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Capacity of DNA Data Embedding Under
Substitution Mutations

Félix Balado, Member, IEEE

Abstract—A number of methods have been proposed over the
last decade for encoding information using deoxyribonucleic acid
(DNA), giving rise to the emerging area of DNA data embedding.
Since a DNA sequence is conceptually equivalent to a sequence
of quaternary symbols (bases), DNA data embedding (diversely
called DNA watermarking or DNA steganography) can be seen
as a digital communications problem where channel errors are
analogous to mutations of DNA bases. Depending on the use of
coding or noncoding DNA host sequences, which respectively
denote DNA segments that can or cannot be translated into
proteins, DNA data embedding is essentially a problem of
communications with or without side information at the encoder.
In this paper the Shannon capacity of DNA data embedding
is obtained for the case in which DNA sequences are subject
to substitution mutations modelled using the Kimura model
from molecular evolution studies. Inferences are also drawn
with respect to the biological implications of some of the results
presented.

Index Terms—Channel capacity, DNA, Genetic Communica-
tion, Watermarking, Evolution (biology)

I. INTRODUCTION

THE last ten years have seen the proposal of numerous
practical methods [1], [2], [3], [4], [5], [6], [7], [8], [9],

[10], [11], [12] for encoding nongenetic information using
DNA molecules as a medium, both in vitro and in vivo. A
high profile use of these techniques took place recently, when
the J. Craig Venter Institute (JCVI) produced the first artificial
bacteria which included a “watermark” containing authorship
information [11], [12]. All of these proposals rely on the fact
that DNA molecules —which encode genetic information in all
living organisms, except for some viruses— are conceptually
equivalent to sequences of quaternary symbols, which can
be manipulated to store and retrieve arbitrary data by using
the molecular biology analogues of “writing” (producing re-
combinant DNA) and “reading” (DNA sequencing). Therefore
DNA data embedding is in essence an instance of digital
communications, with the particularity that channel errors are
analogous to mutations of DNA components. The two broad
fields of application of DNA data embedding techniques are: 1)
the use of DNA strands as self-replicating nano-memories with
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the ability to store huge amounts of data in an ultra-compact
and energy-efficient way [2], [4], [7], [8]; and 2) security and
tracking applications made possible by embedding nongenetic
information in DNA: for instance, DNA watermarking [9],
[11], [12], DNA steganography [1], [5] and DNA tagging [13].
The actual information embedded in security applications may
include ownership, authorship and integrity data.

DNA data embedding techniques can be divided into two
types, depending on whether the embedded information is
hosted by coding or by noncoding parts of a genome —the
ensemble of all the DNA of an organism. The coding parts
of a genome are the genes that it contains, which are the
basic units of genetic inheritance. The remaining parts of a
genome are generically called noncoding DNA. Noncoding
DNA is normally the host of choice in storage applications of
DNA data embedding: it will be seen that more information
can usually be embedded in noncoding sections, with less
constraints and complications. However it is also important to
consider genes (that is, coding DNA) as information hosts for
several reasons. Firstly, embedding information within genes
may be the only approach to mark or track them in a truly
individualised way, which is of relevance in some security
and tracking applications. One example is the potential use of
DNA data embedding in gene patenting [5], [14], a procedure
by which intellectual property of artificially engineered genes
may be asserted. Patent information must reside within a
gene —and not anywhere else— if that information is to
travel with the gene when copied by an unauthorised party.
It may also be desirable to include laboratory identification
or integrity information in genes employed in gene therapies
(human gene transfer), in which case the information must
lie within genes [3]. Furthermore, Arita and Ohashi point out
that it may be biologically safer to embed information within
coding DNA rather than within noncoding DNA [5]. This may
seem paradoxical, because noncoding DNA was once deroga-
torily labelled as “junk DNA” due to its supposed lack of
biological purpose. However it is now increasingly recognised
and understood that specific noncoding DNA sections can be
involved in regulatory functions of gene activity. Therefore
risks may lie ahead if information is embedded in noncoding
regions which may hold as yet unknown functions.

DNA data embedding methods which target the genomes of
self-replicating living organisms —such as the ones proposed
and implemented by Wong et al. [4], Arita and Ohashi [5],
Yachie et al. [7], Heider and Barnekow [14], and more recently
Gibson et al. [12]— all face two fundamental questions: 1)
how much information can be embedded in a given DNA
segment of an organism?; and 2) how many generations of that
organism can this information potentially survive intact? The
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methods just mentioned embed information at rates ranging
from 2 bits per DNA base [4], [12] (using noncoding DNA)
to 0.2136 bits per base [14] and 0.0926 bits per base [5]
(using coding DNA), but will that information be retrievable
without errors when mutations accumulate after a number of
generations of the host organism? Could those rates possibly
be higher for a given mutation rate? The answers are supplied
by the upper limit on the amount of information that can
be embedded within a given DNA molecule under a given
mutation rate, and asymptotically decoded with no errors. This
is the Shannon capacity [15] of DNA data embedding, which
is the ultimate benchmark against which all actual DNA data
embedding methods used in bioengineering applications must
be measured.

In this paper the capacity of DNA data embedding under
substitution mutations is determined. Substitution mutations
are those that randomly switch bases in a DNA sequence, as
may occur in the replication of an organism. These are mod-
elled by means of a symmetric memoryless channel equivalent
to the probabilistic model first proposed by Kimura [16] to
study molecular evolution. Section II describes the framework,
assumptions and model used. The capacity analysis, addressed
in Section III, is straightforward when no side information is
required by the encoder during the embedding process. This is
the case for techniques that use noncoding DNA to host infor-
mation, such as [4], [7] or [12]. On the other hand, the capacity
analysis with side information at the encoder corresponds to
techniques which use coding DNA, such as [3], [5], [9] or [14],
whose encoder must strictly preserve gene expression. This
analysis forms the main constituent of this paper. Where per-
tinent, biological implications of these information theoretical
results are also discussed. In particular, the non side-informed
scenario happens to be closely connected to previous studies
by May [17], Battail [18], and other authors who have applied
information theoretical concepts to molecular biology from an
information transmission perspective.

II. PRELIMINARY CONCEPTS AND ASSUMPTIONS

Chemically, DNA is formed by two backbone strands heli-
coidally twisted around each other, and mutually attached by
means of two nitrogenous base sequences. The four possible
bases are the molecules adenine, cytosine, thymine and gua-
nine, abbreviated to A, C, T and G, respectively. Only the pair-
ings A–T and C–G can exist between the two strands, which is
why each of the two base sequences is completely determined
by the other, and also why the length of a DNA molecule
is measured in base pairs. The interpretation of DNA as a
one-dimensional discrete digital signal is straightforward: any
one of the two strands constitutes a digital sequence formed
by symbols from a quaternary alphabet, which completely
determines the DNA molecule.

Codons —the minimal biological “codewords”— are
formed by triplets of consecutive bases in a base sequence.
Given any three consecutive bases there is no ambiguity in
the codon they stand for, since there is only one direction in
which a base sequence can be read. In molecular biology this
is called the 5’–3’ direction, which refers to certain chemical

feature points in a DNA backbone strand. The two strands in
a DNA molecule are read in opposite directions; because of
this, and because of their complementarity, they are termed
antiparallel. Groups of consecutive codons in some special
regions of a DNA sequence can be translated into a series
of chemical compounds called amino acids via transcription
to the intermediary ribonucleic acid (RNA) molecule. RNA
is similar to DNA but single-stranded and with uracil (ab-
breviated U) replacing thymine. Amino acids are sequentially
assembled in the same order imposed by the codon sequence.
The result of this assembling process are proteins, which
are the basic compounds of the chemistry of life. There are
43 = 64 possible codons, since they are triplets of 4-ary
symbols. Crucially, there are only 20 possible amino acids,
mapped to the 64 codons according to the almost universal
genetic code. The standard version1 of the genetic code is
shown in Table I and explained in more detail later.

The genome of an organism is the ensemble of all its DNA.
Segments of a genome that can be translated into proteins by
the genetic machinery through the process described above are
called protein-coding DNA (pcDNA), or just coding DNA,
whereas those segments that never get translated are called
noncoding DNA (ncDNA). A gene is a pcDNA segment, or
group of segments, which encodes one single protein, and
which is flanked by certain start and stop codons (see Table I)
plus other regulatory markers. Finally, for each base sequence
there are three different reading frames which determine
three different codon sequences. The correct reading frame
is marked by the position of a start codon.

The main assumptions made in this work are:
• ncDNA can be freely appended or overwritten. As briefly

mentioned in the introduction this assumption is not
always strictly true, because certain ncDNA regions act
as promoters or enhancers for gene expression, or are
transcribed into regulatory RNA (which is not translated
into proteins). After conducting in vivo tests, Heider
et al. have cautioned against embedding information in
promoter ncDNA regions [10]. However the working
hypothesis is valid in many other suitably chosen ncDNA
regions, as proved by Wong et al. [4], Yachie et al. [7], [8]
and Gibson et al. [12], who have successfully embedded
information in the ncDNA of living organisms.

• pcDNA can be freely modified as long as the genetic code
is followed. This is the classic standard assumption sup-
porting the validity of the genetic code. This assumption
was used in silico by Shimanovsky et al. [3] and in vivo
by Arita and Ohashi [5] and Heider and Barnekow [14].
However, living organisms also exhibit preferred codon
usage biases (also called codon usage statistics), which
are characteristic distributions of the codons associated
with a given amino acid. When pcDNA is modified, these
codon biases can emerge completely changed even if the
genetic code is strictly observed. This change might be
detrimental for gene expression, for instance by extending
gene translation times among other effects [19]. For
this reason we will also analyse the embedding capacity

1http://www.ncbi.nlm.nih.gov/taxonomy (genetic codes)
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x′ Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val Stp

Sx′

GCA AGA AAC GAC TGC CAA GAA GGA CAC ATA CTA AAA ATG TTC CCA AGC ACA TGG TAC GTA TAA
GCC AGG AAT GAT TGT CAG GAG GGC CAT ATC CTC AAG TTT CCC AGT ACC TAT GTC TAG
GCT CGA GGT ATT CTT CCT TCA ACT GTT TGA
GCG CGC GGG CTG CCG TCC ACG GTG

CGT TTA TCT
CGG TTG TCG

|Sx′ | 4 6 2 2 2 2 2 4 2 3 6 2 1 2 4 6 4 1 2 4 3

TABLE I
EQUIVALENCES BETWEEN AMINO ACIDS AND CODONS (STANDARD GENETIC CODE). START CODONS, WHICH DOUBLE AS REGULAR CODONS, ARE

UNDERLINED.

of pcDNA with codon bias preservation constraints. To
conclude, it is important to mention that only nonover-
lapping genes will be considered, either on the same or
on opposite strands. In any case overlapping genes are
rare occurrences, except in very compact genomes.

Notation. Calligraphic letters (X ) denote sets; |X | is the
cardinality of X . Boldface letters (x) denote row vectors, and
1 is an all-ones vector. If a Roman letter is used both in
uppercase (X) and in lowercase (x), the two forms denote a
random variable and a realisation of it, respectively. p(X = x)
is the probability mass function (pmf) or distribution of X;
we will simply write p(x) when the variable is clear from
the context. For brevity, X may also denote the distribution
of X if there is no ambiguity. E[X] is the mathematical
expectation of X , and H(X) its entropy. Also, h(q) is the
entropy of a Bernoulli(q) random variable. I(X;Y ) is the
mutual information between X and Y . Logarithms are base
2, unless explicitly stated otherwise. The Hamming distance
between vectors x and y is denoted by dH(x,y).

A ncDNA sequence will be denoted by a vector x =
[x1, x2, · · · , xn], whose elements are consecutive bases from
a base sequence. That is, xi ∈ X , {A,C,T,G}, the 4-
ary set of possible bases. A pcDNA sequence will be denoted
by a vector of vectors x = [x1,x2, · · · ,xn], whose elements
are consecutive codons2 from one of the two antiparallel base
sequences when the right reading frame among the three
possibilities is chosen. Therefore, xi ∈ X 3. The amino acid
into which a codon xi uniquely translates is denoted by
x′i , α(xi) ∈ X ′, where X ′ , {Ala, Arg, Asn, Asp, Cys,
Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr,
Trp, Tyr, Val, Stp} is the set of all amino acids defined
using the standard three-letter abbreviations of their names.
x′ = α(x) = [x′1, x

′
2, · · · , x′n] denotes the unique amino acid

sequence established by x, usually called the primary structure
of the protein encoded by x.

The subset of synonymous codons associated with amino
acid x′ ∈ X ′, namely

Sx′ , {x ∈ X 3|α(x) = x′},
is established by the genetic code in Table I. The ensemble
of stop codons is collected under the special symbol Stp,
and thus loosely classed as an “amino acid” for notational

2For simplicity, and without loss of generality, it is considered that
consecutive codons are those corresponding to consecutive amino acids in
the primary structure of a protein. In eukaryotic organisms (those whose cells
contain a membrane-bound nucleus) the DNA sequence corresponding to a
gene is in general divided into introns (noncoding sections, excised during
transcription) and exons (protein-coding sections).

convenience. However Stp just indicates the end of a gene,
and does not actually map to any amino acid. Three codons,
underlined in Table I, also double as protein start translation
commands when they appear at the start of a gene —the
two corresponding to Leu only in eukaryotic organisms. The
number |Sx′ | of synonymous codons mapping to x′ is called
the multiplicity of x′. Due to the uniqueness of the mapping
from codons to amino acids, observe that Sx′ ∩ Sy′ = ∅ for
x′ 6= y′ ∈ X ′, and that

∑
x′∈X ′ |Sx′ | = |X |3 = 64 since

∪x′∈X ′Sx′ = X 3. Notice that, for most amino acids x′, the
third base (wobble base) tends to exhibit more variability
than the other two bases in synonymous codons from Sx′ .
Finally, a toy example of a pcDNA sequence may be x =
[[T,A,T], [T,G,C]], which would encode the amino acid
sequence x′ = α(x) = [Tyr,Cys]. The corresponding base
sequence would be x = [T,A,T,T,G,C].

A. Mutation channel model

As mentioned in the introduction, an information-carrying
DNA molecule undergoing mutations can be readily seen as
a digital signal undergoing a noisy communications channel,
which may be termed “mutation channel” in this context.
Herein we will only consider base substitution mutations
(also called point mutations), which randomly switch letters
within the DNA alphabet. From a communications viewpoint,
apart from base substitutions, the most relevant types of
mutations are random base insertions and deletions, which
cause a synchronisation problem at the decoder. Insertions and
deletions are jointly called indels, due to the ambiguity that
sometimes exists about whether certain differences between
DNA sequences are actually due to either type of mutation.
The analysis will not consider indel mutations for the follow-
ing reasons. On the one hand these mutations tend to have
deleterious effects when they occur in pcDNA sections of an
organism —especially if the number of such mutations is not
a multiple of three, as this can derail protein translation—
which arguably makes the survival of the organism less likely.
Thus the arrival at the decoder of the mutated information-
carrying host will also be less likely. Consequently a base
substitutions only analysis is deemed a realistic approach in
computing the capacity of pcDNA embedding. This is not the
case when indels occur in ncDNA sections; however, the fact
is that the exact Shannon capacity of a channel with insertions
and deletions is currently unknown even in the simplest case
of a binary channel [20]. For this reason, dealing with indel
mutations is beyond the scope of this paper. In any case, the
substitution mutations analysis still yields an upper bound to
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the capacity of ncDNA embedding, with respect to a more
general mutation model.

It will be assumed in our analysis that mutations are
mutually independent, which is a worst-case scenario in terms
of capacity. As a result it is considered that the channel is
memoryless and thus accepts a single-letter characterisation.
Consequently we will drop vector element subindices when-
ever this is unambiguous and notationally convenient. The base
substitution channel will be modelled by means of the two-
parameter Kimura model of nucleotide substitution [16], which
has been extensively used in molecular evolution studies. This
consists of a 4 × 4 transition probability matrix Π , [p(Z =
z|Y = y)], where z, y ∈ X , which presents the following
structure:

Π =


A C T G

1 − q γ
3
q γ

3
q (1 − 2γ

3
)q

γ
3
q 1 − q (1 − 2γ

3
)q γ

3
q

γ
3
q (1 − 2γ

3
)q 1 − q γ

3
q

(1 − 2γ
3

)q γ
3
q γ

3
q 1 − q


A
C
T
G

(1)

From this definition, the probability of base substitution mu-
tation, or base substitution mutation rate, is

q = p(Z 6= y|Y = y) =
∑

z 6=y
p(Z = z|Y = y), (2)

for any y ∈ X , whereas it must hold that 0 ≤ γ ≤ 3/2 so that
row probabilities add up to one. The particular structure of Π
aims at reflecting the fact that DNA bases belong to one of
two categories according to their chemical structure: purines,
R , {A,G}, or pyrimidines, Y , {C,T}. Put simply, purines
and pyrimidines are both cyclic compounds. Their main differ-
ence is that pyrimidines are single-ringed, whereas purines are
double-ringed and one of their rings is in fact a pyrimidine.
There are two types of base substitutions corresponding to
these categories, which in biological nomenclature are:
• Base transitions: those that preserve the category which

the base belongs to. In this case the model establishes
that p(Z = z|Y = y) = (1 − 2γ/3)q for z 6= y when
either both z, y ∈ R or both z, y ∈ Y .

• Base transversions: those that switch the base category.
In this case the model establishes that p(Z = z|Y = y) =
(γ/3)q for z 6= y when z ∈ Y and z ∈ R, or vice versa.

The channel model (1) can incorporate any given transi-
tion/transversion ratio ε by setting γ = 3/(2(ε+1)). Estimates
of ε given in [21] for the DNA of different organisms range
between 0.89 and 18.67, corresponding to γ between 0.07 and
0.79. This range of ε reflects the fact that base transitions
are generally much more probable than base transversions
due to the chemical structure similarity among compounds
in the same category, that is, ε > 1/2 virtually always in
every organism, and therefore γ < 1. However, many mutation
estimation studies focus only on the determination of q (see
for instance [22], [23]). If only the parameter q is known,
one may assume the simplification γ = 1. This is known
as the Jukes-Cantor model in molecular evolution studies. In
this model all off-diagonal entries of Π are equal, that is,
p(Z = z|Y = y) = q/3 for all z 6= y. Several observations are
made for the capacity analysis with the Jukes-Cantor model
throughout this paper.

The mutation model chosen implies a symmetric chan-
nel, since all rows (or columns) of Π contain the same
four probabilities. Among all memoryless models used in
molecular evolution, the Kimura model is the one with the
highest number of parameters while still yielding a symmetric
channel. It is well known that symmetric channels have a
simple capacity analysis, which is exploited where possible.
The most general time-reversible substitution mutations model
may have up to 9 independent parameters, which in general
yields a nonsymmetric channel. However, according to Li [24]
mutation models with many parameters are not necessarily
accurate, due to the estimation issues involved.

It will be assumed that the matrix Π models the base
substitution mutations undergone by the genome of an organ-
ism during one generation. A Markov chain Y → Z(1) →
Z(2) → · · · → Z(m) can be used to model m generations
of an organism at a given site (position) in a genome, whose
corresponding base at generation m = 0 is represented by Y .
The site can lie anywhere in the genome of an organism with
asexual reproduction, or in the non-recombinant sections of an
organism with sexual reproduction. The relationship between
Y and Z(m) is given by the transition probability matrix
Πm = [p(Z(m) = z|Y = y)]. As Π = ΠT one can write
Πm = V Dm VT , with the eigenvalues of Π arranged in a
diagonal matrix D , diag(1, λ, µ, µ), where

λ , 1− 4γ

3
q (3)

µ , 1− 2
(

1− γ

3

)
q, (4)

and V is a matrix whose columns are the normalised eigen-
vectors of Π associated with the corresponding eigenvalues in
D, that is

V =
1

2




+1 1 −
√

2 0

1 −1 0 −
√

2

1 −1 0
√

2

1 1
√

2 0


 . (5)

From the diagonalisation of Πm it follows that the elements of
its diagonal take all the value 1

4 (1 + 2µm + λm), the elements
of its skew diagonal take all the value 1

4 (1− 2µm + λm), and
the rest of its entries are 1

4 (1− λm). Therefore any row (or
column) of this matrix contains the same probabilities, as Πm

is also the transition matrix of a symmetric channel. From
the diagonal elements one can see that the accumulated base
substitution mutation rate after m generations is given by

q(m) = p(Z(m) 6= y|Y = y) = 1− 1

4
(1 + 2µm + λm) . (6)

It can be verified that limm→∞ q(m)|γ>0 = 3/4, but
limm→∞ q(m)|γ=0 = 1/2. This is because |µ| < 1 for any
γ and |λ| < 1 when γ > 0, but λ = 1 when γ = 0. The
behaviour of the particular case γ = 0 is connected to the
fact that we must have both q ∈ (0, 1] and γ ∈ (0, 3/2] for
the Markov chain to be aperiodic and irreducible, and thus
possess a limiting stationary distribution. From the previous
considerations, the limiting distribution —that is, the distribu-
tion of Z(∞)— is uniform, because limm→∞Πm = 1

41T1.
When γ = 1 and q = 3/4 then Π = 1

41T1; hence Z(m) is
always uniformly distributed for any m as in the limiting case.
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Lastly, under the base substitution mutation model consid-
ered, codons undergo a mutation channel modelled by the
64× 64 transition probability matrix

Π = [p(Z = z|Y = y)] = Π⊗Π⊗Π, (7)

where ⊗ is the Kronecker product. This is because p(Z =
z|Y = y) =

∏3
i=1 p(Zi = zi|Yi = yi) according to our

memoryless channel assumption. Trivially this channel is also
symmetric. When m mutation stages are considered, Πm

replaces Π in (7), since Πm = [p(Z(m) = z|Y = y)] =
(Π⊗Π⊗Π)m = Πm ⊗Πm ⊗Πm [25].

III. CAPACITY ANALYSIS

A. Noncoding DNA

In this section we consider the embedding capacity of
noncoding DNA, which also establishes a basic upper bound to
capacity for protein-coding DNA. As discussed in Section II,
we are assuming that the information embedding operation
can either overwrite or append a host ncDNA strand x,
which amounts to freely choosing the input y to the mutation
channel. Therefore with ncDNA the embedding capacity is
simply given by Cnc , max I(Z(m);Y ) bits/base, where the
maximisation is over all distributions of Y . This capacity is
that of a symmetric channel for the mutation model consid-
ered. With this type of channel H(Z(m)|Y ) is independent
of the input, and uniformly distributed Y leads to uniformly
distributed Z(m). Hence

Cnc = log |X | −H(Z(m)|Y ) bits/base, (8)

where H(Z(m)|Y ) is the entropy of any row of Πm, that is,
H(Z(m)|Y ) = −∑z∈X p(Z(m) = z|Y = y) log p(Z(m) =
z|Y = y) for any y ∈ X . Cnc is nonincreasing on m,
since the information processing inequality implied by the
Markov chain Y → Z(1) → Z(2) → · · · → Z(m) implies
that I(Z(1);Y ) ≥ I(Z(2);Y ) ≥ · · · ≥ I(Z(m);Y ). As
long as the Markov chain is aperiodic and irreducible then
limm→∞ Cnc = 0. The reason for this behaviour is that the
limiting distribution is in this case independent of Y , which
implies that limm→∞H(Z(m)|Y ) = H(Z(∞)) = log |X |. It is
interesting to note that, under aperiodicity and irreducibility of
the Markov chain, this zero limiting capacity will also apply
to models more involved than (1), such as those in which
the channel matrix is parametrised by up to 9 independent
values. Lastly, we also have Cnc|γ=1,q=3/4 = 0, since with
these parameters Z(m) is always uniformly distributed.

As a function of γ the ncDNA capacity is bounded for every
m and q as follows

Cnc|γ=1 ≤ Cnc ≤ Cnc|γ=0. (9)

Although it can be shown that these inequalities hold true in
general, it is much simpler to prove them for the range of
interest γ ≤ 1 and q ≤ 1/2. The latter condition implies
that both 0 ≤ λ ≤ 1 and 0 ≤ µ ≤ 1. For fixed m
and q, the maximum (respectively, minimum) of Cnc over γ
corresponds to the minimum (respectively, maximum) of the
accumulated base mutation rate q(m). Differentiating (6) we
obtain ∂q(m)/∂γ = (mq/3)

(
λm−1 − µm−1

)
. Therefore q(m)
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is monotonically increasing when γ ≤ 1 (as this corresponds
to λ ≥ µ), and then its maximum in that range occurs when
γ = 1 and its minimum when γ = 0.

The upper bound can be written as

Cnc|γ=0 = 2− h
(

1

2
+

1

2
(1− 2q)m

)
. (10)

Notice that limm→∞ Cnc|γ=0 = 1, that is, the capacity limit
is not zero when γ = 0 because then the Markov chain
is reducible. γ = 0 cannot occur in reality since it would
imply that transversion mutations are impossible. However it
illustrates that the higher the transition/transversion ratio ε, the
higher the capacity.

Figures 1 and 2 show Cnc for two different values of the
base substitution mutation rate per replication, q = 10−5 and
q = 10−9. These mutation rates have been arbitrarily chosen
to illustrate the capacity values in representative cases of q
corresponding to viruses [23] and microbes [22, Table 4],
respectively. The results in the figures show the validity of the
bounds (9) and the limiting behaviours discussed. From these
figures one can also empirically see that, as a rule-of-thumb,
capacity lies around Cnc ≈ 10−2 bits/base for m ≈ 6/(5γq).

Finally, in Figure 3 we compare the ncDNA capacity
computed with the Kimura model versus the same computation
using an unconstrained estimate of Πm given by Li [24,
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Fig. 3. Comparison of embedding capacity in ncDNA using the Kimura
model versus an unconstrained estimate of the substitution matrix. q = 0.2515
and γ = 0.7795 are the averages for the estimate.

page 31] (for a mammalian ncDNA section and unspecified
estimation interval m). The Blahut-Arimoto algorithm [26] has
been used in this computation, since the channel modelled
by the unconstrained estimate is nonsymmetric. We observe
that the Kimura model suffices for approximating capacity,
while simultaneously providing much more insight into the
major factors influencing it when compared to an uncon-
strained model —in particular the influence of the transition-
transversion parameter γ.

a) Biological interpretations: Expression (8) also gives
the maximum mutual information between a DNA strand
and its mutated version in nature. This has been termed the
capacity of the genetic channel in studies applying information
theory to molecular biology (for a critical review of the
subject the reader is referred to [27]). Several authors have
used the Jukes-Cantor model and the Kimura model with
specific values of γ —apparently unaware of the prior use
of these models in molecular evolution studies— in order to
determine this capacity. The case m = 1 was numerically
evaluated by May et al. [28], using values of q estimated
from different organisms and the Jukes-Cantor and Kimura
(γ = 1/2) models. Some authors have also considered the
behaviour of capacity for m > 1. Gutfraind [29] discussed the
basic effect of accumulated mutations on capacity (exponential
decrease with m), but used a binary alphabet and the binary
symmetric channel. Both Battail [18] and May [17] computed
capacity under cascaded mutation stages using a quaternary
alphabet and the Jukes-Cantor model. Battail obtained his
results analytically —using a continuous-time approach rather
than the discrete-time approach taken in this paper— and May
obtained hers numerically. The results by Battail are essentially
consistent with the ones presented here, but the results by May
are not. However it would appear that this effect is due to the
use of m′ = m×g as the number of generations in [17], where
g ≈ 3× 109 base pairs is the length of the human genome.

In any case, none of the aforementioned approaches reflect
the capacity increase afforded by a mutation model allowing
γ < 1. It is possible that the trend towards higher capacity
observed as γ → 0 implies that evolution has favoured ge-

netic building blocks which feature an asymmetric behaviour
under mutations (that is, in the current genetic machinery
pyrimidines versus purines instead of a hypothetical perfectly
mutation-symmetric set of four bases for which γ = 1). If
this assumption is correct, this information-theoretical induced
“mutation-symmetry breaking” must have occurred early in
evolutionary terms, since it is widely believed that the current
genetic machinery evolved from a former “RNA world” [30] in
which life would only have been based on the self-replicating
and catalysing properties of RNA. In the RNA world there
would not have been translation to proteins, and therefore
no genetic code, and hence information was freely encoded
using a 4-ary alphabet almost exactly like the one used in
DNA. Note that uracil, which replaces thymine in RNA, is
also a pyrimidine, that is, in the RNA world Y = {U,C}.
With these facts in mind, we may model the maximum
transmissible information under mutations in the RNA world
by relying on (8), and thus see that the mutation-symmetry
breaking conjecture above applies to the evolution of RNA
from hypothetical ancestor genetic building blocks. One must
bear in mind that single-stranded molecules, such as RNA, are
much more mutation-prone than double-stranded ones such as
DNA3. Therefore smaller values of m would have sufficed for
some type of mutation-symmetry breaking to be relevant in
terms of information transmission at early stages of life.

B. Protein-Coding DNA
Unlike in the ncDNA case, embedding information in

pcDNA is a coding problem with side information at the
encoder. This side information is the exact knowledge by the
encoder of the primary structure of the protein encoded by the
host x, that is, x′ = α(x). The primary structure x′ determines
the encoder state because it must hold for the information-
carrying sequence y that α(yi) = α(xi) = x′i for all i. This is
equivalent to hiding data in a discrete host under an embedding
constraint. Nevertheless, apart from the trivial difference of
using a 4-ary instead of a typical 2-ary alphabet, several issues
distinguish pcDNA data embedding as a special problem.

In order to illustrate these issues consider momentarily a
typical data hiding scenario in which a discrete binary host,
that is x = [x1, · · · , xn] with xi ∈ X = {0, 1}, is modified to
embed a message b from a given alphabet. The watermarked
signal y = e(x, b) must be close to x, where closeness
is usually measured by means of the Hamming distance
dH(y,x). Pradhan et al. [31] and Barron et al. [32] have
determined the achievable rate in this scenario, assuming that
the elements of X are uniformly distributed, using the average
distortion constraint 1

nE[dH(Y,X)] ≤ d, and supposing that
y undergoes a memoryless binary symmetric channel with
crossover probability q. Their result is

Runif = u.c.e.{h(d)− h(q)} bits/host symbol,

where u.c.e{·} is the upper concave envelope of the argument
(when constrained to nonnegative values). Similarly, our initial

3For instance, the genomes of RNA viruses such as HIV are known to
exhibit as a whole base substitution mutation rates up to q = 8× 10−5 [23],
whereas the genomes of DNA-based organisms typically exhibit as a whole
base substitution mutation rates 105 times lower.
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Fig. 4. Scheme of the side-informed pcDNA data embedding scenario.

goal for pcDNA data embedding is to obtain the achievable
rate RX

′
pc for a fixed distribution of X ′ = α(X) under the

symmetric channel discussed in Section II-A, in particular
when X is uniformly distributed, which is denoted as Rα(unif)pc ,
similar to the analyses of Pradhan et al. [31] and Barron et
al. [32]. Furthermore we will also determine capacity, namely,
the maximum achievable rate over all distributions X ′ of the
primary structure encoded by the host.

The first important difference in the pcDNA data embedding
scenario is that average inequality constraints on the Hamming
distance —such as the ones used in [31], [32]— are meaning-
less if one wants to carry through to y the full biological
functionality of x. Instead, since it must always hold that
α(y) = α(x), one must establish the deterministic constraint

dH(y′,x′) =

n∑

i=1

dH(y′i, x
′
i) = 0. (11)

This is equivalent to assuming that the primary structures of
the proteins encoded by the information-carrying sequence and
by the host sequence must be identical. This requires that
dH(y′i, x

′
i) = 0 for all i = 1, · · · , n.

The second distinguishing feature of pcDNA data embed-
ding is due to the variable support of the channel input
variable. Whereas in discrete data hiding with binary host
one always has yi ∈ {0, 1} independently of xi, in pcDNA
data embedding we must have yi ∈ Sα(xi) so that the
constraint (11) can always be satisfied. Therefore the support
of yi is dependent on xi, as codon equivalence is not evenly
spread over the ensemble of amino acids (see Table I).

1) Achievable Rate: Since side information at the encoder
must be taken into account in the pcDNA case, then the
achievable rate is given by Gel’fand and Pinsker’s formula [33]
RX

′
pc , max{I(Z(m); U) − I(X ′; U)} bits/codon, where X ′

is the distribution of the primary structure that acts at the side
information at the encoder, U an auxiliary random variable
which must be determined for the problem at hand, and
the maximisation is for nonnegative values of the functional
on all distributions p(y,u|x′) under the biological constraint
dH(α(y), x′) = 0. The intuition behind U is that this
variable should simultaneously act as a good source code for
representing the side information (by minimising I(X ′; U)
within the distortion constraint), and as a good channel code
for conveying information over the mutation channel (by
maximising I(Z(m); U)).

Gel’fand and Pinsker showed in [33] that in the maximi-
sation problem above one may assume that the channel input
Y is a deterministic function of the side information X ′ and
the auxiliary variable U, that is, Y = e(X ′,U). Consequently
the relationship between the variables in the problem can be
summarised by the diagram in Figure 4. Since the support of
Y|x′ can only be the set of codons Sx′ —so that the biological

constraint dH(α(y), x′) = 0 can always be met— then the
cardinality of the support set of U|x′ must coincide with the
multiplicity of x′, that is, |Sx′ |. As U is an arbitrary auxiliary
variable, we may choose the support set of U|x′ to be Sx′ . This
allows us to define the embedding function Y|x′ = e(x′,U)
as Y|x′ , U|x′ without loss of generality. Any of the |Sx′ |!
permutations of the elements of Sx′ could actually be chosen
to establish this function.

From these considerations it follows that Y = U. As a
result it is assumed in the subsequent computations that U
becomes the mutation channel input (equivalently, the encoder
output). Noticing that Sx′ ∩ Sw′ = ∅ for x′ 6= w′ ∈ X ′, the
distribution of U can be put as p(u) = p(u|x′)p(x′) when
u ∈ Sx′ , because p(v|x′) = 0 when v /∈ Sx′ . This discussion
on U also implies that H(X ′|U) = 0, since given a codon
u there is no uncertainty on the amino acid represented by it,
and therefore I(X ′; U) = H(X ′)

Since Y|(x′,u) is deterministic, the maximisation on
p(y,u|x′) amounts to a maximisation on p(u|x′). Hence the
achievable rate for a given distribution of X ′ can be expressed
as

RX
′

pc = max
p(u|x′)

I(Z(m); U)−H(X ′) bits/codon. (12)

As H(Z(m)|U) only depends on the transition probabilities of
the symmetric channel given by Πm, and as trivially H(X ′)
only depends on X ′, the optimisation in (12) amounts to the
constrained maximisation of H(Z(m)) on p(u|x′).

For the same reasons as the bounds (9) in Section III-A,
the rate (12) is bounded as RX

′
pc |γ=1 ≤ RX

′
pc ≤ RX

′
pc |γ=0.

Also, there are several cases where RX
′

pc can be analytically
determined, which are discussed next. First of all, since
Cnc|γ=1,q=3/4 = 0 then RX

′
pc |γ=1,q=3/4 = 0 for any X ′,

because it must hold that RX
′

pc ≤ 3Cnc. Therefore in this
catastrophic case the choice of p(u|x′) is irrelevant. Fur-
thermore it can be shown that p(u|x′) = 1/|Sx′ | —that is,
U|x′ uniformly distributed— is the exact maximising strategy
in two situations, which are discussed in the following two
lemmas.

Lemma 1. If q = 0 then the achievable rate is

RX
′

pc |q=0 = E [log |SX′ |] bits/codon. (13)

Proof: Using the chain rule of the entropy one can write
H(U, X ′) = H(U)+H(X ′|U) = H(X ′)+H(U|X ′). Since
H(X ′|U) = 0, and as Z(m) = U when q = 0, then the achiev-
able rate is given by RX

′
pc |q=0 = maxp(u|x′)H(U)−H(X ′) =

maxp(u|x′)H(U|X ′). As H(U|X ′) =
∑
x′∈X ′ p(x′)H(U|x′)

is maximised when H(U|x′) is maximum for all x′, then U|x′
must be uniformly distributed in all cases. Then H(U|x′) =
log |Sx′ | and (13) follows.
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Remark. Note that (13) is the embedding rate intuitively
expected in the mutation-free case. For example, if X were
uniformly distributed, which would yield X ′ = α(X) nonuni-
form with pmf p(x′) = |Sx′ |/|X |3, then one would intuitively
compute the rate as R

α(unif)
pc |q=0 =

∑
x′
|Sx′ |
|X |3 log |Sx′ | =

1.7819 bits/codon,4 since |Sx′ | choices are available to the
embedder when the host amino acid is x′. The rate when X
is uniform can actually be obtained in closed form for every
q using the following result.

Lemma 2. If X is uniformly distributed then the achievable
rate is

Rα(unif)pc = C̃nc −H(X ′) bits/codon, (14)

where C̃nc , max I(Z(m); U) and this maximisation is
unconstrained on p(u), that is, C̃nc is the capacity of the
symmetric codon mutation channel with transition probability
matrix Πm.

Proof: Since p(u) = p(u|x′)p(x′) when u ∈ Sx′ , if
X is uniformly distributed then p(u) = p(u|x′)|Sx′ |/|X |3
when u ∈ Sx′ . Therefore choosing U|x′ to be uniformly
distributed implies that p(u) = 1/|X |3 for all u. Since
Πm represents a symmetric channel and a uniform input
maximises mutual information over such a channel, then
C̃nc = maxp(u) I(Z(m); U) is achieved in (12).
Remarks. Since C̃nc|q=0 = log |X |3, it can be seen that
the particular case discussed in the previous remark can
also be written as R

α(unif)
pc |q=0 = log |X |3 − H(X ′). An

interesting insight is provided by the fact that the three parallel
symmetric channels undergone by the three bases in a codon
are mutually independent, and as a result one can use the
equality C̃nc = 3Cnc in (14). As H(X ′) is the lower bound
to the lossless source coding rate of X ′, expression (14) tells
us something which is intuitively appealing but only exact
when X is uniform: the pcDNA embedding rate equals three
times the ncDNA embedding rate minus the rate needed to
losslessly convey the primary structure encoded by the host to
the decoder.

Unlike the case above, the distribution of X in real pcDNA
sequences (that is, genes) is not uniform. To start with, there
can only be a single Stp codon in a sequence that encodes
a protein, which rules out uniformity of X. For this reason
we show next how to compute the achievable rate in the
general case, which corresponds to an arbitrary host sequence
encoding a primary structure distributed as X ′. As in many
other channel capacity problems, it does not seem possible to
analytically derive a general optimum set of conditional pmf’s
p(u|x′) in order to compute the maximum achievable rate (12).
One can pose the analytical optimisation problem and see
that it involves solving a nontrivial system of |X |3 + |X ′|
nonlinear equations and unknowns. However the numerical
solution is straightforward by means of the Blahut-Arimoto
algorithm [26] adapted to a side-informed setting. Such an
algorithm has been described by Dupuis et al. [34] to de-
termine the rate given by the general Gel’fand and Pinsker
formula. However the Blahut-Arimoto algorithm can be given

4α(unif) denotes the distribution of X′ when X is uniformly distributed.
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Fig. 5. Example of maximising p(u|x′) distributions numerically obtained
using the Blahut-Arimoto algorithm and p(x′) corresponding to gene Ypt7
from yeast (GenBank accession number NC 001145), employing γ = 0.1,
q = 10−2, m = 10. Conditional pmf’s are depicted in alternating red and
blue colours in order to facilitate plot reading.

in a simpler way for this problem due to the peculiar form
of (12), as discussed in Appendix A.

Figure 5 shows an example of the optimal distributions
numerically obtained for a real gene by means of this nu-
merical method, using the high mutation rate q = 10−2 in
order to better visualise the results. A pattern can be observed
in most of these distributions: among pairs of synonymous
codons u,v ∈ Sx′ it tends to happen that p(u|x′) ≈ p(v|x′)
if [u1, u2] = [v1, v2] and either u3, v3 ∈ Y or u3, v3 ∈ R.
This is due to the effect of mutations according to the Kimura
model, since if two codons share their first two bases and
their wobble bases are both either purines or pyrimidines,
then they should behave symmetrically according to their
information transmission properties. The departures from this
behaviour are due to numerical effects caused by the finite
number of iterations of the Blahut-Arimoto algorithm, whose
convergence can be slow [35]. Finally it can be observed
that for amino acids x′ with |Sx′ | = 6 (Arg, Leu, and Ser)
the two less typical codons from Sx′ are assigned smaller
likelihoods than the other four codons. This is due to their
lower reliability as information transmission symbols, since
these codons can lead to the wrong amino acid at the decoder
with higher probability.

An analytical set of conditional distributions that yields rates
close to the numerical maximum is discussed next. Although
one cannot produce a uniform input U for distributions of X ′

other than the one in Lemma 2, the use of p(u|x′) = 1/|Sx′ |
for any x′ turns out to yield rates generally close to the numer-
ical maximum. Note from Figure 5 that the numerically ob-
tained p(u|x′) distributions do not differ excessively from the
uniform for several amino acids x′. A justification for this is
the following. Using the fact that conditioning cannot increase
entropy, a suboptimal approach to the maximisation in (12)
is given by maximising the lower bound H(Z(m)|X ′) =∑
x′∈X ′ p(x′)H(Z(m)|x′) ≤ H(Z(m)). This requires max-

imising H(Z(m)|x′) = −∑z∈X 3 p(z|x′) log p(z|x′) for all
x′. Observing from Table I that synonymous codons often
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share their two first bases, if q � 1 we can produce the
approximations p(z|x′) ≈ 0 when z /∈ Sx′ and p(z|x′) ≈(∑

v∈Sx′ p(z|v)
)−1∑

u∈Sx′ p(z|u)p(u|x′) when z ∈ Sx′ .
With this simplification, whenever

∑
u∈Sx′ p(z|u) is constant

for all z ∈ Sx′ , choosing p(u|x′) to be uniform implies
that p(z|x′) is also uniform, which maximises H(Z(m)|x′).
It can be verified that this condition holds for all x′ such that
|Sx′ | = 1, 2, 4, which accounts for 16 out of the 21 elements
in X ′.

Figures 6–9 present the achievable rates in pcDNA for
several distributions of X ′, for the same two values of q
in Section III-A and for γ = 1 (Jukes-Cantor model) and
γ = 0.1 (realistic case). Two of the X ′ distributions were
empirically obtained from the amino acid sequences encoded
by two real genes: Ypt7 (S. Cerevisiae) and FtsZ (B. Subtilis),
whose GenBank5 accession numbers are NC 001145 and
NC 000964, respectively. Also depicted are the rate (14) for
X uniform and the rate for the deterministic distribution of X ′

with outcome Ser, which, as we will discuss in Section III-B2,

5http://www.ncbi.nlm.nih.gov/genbank

yields capacity. The plots show that the difference between the
results obtained with the Blahut-Arimoto algorithm and those
obtained with p(u|x′) = 1/|Sx′ | is negligible. In any case, all
achievable rates are well below 3Cnc bits/codon, the rate that
can be attained when the embedder is unconstrained. The most
important observed effect is that the rates for the two real genes
are not far away from the rate for the uniform case, which
has the advantage of being analytically determined. There is
also a clear cutoff point beyond which no information can be
reliably embedded within real genes, which, as an empirical
rule-of-thumb, lies around m ≈ 1/(10q). Lastly the capacity
results are higher for the realistic case with respect to the
Jukes-Cantor model, similar to the results in Section III.

a) Codon bias preservation: A final consideration is
that real genes exhibit codon biases, that is, distributions of
X|x′ characteristic to particular species. However the max-
imisation in (12) implies that, in general, the codon bias of
the host sequence x will not be maintained in the optimum
information-carrying sequence y. Although both sequences
will still translate into the very same protein (since α(y) =
α(x) is enforced), if their codon biases are very different
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this can have a marked influence on biologically relevant
features such as gene translation times [19]. This subsection
analyses the achievable rate when an additional codon bias
preservation (cbp) constraint is enforced, as this can enhance
the biocompatibility of pcDNA data embedding.

The basic observation to be made is the following: if one
requires that the original codon bias of the host sequence be
preserved in the information-carrying sequence, then one must
peg the distribution of U|x′ to the corresponding conditional
distribution of the host sequence. With this special constraint,
no maximisation on p(u|x′) is required, or possible, and
as p(U = u) = p(X = u) the corresponding rate is
just RX, cbp

pc , I(Z(m); X) − H(X ′) ≤ RX
′

pc . The codon
bias preservation constraint is equivalent to a steganographic
constraint in data hiding problems, since the pmf of the host
codons is preserved in the information-carrying sequence. This
mirrors Cachin’s criterion for perfect steganography [36]. A
comparison of maximum rates and codon bias preservation
rates for the same two real genes is given in Figure 10. Note
that Runif, cbp

pc = R
α(unif)
pc because of Lemma 2.

In reality preserving the codon bias of an actual host
sequence implies preserving its codon count, that is, its codon
histogram. Genes are usually short, typically in the order of
hundreds of codons, and thus the degrees of freedom for
preserving the codon count in the information-carrying gene
may not be high. Consequently the information-theoretical
analysis for codon bias preservation will usually be optimistic
regarding the actual achievable rate when enforcing codon
count preservation (ccp).

It is therefore interesting to analyse what can actually be
achieved in the latter case. It is assumed in the following that
q = 0, that is to say, a mutation-free scenario. Let nx be the
number of times that codon x appears in an n-codon long
gene x = [x1,x2 · · · ,xn]. Therefore n =

∑
x∈X 3 nx. The

number r of different DNA sequences with the same amino
acid translation and the same codon count as x is given by
the following product of multinomial coefficients:

r =
∏

x′∈X ′

(∑
x∈Sx′ nx

)
!

∏
x∈Sx′ nx!

(15)

This is because for each amino acid x′ the multinomial
coefficient gives all possible rearrangements of codons cor-
responding to x′ at its

∑
x∈Sx′ nx positions in the sequence,

which keeps the codon count fixed. Therefore the mutation-
free codon count preservation rate for the finite sequence
x is Rx, ccp

pc |q=0 = (1/n) log r bits/codon. If X represents
the empirical distribution of codons in x then one clearly
has Rx, ccp

pc |q=0 ≤ RX, cbp
pc |q=0, and the rate on the right of

the inequality can only be achieved asymptotically, as the
length of the sequence distributed as X goes to infinity.
Interestingly both rates are close for real genes. For instance,
genes FtsZ and Ypt7 can be deemed to be short: 386 and 208
codons long, respectively. Despite this, RFtsZ, ccp

pc |q=0 = 1.3723
bits/codon and RYpt7, ccp

pc |q=0 = 1.2797 bits/codon, which are
just slightly lower than the asymptotic rates for the same
genes, RFtsZ, cbp

pc |q=0 = 1.4201 bits/codon and RYpt7, cbp
pc |q=0 =

1.3179 bits/codon.

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

RX,cbp
pc

RX′
pc

FtsZ

FtsZ
Ypt7

Ypt7

α(
un

if)

m (generations)

E
m

be
dd

in
g

ra
te

(b
its

/c
od

on
)

Fig. 10. Comparison of pcDNA embedding rate with and without codon
bias preservation constraints, for different distributions of X′ (γ = 0.1, q =
10−5).

In any case, it is shown in Appendix B that for large n

Rx, ccp
pc |q=0 ≈ RX, cbp

pc |q=0 = H(X)−H(X ′) bits/codon,
(16)

simply put, the combinatorial rate for codon count preserva-
tion coincides asymptotically with the Gel’fand and Pinsker’s
formula with codon bias preservation.

2) Capacity: To conclude, we undertake the computation
of the capacity of pcDNA data embedding, which is the
maximum achievable rate over all possible distributions of the
primary structure encoded by a gene. This problem can be put
as

Cpc , max
p(x′)

RX
′

pc bits/codon. (17)

The explicit computation of Cpc is simple in two particular
cases considered in Section III-B1 already:

• γ = 1 and q = 3/4: Trivially, Cpc|γ=1,q=3/4 =

RX
′

pc |γ=1,q=3/4 = 0. However, the point that needs to
be made is that although this is true for any X ′, only
deterministic X ′ yields H(X ′) = 0 exactly, and so,
by the continuity of the rate functional, this is the best
strategy when approaching q = 3/4 from the left.

• q = 0: From Lemma 1, Cpc|q=0 = maxy′ log |Sy′ |. Since
|Sx′ | = 6 is the maximum for all x′ ∈ W ′ , {Ser,
Leu, Arg}, a distribution of X ′ that maximises (13) is
any for which

∑
x′∈W′ p(x′) = 1. Note that X ′ may be

deterministic, but it does not have to be so. Capacity is
then Cpc|q=0 = log 6 = 2.5850 bits/codon.

Remark. A trivial upper bound for any q is Cpc ≤ Cpc|q=0.
Since Cpc|q=0 < 3Cnc|q=0 = 6, then side-informed pcDNA
data embedding capacity will not be able to achieve non-
side-informed ncDNA capacity for every mutation rate. This
parallels the results in side-informed encoding with discrete
hosts by Pradhan et al. [31] and Barron et al. [32], which have
already been discussed. However it does not parallel the well-
known “writing on dirty paper” result by Costa [37], which
corresponds to continuous Gaussian host, mean squared error
distortion, and additive independent Gaussian channel.
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From our discussion above on Cpc for q = 3/4 (with γ = 1)
and for q = 0, one might surmise that a primary structure
pmf with support in W ′ could be capacity-achieving in all
cases. The actual capacity-achieving distribution is given by
the following theorem:

Theorem 1. Capacity is achieved by the deterministic pmf of
X ′ that maximises H(Z(m)).

Proof: See Appendix C.
Remarks. Denoting as ξ′ the deterministic outcome of X ′, it
can be numerically verified that ξ′ = Ser maximises H(Z(m))
for all γ ≤ 1, m, and q, and thus Cpc = RSer

pc in these
conditions. Some examples showing this fact and the rates
achievable with deterministic X ′ are presented in Figures 11–
14, which are obtained for the same γ and q parameters
as Figures 6–9. The maximum rates, corresponding to Ser
in all cases, are highlighted. These plots also show that the
rates obtained using the linearised approximation given in
Appendix C are practically indistinguishable from the rates
obtained using the Blahut-Arimoto algorithm. The approxi-
mation p(u|x′) = 1/|Sx′ | is also good, but it worsens as γ
decreases.

a) Biological interpretations: The results in this section
are only concerned with artificial information embedding in
pcDNA, and thus appear to have less obvious consequences in
biological terms than the results concerning ncDNA. However
an intriguing phenomenon which may allude to a biological
meaning of these achievable rates is observed in Figures 13
and 14, that is, the range of γ in which the model is realistic.
This phenomenon consists of a rate drop for two particular
values of ξ′ ∈ X ′ as m→∞ with respect to all other symbols
with the same multiplicity |Sξ′ |. These two values of ξ′

correspond to the stop symbol (Stp) and to the amino acid Leu,
two codons of which happen to have the twin function of start
codons in eukaryotic organisms. Therefore, when considered
as individual information transmission blocks, all stop codons
and most of the start codons seem to be less suited than the rest
of codons for carrying extra information (redundancy). One
may surmise that these codons may have undergone special
evolutionary pressures during the emergence of the genetic
code, due to their very specific functions. One possibility
may be that since the stop symbol cannot be repeated in a
single gene, it has been under less pressure to perform as a
genetic information carrier. A similar effect may have been
at work in the evolution of the start codons corresponding
to Leu. However a more interesting conjecture is that the
narrower “genetic windows” for these special codons are
due to natural selection broadly favouring an increase of the
complexity of organisms over the generations, which by and
large requires gene lengthening. Making these special codons
less reliable, plus the effect of natural selection, may have
been a mechanism for such progressive elongation of genes.

IV. CONCLUSION

This paper has provided an analysis of the Shannon ca-
pacity of DNA data embedding when mutations are described
according to the Kimura model of molecular evolution. The

analysis may be used to assess the optimality of a growing
number of bioengineering procedures aimed at inserting ar-
bitrary information in the genomes of living organisms, both
within noncoding and protein-coding sections.

Some biological connections of the results given have also
been discussed, leading to some unexpected insights into the
mutation-asymmetry of the DNA bases and into the behaviour
of key building blocks in the genetic code —start and stop
codons. These results indicate that the Shannon capacity may
hold clues to a deeper understanding of the genetic machinery,
which is an exciting possibility.

Further research should consider insertion and deletion mu-
tations (indels) in order to complete the treatment of the errors
that a DNA data embedding algorithm may face. Although
the exact capacity computation under indels is an unsolved
problem in most digital communications settings, bounding
strategies and approximations reliant on realignment methods
which are widely used in bioinformatics may be useful for
addressing this problem. Generalisations of the Kimura model
with up to nine parameters may also be considered. However it
has been shown by means of an unconstrained real estimate of
the mutation channel that generalised models may not overly
change the analysis herein.

APPENDIX

A. Blahut-Arimoto algorithm for pcDNA data embedding

Since the subtracting entropy in (12) is independent of
p(u|x′) we just need to maximise I(Z(m); U). In the standard
Blahut-Arimoto algorithm one would alternatively maximise
p∗(u|z) and p∗(u) using p(z|u) (that is, Πm). However the
distribution of U is constrained in (12) by the distribution
p(x′) of the side information, and instead we have to max-
imise p∗(u|z) and p∗(u|x′) alternatively. Writing the mutual
information as

I(Z; U) =
∑

x′∈X ′

∑

z∈X 3

u∈Sx′

p(z|u)p(u|x′)p(x′) log
p(u|z)

p(u|x′)p(x′) ,

(18)
it is straightforward to see (following the same reasoning as
in [26]) that the two iterative maximisation steps in this case
are
• Step 1:

p∗(u|z) =
p(z|u)p(u|x′)p(x′)∑

y′
∑

v∈Sy′ p(z|v)p(v|y′)p(y′) , (19)

where u ∈ Sx′ .
• Step 2:

p∗(u|x′) =

∏
z p(u|z)p(z|u)∑

v∈Sx′
∏

z p(v|z)p(z|v)
. (20)

Note that the first step is the same as in the standard Blahut-
Arimoto algorithm, because p(u) = p(u|x′)p(x′) if u ∈ Sx′ .
The second step is also essentially the same, but it is applied
|X ′| times to determine each input distribution p(u|x′) instead
of only once to determine the input distribution p(u).
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Fig. 11. Achievable pcDNA data embedding rates for deterministic X′
(γ = 1, q = 10−5).
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Fig. 12. Achievable pcDNA data embedding rates for deterministic X′
(γ = 1, q = 10−9).
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Fig. 13. Achievable pcDNA data embedding rates for deterministic X′
(γ = 0.1, q = 10−5).
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Fig. 14. Achievable pcDNA data embedding rates for deterministic X′
(γ = 0.1, q = 10−9).

B. Asymptotically achievable rate with codon count preserva-
tion and no mutations

The number of bits that can be embedded in the protein-
coding sequence x while preserving its codon count is l =
log r, with r given by (15), that is,

l =
∑

x′

log


 ∑

x∈Sx′
nx


!−

∑

x′

∑

x∈Sx′
log nx! (21)

Assuming that n is large, this amount may be developed using
Stirling’s approximation log t! ≈ t log t − t (for natural loga-
rithms). When using this approximation in (21) the summands
without a logarithm cancel out and we get:

l ≈
∑

x′


 ∑

x∈Sx′
nx


 log


 ∑

x∈Sx′
nx




−
∑

x′

∑

x∈Sx′
nx log nx. (22)

Using the asymptotic expressions p(x′) ≈ (1/n)
∑

x∈Sx′ nx
and p(x) ≈ (1/n)nx, it can be seen after some algebra
that (22) can be in turn approximated by

l ≈ n


∑

x′

p(x′) log p(x′)−
∑

x′

∑

x∈Sx′
p(x) log p(x)


 .

(23)

Therefore the rate Rx, ccp
pc |q=0 = l/n can be asymptotically

approximated for large n as Rx, ccp
pc |q=0 ≈ H(X) − H(X ′)

bits/codon.

C. Capacity-achieving strategy p(x′)

In order to find the capacity-achieving strategy for the amino
acid distribution one needs to solve

∂

∂p(x′)


H(Z(m))−H(X ′) + ν


 ∑

y′∈X ′

p(y′)− 1




 = 0

(24)
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for x′ ∈ X ′, with ν a Lagrange multiplier. In what fol-
lows, p(z|x′) denotes p(Z(m) = z|X ′ = x′) for notational
convenience. For simplicity, and without loss of generality,
we assume natural logarithms in the optimisation. Using
∂p(z)/∂p(x′) = p(z|x′), expression (24) becomes

∑

z∈X 3

p(z|x′) log


 ∑

y′∈X ′

p(y′)p(z|y′)


 = log p(x′)+ν, (25)

for x′ ∈ X ′. The solution remains unchanged if we mul-
tiply (25) across by p(x′). This operation allows us to see
by inspection that any extreme of the Lagrangian inside the
differential in (24) has to be deterministic, that is, p(x′) = 1
for some x′ = ξ′ and p(x′) = 0 for x′ 6= ξ′. Note that this is in
agreement with the strategies for the cases q = 0 and γ = 1
with q = 3/4 discussed in Section III-B2. One may verify
that a uniform distribution of X ′ cannot possibly solve (25)
for all x′ ∈ X ′, because

∑
z p(z|x′) log

(∑
y′ p(z|y′)

)
is not

constant on x′ unless γ = 1 and q = 3/4, in which case
we have shown that the Shannon capacity is zero for any
distribution.

According to the previous discussion, for any capacity-
achieving solution it always holds that H(X ′) = 0. Therefore
we just have to maximise H(Z(m)) over the ensemble of 21
deterministic distributions of X ′. The computation of Rξ

′
pc

and the maximising distribution U|ξ′ can be accomplished
using the Blahut-Arimoto algorithm, following the discussion
in Section III-B1 on the optimal strategy for fixed p(x′). Note
that ξ′ = Trp and ξ′ = Met can be completely ruled out, since
|STrp| = |SMet| = 1, and then only null rates are possible
in these cases. We only need therefore to compute Rξ

′
pc for

the remaining 19 amino acids and then choose the maximum.
Also, ξ′ = Stp can only be considered hypothetically, since
this symbol can only appear exactly once in a gene.

a) Approximation to maximising strategy for determinis-
tic X ′: It is also possible to provide a closed-form approx-
imation to the maximising distribution U|ξ′, which is more
accurate than just using the approximation p(u|ξ′) = 1/|Sξ′ |
discussed in Section III-B1. It must firstly be observed that if
X ′ is deterministic, then the side-informed setting amounts to
a non-side informed setting with |Sξ′ | inputs and |X |3 outputs.
This setting can be modelled by a transition probability
matrix Λ whose rows are the rows of Πm corresponding to the
codons associated with ξ′. In general this channel will not be
symmetric nor weakly symmetric, since although its rows are
permutations of the same set of probabilities, its columns are
not, and their sum is not constant either. However H(Z(m)|U)
is still independent of the distribution of U, so we only need
to maximise H(Z(m)) to find capacity. The corresponding
conditions for the maximum are

∑

z∈X 3

p(z|v) log p(z) + 1 = ρ, (26)

for v ∈ Sξ′ , and with ρ a Lagrange multiplier. Using log x ≤
x− 1 and p(z) =

∑
u∈Sξ′ p(z|u)p(u|ξ′), one can write

∑

z∈X 3

p(z|v)
∑

u∈Sξ′
p(z|u)p(u|ξ′) ≤ ρ, (27)
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for v ∈ Sξ′ . Our approximation consists of solving p(u|ξ′)
by enforcing equality in (27) for all v ∈ Sξ′ . This yields the
linear system

π
(
ΛΛT

)
= ρ1, (28)

where the probabilities p(u|ξ′), with u ∈ Sξ′ , are the elements
of the 1×|Sξ′ | vector π (arranged in the same codon order as
the rows of Λ), and 1 is an all-ones vector of size 1× |Sξ′ |.
Since π must be a pmf, we may fix any arbitrary value of
ρ, such as ρ = 1, and then normalise the solution π̃ to the
resulting linear system, that is

π̃ = 1(ΛΛT )−1. (29)

The matrix ΛΛT is invertible if both q 6= 1/(4γ/3) and
q 6= 1/(2(1 − γ/3)) because in this case the rows of Λ are
linearly independent. This is due to the fact that under the two
conditions above the rows of Πm are linearly independent,
since its eigenvalues are all the possible products of three
eigenvalues of Πm [25] and the conditions above guarantee
that these are nonzero. A sufficient condition for the invert-
ibility of ΛΛT is q < 1/2, which spans most cases of interest.

Since the optimisation problem has been linearised, π̃ may
contain negative values, but in practice these are relatively
small. Setting these values to zero and normalising π̃, an
approximation to the optimum distribution p(u|ξ′) is obtained.
An example of this approximation compared to the results of
the Blahut-Arimoto algorithm is shown in Figure 15, where
the high mutation rate q = 10−2 is used for visualisation
purposes.
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