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Mathematische Nachrichten, 21 February 2011

Positivity properties for the clamped plate boundary problem on the el-
lipse and strip

Hermann Render∗1 and Marius Ghergu∗∗ 1

1 School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4

Key words Biharmonic operator, positive polynomial data, positive solutions; Fischer operator
MSC (2000) 35J40, 35J08, 31A30, 31B30

The positivity preserving property for the biharmonic operator with Dirichlet boundary condition is investi-
gated. We discuss here the case where the domain is an ellipse (that may degenerate to a strip) and the data is a
polynomial function. We provide various conditions for which the positivity is preserved.
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1 Introduction

Let Ω be a domain in Rn and ∂Ω its boundary and let ∆ be the Laplace operator defined by

∆ =
∂2

∂x21
+ ...+

∂2

∂x2n
.

The clamped plate boundary value problem is the problem of finding a solution u of the biharmonic equation

∆2u = f in Ω (1)

satisying the boundary condition

u =
∂u

∂ν
= 0 on ∂Ω (2)

where ∆2u = ∆(∆u) and ∂/∂ν is the outer normal derivative at ∂Ω. From a physical point of view the following
conjecture due to T. Boggio and J. Hadamard is very natural:

(P ): Positivity of the data function f ∈ C4
(
Ω
)

implies positivity of the solution u.

In case of the Laplace operator ∆ subject to Dirichlet boundary conditions, the property (P ) is true due to the
standard maximum principle. Here by f (resp. u) positive on Ω we understand f ≥ 0 (resp. u ≥ 0) in Ω.

It is not difficult to see that property (P ) is equivalent to the statement that the Green function of the domain
Ω is positive. In 1905, Boggio [1] proved the positivity of the Green function for the ball and conjectured that
this should be true for any reasonable domain. In 1908, Hadamard disproved the conjecture for an annulus but
only after 1949 numerous counterexamples to the conjecture of Boggio have been found, the most striking by
Garabedian [2] showing that the ellipse with ratio of half axes ≈ 1.6 does not have a positive Green function. For
details we refer the reader to the excellent book [3] as well as [4]-[10].

In this paper we investigate the question whether for certain subclasses of positive data functions f on the
ellipsoid the solution u of (1)-(2) is positive expecting that additional properties at the data function may lead to
the positivity of the solution. The first main result of the paper shows that indeed for any affine positive function
f on an ellipsoid the solution u is positive on the ellipsoid. In case where f ≥ 0 is a positive polynomial of
degree 2, the question of positivity of the solution is more subtle and we discuss only the case of the ellipse
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∗∗ e-mail: marius.ghergu@ucd.ie
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2 H. Render and M. Ghergu: Positivity for the clamped plate problem on the ellipse and strip

Eb :=
{
(x, y) ∈ R2 : x2 + by2 < 1

}
which degenerates for b = 0 to a strip in R2. In the latter case, a fairly

simple proof shows that for any polynomial f of degree ≤ 2 positivity on the strip implies positivity of the
solution u. On the other hand, the positivity property (P ) is not preserved on a general elipse. We show in
Section 5 that for b = 19 and f =

(
x− 281

303

)2
the unique solution u of (1)-(2) is not positive in E19. Indeed, as

we shall see later on in this paper, u has the form u =
(
x2 + 19y2 − 1

)2
q (x, y) where

q (x, y) =
1032855739

10542848322456
− 281

1468944
x+

1373

14711904
x2 − 95

7355952
y2 (3)

is not positive on E19 since q (1, 0) < 0. Therefore we found a positive polynomial data f of degree two for
which the solution u of (1)-(2) is not positive. This seems to be the simplest counterexample to the Boggio
conjecture, cf. also [14] where the data function f (x, y) is a polynomial of degree 3.

The paper is organized as follows. In Section 2 we present some properties of the Fischer operator that will be
useful in our analysis; we also refer the reader to [11, 12, 13] for a systematic study on this topic. In Section 3 we
prove that positivity for the clamped plate problem is preserved for affine functions on the ellipsoids. In Section
4 we show that positivity is preserved for quadratic polynomials on the strip. In the last Section we give certain
criteria for polynomials of degree two for which positivity is preserved in case of an ellipse in the plane. These
conditions have led us to the simple counterexample (3).

2 Fischer operator

Let a1, ..., an be positive real numbers. For x = (x1, x2, . . . , xn) ∈ Rn define

ψ (x) = a1x
2
1 + ....+ anx

2
n − 1 and Eψ := {x ∈ Rn : ψ (x) < 0} .

Let P≤m (Rn) be the set of all polynomials of degree ≤ m. The Fischer operator (see [11, 12, 13]) is defined
by

Fψ (q) := ∆2
(
ψ2 (x) · q (x)

)
.

Note that Fψ maps P≤m (Rn) into P≤m (Rn) since ψ2 has degree 4. By Theorem 3 in [11] the Fischer operator
Fψ is injective since ψ2 is an elliptic polynomial. Furthermore, we have:

Theorem 2.1 Let f ∈ P≤m (Rn) be a polynomial. Then, there exists a unique solution u of (1)-(2) in
Ω = Eψ . Furthermore, we have

(i) u ∈ P≤m+4 (Rn);

(ii) u(x) = ψ2(x)q(x), for some q ∈ P≤m (Rn).

P r o o f. The uniqueness follows by applying the Green formula to (1) and using (2). Since

Fψ : P≤m (Rn) → P≤m (Rn)

is injective, it is also bijective so for any f ∈ P≤m (Rn) there exists a unique q ∈ P≤m (Rn) such that Fψ(q) = f .
Hence u := ψ2 · q is the unique solution of (1)-(2).

The Fischer operator can now be used for computing the solution of (1)-(2) with polynomial data. Assume
in the following that n = 2 and let Eb =

{
(x, y) ∈ R2 : x2 + by2 < 1

}
be an ellipse; note that the case b = 0

corresponds to the strip (−1, 1) × R in R2. For ψ (x, y) = x2 + by2 − 1 we have defined the Fischer operator

Copyright line will be provided by the publisher
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Fψ (q) := ∆2
(
ψ2q

)
. A straightforward computation gives the following information for T := 1

24Fψ:

T (1) = 1 +
2

3
b+ b2,

T (x) =
(
5 + 2b+ 1b2

)
x,

T (y) =
(
1 + 2b+ 5b2

)
y,

T
(
x2

)
=

(
4b+ 15 + b2

)
x2 +

(
2b2 + 2b

)
y2 − 2− 2

3
b,

T (xy) =
(
5 + 6b+ 5b2

)
xy,

T
(
y2
)
= (2 + 2b)x2 +

(
1 + 4b+ 15b2

)
y2 − 2

3
− 2b.

Hence 1, x, y and xy are eigenvectors of the Fischer operator Fψ . The matrix associated with the linear map T
and the basis 1, x, y, x2, xy, y2 is given by

1 + 2
3b+ b2 0 0 −2− 2

3b 0 −2b− 2
3

0 5 + 2b+ b2 0 0 0 0
0 0 1 + 2b+ 5b2 0 0 0
0 0 0 4b+ 15 + b2 0 2 + 2b
0 0 0 0 5 + 6b+ 5b2 0
0 0 0 2b2 + 2b 0 1 + 15b2 + 4b


Let T−1 = 24F−1

ψ be the inverse matrix of T . It is not difficult to find that
(
3b2 + 2b+ 3

)
T−1 is equal to

3 0 0 2
3

9b3+41b2+11b+3
5b4+20b3+78b2+20b+5 0 2

3
3b3+11b2+41b+9

5b4+20b3+78b2+20b+5

0 3b2+2b+3
5+2b+b2 0 0 0 0

0 0 3b2+2b+3
1+2b+5b2 0 0 0

0 0 0 1
3

(3b2+2b+3)(1+15b2+4b)
5b4+20b3+78b2+20b+5 0 −2

3

(3b2+2b+3)(b+1)

5b4+20b3+78b2+20b+5

0 0 0 0 3b2+2b+3
5+6b+5b2 0

0 0 0 −2
3

b(3b2+2b+3)(b+1)

5b4+20b3+78b2+20b+5 0 1
3

(3b2+2b+3)(4b+15+b2)
5b4+20b3+78b2+20b+5


For computational convenience we introduce

S :=
(
5b4 + 20b3 + 78b2 + 20b+ 5

)
·
(
3b2 + 2b+ 3

)
· 24 · F−1

ψ . (4)

Let f (x, y) = a0 + a1x+ a2y + a3x
2 + a4xy + a5y

2 be a polynomial of degree ≤ 2. Then we can write

S (f) (x, y) = A0 +A1x+A2y +A3x
2 +A4xy +A5y

2. (5)

where the coefficients A0, ..., A5 can be read off from the matrix representation:

A0 = 3
(
5b4 + 20b3 + 78b2 + 20b+ 5

)
a0 +

2

3

(
9b3 + 41b2 + 11b+ 3

)
a3

+
2

3

(
3b3 + 11b2 + 41b+ 9

)
a5, (6)

A1 =
Cba1

5 + 2b+ b2
, A2 =

Cba2
1 + 2b+ 5b2

, A4 =
Cba4

5 + 6b+ 5b2
, (7)

A3 =
3b2 + 2b+ 3

3
·
((
1 + 15b2 + 4b

)
a3 − 2 (b+ 1) a5

)
, (8)

A5 =
3b2 + 2b+ 3

3
·
(
−2b (b+ 1) a3 +

(
4b+ 15 + b2

)
a5
)
, (9)

where Cb =
(
5b4 + 20b3 + 78b2 + 20b+ 5

) (
3b2 + 2b+ 3

)
.
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4 H. Render and M. Ghergu: Positivity for the clamped plate problem on the ellipse and strip

3 Positivity of solutions for affine data functions on the ellipsoid

In this section we discuss the positivity preserving property (P ) in case the data function f is affine.
Proposition 3.1 Let α ∈ R and γ = (γ1, ..., γn) ∈ Rn. An affine non-zero function f (x) = α + ⟨γ, x⟩ is

positive on the ellipsoid Eψ :=
{
a1x

2
1 + ....+ anx

2
n < 1

}
if and only if

α > 0 and
n∑
j=1

γ2j
aj

≤ α2.

P r o o f. If f ≥ 0 in Eψ, then f (0) = α ≥ 0. If α = 0 then f (x) = ⟨γ, x⟩ and since f is positive this implies
that γ = 0, so f = 0. Thus we may assume that α > 0. The case γ = 0 is trivial, so we may assume as well
γ ̸= 0.

An affine function is harmonic, so it attains its maximum on the boundary. We apply the method of Lagrange
multipliers in order to determine the minimum of f on the boundary. Let λ ∈ R be such that ∇f (x) = λ∇ψ (x)
for some x ∈ ∂Eψ . Then

∂f

∂xj
(x) = γj = λ

∂ψ

∂xj
= λ2ajxj .

Since γ ̸= 0 we infer that λ ̸= 0. Thus xj = γj/2ajλ and since x ∈ ∂Eψ

1 =
n∑
j=1

ajx
2
j =

1

λ2

n∑
j=1

γ2j
4aj

, so λ = ±

√√√√ n∑
j=1

γ2j
4aj

. (10)

Thus the critical points x on the boundary are of the form ±(γ1/2a1λ, ..., γn/2anλ) and

f (x) = α±
n∑
j=1

γj
γj

2aj |λ|
≥ α−

n∑
j=1

γ2j
2aj |λ|

= min
y∈∂Eψ

f (y) .

We conclude that f is positive on Eψ if and only if
∑n
j=1

γ2
j

2aj |λ| ≤ α which in view of (10) is equivalent to the
statement of the proposition.

Proposition 3.2 Let ψ (x) =
∑n
k=1 akx

2
k − 1 and define A =

∑n
k=1 ak and B =

∑n
k=1 a

2
k. Then

∆2
(
ψ2 · (α+ ⟨γ, x⟩)

)
= α

(
8A2 + 16B

)
+

n∑
k=1

(
8A2 + 16B + 32Aak + 64a2k

)
xk. (11)

P r o o f. Recall that ∆(fg) = f∆g + 2 ⟨∇f,∇g⟩ + ∆f · g where ∇f is the gradient of f. Define q (x) =
α+ ⟨γ, x⟩ . Since ∆q = 0 we conclude that ∆

(
ψ2q

)
= ∆

(
ψ2

)
· q+2

∑n
j=1 γj

∂
∂xj

(
ψ2

)
. We apply the Laplace

operator to the last equation, and using again that ∆q = 0, we obtain

∆2
(
ψ2q

)
= ∆2

(
ψ2

)
· q + 4

n∑
j=1

γj∆
∂

∂xj

(
ψ2

)
. (12)

Clearly ∂ψ
∂xj

= 2ajxj and ∂2ψ
∂x2
j

= 2aj and therefore ∆ψ = 2
∑n
j=1 aj =: 2A. Furthermore, ∆

(
ψ2

)
=

2ψ∆(ψ) + 2
∑n
j=1

(
∂ψ
∂xj

)2

= 4Aψ + 8
∑n
j=1 a

2
jx

2
j , so ∆2

(
ψ2

)
= 8A2 + 16

∑n
j=1 a

2
j = 8A2 + 16B and

∂
∂xk

∆
(
ψ2

)
= 8A · akxk + 16a2kxk = 8

(
Aak + 2a2k

)
xk. Now we infer from (12) that

∆2
(
ψ2q

)
= q ·

(
8A2 + 16B

)
+ 32

n∑
k=1

γk
(
Aak + 2a2k

)
xk

which is equal to (11) using that q (x) = α+ ⟨γ, x⟩ .
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Theorem 3.3 If an affine function f is positive on the ellipsoid Eψ then the solution q of ∆2
(
ψ2q

)
= f is

positive on Eψ.

P r o o f. For the affine function f there exists a unique affine function q = α+⟨γ, x⟩ such that ∆2
(
ψ2u

)
= f.

Let us define δk = 8A2 + 16B + 32Aak + 64a2k, 1 ≤ k ≤ n. By Proposition 3.2

f = ∆2
(
ψ2q

)
= 8α

(
A2 + 2B

)
+

n∑
k=1

xkγkδk.

Since f is positive on the ellipsoid, Proposition 3.1 implies that
∑n
k=1

γ2
kδ

2
k

ak
≤ α264

(
A2 + 2B

)2
. From the

definition of δk we see that δk ≥ 8
(
A2 + 2B

)
, so

n∑
k=1

γ2k
ak

≤
n∑
k=1

γ2k
ak

δ2k
64 (A2 + 2B)

2 ≤ α2.

Proposition 3.1 shows that q is positive on the ellipsoid Eψ.

4 Positivity for quadratic polynomials on the strip

In this section we consider the case ψ (x, y) = x2 − 1, so that E0 is a strip. Let f (x, y) = a0 + a1x + a2y +
a3x

2 + a4xy + a5y
2 be a polynomial of degree ≤ 2 and consider the operator S defined in (4) and (5) by

S (f) (x, y) = 360F−1
ψ f (x, y) = A0 +A1x+A2y +A3x

2 +A4xy +A5y
2. (13)

Using the formulae in Section 2 for b = 0 we obtain

A0 = 15a0 + 2a3 + 6a5, A1 = 3a1, A2 = 15a2,
A3 = a3 − 2a5 A4 = 3a4, A5 = 15a5.

Theorem 4.1 Let ψ (x, y) = x2 − 1 and let f be a polynomial of degree ≤ 2 such that f ≥ 0 [−1, 1] × R.
Then the unique solution u of (1)-(2) satisfies

u ≥ 1

120
ψ2f ≥ 0 in [−1, 1]× R. (14)

P r o o f. According to Theorem 2.1, u = ψ2 · F−1
ψ (f). Thus, it is enough to show that

120 · F−1
ψ (f) ≥ f in [−1, 1]× R.

1. Suppose that f (x, y) = a0 + a1x+ a2y+ a3x
2 + a4xy+ a5y

2 is positive on the strip. It is easy to see that
this implies a5 ≥ 0. In view of (13) and (14) it suffices to show that D (x, y) := S (f) (x, y)− 3f (x, y) ≥ 0 for
all x ∈ [−1, 1] and y ∈ R. Clearly

D (x, y) = 12a0 + 2a3 + 6a5 + 12a2y + (−2a3 − 2a5)x
2 + 12a5y

2.

2. Consider the case a5 = 0. Suppose that there exists x0 ∈ [−1, 1] such that a2 + a4x0 ̸= 0. Since f(x0, y) =
a0 + a1x0 + a3x

2
0 + (a2 + a4x0) y ≥ 0 for all y ∈ R, we obtain a contradiction. Hence a2 + a4x = 0 for all

x ∈ [−1, 1] and this implies that a2 = a4 = a5 = 0. It follows that f (x, y) = a0 + a1x+ a3x
2 and

D (x, y) = 12a0 + 2a3 − 2a3x
2 ≥ 10a0 + 2 (a0 + a3)

(
1− x2

)
≥ 0

since a0 = f (0, 0) ≥ 0 and 0 ≤ f (±x, 0) = a0 ± a1 + a3, so a0 + a3 ≥ 0.
3. Now assume a5 > 0. We prove that the polynomial y 7−→ D (x, y) is positive on R for all x ∈ [−1, 1]

which means that the discriminant

4 · 12a5
(
12a0 + 2a3 + 6a5 − 2a3x

2 − 2a5x
2
)
− 122a22 ≥ 0,
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6 H. Render and M. Ghergu: Positivity for the clamped plate problem on the ellipse and strip

for each x ∈ [−1, 1]. Dividing by 48, this amounts to

p (x) :=
(
−2a5a3 − 2a25

)
x2 + 12a5a0 + 2a5a3 + 6a25 − 3a22 ≥ 0,

for all x ∈ [−1, 1] . This is equivalent to

p (±1) = 4a25 + 12a5a0 − 3a22 = 4a25 + 3
(
4a5a0 − a22

)
≥ 0

p (0) = 12a5a0 + 2a5a3 + 6a25 − 3a22 ≥ 0.

To this aim, we shall use the fact that f is positive on the strip. Since y 7−→ f (x, y) is a positive polynomial, we
conclude that

∆(x) := 4a5(a0 + a1x+ a3x
2)− (a2 + a4x)

2 ≥ 0,

for all x ∈ [−1, 1]. For x = 0 we infer that 4a5a0 − a22 ≥ 0. It follows that p (±1) ≥ 0.

4. If a polynomial g (x) = α+ βx+ γx2 is positive on [−1, 1] then g (±1) = α± β + γ ≥ 0, so α+ γ ≥ 0.
We apply this fact to x 7−→ ∆(x) using that

∆(x) =
(
4a5a3 − a24

)
x2 + (4a5a1 − 2a2a4)x+ 4a5a0 − a22.

Hence 4a5a3 − a24 + 4a5a0 − a22 ≥ 0 and therefore 4a5a3 ≥ a22 + a24 − 4a5a0. This inequality provides the
estimate

2p (0) ≥ 24a5a0 + a22 + a24 − 4a5a0 + 12a25 − 6a22 = 5
(
4a5a0 − a22

)
+ a24 + 12a25 ≥ 0.

Hence the proof is accomplished.

Remark 4.2 Positive polynomial data functions of higher degree do not lead in general to positive solutions.
By calculating the inverse matrix of the Fischer operator on the space of all polynomials of degree ≤ 4 one
obtains that

q (x, y) := 24F−1
ψ

(
y4
)
=

41

210
− 11

35
x2 +

12

5
y2 +

3

70
x4 − 4

5
x2y2 + y4.

Since q (1, 0) = −8/105 < 0 it follows that q < 0 in a neighborhood of (1, 0) so the solution u = ψ2q is not
positive.

5 Positivity for quadratic polynomials on the ellipse

Throughout this section ψ(x, y) = x2 + by2 − 1 and Eb = {x ∈ R2 : ψ(x, y) < 0}. We start this section with a
result that gives a necessary condition for a quadratic polynomial to be positive on an ellipse.

Proposition 5.1 If the polynomial f (x, y) = a0+a1x+a2y+a3x
2+a4xy+a5y

2 is positive on the ellipsoid
Eb then

a0 ≥ 0 , a0 + a3 ≥ |a1| and ba0 + a5 ≥ |a2| .

P r o o f. Clearly f (0, 0) = a0 ≥ 0. We know that H (x, y) := a0 + a1x + a3x
2 + a5y

2 ≥ y (−a2 − a4x)
on Eb. Since H (x, y) = H (x,−y) we conclude that H (x, y) ≥ |y (a2 + a4x)| ≥ 0. Since (±1, 0) ∈ Eb and
H (±1, 0) ≥ 0 we infer a0 + a3 ≥ −a1 · (±1) which implies that a0 + a3 ≥ |a1| . Similiarly a0 + a2y+ a3x

2 +

a5y
2 ≥ |a1x+ a4xy| and since

(
0,±1/

√
b
)
∈ Eb we obtain a0 + a5

1
b ≥ |a2| /

√
b.

Now we state our main result:

Copyright line will be provided by the publisher
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Theorem 5.2 Let b0 ≈ 18.94281916 be the unique positive solution of the equation

−11b6 + 178b5 + 531b4 + 796b3 + 811b2 + 210b+ 45 = 0. (15)

Let f (x, y) = a0 + a1x + a3x
2 be a positive polynomial on the ellipse Eb. If one of the following conditions

hold
(i) a3 ≤ 0 , (ii) |a1|2 > 4a0a3 , (iii) 0 ≤ b ≤ b0 ,

then the unique solution u of (1)-(2) is positive on Eb. Furthermore, for each b > b0 there exists ab in
[
1
5 , 1

)
such

that if f = (x− ab)
2 then the unique solution u of (1)-(2) is not positive on Eb.

P r o o f. 1. We know that S (f) = A0 + A1x + A3x
2 + A5y

2, cf. (5) and using a4 = 0. In the first case
assume that a3 ≤ 0. From (8) and (9) and the fact that a5 = 0 we infer that A3 ≤ 0 and A5 ≥ 0. Then A5y

2 ≥ 0
for all y and it suffices to show that Gb (x) := A0 +A1x+A3x

2 ≥ 0 for all x ∈ [−1, 1] . The polynomial Gb is
concave since A3 ≤ 0 and it suffices to show that Gb (±1) ≥ A0 − |A1|+A3 ≥ 0.

So let us consider the expression A0 − |A1| + A3 (without the assumption a3 ≤ 0). Since f is positive,
Proposition 5.1 implies that a0 ± a1 + a3 ≥ 0. Further

A1 = c1a1 with c1 =
3b2 + 2b+ 3

5 + 2b+ b2
(
5b4 + 20b3 + 78b2 + 20b+ 5

)
. (16)

Hence A0 − |A1|+A3 = A0 +A3 − c1a0 − c1a3 + c1 (a0 − |a1|+ a3) . It suffices to show that

M :=
(
5 + 2b+ b2

)
(A0 − c1a0 +A3 − c1a3) ≥ 0.

Since a5 = 0 we obtain

A0 = 3
(
5b4 + 20b3 + 78b2 + 20b+ 5

)
a0 +

2

3

(
9b3 + 41b2 + 11b+ 3

)
a3

A3 =
3b2 + 2b+ 3

3

(
1 + 15b2 + 4b

)
a3.

A calculation show that

M = 4 (b+ 3)
(
5b4 + 20b3 + 78b2 + 20b+ 5

)
a0 −

(
72b3 + 32b2 + 4b+ 128b4 + 20b5

)
a3

Since a0 ≥ 0 and a3 ≤ 0 (by the first case) we infer that M ≥ 0 and the positivity of S (f) is established for the
case (i).

2. We shall need later the following statement: if a3 > 0 and a0 ≥ a3 then M ≥ 0. Indeed, the inequality
a0 ≥ a3 is used to estimate M and a direct calculation shows that the remaining sum is positive.

3. Now assume that a3 > 0. ThenA3 > 0 andA5 < 0 (if b ̸= 0) and S (f) (x, y) = A0+A1x+A3x
2+A5y

2

does not have a local minimum. Thus S (f) takes its minimum on its boundary. It suffices to prove that

Gb (x) := A0 +
1

b
A5 +A1x+

(
A3 −

1

b
A5

)
x2 ≥ 0

for all x ∈ [−1, 1] . From (8) and (9) it is easy to see that

A3 −
1

b
A5 =

(
3b2 + 2b+ 3

) (
5b2 + 2b+ 1

)
a3 > 0. (17)

Hence, the leading coefficient of Gb (x) is positive. Further we compute

A0 +
1

b
A5 = 3

(
5b4 + 20b3 + 78b2 + 20b+ 5

)
a0 + 4b

(
b2 + 6b+ 1

)
a3. (18)

In order to prove thatGb is positive on [−1, 1], we first consider the case thatGb has a critical point x0 ∈ [−1, 1] ,
i.e. that x0 := −A1/2

(
A3 − 1

bA5

)
∈ [−1, 1] . Then

|A1| ≤ 2

(
A3 −

1

b
A5

)
= 2

(
5b2 + 2b+ 1

) (
3b2 + 2b+ 3

)
a3.
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Using (16) this is equivalent to

|a1| ≤
2
(
5b2 + 2b+ 1

) (
5 + 2b+ b2

)
(5b4 + 20b3 + 78b2 + 20b+ 5)

a3. (19)

On the other hand, a straightforward calculation yields

1

2
≤

(
5b2 + 2b+ 1

) (
5 + 2b+ b2

)
(5b4 + 20b3 + 78b2 + 20b+ 5)

≤ 1,

which combined with (19) leads us to |a1| ≤ 2a3. Hence, the assumption that Gb has a critical point in [−1, 1]
implies that the critical point of f is in the interval [−1, 1] and it follows that a21 ≤ 4a0a3.

4. Now assume case (ii), so a3 > 0 and a21 > 4a0a3. Then the critical point of f, namely x0 = −a1/2a3, can
not be in the interval [−1, 1] since f is positive on [−1, 1] and

f (x0) = a0 −
1

4

a21
a3

=
1

4a3

(
4a0a3 − a21

)
.

Thus |a1| ≥ 2a3. Now a0 + a3 ≥ |a1| ≥ 2a3 implies a0 ≥ a3. Since a21 > 4a0a3 we know that Gb (x)
does not possess a critical point and Gb takes its extremum at the point 1 or −1. Thus it suffices to show that
Gb (±1) = A0 − |A1|+A3, i.e. M ≥ 0. This follows now from part 2 of the proof.

5. Now assume case (iii), so 0 ≤ b ≤ b0, a3 > 0 and a21 ≤ 4a0a3. Since

f (x, y) = a0 + a1x+ a3x
2 =

(
√
a3x− a1

2
√
a3

)2

+
4a0a3 − a21

4a3

is a sum of a positive polynomial with discriminant 0 and a positive constant it suffices to show the result for
polynomials with 4a0a3 = a21.

6. We shall show thatGb (±1) = A0−|A1|+A0 is positive for b ≤ b0. A straightforward computation shows
that A0 +A3 = γ0a0 + γ3a3 where

γ0 = 3
(
5b4 + 20b3 + 78b2 + 20b+ 5

)
and γ3 = 46b2 + 15b4 + 20b3 + 12b+ 3.

Using the notation A1 = c1a1 from (16) and 4a0a3 = a21 we can write

Gb (±1) = γ0a0 − c1 |a1|+ γ3a3 = γ0a0 − c12
√
a0a3 + γ3a3 = a3

(
γ0z

2 − 2c1z + γ3
)

where z :=
√
a0/a3. It is clear that Gb (±1) ≥ 0 for all choices of z if and only if 4γ0γ3 ≥ 4c21. A further

calculation shows that(
5 + 2b+ b2

)2 (
γ0γ3 − c21

)
4 (5b4 + 20b3 + 78b2 + 20b+ 5)

= −11b6 + 178b5 + 531b4 + 796b3 + 811b2 + 210b+ 45.

Note that the right-hand side in the above equality is exactly the polynomial in (15) whose unique positive rooth
is b0. Thus for b ≤ b0 we have proved that Gb (±1) ≥ 0.

If b > b0 we consider the polynomial

f (x, y) = a0 + a1x+ a3x
2 :=

c21
γ0

− 2
c1
γ0
x+ x2 =

(
x− c1

γ0

)2

.

Then Gb (±1) < 0 since with z =
√
a0/a3 = c1/γ0 we obtain that

Gb (±1) = a3
(
γ0z

2 − 2c1z + γ3
)
= a3

(
− c21
γ0

+ γ3

)
< 0.
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Further we see that

c1
γ0

=
1

3

3b2 + 2b+ 3

5 + 2b+ b2
∈
[
1

5
, 1

)
.

So for b = 19 we obtain the polynomial f (x, y) =
(
x− 281

303

)2
which was presented in the introduction.

7. We still have to prove that Gb (x) ≥ 0 for all x ∈ [−1, 1] in the case a3 > 0, a21 = 4a0a3 and 0 ≤ b ≤ b0.
If Gb has no critical points in [−1, 1], then Gb attains its minimum at ±1 and since Gb (±1) ≥ 0 for all b ≤ b0

it follows that Gb ≥ 0 on [−1, 1] for all b ≤ b0.
Assume next that Gb has a critical point in the interval [−1, 1] which is actually the local and global minimum

of Gb. It is easy to see that Gb ≥ 0 in [−1, 1] holds if

4

(
A0 +

1

b
A5

)(
A3 −

1

b
A5

)
−A2

1 ≥ 0.

From (17) and (18) we infer that

D := 4

(
A0 +

1

b
A5

)(
A3 −

1

b
A5

)
=

(
3b2 + 2b+ 3

) (
5b2 + 2b+ 1

)
·D0

where D0 := 3
(
5b4 + 20b3 + 78b2 + 20b+ 5

)
4a3a0 + 4b

(
b2 + 6b+ 1

)
4a23. Thus, D − A2

1 is positive if and
only if

D1 :=

(
5 + 2b+ b2

)2 (
D −A2

1

)
(5b4 + 20b3 + 78b2 + 20b+ 5)

≥ 0.

Since 4a3a0 = a21 and A1 = c1a1 (cf. (16)), we arrive at

D1 =
(
5 + 2b+ b2

)2 (
3b2 + 2b+ 3

) (
5b2 + 2b+ 1

)
3a21

+

(
5 + 2b+ b2

)2
4b

(
b2 + 6b+ 1

)
(5b4 + 20b3 + 78b2 + 20b+ 5)

(
3b2 + 2b+ 3

) (
5b2 + 2b+ 1

)
4a23

−
(
3b2 + 2b+ 3

)2 (
5b4 + 20b3 + 78b2 + 20b+ 5

)
a21,

which is equal to

D1 = 4 (b+ 1)
(
3b2 + 2b+ 3

) (
−b4 − 12b3 + 42b2 + 20b+ 15

)
a21

+

(
5 + 2b+ b2

)2
4b

(
b2 + 6b+ 1

)
(5b4 + 20b3 + 78b2 + 20b+ 5)

(
3b2 + 2b+ 3

) (
5b2 + 2b+ 1

)
4a23.

Using (19) we obtain

D1 ≥ 4 (b+ 1)
(
3b2 + 2b+ 3

) (
−b4 − 12b3 + 42b2 + 20b+ 15

)
a21

+
4b

(
b2 + 6b+ 1

)
(5b2 + 2b+ 1)

(
3b2 + 2b+ 3

) (
5b4 + 20b3 + 78b2 + 20b+ 5

)
a21.

We see that D1 ≥ 0 for b ≤ 21. 601, since the right-hand side of the above inequality multiplied by (5b2 + 2b+
1)/a21 equals

180 + 960b+ 17 216b5 + 3824b2 + 9280b3 + 17720b4 + 3776b7 + 12 784b6 − 204b8

which is positive for all b ≤ 21.601. The proof is accomplished.

It seems to be difficult to characterize those parameters b for which all positive quadratic polynomials f have
positive solutions u. In Theorem 5.2 we investigated polynomials f which depend only on the variable x. Next
we prove positivity for data function f (x, y) which have no linear terms. In that case the following is true:
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10 H. Render and M. Ghergu: Positivity for the clamped plate problem on the ellipse and strip

Theorem 5.3 Suppose that f (x, y) = a0+a3x
2+a4xy+a5y

2 is positive on the ellipseEb. Then, the unique
solution u of (1)-(2) satisfies

u ≥ 24

5 + 6b+ 5b2
· ψ2f ≥ 0 in Eb.

P r o o f. Using the definition of the Fischer operator and the fact that S = 24CbF
−1
ψ , it suffices to show that(

5 + 6b+ 5b2
)
· S (f) ≥ Cbf in Eb. For this purpose, let

D (x, y) :=
(
5 + 6b+ 5b2

)
· S (f)− Cbf.

We have to show thatD (x, y) is positive onEb.By a straightforward computation,D (x, y) = B0+B3x
2+B5y

2,
where

B0 =
(
5b4 + 20b3 + 78b2 + 20b+ 5

) (
12 + 16b+ 12b2

)
a0

+
2

3

(
5 + 6b+ 5b2

) (
9b3 + 41b2 + 11b+ 3

)
a3

+
2

3

(
5 + 6b+ 5b2

) (
3b3 + 11b2 + 41b+ 9

)
a5,

3B3

3b2 + 2b+ 3
=

(
−10− 130b2 − 34b+ 50b3 + 60b4

)
a3 − 2 (b+ 1)

(
5 + 6b+ 5b2

)
a5,

3B5

3b2 + 2b+ 3
= −2b (b+ 1)

(
5 + 6b+ 5b2

)
a3 +

(
50b+ 60− 130b2 − 34b3 − 10b4

)
a5.

We write D(x, y) in the trivial way:

D (x, y) = B0ψ (x, y) + (B0 +B3)x
2 + (bB0 +B5) y

2. (20)

If we know that B0 + B3 ≥ 0 and bB0 + B5 ≥ 0 then D (x, y) is a sum of positive polynomials on the ellipse
and the positivity of D (x, y) is evident. The positivity of B0 +B3 follows from the identity

B0 +B3 = 4
(
5b2 + 6b+ 5

) (
9b3 + 41b2 + 11b+ 3

)
a0

+4b
(
34b3 + 30b4 + 40b2 + 7b+ 2 + 15b5

)
(a0 + a3)

+4
(
5b2 + 6b+ 5

) (
b2 + 6b+ 1

)
(a5 + ba0) ,

and the positivity of the coefficients a0 + a3 and ba0 + a5, cf. Proposition 5.1. Similarly, bB0 + B5 is positive
since it is equal to

bB0 +B5 = 4b2
(
5 + 6b+ 5b2

) (
3b3 + 11b2 + 41b+ 9

)
a0

+4b2
(
5 + 6b+ 5b2

) (
b2 + 6b+ 1

)
(a0 + a3)

+
(
8b5 + 28b4 + 160b3 + 136b2 + 120b+ 60

)
(a5 + ba0) ≥ 0.

The proof is now complete.
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