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The linear canonical transform describes the effect of first-order quadratic phase optical systems on a wave
field. Several recent papers have developed sampling rules for the numerical approximation of the trans-
form. However, sampling an analog function according to existing rules will not generally permit the recon-
struction of the analog linear canonical transform of that function from its samples. To achieve this, an ad-
ditional sampling criterion has been developed for sampling both the input and the output wave fields.
© 2008 Optical Society of America

OCIS codes: 070.2025, 070.2590.
The linear canonical transform (LCT) [1,2] is a pa-
rameterized linear integral transform that is used to
relate the input and output wave fields of first-order
optical systems. Recent literature has discussed dis-
cretization of the transforms [3,4], LCT sampling
theorems [3,5–9] and fast algorithms [10,11]. Exist-
ing LCT sampling theory determines sampling rates
for the system output wave field sufficient for recon-
struction of the analog field from its samples. How-
ever, it appears the implications of sampling both the
input and the output have not been discussed. This
must be addressed for numerical simulation prob-
lems and the modeling of discrete optical compo-
nents. In this Letter, we determine a sufficient condi-
tion on the sampling rate at the input for
reconstruction of the sampled output.

We consider some definitions and concepts used in
this Letter. Given a function, f�x�, the LCT of that
function, LT�f�x���x��, may be calculated as per [12],

T = �a b

c d� ,

where a, b, c, and d are real parameters of the trans-
form. T is known as the ABCD matrix or ray transfer
matrix of the system and has unit determinant. The
domains of the input and output functions are x and
x�, respectively. The Fourier transform (FT) is a spe-
cial case of the LCT. The domain reached using the
FT is denoted k. The Wigner distribution function
(WDF) W�x ,k�, is a Cohen-class pseudodistribution
with many useful properties [13,14]. The effect of an
LCT on the WDF of a function is given by

W�x,k� → W�x�,k��,

�x�

k�
� = T�x

k� . �1�

The �x ,k� plane is commonly referred to as “phase

space.”
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A function’s WDF may be treated as being com-
pletely contained–bounded by some shape. This is
not strictly accurate [12] but a valid approximation
in general. The area of this shape is the space-
bandwidth product (SBP) and is a measure of the in-
formation carrying capacity of the function. One such
shape is a rectangle centered on the origin. This rect-
angle is of width 2B (the function’s bandwidth) in the
k direction and length 2W (the function’s support) in
the x direction. We refer to this rectangle as the
phase space “footprint” of the function. Such dia-
grams are known as “phase space diagrams” (PSDs)
or “Wigner charts.” Analyses based on them neglect
the cross terms inherent in distributions such as the
WDF.

We will use PSDs to develop a sampling rule for
sampling both the input and the output of an LCT.
For illustration and comparison, we first discuss the
FT.

We sample a function, f�x�. This is typically de-
scribed as multiplication with a “comb” function
[15,16],

fd�x� = �
n=−�

�

f�x���x − nTx�. �2�

For the FT, the sampling rate, Tx, is determined by
the Shannon sampling theorem [17], which requires
Tx�1/2B, the reciprocal of which is the Nyquist sam-
pling rate. The effect in phase space of this sampling
is to produce periodic replicas in the direction or-
thogonal to the sampling domain, as multiplication
by the comb function is equivalent to convolution
with another comb function in the Fourier domain;
see Fig. 1. Note that all figures in this Letter are il-
lustrative and not quantitative. The spacing of the
replicas depends on Tx.

The Shannon requirement can be stated as requir-
ing that the replicas on either side do not overlap the
zeroth order, i.e., the copy centered on the origin.
This permits the recovery of the analog function by

filtering.
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f�x� is approximated by a finite number of its
samples, i.e., the sum in Eq. (2) is truncated to a
length 2W, the support of the function. 2W and Tx de-
fine the phase space footprint of f�x�. Assuming N
=2W /Tx samples, the discrete-space FT of the
sampled function is

F�fd�x���k� = �
n=−N/2

N/2

fd�nTx�exp�− jnTxk�. �3�

This analog function consists of the superposition of
regularly shifted copies of the FT of f�x�. Note that
the effect of the FT on the PSD is to rotate it by 90°;
see Fig. 1. The discrete-space FT is sampled,

Fd�fd�x���mTk� = �
m=−N/2

N/2

F�fd�x���k���k − nTk�. �4�

The required output sampling rate is determined
by the support of the input function as rotating phase
space 90° results in the support of the input becom-
ing the bandwidth of the output. Tk=1/NTx=1/2W,
where N is the number of samples used. As a result of
this relationship, Eq. (4) is usually written with Tk in
terms of N and Tx. Sampling the output function, Eq.
(4), again produces replicas in phase space in the di-
rection orthogonal to the sampling domain, Fig. 2.
The zeroth-order replica (shaded) is recoverable us-
ing simple filtering operations in both k and x.

We now consider the sampling process for the gen-
eral case of the LCT. We start with Eq. (2). The prob-
lem of selecting Tx will be returned to in light of later
steps in this process. The sampled function is trun-
cated as before, and its LCT is (assuming b�0)

Fig. 1. (Color online) (a) f�x�. (b) fd�x�. (c) FT of fd�x�. (d)
PSD of f�x�. (e) PSD of fd�x�. (f) PSD of FT of fd�x�. Zeroth-
order replica shaded.

Fig. 2. (Color online) (a) Sampled FT of fd�x�. (b) PSD of

this.
LT�fd�x���x��

=
ej�/4

�2�b
�

n=−N/2

N/2

fd�nTx�e�j/2b�	a�nTx�2−2nTxx�+dx�2
.

�5�

This is periodic in phase space, as shown in Fig. 3.
We can recover the original function using the meth-
odology of [3,5,6,9]. However, choosing an appropri-
ate sampling rate for the output poses a problem. In
phase space, this sampling of the output produces
shifted replicas of Fig. 3(d) in the k� domain, as
shown in Fig. 4. Figure 4(c) illustrates why it may be
necessary to sample the input at a rate greater than
the Nyquist rate. If we chose our rates incorrectly,
replicas may overlap the zeroth order, making recon-
struction of the analog function less accurate.

We wish to determine a sampling rate so that this
overlap does not occur, as shown in Fig. 4(d). One so-
lution is to require that the vertical dashed lines in
Fig. 4(d) pass either side of the zeroth-order replica
and not cut any other replica created by the sampling
in the input domain, as follows. Consider a point in
the phase space footprint of a sampled function,
p1�x1� ,k1��. The equivalent point in one of the two
nearest replicas of the footprint is given by p2	x1� ,k1�
+ �1/Tx�
. These points are transformed by Eq. (1).
This results in the points p1��ax1�+bk1� ,cx1�+dk1�� and
p2�	ax1�+bk1� , + �b /Tx� ,cx1�+dk1�+ �d /Tx�
. These points
are separated by the vector �b /Tx ,d /Tx�. We require
that the horizontal separation of these transformed
points be greater than the extent of the transformed
(unsampled) function, LT�f�x���x��. Similar results
can be found for all other replicas, with this one de-
fining the lower bound on the sampling rate,

Tx �
�b�

2Ŵ
, �6�

where 2Ŵ is the extent of LT�f�x���x�� in the domain
x�. This bound results in the situation shown in Fig.
4(d). It is important to note that this bound must be
used in addition to the Nyquist criterion. We note
that Eq. (6) does not constrain Tx beyond the Nyquist
period in cases where one or more of the transform

Fig. 3. (Color online) (a) LCT of f�x�. (b) LCT of fd�x�. Sig-
nificant aliasing is present. (c) PSD of the LCT of f�x�. (d)

PSD of the LCT of fd�x�. The zeroth order is shaded.
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parameters is near zero. However, the analysis above
based on phase space diagrams continues to be use-
ful. For the b=0 case, the output domain is discrete if
the input is, so the case is covered by existing sam-
pling theorems. A method of calculating Ŵ is implied
in [7,8] and explicitly determined in [4]. We empha-
size that Eq. (6) is not the only possible criterion
here. Any pair of input and output sampling rates
that keep the replicas from overlapping are suffi-
cient.

If the input is chosen as above, the output sam-
pling rate may be chosen using previous sampling
theorems. For example, as per [8], we may require
the output sampling period to be not less than 2B̂,
which is sufficient to separate the central copy from
its own replicas using a low-pass filter. 2B̂ may be
found similarly to 2Ŵ.

In conclusion, to numerically approximate the LCT
of a function, we must sample it in both the input and
the output domain. Sampling in the output domain
places a further constraint on the input sampling
rate. We have established an upper bound on the nec-
essary rate, and an appropriate reconstruction

Fig. 4. (Color online) (a) The sampled LCT of the under-
sampled input. (b) The sampled LCT of the correctly
sampled input. (c) The PSD of the sampled LCT of the un-
dersampled input. The zeroth-order term is shaded. The
terms created by sampling the input are patterned. (d) The
PSD of the sampled LCT of the correctly sampled input.
method. The analysis presented in this Letter has
significant consequences for numerical LCT algo-
rithms, and it may also be possible to use this work to
generalize the Gerchberg–Saxton iterative phase re-
trieval algorithm. There may also be consequences in
digital holography and other techniques that use
CCDs or digital cameras to sample and capture
monochromatic fields.
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