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Abstract

In this paper, a novel baseline free approach for continuous online damage detection of multi degree of freedom

vibrating structures using Recursive Principle Component Analysis (RPCA) in conjunction with Time Varying

Auto-Regressive Modeling (TVAR) is proposed. In this method, the acceleration data is used to obtain recursive

proper orthogonal components online using rank-one perturbation method, followed by TVAR modeling of the

first transformed response, to detect the change in the dynamic behavior of the vibrating system from its pristine

state to contiguous linear /non-linear-states that indicate damage. Most of the works available in the literature

deal with algorithms that require windowing of the gathered data owing to their data-driven nature which ren-

ders them ineffective for online implementation. Algorithms focussed on mathematically consistent recursive

techniques in a rigorous theoretical framework of structural damage detection is missing, which motivates the
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development of the present framework that is amenable for online implementation which could be utilized

along with suite experimental and numerical investigations. The RPCA algorithm iterates the eigenvector and

eigenvalue estimates for sample covariance matrices and new data point at each successive time instants, using

the rank-one perturbation method. TVAR modeling on the principal component explaining maximum variance

is utilized and the damage is identified by tracking the TVAR coefficients. This eliminates the need for offline

post processing and facilitates online damage detection especially when applied to streaming data without re-

quiring any baseline data. Numerical simulations are performed on a 5-dof nonlinear system under white noise

and El Centro excitations, with different levels of nonlinearity simulating the damage scenarios, demonstrate

the robustness of the proposed algorithm. The method is further validated on results obtained from case studies

involving experiments performed on a cantilever beam subjected to earthquake excitation; a two-storey bench-

scale model with a TMD and, data from recorded responses of UCLA factor building demonstrate the efficacy

of the proposed methodology as an ideal candidate for real-time, reference free structural health monitoring.

Keywords: Recursive Principal Component Analysis (RPCA), Time-Varying Autoregressive Modeling

(TVAR), Damage Sensitive Features (DSF)

1. Introduction

Structural damage detection involving condition assessment, fault diagnosis and prognosis of civil, mechani-

cal and aerospace infrastructure has garnered significant attention and a wealth of literature exists in this area

([1, 2, 3, 4]). Largely premised on the idea that damages manifest themselves through the alteration of struc-

tural dynamic properties such as natural frequency, modeshapes, damping; a significant number of algorithms

and methodologies have been proposed in recent times ([5, 6, 7, 8, 9, 10, 11]). Damages mostly occur due

to higher operational loads, excessive response, propagation of cracks, buckling, fatigue, impact of a foreign

object, etc. An ideal damage detection framework should provide detection in near real time, identify the pres-

ence of damage and its location and estimate the severity of the damage in the structure. Currently available

damage detection schemes ([7, 8, 9, 10]) are mostly offline in nature and data processing usually happens in

batch mode; hence, the development of online damage detection techniques based on processing of response
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that streams in real-time, still remains a challenge. Traditional offline damage detection schemes have disad-

vantages mostly due to their inherent dependence on finite element modeling, restriction in the evolution of

a universal methodology for damage detection in various structures and their insensitivity towards initial tiny

damages in structures. Recursive implementation of the existing damage detection algorithms ([12, 13]) are

computationally expensive and mathematically complex which motivates the need for an online framework

that enables the selection of the feature index of structural damage very flexible. This paper proposes a real

time damage detection framework using time varying auto regressive (TVAR) ([14]) modeling in conjunction

with recursive principal component analysis (RPCA) ([15]), to detect spatio-temporal structural damage in real

time.

A vast majority of the developed damage detection techniques are global in nature, i.e., the dynamic or modal

properties are obtained for the entire structure from the input-output data using global structural analysis ([8,

9, 10, 16]). Successful application of system identification-based SHM techniques require good quality data

acquired using a dense sensor network and an extensively calibrated finite element model (FEM) ([16, 17, 18]);

thus rendering them computationally expensive and cumbersome. The need for an accurate finite element (FE)

model, accounting for modeling errors, choice of tunable parameters, limit their applications towards real time

damage detection. The response based methods mostly entails a close monitoring of the structure over time

using periodic measurements, extraction of damage indicators or damage-sensitive features (DSF) from the

measurements, followed by a extensive statistical pattern classification based approach to depict the present

state of the system health. These response based methods mostly rely on the signatures obtained from the

recorded vibrations to extract features that indicate a change at the onset of damage. Recent developments in

the response based detection exploits classical time-frequency analysis such as wavelet transform ([9, 19, 20]),

empirical mode decomposition, Hilbert Huang transform ([21, 22]) and blind source separation ([10, 23, 24]).

Data driven statistical techniques (such as Principal Component Analysis (PCA)) utilize the eigen subspace

of the system obtained from the eigen value decomposition of the response covariance matrix for detecting

damage, thus enabling the monitoring of complex systems with less computational load ([25, 26, 27]). The

eigen space characteristics of a system can be used to track global information about time varying parameters
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(i.e., frequency, damping and mode shape) in order to detect changes in a structure’s health over time. Sta-

tistical measures like root mean square deviation and Welchs t-test ([25]), applied on the principal component

loadings obtained from response signals, scatter plots of pre and post damage principal components (PCs) de-

rived from application of PCA on transmissibility function, PCA in combination with multivariate statistical

inference ([26, 28]), are some of the examples for application of PCA in damage detection and system identi-

fication applications ([11, 29, 30]). However, PCA is heavily reliant on the use of baseline data which could

potentially inhibit its application in online damage detection. This underscores the need of recursive damage

detection techniques. Recursive subspace identification ([12, 13]), recursive least-squares based identification

algorithms([31]), hybrid clustering and least squares algorithm for nonlinear systems using radial basis func-

tion networks([32]), detection of change points in data using CUSUM ([33, 34]) are some notable contributions

in the context of adaptive/recursive system identification. However, the recursive identification techniques have

found limited applicability towards realtime damage detection in recent times to due algorithmic complexities.

Most of the works are based on application of algorithms that are applied on windowed data ([26, 30]). These

algorithms are data driven, computationally intensive and mathematically complex, which prompts the need to

adapt an online implementation with less computational exhaustion and a greater flexibility in extracting feature

index of structural damage from a set of physical response. The main motivation behind the present work is

to develop a novel damage detection framework which can process the data online and to detect damages

in the structure in real time. In most of the practical structural health monitoring scenarios, data streams

in continuously in real-time in both longer and/or shorter monitoring durations. Thus any damage detection

algorithm should ideally work online, which further necessitates that it should be parameter and baseline free.

This motivates the utilization of the concepts of RPCA ([15]), providing a recursive update of eigen subspace,

as a tool for real time processing of data in the present work. Whereas most of the PCA based techniques

process batches of data acquired in batch mode over a certain period of time, RPCA provides online processing

of data based on rank one eigenvector updates in a recursive framework, as and when the data streams in. A

major requirement for the working of the RPCA algorithm is that the data covariance matrix should be strictly

diagonally dominant at any instant of time, which is automatically satisfied for structural dynamical systems

having low to moderate damping. Once the eigen space updates are obtained, the proposed framework utilizes
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time-varying auto-regressive (TVAR) ([14]) modeling in conjunction with damage sensitive features (DSFs)

for identifying the instant of damage.

An autoregressive (AR) process may be used to model activity that is generated by one or more superimposed

responses, operating under the premise that past values obtained from a time series affects the current values,

based on some statistical calculations ([35]). The primary advantage of the AR model is that the underlying

process that produces the observed data can be inferred directly from the AR parameters without resorting

to spectral representation. Time series models work extremely well in capturing the key features of any data

series. Literature utilizing time series modeling for damage detection is quite extensive ([1, 6, 24, 36, 37])

but with the disadvantage that basic AR modeling is not amenable for online implementation. To tailor AR

modeling towards recursive implementation and to better capture the non-stationarity involved with any data or

due to the damage induced, TVAR modeling was proposed ([10, 14]). However, a major concern for using the

TVAR models is pre-selection of the model order. In the proposed method, TVAR modeling is applied on the

transformed responses obtained from the RPCA algorithm rather than the raw vibration responses. Therefore,

relatively low model order of time-series model ([10, 38]) is sufficient to capture the dynamics of the structure

in the transformed domain. The online damage detection framework, exclusive of baseline data, is used to

identify the damage instant in the monitored system through the time varying coefficients of the TVAR models.

In the proposed framework, damages in structures can be detected both spatially and temporally in real-time.

The major contributions of this work are as follows: First, a novel framework has been provided using RPCA as

an online damage detection tool that works in real time as data is continuously gathered. To the best knowledge

of the authors, the aspect of using RPCA in the context of structural damage detection has so far not been

explored. Second, the use of TVAR model on the transformed responses from which damage can be inferred

using DSFs even for 15% global damage, is a novel idea that is proposed in this paper, which provides a

greater degree of damage detection than currently reported in the literature. Third, simultaneous spatial and

temporal descriptions of damage is difficult and the key entitlement of this work is to detect spatio-temporal

damage in real time. To this extent, spatio-temporal damage detection for local stiffness changes up to 25% is

accomplished in this paper. Finally, the paper also explores the possibility of applying the proposed algorithm
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for under-determined scenarios as well where the number of sensors is less than the number of degrees of

freedom. The non stationary nature of the input data is taken into account by applying higher order statistical

moments in order to identify the instant of damage. The proposed method is applied for damage detection in

a 5 degree of freedom (dof) buocwen system excited with white noise and 1940 El Centro earthquake ground

motion, in which the nonlinearity level is subjected to various degrees of changes to simulate different levels of

damage in the structure. These numerical results were complemented with experimental tests on a shake table

using an aluminium cantilever beam, in which nonlinearity is induced with a thin rubber strip attached to the

free end of the beam. Important conclusions are also drawn from a case study involving a two-storey bench-

scale model with a TMD, in which the change of state from de-tuned to tuned is detected by the algorithm.

The paper is organized as follows. First, a brief description of RPCA is presented in the framework of struc-

tural dynamics. The damage detection through the use of DSF is presented next. The proposed algorithm is

demonstrated with the aid of numerical examples. Finally, the results are presented using experimental setups

carried out in a lab environment to demonstrate the efficiency and robustness of the proposed algorithm in

practical situations. The experimental results are also complemented through a full-scale study of the UCLA

factor building under a combination of earthquake and ambient data.

2. Background

PCA, also known as Karhunen-Loève transform, can be applied for dimensionality reduction, lossy data com-

pression, feature extraction and data visualization ([29]). PCA can be defined as the orthogonal projection of

the data onto a lower dimensional linear space, known as the principal subspace, such that the variance of the

projected data is maximized ([39]). By reducing the a complex data set to a lower dimension, PCA reveals

some simplified structures relevant to the data set which could be extracted using eigen value decomposition

(EVD) on the sample covariance matrix. This decomposition produces the eigen value matrices,expressible

as time series waveforms, known as the principal orthogonal values (POVs) and eigen vector matrices, also

known as proper orthogonal matrices (POMs). Eigen values/POVs describe the relative significance of each

POM in the response as a whole. The uncorrelated new set of variables produced by the linear combinations
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of the original variables are known as the principal orthogonal components (POCs). The new set of variables

have an improved potential to detect deviations (such as structural damage) in the system as compared to the

original set of variables and hence, finds its way in the field of structural damage detection.

Traditional PCA based methods analyze data in a batch mode, offline. As PCA is a baseline reliant approach,

the analyzed data are windowed so as to compare it with reference over certain intervals of time. Practical

engineering applications require the choice of window parameters such as window size, shift, overlap, etc. to

be discrete and problem specific. For applying the concept of PCA for incorporating non-linear dependence

between variables, a variation of PCA, known as kernel PCA (KPCA)([40]) is sometimes utilized to account

for the presence of nonlinearities in the data in the context of damage detection. However, KPCA based

approaches relying on the concept of subspace angle is computationally expensive. The pith of any PCA

analysis is the EVD of the sample covariance matrix to obtain eigenvalues and eigenvectors, but for a real

time framework, applying EVD at each time instant is cumbersome. To alleviate this drawback, a baseline

free approach amenable to online damage detection is addressed by the RPCA based framework ([15]). The

eigenspace of the sample covariance matrix applied to the data vector is updated recursively using the rank-one

update which provides an immediate estimation of the eigenvalue and the eigen vector matrices, instead of

updating the covariance matrix directly. An initial covariance estimate for the first few seconds is essential to

attune the basic RPCA towards online damage detection is proposed in this paper which provides an efficient

framework to detect damage online.

2.1. RPCA and structural dynamics

In order to understand the application of RPCA in the purview of structural dynamics, consider a linear, classi-

cally damped, and lumped parameter system with mass, stiffness and damping matrices M, C and K subjected

to an external force, with x as the displacement vector.

[M] {ẍ(t)} + [C] {ẋ(t)} + [K] {x(t)} = {F(t)} (1)
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where F(t) is the input excitation which is assumed to be Gaussian and broadband. The solution of the equation

can be written as

{x}m = [V]m×s{q}s (2)

where x is the measurement matrix of size m × N, q is the matrix of corresponding modal coordinates of size

s × N. Here m represents the number of degrees of freedom and s is the number of modes considered with N

as the sampling size. [V]m×s is the mode shape matrix which transforms the data from modal coordinates to

the physical response. An important characteristics of the mode shape matrix is that each columns of the mode

shape matrix are orthogonal to each other with respect to the matrix M. The covariance matrix of X can be

expressed as

R =
1
N

XXT

=
1
N

VQQTVT

(3)

In equation 3, RQ =
1
N QQT can be identified as the covariance matrix of the modal responses. For undamped

free vibration (i.e., C = 0 and F = 0 in equation 1), RQ is exactly a diagonal matrix, while under mildly damped

forcing conditions (i.e., C , 0 and F , 0 in equation 1), the matrix RQ is an approximately diagonal matrix

as the samplesize of the responses increase ([41]). Under broadband excitations, the evolution of the physical

response, xi(t) and modal response qi(t), in time domain can be expressed in terms of the impulse response

function as in equation 4.

qi (t) =
∞
∫
0

h (t − τ) fi (τ) dτ (4)

where fi(τ) represent the modal forces, related by the equation fi(τ) = vT
i Fi(τ), where vi represents the mode

shape corresponding to the mode and Fi(τ) represent the actual forces. The individual elements of the covari-

ance matrix RQ can be expressed as:

rQ
i j =

∞∫
τ=0

∞∫
θ=0

fi(τ) f j(θ)

 1
N

∑
i, j

hi(t − τ)h j(t − θ)
dτdθ (5)

Equation 5 shows that for finitely large N, RQ can be expected to be a diagonal matrix for undamped system

and nearly diagonal for light to moderate modal damping. The POCs (ψ) or orthogonal transformation of the

data can be written as product of POMs (W) and the data vector (x) as:
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ψi(t) =WTxi(t)

= (V + ε)T xi(t)

= qi(t) + γ

(6)

Hence POCs (ψ) can be expressed as a sum of true linear normal coordinates (q) and an error term (γ). To

understand the behavior of covariance matrix of POC, RΨ = 1
NΨΨ

T its essential to realize the individual

elements of the RΨ matrix. Substituting from equation 6,

rψi j =
1
N

N∑
k=1

ψi(tk)ψ j(tk)

=
1
N

N∑
k=1

[qi(tk)q j(tk) + γq j(tk) + qi(tk)γ + γ2]

(7)

For practical systems having low to moderate damping and finite sample size, it can be understood from equa-

tion 7 that POC provides a good approximation to the true linear modal component which deviates from each

other as damping increases. Hence the POC covariance matrix RΨ is still expected to show a diagonally domi-

nant behavior in the limit as N → ∞ and when the errors are low (i.e., low to moderate damping) ([41, 42]).

The main objective of RPCA is to provide a recursive estimate of W as well as ψk at each time instant as

and when the data streams in real time. For structural systems with low to moderate damping, obtaining the

POCs at each time instant is equivalent to obtaining the normal coordinates at each instant. Since the normal

coordinates are independent, they are likely to be mono-component in nature, thereby a lower order time series

model would be sufficient to capture the dynamics of the same.

The response covariance matrix Rk at any instant k can be written as a function of the covariance matrix of the

of the previous time instant Rk−1 and response vector xk at the kth time instant as shown:

Rk =
k − 1

k
Rk−1 +

1
k

xkxT
k (8)

The covariance estimate Rk can we written in terms of its eigen value decomposition as [Rk] = [Wk] [Υk] [Wk]T .
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On substituting in equation(8), the expression for the covariance matrix is rewritten as

WkΥkWT
k =

k − 1
k

Wk−1Υk−1WT
k−1 +

1
k

xkxT
k (9)

The estimate POC vector at kth time instant can be written as
{
ψ̃k

}
= [Wk−1]T {xk}. On substituting in equa-

tion(9), the following expression can be obtained

[Wk] [kΥk] [Wk]T =Wk−1

[
(k − 1)Υk−1 + ψ̃kψ̃

T
k

]
WT

k−1 (10)

For the RPCA algorithm to be stable and robust, it is important that the term [(k − 1)Υk−1 + ψ̃kψ̃
T
k ] is diagonally

dominant, in order to evaluate the EVD by using Gershgorin’s theorem ([43]). The term ψ̃kψ̃
T
k represents the

correlation between the POC estimates at a particular instant. Substituting from equation 6, the covariance

between POC estimates can be written as (to an arbitrary scale factor):

ψ̃kψ̃
T
k =WT

k−1xk xk
T Wk−1

= (qk−1 + γ)(qk−1
T + γT )

= qk−1qk−1
T + γqk−1

T + γT qk−1 + γγ
T

(11)

As far as the dynamics of structural systems are considered, the error term in the equation 11 can be neglected

as the number of sampling points increases and under moderate to low damping ([41, 42]). The first term

in equation 11 resembles the covariance of the normal coordinates at the instant (k − 1), which are in turn

mono-component in nature. Thus the term qk−1qk−1
T represents a matrix whose diagonal terms dominate its off-

diagonal terms; hence, the term ψ̃kψ̃
T
k can be safely assumed to be diagonally dominant. This in turn, ensures the

diagonal dominance of the matrix
[
(k − 1)Υk−1 + ψ̃kψ̃

T
k

]
, facilitating straightforward application of Gershgorin’s

theorem. For first order dynamical systems such as chemical systems ([15]), the above equations would not

hold true automatically and the concept of diagonal dominance has to be enforced upon, for the application of

Gershgorin’s theorem. Hence for a structural system, the recursive eigen space update is obtained using a first

order perturbation (FOP) approach which provides a less computationally intensive algorithm in a recursive

framework. The EVD of the matrix
[
(k − 1)Υk−1 + ψ̃kψ̃

T
k

]
can be substituted as HkΛkHT

k into equation(9) as,

[Wk][kΥk][Wk]T = [Wk−1Hk][Λk][Wk−1Hk]T (12)
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which yields the following iterative update equations:

Wk =Wk−1Hk

Υk =
Λk
k

 (13)

The recursive algorithm of equation(8) is transformed to obtain the values of Hk and Λk. Since the term

(k − 1)Υk−1 + ψ̃kψ̃
T
k is diagonally dominant, the eigen values can be assumed to be the diagonal entries of the

matrix. Hence the ith diagonal entry of the term Λk can be represented as (k − 1) λi + ψ̃
2
i , where λi is the (i, i)

element ofΥk−1 and ψi is the ith entry of the POC estimate. Once the eigen values are known, the corresponding

eigen vectors can be found out, leading to Hk.

One of the key problems faced while applying FOP approach is that the recursive eigen vectors obtained at

each time instant are not ordered, which poses the problem of permutation ambiguity([24, 44]). This can be

addressed by arranging the basis vectors according to decreasing order of the corresponding eigenvalues in Υk.

At each time instant, the eigenvalues indicate the contribution of the particular eigenvectors. The contribution

factor can for a particular ith eigen vector wi at each time instant can be written as α2
i

n∑
i=1
α2

i

, where α2
i is the

eigenvalue corresponding to wi. Let Wk = [W1
kW2

k], where W1
k is the subspace at kth time instant consisting

of eigenvectors, that account for more than 90% of the energy in the participating modes of the system. These

recursively estimated subspaces, are the subsequently utilized to find the true POC at each instant of time as

per the expression

ψk =WT
k xk. (14)

The first element of the ψk vector represents the major principal component. TVAR modeling is now performed

on the first major principal component.

2.2. TVAR modeling

The RPCA algorithm provides the POC updates recursively at each instant of time. Once the modal responses

are obtained using the proposed algorithm, the next step is to find out the instant of damage. In order to char-

acterize the behavior of the POC updates(which can be approximated to normal coordinates), TVAR modeling

is adopted here ([14]). The use of TVAR modeling for detecting structural damages has been attempted in the
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recent times with fair amount of success([10]). TVAR coefficients of the modeled transformed response are

tracked in real time in order to identify the damage instant. The sudden changes in AR coefficients indicate

the alterations in the dynamical properties of the system, such as shifts in natural frequencies, changes in the

mode shapes of the system, etc., induced due to the damage occurred in the system. In the proposed work, the

transformed response (i.e.,the first POC) extracted from the RPCA algorithm is modeled using a TVAR model.

However, the main drawback associated with using TVAR models is the selection of model order a priori such

that the resulting TVAR model correctly characterizes the data during the times of interest. The use of POCs

instead of the raw vibration data, whose near resemblance to normal coordinates enables the use of a low model

order, resolves the issue of model order selection.

Let ψ1(k) represent the POC at any instant which captures the maximum kinetic energy of the system and

let v(k) denote the zero mean Gaussian white noise with variance σ2
v . Then the AR model of order p can be

represented as:

ψ1 (k) =
p∑

i=1

aiψ
1 (k − i) + v (k) (15)

The non stationary nature of the POC, necessitates recursive updates of the AR coefficients in which ai becomes

ai(t), to capture the dynamics of the normal coordinate effectively. For this purpose, the Kalman filter is

utilized to estimate these time-varying coefficients, knowing the observations of data ([14]). The following

equation is the discrete representation of the ai(t) coefficients and w(k) is the process noise with varianceσ2
w and

covariance, Pw = Ip×pσ
2
w. Both noise measurements v(k) and w(k) are mutually independent and uncorrelated.

Consider the following set of equations, where the unknown state vector b(k) is expressed as shown:

b(k) = Γ(k − 1)b(k − 1) + w(k)

ψ1(k) = C(k)b(k) + v(k)
(16)

The state vector b(k) is given by: b (k) =
[
a1 (k) , a2 (k) , . . . . . . ap (k)

]T
. The matrix Γ(k−1) is an identity matrix

(Ip×p). The matrix Ck is the observation data with discrete k steps given as: C (k) =
[
ψ1 (k − 1) , ψ1 (k − 2) . . . . . . ψ1 (k − p)

]
.

The Kalman filter has mainly two processes: one is the stepwise time update (prediction) and the other one is

measurement update (correction) of the predicted data. At each step, the set of the Kalman filter equations can
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be written as ([3, 14]):

b (k|k − 1) = b (k − 1|k − 1)

Pb (k|k − 1) = Pb (k − 1|k − 1) + Iσ2
w

ψ1 (k|k − 1) = C (k) b (k|k − 1)

σ2
ψ1 (k|k − 1) = C (k) Pb (k|k − 1) C(k)T + σ2

v

(17)

And,

KG (k) = Pb (k|k − 1) C(k)Tσ2
ψ1 (k|k − 1)−1

b (k|k) = b (k|k − 1) −KG (k)
[
ψ1 (k) − ψ1 (k|k − 1)

]
Pb(k|k) = [I −KG(k)C(k)]Pb(k|k − 1)]

(18)

where b (k|k − 1) represents a priori estimate and its linear combination would result in b (k|k), which is a pos-

teriori. The Kalman gain KG(k) gives a weightage to the prediction error ψ1 (k) − ψ1 (k|k − 1), to minimize the

state estimation error b (k|k). The apriori and the posteriori covariance estimates are given by Pb (k|k − 1) and

Pb (k|k − 1), respectively. Although the TVAR model facilitates adequate representation of the non stationary

transformed response, but in order to use it for damage detection, only TVAR model is not enough; hence, DSF

are applied on the TVAR coefficients to detect damage as described next. Alongside TVAR coefficients, these

statistical indicators (or the DSF) are applied to detect damage which run in real time. These DSF have a real

time fervor and hence, these are amenable towards online implementation and has been explored in the present

context.

3. Damage Sensitive Features

In the present framework, RPCA facilitates online processing of data producing recursive updates of eigen

vectors and eigen values, referred to as eigen subspace. The eigen subspace by themselves cannot detect the

change in system properties inflicted due to damage, if not processed by a set of damage markers commonly

referred to as damage sensitive features (DSF) ([1, 37, 45]). The primary requirements of good damage sensitive

features are their ability to detect the presence of damage, effectively distinguish between the damaged and

undamaged states of the structure, followed by their capacity to possibly locate and quantify the extent of

damage. Additionally, to detect damages in real time, the proposed DSFs should be amenable for online
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implementation and should accurately identify the presence of damage as and when the response data streams

in continuously. Several damage detection and SHM techniques have been proposed in the literature ([4, 5, 6])

that involve use of specific DSFs whose changes signify damage to the system. Examples of DSF used in SHM

literature for damage detection include finite difference approximation on mode shapes ([46]), localization

indices (LI1 and LI2) based on auto regressive (AR) coefficients ([36]), various strain related parameters,

global integrity index based on shifts in natural frequency ([15]), curvature mode shape technique ([47]), etc.

The disadvantages associated with the traditional DSFs includes requirement of (i) baseline or reference data

from a healthy structure; (ii) windowing of response data etc., which impedes their application in an online

framework. In this section, a brief background on the formulation of online DSFs is proposed utilizing the

concepts of TVAR coefficients and recursive signal statistics. These features are based on the reorientation of

eigenspace due to damage which is manifested in the form of change in the pattern of TVAR modeling before

and after damage. In the following sections, TVAR coefficients (ai), signal statistics on AR coefficients (µai ,ζai ),

spatial recursive residual errors (εRR) are presented.

3.1. Time varying auto-regressive coefficients

The key DSF utilized in the paper is the TVAR coefficients. The motivation for this DSF is derived from

the use of AR coefficients as a criterion for novelty evaluation ([48]), which presents the use of a statistical

parameter known as Mahalanobis distance value, for AR coefficients to distinguish between a damaged state

and an undamaged state. However, this parameter frequently requires the use of windowing and baseline data

to detect damage, thus it is not possible to implement it in an online framework. These drawbacks of traditional

AR modeling motivates the development of TVAR modeling ([14]) which provides a recursive update of AR

coefficients in real-time, enabling it to capture the non stationary nature associated the data due to damage. The

near mono-component nature of the transformed response ensures that low model order is sufficient to capture

its dynamics; therefore, in the proposed framework, a model order of 2 (two) is pre-selected for all the cases.

The basic equation 15 becomes:

ψ1 (k) = a1(k)ψ1 (k − 1) + a2(k)ψ1 (k − 2) + v (k) (19)
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where the symbols carry the same meaning as that of equation 15. Although a1 and a2 are expected to alter

mildly at each time instants, the damage instant is characterized by sudden changes in the overall behavior of

TVAR coefficients post damage. Tracking this change in a1 and a2 serve as an indicator of damage.

3.2. Recursive statistics on TVAR coefficients

The AR coefficients extracted from the TVAR modeling on the transformed response is discussed in detail later

to show modulatory/wavy behaviors, which can mask the accurate determination of damage instant. This is

partly attributed to the non stationarity nature of the transformed response (ψ(t)) and also due to transformed

response not being purely mono-component. As explained in Section 2.1, the POC tends to normal coordinates

only under certain assumptions which may not be realized in practise always. Hence, even though TVAR coef-

ficients reflect the damage in a system, the change may not be always obvious. To address the aforementioned

issue, recursive versions of the commonly used signal statistics are employed on TVAR coefficients ([38]).

The damage in a structural system is corroborated by the change in the behavior of AR coefficients which is

manifested in the form of : (i) sharp peak in a1 and/or a2 in the vicinity of damage; (ii) drift of post damage

a1 and/or a2 from the pre-damage values. This prompted the use of recursive mean (µai ), and higher moments

(ζai ) of AR coefficients which can capture the essence of damage in a better way.

µai
(k) =

k − 1
k

µai
(k − 1) +

1
k

ai(k)

σ2
ai (k) =

k − 1
k

σ2
ai (k − 1) +

1
k

ai(k)ai(k)

ζai (k) =
(k − 1)ζai (k)/k + ai(k)ai(k)ai(k)ai(k)ai(k)ai(k)/k

((k − 1)σ2
ai

(k − 1)/k + ai(k)ai(k)/k)3

(20)

where ζai refers to the sixth moment and σ2
ai

refers to the second moment or variance.

3.3. Temporal RRE for Local damage detection

Addressing the facets of structural damage detection involves a close investigation of temporal and spatial dam-

age identification which becomes difficult especially when attempted simultaneously in an online framework.

In the present work, the authors have tried to investigate the aspects of spatio-temporal damage detection in
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the same framework with a reasonable degree of accuracy. To address damage localization, the term recursive

residual error (also known as local RRE) is defined and expressed for each degree of freedom (εRR). However,

a stringent assumption involved for this framework is that when a column of a multi degree of freedom (mdof)

structure is damaged, its effect will be pronounced in the neighboring dofs, which in turn is manifested as a

change in the RREs for that particular dof. The main motivation behind the use of residual error for damage

detection has been obtained from Hot et al.([30]), which presents the use of residual error as a measure of

distortion of subspaces of a nonlinear system with increase in levels of excitation.

Considering a damage at the end of (k − 1)th instant, the subspace spanned by the updated eigenvector W1
k

deviates in comparison to the subspace spanned by eigen vectors at the previous time stamp W1
k−1. Apart from

the instances of damage, or, the initial few seconds, it can be assumed that W1
k � W1

k−1, since there is no

deviation in the eigenspace otherwise. Based on this assumption, the RREs due to projection of the response at

a particular time instant k onto W1
k−1 is evaluated as:

X∗(k) =W1
k−1 ∗W1T

k ∗ X(k) (21)

From equation 21 it is clear that the projections of the transformed responses X∗(k) and the actual responses

X(k) can be expressed as vectors with each individual element corresponding to a degree of freedom (m : total

number of DOFs) according to : X∗(k) = [x∗1(k), x∗2(k), . . . . . . , x∗m(k)]T and X(k) = [x1(k), x2(k), . . . . . . , xm(k)]T

where k represents the time instant at which RRE is estimated. Let each element of X∗(k) and X∗(k) be repre-

sented as xi
∗(k) and xi(k) respectively, where (i) corresponds to a particular degree of freedom. This yields a

time series of RRE (labelled as εRR − Yi) corresponding to the response for each degree of freedom, which can

be expressed as

εRR − Yi =
∣∣∣∣x∗2i (k) − x2

i (k)
∣∣∣∣ (22)

Another useful quantity in this connection is the average RRE for ith response for K datapoints, which can be

estimated according to,

⟨εRR − Yi⟩ =

K∑
k=1

∣∣∣x∗2i (k) − x2
i (k)
∣∣∣

K
(23)

The local RRE averaged over K samples is shown above. This is particularly useful, as shown later, in quanti-

fying the percentage change in RRE (an indirect measure of loss of stiffness) before and after damage.
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4. Proposed Algorithm

The overall methodology followed in the paper entails the amalgamation of separate modules which detect

two key ingredients: temporal and spatial damage detection, simultaneously. The first module deals with the

temporal damage detection, wherein the raw acceleration data is processed by the RPCA algorithm as the data

streams in real time. This accounts for an online damage detection framework as no batches of data are utilized

in order to form a baseline. TVAR modeling is done on the updated first principal component which yields

TVAR coefficients at each instant of time. As previously explained, TVAR coefficients are tracked online for

any major and minor changes. Damage sensitive feature (like higher moments) are utilized to corroborate the

instant of damage, when it cannot be discerned directly by tracking TVAR coefficients only. Once the damage

instant is detected, the spatial damage detection module further resolves the location of damage. The basic

steps of the algorithm is enumerated as follows:

The basic steps of the algorithm are enumerated as follows:

1. First, batch PCA is employed on some initial data points in order to estimate the initial eigen vector and

eigen value matrices.

2. The RPCA algorithm then operates online on the real time input of the streaming data.

3. Using the recursive gain depth parameter, the covariance estimate at the present time instant is derived

using the covariance estimate at preceding time instant. From the recursive updates, the eigen vector

and eigen value matrices are updated using FOP approach and the transformed responses (principal

components) are obtained using the RPCA algorithm.

4. The proposed time series models are generated based on the responses and a TVAR model is fit. The

DSF are tracked realtime in order to extract the changes in the model coefficients, thereby revealing the

faults in the system.

5. Once the instant of damage is determined, the algorithm shifts on to the next module where the spatial

detection of damage takes place. The local RREs are tracked online recursively to capture the spatial

effect of the damage, visually.
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Figure 1: Flow chart of the proposed algorithm

A flowchart as shown in Figure 1 outlines the proposed damage detection scheme, stepwise. Vibration re-

sponses are processed by the RPCA algorithm to obtain the transformed responses, then the TVAR modeling

is utilized to extract the time-varying coefficients through which damage instant is detected. It is to be noted

that the aforementioned proposed algorithm has the following few characteristics: (i) the data is processed at

each time instant, as and when it becomes available, i.e the algorithm works online. (ii) to locate the instant

of damage a reference value (baseline) is not required, i.e. it is baseline free. (iii) there are no parameters

controlling the working of the algorithm, hence its parameter free. The above mentioned characteristics of the

proposed algorithm makes it an ideal choice for a real time damage detection framework.
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5. Numerical Example

In order to illustrate an application of the proposed method, numerical simulations are carried out on a 5-

storey model having a buoc-wen oscillator at its base degree of freedom to simulate a nonlinear change of state

which is defined as damage. The level of nonlinearity is controlled by the parameter κ, which is used to scale

the nonlinear force term. Two kinds of excitations are used: stationary zero mean Gaussian white noise for a

duration of 50s and an earthquake excitation (El Centro ground motion). The excitation are sampled at 50 Hz.

Towards this simulation example, the model is described first followed by the analysis of the results.

5.1. Model Description

TThe model under study is similar to the one as presented by Ramallo et al. ([49]). Numerical simulations are

carried out on the model which consists of 4 floors and a base which is separated from the surrounding soil by

an LRB base isolator. Upon subjecting the system to an external excitation vector u, the state equations for this

system can be written as:

ẋ = Ax + Eu

y = Bx
(24)

Here, the vector x is the vector of states and the vector y represents the output vector, which is governed by

the B matrix. The inherent properties of the system , i.e., the system matrix, A, and the excitation matrix E are

given by

A =


[O]5×5 [I]5×5

−M−1K −M−1C


E =
[

0 0 0 0 0 − 1
m − 1

m − 1
m − 1

m − 1
m

]T (25)

The equation of motion for the system can be summarized as:

Mẍ + Cẋ +Kx = Λ f −MIẍg (26)

where, M, C, and K are the assembled mass, damping, and stiffness matrices, respectively. A simple shear

building representation is assumed to arrive at the expressions for M, C, and K which are skipped here for
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brevity. The mass at each of the four floor levels from the top is 7461 kg and at the base is 6800 kg. The

damping coefficients for each floor level above the base is 23.71 kNs/m and 3.74 kNs/m for the base. The

stiffness coefficients for each of the floors above the base is 11912kN/m and that for the base is 232 kN/m.

The parameter Λ in equation(26) represents the location of the base at the point of application of the force

due to the LRB base isolator and ẍg represents the ground acceleration. The forces due to base damping and

stiffness terms (kb and cb) have been included in the non-linear force term ( f ) due to the LRB base isolator,

which can be expressed as:

f = κzQpb − kbxb − cb ẋb (27)

where, Qpb =
(
1 − kyield

kinitial

)
and kb and cb are the stiffness and the viscous damping respectively, in the horizontal

direction. The initial and the post yield shear stiffness are given by kinitial and kyield, respectively. The evolution-

ary variable z is used to provide the hysteretic component of the horizontal force, Qhyst = zQpb. The variable z

can be obtained by solving the following nonlinear differential equation:

z = −γz |ẋb|
∣∣∣zn−1
∣∣∣ − βẋb |zn| + Aẋb (28)

where γ, β, A and n are the shape parameters of the hysteresis loop. ([49]) . For the current model, A =
( kyield

kinitial

)
,

γ = β and n=1. The yield force Qy is selected as 5% of the total weight of the building which gives Qy = 17800

kg and pre-yield to post- yield stiffness ratio
( kyield

kinitial

)
= 6. For the present study of the model, the values of the

parameters are set as: γ=β=39.1. The constant κ has been introduced in equation 27 to control the nonlinear

force term. For the purpose of inducing a damage, the authors have proposed to vary the value of κ in the

equation of motion. For instance, a change in κ from 1 to 0.7 is conveniently assumed as a 30% change in

nonlinear characteristics of the system.

5.2. Results for White Noise

The system is subjected to Gaussian white noise excitation as described in the previous section. The algo-

rithm starts off with an initial covariance estimate and slowly progresses as outlined in Section (4). Temporal

damage detection cases are studied first by sequentially changing the κ corresponding to 15%, 25%, 40% and

50% changes in nonlinear characteristics respectively. Once the temporal damage detection is carried out, the

20



examples for spatial detection are described next.
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Figure 2: Acceleration plots for white noise excitation for different cases of non linearity

5.2.1. Temporal damage detection results

The response of the top floor of the 5 dof model has been shown in Figure 2. The damage is induced through

change of nonlinearity by 15%, 20%, 40% and 50% at a particular time instant of 31s. As evident from the fig-

ure, the changes due to 15%, 20%, 40% cannot be directly discerned from the response data, visually. In order

to detect the temporal damage, two DSFs are used- TVAR coefficients, Recursive Mean of AR coefficients . It

can be clearly observed from Figure 3 that the damage instant can be easily detected using the AR coefficients

by exploiting their sudden changes at the damage instant. Thus, it confirms that TVAR modeling is amenable

to online damage detection in a recursive framework. It should be noted that selection of model order for a

time series needs a fair amount of mathematical insight into the observations. Since the transformed responses

obtained using the RPCA algorithm are mono-component in nature, a relatively low model order (say,2) can be

used, which is shown in Figure 3. It can also be observed from Figure 3(b) that recursive mean could capture

the essence of fault detection where it shows a significant deviation in its original trajectory at 31s. However, it

will be shown in the following sections that the plots for higher order moments provide much accurate results

than recursive mean as observed for El Centro excitation and practical implementation cases.
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Figure 3: Damage detection using damage sensitive features for 30% non linearity change

The efficacy of recursive DSF is less effective for lower percentage change in nonlinearity. As evident from

literature, damages of the order of 25% have been often reported as a lower limit for vibration based damage

detection ([10, 23]). However, in the present work the use of TVAR coefficients successfully detects damage

corresponding to 15% change in nonlinearity. As seen from Figure 4, the TVAR plots serve as a robust DSF

for detecting damage. The damage instant can be clearly identified from the figure as 31s using the proposed

method.
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Figure 4: Damage detection using AR coefficients for 15% non linearity change
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In order to further validate the damage instant, the authors have proposed the use of recursive mean on the

TVAR coefficients which are tracked to show any significant changes, online. By looking at figures 5(a) and

5(b), it can be seen that there is a significant change in the estimate of the recursive mean. It can also be

observed from the figures that the DSF utilized for tracking the changes shows distinct peaks indicating the

exact instant of damage occurred in the system.
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Figure 5: Damage detection using recursive mean for 15% non linearity change

5.3. Spatial Damage Detection Results

In the previous sections, the concept of global damage has been discussed which was introduced by varying

the nonlinear force term κ in the equation of motion of the system. In the present section, the notion of local

damage is presented by a change in stiffness for a particular floor which brings out the concept of online

spatio-temporal damage detection. As already mentioned, only when the instant of damage in ascertained, the

algorithm shifts on to spatial damage detection module in order to find out the location of the damage. The

simultaneous temporal and spatial case deals with 35% and 25% changes in linear stiffness in the 3rd storey

of the structure. The system is assumed to be fully nonlinear by scaling the value κ to 1. Once the damage

instant is detected by tracking the change in AR coefficients, the spatial module starts functioning online in

order to localize the position of damage occurred in the system. From Figure 6, it can be shown that clear

damage instant is identified at 31s for a 35% damage. Once the damage instant is detected, the spatial RRE in
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Figure 6: Comparison between spatial and temporal damage for 35% change

the neighborhood of the vicinity of damage (say, 29s to 33s) is examined. From the same figure, it is clearly

observed that the spatial RRE for third degree of freedom shows a significant change at 31s compared to the

other set of responses which indicates that the damage has occurred in the third storey. From Figure 7, it is

evident that the the spatial RRE for 25% damage indicates a visible change at t=31s. As outlined before, the

temporal and spatial detection module should run simultaneously. The changes in the TVAR coefficients and

the local RRE are tracked online recursively in order to capture the essence of temporal and spatial damage

detection, respectively. As seen from Figures 6 and 7, damage detection can be interpreted from the change in

local RRE corresponding to the third dof which substantiates the localization of the damage. However, as the

extent of stiffness degradation decreases, detecting spatial damage becomes increasingly difficult as compared

to detecting temporal damage alone as evident from Figure 7.

5.4. Results for Elcentro ground excitation

To illustrate the potential application of the proposed method, numerical simulation is performed on the 5

dof buocwen model using El Centro excitation data. The damage is simulated for a 30% change at 25s. The
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Figure 7: Comparison between spatial and temporal damage for 25% change

proposed algorithm processes the data and the simultaneous tracking of the DSF are done online, recursively, in

order to accurately identify the damage instant. From Figure 8, it can be seen that the plots of TVAR coefficients

do not indicate a clear instant of damage due to the highly non-stationary behavior of the input excitation. In

order to mask the non-stationary behavior of the input data, the authors have proposed the use of higher order

moments (HOM) of the TVAR coefficients to clearly indicate the instant of damage. The effect of damage on

HOM is much more significant than the effect of local non-stationarity associated with the input excitation,

thereby making the HOM such as the sixth moment(ζai ) better equipped to capture the essence of damage. In

the present damage scenario, the sixth moment of the TVAR coefficients(ζa1 (t),ζa2 (t)) are effectively used to

indicate the instant of damage by observing a change in the level of the plots. As observed from Figure 8, plots

for sixth order cumulant for a1(t) and a2(t) show sudden change in the level of the graph. While approaching

the damage instant, the plots show a significant change in the level which validates that the damage has indeed

occurred at t=25s. It should however be noted that simultaneous spatial and temporal damage detection is

difficult in this case owing to amplitude non-stationarity of the ground motion.
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Figure 8: DSF for El Centro excitation for 30% change

5.4.1. Comparative study with batch PCA

In this section, a comparison is made between the performance of basic PCA with the RPCA. The 5 dof bouc-

wen model described in section 5.1 is excited using the El Centro ground motion and and 30% change in

nonlinearity was introduced in the system at t = 25s. The transformed responses obtained from the RPCA and

the traditional batch PCA algorithms are utilized to fit in individual TVAR models. Recursive HOM employed

on the TVAR coefficients revealed the subtle differences between the algorithms which is depicted in Figure 9.

While the RPCA algorithm processes the data at each time instant and provides eigen space updates in real-

time which are subsequently utilized to model the transformed response using TVAR parameters, batch PCA

works by accumulating the data into 10s windows and provides eigen space at the end of each window size.

This eigen space is assumed to be constant over the entire interval and transformed response for the a particular

window wi, is obtained using the equation

ψwi =Wwi T Xwi (29)

where, Wwi is the principal orthogonal matrix or eigen vector obtained as a result of batch PCA on the response

data matrix Xwi accumulated over the corresponding window wi. The initial window size is kept smaller than
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the rest as the batch PCA algorithm requires certain data points to stabilize. Figure 9 shows that the proposed

framework using RPCA and TVAR detects the damage accurately at around 25s by showing of a sharp change

in the level of the ζai post damage. However, the algorithm using batch PCA and TVAR fails to detect the

damage owing to inaccurate transformed response obtained at each window. It is clear from the figure that the

plot of the batch PCA parameter, ζai , shows discontinuity due to windowing since the transformed responses

on which TVAR is modeled depends on the POMs obtained at the end of each window. Although the damage

detection for the algorithm using batch PCA can be improved by reducing the window size but that would

amount to increased computational cost and excess time consumption. Thus, the proposed algorithm using

RPCA in conjunction with TVAR not only works in real-time but is also superior to batch PCA as evident from

the the results in Figure 9.

5.4.2. Results for Underdetermined case-White Noise Excitation

The results shown in the previous sections have been obtained by utilizing the response from all the dof,

available as inputs to the algorithm. In this section, the authors have explored the applicability of the proposed

algorithm for the cases where the number of sensors is less than the number of degrees of freedom, which is
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referred to as an underdetermined case. Physically, such a system arise in flexible systems that are instrumented

with a relatively smaller number of sensors because of cost and other factors. The proposed algorithm tries to

address this issue by assuming the number of degrees of freedom in the structure to be equal to number of

available measurements. Hence for a 5-DOF structure, if only 3 degrees of freedom are instrumented with

sensors, the proposed algorithm assumes the system to be a 3-dof structure, producing corresponding eigen-

vectors (POMs) and eigen-values(POVs). Since in the proposed algorithm, TVAR modeling is done on the first

transformed response, detectibility is not affected for a underdetermined system. Theoretically, the number

of degree of freedoms instrumented should be at least equal to number of actively participating modes. The

vibration response data from the top few dofs is of foremost importance as it has the maximum effect on the first

modal response. For the case of underdetermined system, the model proposed in Section 5.1 with acceleration

response data missing from second floor and fourth floor are taken for analysis. Damage was induced for the

following two cases i) Global damage at 31 s ii) Local damage induced in 3rd storey at 31s.
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Figure 10: DSF for Underdetermined case 1- Global Damage, 20% change in nonlinearity

The damage in case 1 is induced through a 20% change in nonlinearity at a particular instant. From Figure 10,

it is clear that the algorithm is able to perceive damage through the DSF even without the availability of the

complete set of response. It is to be noted here that dof selected will have an impact on the detectibility limit.

For the above case, the algorithm was able to detect changes in nonlinearity up to 20%. For the second case,

30% reduction in stiffness was induced in the fourth storey column at 31s and vibration responses from all the
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floors except the second and fourth were made available as input to the algorithm. The results are as shown in

Figure 11
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Figure 11: DSF for Underdetermined case 2- Local Damage, 30% change in stiffness

From the figures it can be seen that there is a lot of activity present before the instant of damage is attained. Al-

beit these instabilities, it can be safely concluded that the algorithm is well equipped to solve underdetermined

system both for local damage and for global damage case scenarios.

6. Practical implementation studies

To substantiate the efficacy of the algorithm implemented online, three case studies have been presented:

1. An experimental model setup in a laboratory environment comprising of an aluminum beam excited by

a ground motion, having a rubber strip attached to its free end.

2. A two-storey bench-scale model with a TMD is experimented with a Gaussian broad-band excitation to

detect damage through a change in the values of optimal tuning parameters.

3. A full-scale study using recorded ambient and earthquake-excited responses obtained from UCLA factor

building.
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Figure 12: Details of the experimental setup

6.1. Experimental Study

In order to demonstrate the practical application of this method, an experimental setup is developed to simulate

an online damage, and to validate the proposed real time damage detection algorithm. Figure 12 shows the

setup consisting an aluminum beam of dimension 120cm× 3.5cm× 0.5cm fixed on a base plate which is drilled

on top of a shake table (model no. Bi-00-300) ([50]). The base plate comprises of two metallic plates of

dimension 23cm × 15cm × 1cm welded at right angles. A shake table of the following specifications is used

to carry out the experiment: (i) table dimensions- 150cm × 150cm. (ii) payload capacity- 5tons. (iii) peak

velocity- 153cm/sec. (iv) peak acceleration- ±2.0 g. (v) frequency range- 0 − 20 Hz. The model is excited

using a scaled Chi-Chi ground excitation and the response acceleration data are collected using QuantumX

MX410 HBMT M Data Acquisition System (DAQ) at a sampling frequency 75 Hz. Honeywell accelerometers

T EDS by HBMT M are used to instrument the aluminum beam model at the following four positions: 1cm,

30cm, 47cm and 81cm, from the free end, respectively. The output acceleration plot obtained from the sensors

is shown in Figure 13. One end of the beam is clamped rigidly on a heavy steel platform; while a thin rubber

strip of taut length 70cm attached to the free end of the beam provides nonlinearity to the entire setup.

The experiment is carried out by subjecting the aluminum beam to a scaled ground motion (1999 Chi-Chi

ground motion, scaled to peak 0.3g). In order to simulate a real time damage scenario, the rubber strip attached

to the free end of the cantilever beam is snapped accurately at a fixed time instant, during the shaking motion
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Figure 13: Output acceleration plot obtained from simulation

of the beam. The measurement of the instant of the snap is done using a stop watch and the entire experiment

is recorded in the form of videos to assure accurate measurement of the instant. Damage ideally should be an

instantaneous phenomenon, the action of snapping action as observed after repeated trials of experimentation

takes at least 0.5 to 1 s. This small lag should be considered while calculating the damage instant. Hence, it is

safe to assume that there is an error of 0.5 to 1 s in recording the time of damage. The recorded time of damage

is then observed to be 33 ± 1s. The raw vibration data streaming in real time is acquired by the DAQ and

then the proposed algorithm is applied. The instant of damage is well reflected by the plot of the DSF, which

cannot be directly discerned from the raw acceleration data. It can be observed from Figure 14 that TVAR

coefficient a1(t) shows a significant change in mean at 33s and a2(t) has significant activity at around the same

time, indicating the occurrence of damage. The sudden change in level of sixth moment ζai (t) at 33s further

adds to the evidence of damage occurrence at that point.

6.2. Case study for de-tuning identification of tuned mass dampers

In vibration control of structures, tuned mass dampers (TMDs) have been accepted as effective passive control

device to alleviate unwanted vibrations in a flexible structure ([51, 52]). The dynamics and design of TMDs

([51]) involve the mechanism of mitigating the structural vibration by dissipating the undesirable vibration

energy of the structure through the damping of the TMDs. De-tuning, resulting due to alterations of the primary

and/ or TMD structure, incorrect design of forecasts, etc., lead to a substantial loss in the performance of TMDs,
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Figure 14: DSFs used for an experimental trial

which can be resolved by optimally tuning the natural frequency of the TMD to the structural natural frequency

corresponding the mode to be controlled under a specified value of damping ([53]). Potential damages in a

structure are related to the alterations in its primary properties, therefore, de-tuning of TMDs could practically

be quantified as damage occurring in the structure. In order to understand de-tuning, it is instructive to express

the equations of motion for a 2-dof structural system excited by stochastic disturbance, which is assumed to be

Gaussian and white.

MẌ + CẊ +KX − [k(x − X) + c(ẋ − Ẋ)] = w

mẍ + [k(x − X) + c(ẋ − Ẋ)] = 0
(30)

where M, C, K are the mass, damping, and stiffness coefficients of the primary structure, and m, c, k are the

mass, damping, and stiffness coefficients of the TMD. X represents the displacement of the main mass with

respect to the ground and x denotes the displacement of the TMD attached to the primary structure ([53]). For

a general N-dof primary structure, the equations of motion for the ith mode when the TMD is present in the jth

floor level can be written as (assuming a proportionally damped system)

Miÿi + Ciẏi +Kiyi − ϕi j[k(x − X j) + c(ẋ − Ẋ j)] = wi

mẍ + [k(x − X j) + c(ẋ − Ẋ j)] = 0
(31)

where, the quantities Mi, Ci, Ki and wi should be interpreted as corresponding to the ith mode. From equations
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Figure 15: Tuned and de-tuned TMDs (α= 0.85) (Raana and Soong, 1998, [51])

30 and 31, it can be observed that as long as ϕi j is normalized to unity for the jth floor location, the TMD design

quantities obtained using equation 30 can be used directly to design a TMD corresponding to the ith mode

([51]). However, if the structure’s ith mode shape vector is normalized with respect to its jth element, which

corresponds to TMD location (i.e., the jth floor), ϕi j becomes unity and X j(t) = ϕi jy(t) = y(t). This implies that

the expressions for calculating the steady-state ith modal response and damper response in a MDOF structure-

TMD system will be exactly same as those for main mass and damper mass responses, respectively, in a SDOF

structure-TMD system. The optimal TMD parameters are specified by its optimum mass ratio (µopt), optimum

frequency ratio ( fopt), and optimum damping ratio (ξopt). These quantities represent the ratio of the TMD

parameters to the structure mass, modal frequency (to which the TMD is tuned to) and damping, respectively.

For condition-assessment purposes, µopt is generally pre-defined as the mass ratio of the existing structure

(i.e., µopt= µ). As documented in existing literature ([51, 52]), the values of fopt and ξopt are determined as a

function of the mass ratio and primary structure damping ratio (ξp). However, for de-tuning detection cases,

the optimal design parameters of TMD that are of practical interest are the TMD stiffness (kopt) and damping

(ξopt) as de-tuning is primarily reflected by a change in the value of kopt. Thus, a parameter α is used to express

the TMD stiffness of the controlled system, evident by the relation kT MD= αkopt, which quantifies the level of

de-tuning in the system ([53]). A perfectly tuned condition implies that the value of α is unity, whereas α < 1

or α > 1, signify a de-tuned condition. A typical Fourier spectra of a de-tuned TMD is contrast to the perfectly

tuned case and the absence of TMD case is shown in Figure 15. Figure 15 is obtained by incorporating the α
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parameter in Raana and Soong’s model ([51]) and setting α = 0.85. It is clear that de-tuning causes the Fourier

amplitudes of the two closely spaced modes to be significantly different from each other. This phenomenon has

been observed and reported in literature ([53, 54]).

Figure 16: Schematic of the experiment setup (Hazra et al., 2010, [53])

Figure 17: Experimental setup and instrumentation details

In order to demonstrate the practical applicability of the proposed damage detection method, the RPCA al-

gorithm is implemented using acceleration data acquired from a bench-scale two-storey model, each with a

floor weight of 140N, with a pendulum TMD as shown schematically in Figure 16 ([53]). Flexural stiffness

is provided by four 1.30cm aluminum equal angles, 130cm tall and 0.17cm thick. The lateral frequencies of
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the bare structure (i.e., without TMD) are calculated as 2.6 and 3.5Hz and the structural damping in both the

lateral directions is assumed to be 2% critical in all the modes. The suspended mass is 1.5kg, which corre-

sponds to a mass ratio of approximately 5%. The natural frequency of the pendulum is adjusted by sliding a

tuning frame inside a rail and an air-damper is connected between the suspended mass and the rail assembly

to provide a small amount of damping to the pendulum TMD. A broad-band excitation is commanded to an

actuator as shown in Figure 17 which connected to the first floor level, and the accelerations are recorded using

low-frequency accelerometers at the floor levels, in both the lateral directions. The sampling frequency is set to

100Hz with a theoretically calculated optimal length of the pendulum to be 44mm for the experimental setup,

which will serve as a base-line to compare the re-tuned length.
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Figure 18: DSFs used for the TMD experiment

The tuning frame is adjusted first to a de-tuned configuration with an effective length of 30mm and the accel-

eration response data are collected for the broad-band excitation case. Upon subjecting the structure to the

excitation for a duration of 1 min., the effective length of the tuning frame was changed to the theoretical op-

timal length of 44mm at around 23s from the start of the excitation. The RPCA algorithm is applied on the

accelerometer data mimicking a real-time application, in order to correctly capture the instant of damage. From

Figure 18, it can be observed that the algorithm detects the damage instant online by tracking the change in

TVAR coefficient (a1(t)) at around 23s, showing a clear change in the level of a1(t), a2(t) and ζai at the instant

of change of state. The figure clearly depicts the de-tuned state and the transition from the de-tuned state to
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the tuned state after the instant of damage. It can be further observed that the plots of sixth moment and a2(t)

deviate from the de-tuned state at around 23s which further substantiates the online damage detection by the

RPCA algorithm.

6.3. Case study for the UCLA factor building

The proposed method is now applied to the ambient vibration data collected from the Doris and Louis Factor

building (UCLAFB), which is a major facility located in the University of California campus in Los Angeles

(UCLA). Designed and constructed in the late 1970s, the 17 story 216.5 ft high UCLAFB is a G + 15 story

structure (with basement and sub basement levels) that consists of special moment resisting steel frames (SMFs)

supported by concrete bell caissons and spread footings. After the 1994 Northridge earthquake, the building

was heavily instrumented with a network of 72 state-of-the-art Kinemetrics FB-11 uniaxial accelerometers at

all the floor levels, which translates to 48 lateral and torsional channels of measurements. The array of sensors

are converted to an equivalent array of NS , EW and θ directional sensors lumped at the center of rigidity of

each of the floors ([44]). This building is permanently instrumented, and the vibration data from this building

is made available for researchers to examine through a remote data-base server. UCLAFB has been studied

extensively in recent times mostly in the context of output only modal identification and the results are reported

in some published works ([10, 44]). To test the efficiency and damage detection capability of the proposed

algorithm, a combination of floor accelerations due to ambient data and data recorded during the event that

occurred on September 28, 2004, 10:15 AM PDT, due to ground shaking originating (with M= 6.0 on the

moment magnitude scale) from Parkfield, CA, are considered. The data is sampled at 100Hz.
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Figure 19: Roof and 5th floor acceleration responses for UCLAFB in EW direction
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Figure 20: DSF for the UCLAFB

The acceleration data at roof and fifth floor in EW direction is shown in Figure 19. As seen from the figure,

there is a considerable incidence of non-stationary activity in the vicinity of t=380s which indicates the onset

of the Parkfield earthquake (magnitude of Mw=6.0). The data prior to the occurrence of the earthquake cor-

responds to ambient vibration regime which is evident from Figure 19. All the 48 responses are utilized for

online processing using the proposed RPCA algorithm and it has been observed that only the first eight modal

responses are actively contributing to the vibration response. The instant of shaking as well as the instant of

maximal structural change can be estimated from the DSF plots for the N−S and E−W components responses.
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Upon a close analysis of the data, it could be easily inferred that the system response deviates from the ambient

level at around t=380s, while the pronounced damage occurs at around t=410s. It is normal to expect these

two instants to be different from each other because it takes a finite time for the structure to undergo significant

changes (i.e. alteration of stiffness).
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Figure 21: Residual error plots for floors of UCLA

Previous modal identification studies on UCLAFB [44] show 14.31%, 13.95%, 15.61%, 8.49%, 7.24%, 4.95%,

4.95%,30%, 6.5%, 4.75% percentage reduction in the values of identified frequencies between ambient vibra-

tion and earthquake data, which indicates significant global reduction in stiffness values. In the present context,

global damage is expressed through percentage change in the average spatial RRE values (i.e. ∆⟨εRR − Yi⟩ us-

ing equation 23) between the ambient and earthquake regimes corresponding to pre and post damage scenarios.

Figure 21 shows the plot εRR−Yi for a few representative floors. It can be observed from the figure that εRR−Yi

deviates from the ambient regime at around t=380s and significantly in the vicinity of t=410s indicating the

occurrence of damage. The percentage change in post damage RRE and pre damage RRE (i.e. ∆⟨εRR − Yi⟩ )

for each floor as shown in bardiagram Figure 22 which indicates the appearance of damage not only at a single

floor but the system as a whole which corroborates to the previously mentioned results on modal identification

[44].
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Figure 22: Bar diagram indicating percentage change in local RRE for EW and NS direction

7. Conclusions

A real time damage detection algorithm for vibrating systems based on recursive principal components in con-

junction with TVAR model is presented. Recursive updates of the eigen subspace using rank one perturbation

facilitated real time evolution of the principal components. Subsequent modeling of principal component ex-

plaining maximum variance makes the transformed response amenable to a low order TVAR model which is

a key step of the proposed framework. The use of temporal RRE in conjunction with TVAR coefficients fa-

cilitated real time spatio-temporal damage detection. The proposed framework provided successful detection

results for damages even up to 15% for the white noise excitation and up to 30% for the El Centro excitation

case. Case studies have shown that the proposed algorithm is well equipped to detect damage when the number

of sensors used to acquire data is reduced (i.e., for underdetermined systems), which is clearly an advantage

while dealing with practical economics of health monitoring of real full-scale structures. The results show

efficacy of the current framework to detect damage for underdetermined cases up to 20% change in the level

of nonlinearity. The superiority of the RPCA based damage detection framework is clearly evident through the

comparison with the traditional windowed batch PCA based framework, which is promising from a real time
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damage detection standpoint. Presented case studies show that the proposed approach results in successful

damage detection and works well even when used with both experimentally acquired data as well as large scale

field data closely emulating practical scenarios.
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