
correlation assumed byMüller-Watson is often too low, causing it to generate spurious significance. After controlling for trends,
Müller-Watson and randomized significance levels tend tomatch fairly closely, except in cases whereMüller-Watson significance
is lower than the nominal, unadjusted level.

Original Regressions With Trend Controls

Unadjusted
p

MW
0.03

Random-
ized

MW
R̄

R̄
Unadjusted

p
MW
0.03

Random-
ized

MW
R̄

R̄

Acemoglu, Colonial. 1.90× 10−4 0.02 0.28 0.37 0.51 0.17 0.43 0.24 0.30 0.00

Acemoglu, Reversal. 2.06× 10−3 0.02 0.25 0.20 0.23 0.12 0.19 0.23 0.19 0.03

Alesina, Plough. 1.50× 10−4 0.07 0.06 0.13 0.10 0.05 0.00 0.13 0.00 0.04

Alsan, TseTse. 9.66× 10−6 0.01 0.07 0.08 0.12 0.00 0.03 0.03 0.11 0.13

Ambrus, Cholera. 2.53× 10−6 0.07 0.05 0.08 0.05 0.06 0.33 0.28 0.41 0.05

Arbatli, Conflict. 1.95× 10−2 0.06 0.07 0.05 0.01 0.12 0.10 0.21 0.08 0.01

Dell, Mita 2.04× 10−7 0.00 0.11 0.00 0.00 0.08 0.44 0.39 0.32 0.00

Galor, Time. 1.03× 10−3 0.00 0.02 0.00 0.01 0.02 0.00 0.07 0.00 0.01

Hornung, Huguenots. 4.97× 10−4 0.00 0.03 0.00 0.00 0.01 0.00 0.04 0.00 0.00

La Porta, Law. 2.15× 10−3 0.00 0.00 0.00 0.03 0.05 0.03 0.13 0.02 0.02

Michalopoulos, Folklore. 3.17× 10−3 0.13 0.02 0.27 0.17 0.02 0.21 0.06 0.36 0.11

Nunn, Slavery. 1.79× 10−3 0.00 0.00 0.00 0.00 0.19 0.03 0.20 0.06 0.01

Spolaore, Diffusion. 9.55× 10−9 0.00 0.02 0.02 0.23 0.04 0.11 0.22 0.08 0.13

Squicciarini, Devotion. 9.05× 10−4 0.03 0.63 0.18 0.21 0.41 0.56 0.57 0.56 0.03

Valencio, Mission. 2.42× 10−2 0.50 0.54 0.62 0.13 0.19 0.52 0.72 0.72 0.13

Voigtlaender, Persecution. 8.22× 10−3 0.07 0.09 0.43 0.35 0.11 0.24 0.28 0.56 0.23

Müller-Watson statistics were estimated in twoways. MW 0.03 assumes an average correlation between residuals of 0.03, andMW R̄ is the value when
average correlation R̄ is estimated by kriging. In cases where R̄ = 0.00 average correlation was set to 0.01.



Table 3 shows the randomized and principal components significance levels of
the persistence studies considered here.6 Two sets of results are given for before
and after robustness checks. In each case, the Table gives the nominal and random-
ized significance. Two levels of Müller-Watson significance are reported based on
different levels of average correlation between residuals. First is the default value
assuming correlation of 0.03, next is the value based on the kriging estimates R̄
of average correlation. These estimates are constructed using the same maximum
likelihood procedure as in equation (9).

Clear patterns emerge. First, before controlling for directional trends, random-
ized and principal components estimates diverge markedly, with Müller-Watson
seldom returning a pmuch above 0.05. After controlling for trends, Müller-Watson
and randomized significance levels oftenmatch closely, with randomization some-
times being more conservative (although in one case randomized significance is
substantially lower). However there are several instanceswhere theMüller-Watson
p values lie below the unadjusted nominal ones, suggesting that its small sample
properties are unreliable in these cases and that inference must be based on ran-
domized significance.

7 Extensions and Conclusions

This paper began with the observation that spatial regressions often return in-
flated t values, and that standard error adjustements that try to correct for this
return widely different estimates. Given the uncertainties around asymptotic es-
timates, this paper considered an approach to inference tailored to each sample,
Fisher randomization. The approach was to circumvent the problem of exchange-
ability by basing inference on spatial noise that has the same estimated structure as
the variable of interest. The parameters of this spatial noise are straightforwardly
estimated by kriging the original variable. Besides allowing robust inference for

6Four studies are omitted where principal components estimation could not be implemented in
Stata at the time of writing (one is based on an F test of joint significance, the others involve large
numbers of regional dummies).
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the variable of interest, randomized significance levels provide a check on the re-
liability of Müller-Watson asymptotic confidence intervals.

The focus here has been on OLS, but it can be straightforwardly extended. In-
strumental variables can be approached by analyzing the first stage regression (in
the presence of spatial correlation, instruments can appear spuriously strong), and
by randomizing on the dependent variable in the second stage. Just aswe analyzed
cross-sectionalmodels here by applying spatial correlation techniques, panelmod-
els can be randomized by first estimating their parameters using spatio-temporal
methods.
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Appendix A Kernel and Cluster Corrections for Per-
sistence Studies

Figure 1 shows the t statistics for the persistence studies before robustness checks
using different kernel and cluster adjustments (for corrections that return signifi-
cance levels, these are the t values corresponding to estimated significance: a sig-
nificance of 0.05 is presented as a t of 2). The first column gives unadjusted stan-
dard errors, and the next one gives values after naive clustering if that was applied:
of the seven studies that used clustering, in two cases t values increased.

Conley standard errors were constructed using uniform and Bartlett kernels
with three cutoffs. For global andAfrican studies the cutoffs are 500, 1000, and 1500
km; for European and Latin American ones, except for two smaller scale ones, they
are 50, 100, and 150 km. As the simulations in Figure 6would lead us to expect and
a glance at the colours of the heatmap confirms, Conley corrections rarely cause
drastic changes in estimates compared with the unadjusted or clustered standard
errors.



Table A.1: Kernel and cluster standard error corrections vary widely. The number in each square is the value of the (implicit) t
statistic. Conley cutoffs 1, 2 and 3 are equal to 500, 1000 and 1500 km in global and African studies; and 50, 100 and 150 in the
others. BCH, IM and CRS are followed by number of clusters. Conley SEs are roughly similar to unadjusted ones, whereas large
clusters are considerably higher. Randomized estimates are included for comparison: they tend to lie between the Conley and
large cluster values but closer to the latter.
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The opposite holds for large cluster estimates. Clusters were constructed by k-
means clustering (except in three cases with binary explanatory variables and/or
multiple observations at each location, where north-south stripeswere used to cre-
ate variation within clusters). Instances where there were too few spatial points
for CRS and IM are blank. As the simulations would lead us to expect, the large
cluster procedures cause extreme rises in (implicit) standard errors: it is compar-
atively rare to find a regression that reaches five per cent significance. In one case
the t value falls from 15 to below 2.

Appendix B Studies Examined.

Here we give details of the regressions we examined from the papers analysed
above. We group them into three categories by their geographical focus: global;
Africa; and Europe and theAmericas. In every case, I chose the column of the table
with the maximum number of controls applied, and regional or country dummies
if applicable. Longitudinal clusters indicates that large cluster estimators in Figure
1 were constructed using north-south stripes instead of nearest neighbours to give
variation in the explanatory variable within clusters.

B.1 Global

Acemoglu, Johnson andRobinson (2001). TheColonialOrigins of Comparative
Development: An Empirical Investigation

Table 3.1. Regress protection against expropriation risk on estimated settler mor-
tality

Acemoglu, Johnson and Robinson (2002). Reversal of Fortune

Table 3.1. Regress GDP per capita on urbanization in 1500.
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Alesina, Giuliano and Nunn (2013). On the Origin of Gender Roles: Women
and the Plough.

Table 3.1. Regress women’s labour force participation on plough adoption.

Arbatli et al. (2020) Diversity and Conflict

Table 1.8. Regress civil conflict on diversity.

Ashraf and Galor (2013). The “Out of Africa” Hypothesis, Human Genetic Di-
versity, and Comparative Economic Development

Table 6.3. Regress per capita GDP on quadratic diversity. Because the estimated
significance levels of individual terms in a polynomial have no statistical interpre-
tation, the hypothesis that they have no joint effect is tested.

Galor and Özak (2016). The Agricultural Origins of Time Preference

Table 1.2. Regress long term orientation on crop yield.

La Porta et al. (1998). Law and Finance

Table 6.2. Regress efficiency of judicial system on a civil law dummy.

Michalopoulos and Xue (2021) Folklore

Table 5.6. Regress GDP per capita on punishment of anti-social behaviour.

Spolaore and Wacziarg (2009). The Diffusion of Development

Table 1.3. Regress GDP per capita on genetic distance from the US.
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B.2 Africa

Alsan (2015). The Effect of the TseTse Fly on African Development

Table 1.4. Regress historical population density on tsetse fly suitability.

Michalopoulos and Papaioannou (2013). Pre-Colonial Ethnic Institutions

Table 3.8. Regress nighttime illumination on binary political centralization.

Nunn (2008). The Long Term Effect of the Slave Trade

Table 3.5. Regress GDP per capita on slave exports. The robustness check is to add
the share of population at risk of malaria and a dummy for the outlier of Demo-
cratic Republic of the Congo.

Nunn and Wantchekon (2011). The Slave Trade and the Origins of Mistrust in
Africa

Table 2.3 Regress trust of neigbours on slave exports. The robustness check is to
omit eight (of 157) districts with extreme exports. Longitudinal clusters.

B.3 Europe and the Americas

Ambrus, Field and Gonzalez (2020). Loss in the Time of Cholera: Long Run
Impact of a Disease Epidemic on the Urban Landscape

Table 3.4. Regress 1936 rental prices on dummy for catchment area of the Broad
Street cholera pump. Conley cutoffs in Figure 1 are set at 10, 15 and 20 per cent of
the study range. Longitudinal clusters.

Becker and Woessmann (2009). Was Weber Wrong? A Human Capital Theory
of Protestant Economic History

Table 3.4. Regress literacy on the percentage Protestant.
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Dell (2010). The Persistent Effects of Peru’s MiningMita

Table 2.1, panel three. Regress household consumption on Mita dummy. Conley
cutoffs in Figure 1 are set at 20, 40 and 60 km. Longitudinal clusters.

Hornung (2014) Immigration and the Diffusion of Technology: The Huguenot
Diaspora in Prussia

Table 3.6. Regress textile productivity on Huguenot population share.

Squicciarini (2020)Devotion andDevelopment: Religiosity, Education, andEco-
nomic Progress in Nineteenth-Century France

Table 3.1. Regress industrial employment on refractory clergy.

ValenciaCaicedo (2019). TheMission: HumanCapital Transmission, Economic
Persistence, and Culture in South America

Table 2.2. Regress modern literacy rates on distance from a Jesuit mission.

Voigtländer and Voth (2012). Persecution Perpetuated: The Medieval Origins
of Anti-Semitic Violence in Nazi Germany.

Table 4.2. Regress Nazi vote share on pogroms. The robustness check is to leave
out six constituencies (of 325) with extreme vote share.
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