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A Probabilistic Modeling of Photo Voltaic Modules
and Wind Power Generation Impact on Distribution

Networks
Alireza Soroudi*, Morteza Aien, Mehdi Ehsan

Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran

Abstract—The rapid growth in use of renewable intermittent
energy resources (like wind turbines and solar panels) in distri-
bution networks has increased the need for having an accurate
and efficient method of handling the uncertainties associated to
these technologies. In this paper, the unsymmetrical two point
estimate method (US2PEM) is used to handle the uncertainties
of renewable energy resources. The uncertainty of intermittent
generation of wind turbine, photo voltaic cells and also electric
loads, as input variables, are taken into account. The variation of
active losses and imported power fromthe main grid are defined
as output variables. The U2PEM is compared to Symmetrical
two point estimate method (S2PEM), Gram Charlier and Latin
Hypercube Sampling (LHS) where Monte Carlo Simulation
(MCS) is used as a basis for comparison. The validity of the
proposed method is examined by applying it on a standard radial
9-node distribution network and a realistic 574-node distribution
network.

Index Terms—Monte Carlo simulation, PV cells, wind turbine,
active losses, point estimate method.

I. I NTRODUCTION

A. Motivation and problem description

The penetrationlevel of Distributed generation (DG)units
is increasing on power distribution networks across the world.
In deregulated power systems, the Distribution Network Op-
erators (DNOs) are responsible for maintaining the reliability
and efficiency of distribution networks. They usually dothisby
performing investment in network components andapplying
some active loss reduction policies. The role of Distributed
Generation (DG) units in decreasing the operating and invest-
ment costs is crucial. The DNOs need some tools to investigate
the impact of DG units specially those intermittent ones like
wind turbines and photo voltaic modules. The motivation of
this study is to providesuch a tool for DNOs in order to
model the uncertainties of intermittent power generationsof
wind turbines, photo voltaic cells and also electric load values.
It should not only reduce the computational burden but also
maintain the accuracy of computationprocedure.

B. Literature review

The benefits of DG units like active loss reduction [1],
[2], reducing the energy costs in the short term [3], emission

* Correspondence to: Alireza Soroudi, Department of Electrical
Engineering, Sharif University of Technology, Tehran, Iran, e-mail:
(alireza.soroudi@gmail.com).

reduction [4], distribution system service restoration [5], relia-
bility improvement [6], [7] and incrementing the load balance
factor of radial distribution networks [8] have been highly
discussed in the literature. In recent years, the production of
clean energy (renewable ones) by small power producers is
encouraged [9]. The power produced by these technologies
may be used in the market, in addition to being consumed
locally [10]. The problem is thatthe generated power ofre-
newable energy resources like wind turbines and photo voltaic
cells are exposed to uncertainties. The probabilistic methods
are widely used in power system operations and planning to
deal with a variety of uncertainties [7]. The probabilisticpower
flow (PPF) isa tool which handles the uncertainties associated
with input data of traditional power flow problem. A great
deal of attention has beenpaid to the PPF problem in the
literature. The PPF was first introduced in 1976 [11]. In [12],
a convolution based technique wasapplied to consider the
interdependent demands. In [13], a linearized set of load-flow
equations were introduced to reduce the complexity of the
problem. In [14], a combined Monte Carlo simulation tech-
nique and linearized power flow equations wasemployed. A
Cumulant based method was proposed in [15] to deal with PPF
problem. An enhancement to the traditional Cumulant method
was implemented in [16], named Limit corrected Cumulant
method (LCCM) which specifically addressed errors in the
existing Cumulant method. This method produces multiple
probability density functions (PDFs) and finds the final PDF
combining the obtained PDFs. A hybrid Cumulant and Gram-
Charlier expansion theory was introduced in [17] to reduce
the computational time while maintaining a high degree of
accuracy. In [18], an efficient Point Estimate Method (PEM)
was proposed to handle the uncertainties of bus injections and
line parameters. Four different versions of PEM were tried
and tested in [19]. In [20], a Monte-Carlo simulation based
method was applied to the nonlinear three-phase load flow
equations of distribution networks including wind farms. A
Latin Hypercube sampling (LHS) combined with Cholesky
decomposition method (LHS-CD) was proposed in [21] or
state space pruning [22] to reduce the computational burden
of MCS. In [23], Cornish-Fisher expansion series were used
to obtain the cumulative distribution function (CDF) of the
output variables. In [24], a model based on 2PEM was used
to take into accountthe correlated wind power resources and
load values.
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C. Contributions

The contributions of this paper are two fold:

1) To reduce the computational burden while keeping the
precision.

2) To analyze the impact of PV modules and wind turbines
in the network, simultaneously.

D. Paper organization

The problem formulation is described in Section II. Section
III presents the method used for modeling and dealing with
uncertainties. The described model is applied on two distri-
bution networks and the simulation results are presented and
discussed in Section IV. Finally, conclusions areoutlined in
Section V.

II. PROBLEM FORMULATION

The assumptions used in problem formulation, constraints
and the uncertainty modeling are explained as follows:

A. Constraints

1) Power flow equations:The power flow equations to be
satisfied are:

Pnet
i = −PD

i + P
w/pv
i (1)

Qnet
i = −QD

i +Q
w/pv
i

Pnet
i = Vi

Nb
∑

j=1

YijVjcos(δi − δj − θij)

Qnet
i = Vi

Nb
∑

j=1

YijVjsin(δi − δj − θij)

where Pnet
i , Qnet

i are the net injected active and reactive
power to busi, respectively. ThePw/pv

i , Q
w/pv
i are the active

and reactive power of wind turbine/PV cells in busi.
2) Voltage limits: The voltage magnitude of each bus, i.e.

Vi should be kept between the operating limits, as follows:

Vmin ≤ Vi ≤ Vmax (2)

where Vmin and Vmax are the minimum and maximum
operating limits.

3) Feeders and substation capacity limit:To maintain
the security of the feeders and substation, the flow of cur-
rent/energy passingthrough them should be kept below the
feeders/substation capacity limit as follows:

Iℓ ≤ Iℓ (3)

where Iℓ is the current passing through feederℓ and Iℓ is
the maximum allowable current in feederℓ. For substation
capacity constraint, the same philosophy holds, as follows:

Sgrid ≤ Str (4)

Sgrid is the apparent power passing through substation trans-
former. TheStr is the capacity ofsubstationtransformer.

B. Uncertainty modeling

In this study, the uncertain parameters are electric load in
each bus and also thegeneratedpower of wind turbines and
PV cell modules. The uncertainty modeling of each parameter
is described as follows:

1) Electric load modeling:The electric load of each bus is
modeled as a normal PDF:

PDF (SD
i ) =

1
√

(2πσD
i )

exp[−
(SD

i − µD
i )2

2σ2
] (5)

whereSD
i is the apparent power demand in busi and µD

i ,
(σD

i )2 are the mean and variance of demand in busi, respec-
tively.

2) Wind Turbine generation pattern modeling:The gener-
ated powerof a wind turbine highly depends on the wind
speed in the site. There are various methods to model wind
behavior like time-series model [25], data mining algorithms
[26] or clustering approach [27]. In this paper, the variation
of wind speed, i.e.v, is modeled as a Weibull PDF and its
characteristic function which relates the wind speed and the
output of a wind turbine.

PDF (v) = (
k

c
)(
v

c
)k−1 exp[−(

v

c
)k] (6)

wherek and c are the shape and scale factor of the Weibull
PDF of wind speed, respectively [28].
The generated power of the wind turbine is determined using
its speed -power curveas follows:

Pw
i =











0 if v ≤ vcin or v ≥ vcout
v−vc

in

vc

rated
−vc

in

Pw
i,r if vcin ≤ v ≤ vrated

Pw
i,r else

(7)

Where,Pw
i,r is the rated power of wind turbine installed in bus

i, Pw
i is the generated power of wind turbine in busi, vcout

is the cut-out speed,vcin is the cut-in speed andvrated is the
rated speed of the wind turbine. The speed-power curve of a
typical wind turbine is depicted in Fig. 1.
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Fig. 1. The idealized power curve of a wind turbine
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3) Photo voltaic cell generation pattern modeling :The
generated power of a photo voltaic module depends on three
parameters namely, solar irradiance, ambient temperatureof
the site and finally the characteristics of the module itself.
The solar irradiance is modeled using a Beta PDF described
as follows:

PDF (s) = (8)
{

Γ(α+β)
Γ(α)+Γ(β) × sα−1 × (1− s)β−1 if 0 ≤ s ≤ 1, 0 ≤ α, β

0 else

where s is solar irradiancekW/m2; α, β are parameters of
the Betaprobability distribution function;

P pv(s) = N × FF × V (s)× I(s) (9)

FF =
VMPP × IMPP

Voc × Isc
V (s) = Voc −Kv × Tc

I(s) = sa × [Isc +Ki(Tc − 25)]

Tc = TA + sa ×
NOT − 20

0.8

whereTc is the cell temperaturein C◦; TA is the ambient
temperaturein C◦; Kv,Ki are voltage and current temperature
coefficient V/C◦, A/C◦, respectively;NOT is the nominal
operating temperature of PV cell inC◦; FF is the fill factor;
Isc is the short circuit current inA; Voc is the open circuit
voltage in V ; IMPP and VMPP are the current/voltage at
maximum power point inA, V ; finally, sa is the average solar
irradiance [2].

C. Output variables

In this paper, two variablesareof interest namely, Purchased
active power from main grid, i.e.P grid and active power
losses, i.e.P loss. The total active lossis calculated as follows:

P loss =

Nb
∑

i=1

Pnet
i (10)

whereNb is the number of all buses in the network.

III. U NCERTAINTY HANDLING METHOD

A. Monte Carlo method

The Monte Carlo method is a technique that uses ran-
dom numbers and their probability density function to solve
problems. This method is often used when the model is
complex, nonlinear, or involves many uncertain parameters.
A simulation can typically involve over 10000 evaluations of
the model, a task which is computationally expensive. Monte
Carlo method can be summarized as below:

Step.1 Create a parametric modelY = h(x1, x2, ..., xn)
Step.2 Generate a set of random inputs using their PDF

Xi = (xi
1, x

i
2, ..., x

i
n)

Step.3 Evaluate the model and calculate theY i

Step.4 Repeat steps 2 and 3 fori = 1 to N

Step.5 Analyze the results using histograms, summary statis-
tics, confidence intervals and so on

The Monte Carlo method is usually used for validation of
the proposed methods in the literature for solving the PPF.

B. Two point estimate method

The symmetrical two point estimate method (S2PEM),
which has the symmetrical location of two sampling points, is
described in the following steps [19]:

Step.1 Determine the number of uncertain variables,n
Step.2 SetE(Y ) = 0, E(Y 2) = 0
Step.3 Setk = 1
Step.4 Determine the location of concentrationpoints ǫk,i and

their probabilities, i.e.Pk,i, as follows:

ǫk,i = (−1)(i+1)
√
n (11)

Pk,i =
1

2n
i=1,2 (12)

Step.5 Determine the concentration pointsxk,i, as follows:

xk,i = µxk
+ ǫk,i × σxi

(13)

i = 1, 2

Where,µxk
andσxk

are the mean and standard devi-
ation of xk, respectively.

Step.6 Run the deterministic power flow for bothxk,i, as
follows:

X = [x1, x2, ..., xk,i, ..., xn] (14)

i = 1, 2

Step.7 CalculateE(Y ) andE(Y 2) using:

E(Y ) ∼=
n
∑

k=1

2
∑

i=1

Pk,ih(x1, x2, ..., xk,i, ..., xn) (15)

E(Y 2) ∼=
n
∑

k=1

2
∑

i=1

Pk,ih
2(x1, x2, ..., xk,i, ..., xn)

Step.8 Calculate the mean and standard deviation as follows:

µY = E(Y ) (16)

σY =
√

E(Y 2)− E2(Y )

In unsymmetrical two point estimate method (US2PEM), the
location of each sampling point isdeterminedas follows:

ǫk,i =
λk,3

2
+ (−1)i+1

√

n+
λ2
k,3

2
(17)

Pk,i = (−1)i
ǫk,3−i

nζk
(18)

ζk = 2

√

n+
λ2
k,3

2

λk,3 =
M3(xk)

σ3
xk

where M3(xk),λk,3 are the third moment and skewness of
variablexk, respectively.
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IV. A PPLICATION STUDY

Two case studies have beenanalyzedin this section: the first
one is a radial 9-bus distribution network and the secondoneis
a realistic 574-node distribution network. The results obtained
by the S2PEM and US2PEM are compared with different
methods namely, Monte Carlo, Latin Hypercube sampling
(LHS) [21] and Gram Charlier method [17]. The technical
characteristics of wind turbines and PV modules are described
in Table.I and II, respectively [2]. The Weibull parametersof
the wind speed in each wind farm for case-Iareassumed to be
c = 8.78 , k = 1.75. The Beta parameters of solar radiation
are assumed to beα = 6.38, β = 3.43. In this study, for
modeling the uncertainty of wind turbine, 10000 wind samples
are generated using (6) thenthey arepassed throughspeed-
power curve of the wind turbineas depicted in Fig.1. The
output of the wind turbine is shown in Fig.2 and used for
representing thegeneratedwind power.

0 5 10 15 20 25 30 35
0

100

200

300

Wind speed  (m/s)

0 0.1 0.2 0.3 0.4 0.5
0

500

1000

1500

2000

Active power of wind turbine (MW)

Fig. 2. The histogram of wind speed and power out put of a 0.5 MWwind
turbine

TABLE I
THE TECHNICAL CHARACTERISTICS OF WIND TURBINES

vcin vrated vcout Pw
i,r

(m/s) (m/s) (m/s) (MW)
3 13 25 0.5

TABLE II
THE TECHNICAL CHARACTERISTICS OFPV MODULES

Isc Voc IMPP VMPP Kv Ki NOT

(A) (V ) (A) V (mV/C◦) (mA/C◦) (C◦)
5.32 21.98 4.76 17.32 14.40 1.22 43

A. Case-I: A 9-bus test network

This case is a radial 9-bus distribution network and its single
line diagram is presented in Fig.3 [4]. This networkis assumed
to have two wind turbines which their data have been given
in Table III.

Fig. 3. The 9-bus distribution network of Case-I

TABLE III
THE INSTALLED DGS IN CASE-I

Bus No of PV modules No of WT
3 0 1
9 500 1

In Table III, the number of DG resources and their instal-
lation buses arespecified. The results obtained for this case,
include the mean and standard deviation values of active losses
and imported power grid, absolute values of errors and also
the running time as presented in Table IV.

The PDF of active power losses and imported power from
the main grid aredepictedin Fig.5 and Fig.4, respectively.
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Fig. 4. Probability density function of imported power from main grid in
Case-I

B. Case II: A realistic 574-bus urban French network

The second case is a 20-kV, 574-node distribution system,
depicted in Fig.6, which is extracted from a real French urban
network. This system has 573 sections with total length of
52.188 km, and 180 load points. This network is fed through
one substation. These data have been extracted from reports
of Electricit̀e de France (EDF) [29] where more details can be
found in [30].

Thespeed-power characteristics of the wind turbines in case
II are the same as case I and In Table V, the number of DG
resources and their installation bus are provided.
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TABLE IV
COMPARISON OF RESULTS INCASE-I (THE VALUES ARE IN MW)

Method µloss err(%) σloss err(%) µPgrid err(%) σPgrid err(%) Time (s)
MCS 0.8764 0.0000 0.0205 0.0000 33.5080 0.0000 0.3705 0.0000 946.25

S2PEM 0.8415 3.9788 0.0211 3.1247 34.4988 2.9570 0.3841 3.6787 0.1400
LHS 0.8450 3.5809 0.0211 2.8122 34.3997 2.6613 0.3828 3.3108 143.3817

4th order 0.8482 3.2228 0.0210 2.5310 34.3106 2.3952 0.3815 2.9797 7.3361
Gram Charlier 5th order 0.8510 2.9005 0.0200 2.2779 34.2303 2.1557 0.3606 2.6818 8.3152

6th order 0.8993 2.6105 0.0209 2.0501 32.8579 1.9401 0.3616 2.4136 9.1634
7th order 0.8558 2.3494 0.0209 1.8451 34.0931 1.7461 0.3625 2.1722 9.8642

US2PEM 0.8579 2.1145 0.0208 1.6606 32.9814 1.5715 0.3777 1.9550 0.1720

TABLE VI
COMPARISON OF RESULTS INCASE-II ( THE VALUES ARE IN MW)

Method µloss err(%) σloss err(%) µPgrid err(%) σPgrid err(%) Time (s)
MCS 0.2565 0.0000 0.0811 0.0000 8.0918 0.0000 0.2483 0.0000 1264.3480

S2PEM 0.2691 4.9082 0.0840 3.5671 7.8688 -2.7559 0.2400 3.3413 16.4800
LHS 0.2470 3.7226 0.0791 2.4129 8.3047 2.6315 0.2561 3.1350 650.2130

4th order 0.2646 3.1578 0.0828 2.0959 7.8988 2.3852 0.2415 2.7285 79.6498
Gram Charlier 5th order 0.2618 2.0469 0.0795 1.9356 8.2640 2.1279 0.2541 2.3284 81.3450

6th order 0.2607 1.6454 0.0823 1.4744 8.2479 1.9292 0.2431 2.1105 83.8510
7th order 0.2527 1.4714 0.0798 1.6296 7.9554 1.6852 0.2531 1.9205 90.1354

US2PEM 0.2591 1.0298 0.0822 1.2948 8.2106 1.4679 0.2525 1.6951 21.3450
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Fig. 5. Probability density function of active losses in Case-I

TABLE V
THE INSTALLED DGS IN CASE-II

Bus No of PV modules No of WT
15 300 0
283 100 2
344 0 1
495 200 7
426 0 2
163 0 1

The results obtained for this case includes the mean and
standard deviation values of active losses and imported power
grid, absolute values of errors and also the running times have
been all presented in Table VI. The PDF of imported power
from main grid is depicted in Fig.7.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Fig. 6. Realistic 574-node distribution network

V. CONCLUSION

In this paper, the uncertainty handling of wind turbines, PV
modules and electric load values is studied. Three different
PDFs are used to describe the behaviors of aforementioned
uncertainties. A Weibull, Beta and normal PDFs are chosen
for modeling the uncertainties of wind speed, solar radiation
and electric load, respectively. An unsymmetrical two point
estimate method (U2PEM) is applied to handle the uncertain-
ties of the mentioned variables. The Monte Carlo simulationis
used for obtaining an accurate result as a basis for comparison.
The simulation results showed that the values obtained by the
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Fig. 7. Probability density function of imported power from main grid in
Case-II

U2PEM are more accurate than other methods and also a great
reduction in computational burden was observed.
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