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Mining Spatio-temporal Data at Different Levels
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Abstract

In this paper we propose a methodology for mining very large spatio-temporal
datasets. We propose a two-pass strategy for mining and manipulating spatio-tem-
poral datasets at different levels of detail (i.e., granularities). The approach takes
advantage of the multi-granular capability of the underlying spatio-temporal mod-
el to reduce the amount of data that can be accessed initially. The approach is im-
plemented and applied to real-world spatio-temporal datasets. We show that the
technique can deal easily with very large datasets without losing the accuracy of
the extracted patterns, as demonstrated in the experimental results.

1 Introduction

Recently,  it  has been estimated that 80% of the available datasets have spatial
components (Fayyad and Grinstein, 2001), and are often related to some temporal
aspects. Such a considerable amount of information needs suitable analysis tech-
niques to be applied correctly. In the last few years, several systems providing an
integrated approach for the management of spatial and temporal information have
been proposed (e.g.,  Chen and Zaniolo,  2000,  Güting et  al.,  2000,  Huang and
Claramunt, 2002).

The application of knowledge management tailored to the exploitation of impli-
cit semantics of spatio-temporal data has emerged as the key technology to ad-
dress the application of spatio-temporal data mining techniques and algorithms to
real-world  problems.  Spatio-temporal  data  mining  is  a  user-centric,  interactive
process, where data mining experts and domain experts work closely together to
gain insight on a given problem. Several open issues have been identified ranging
from the definition of the mining techniques capable of dealing with spatio-tem-



poral information to the development of effective methods for interpreting and
presenting the final results. 

In this study, we focus on a specific data mining technique that deals with clus-
tering. Clustering is one of the fundamental techniques in data mining. It groups
data objects into clusters based on some similarity or distance measures. These
clusters contain information found in the data that describes similar objects and
their relationships. The goal is to optimise similarity within a group of objects and
dissimilarity between the groups in order to identify interesting structures in the
underlying data. While the complexity of spatio-temporal clustering is far higher
than its traditional counterpart, the ideas behind it are similar i.e., it focuses either
on characteristic features of objects in a spatio-temporal region or on the spatio-
temporal characteristics of a set of objects (Ng and Han, 1994). 

The mining process for spatio-temporal data is complex in terms of both the
mining efficiency and the complexity of patterns that can be extracted from spatio-
temporal datasets (Roddick and Lees, 2001). The reason is that the attributes of
the neighbouring patterns (i.e., close in either space or time or both) may have sig-
nificant influence on a pattern and should also be considered. Therefore, new tech-
niques are required to efficiently and effectively mine these datasets. The main
problem for analysing spatio-temporal data is the size of the data. Today’s GIS
systems are collecting Gigabytes and even Terabytes of data each day. So the ma-
jor goal for such a strategy is to process these datasets within a reasonable re-
sponse time and memory space, without affecting the accuracy of the findings.

In this paper we propose a spatio-temporal clustering technique to deal with the
data at different levels of detail, i.e., granularities, to improve the algorithm effi-
ciency. Such a technique relies on a hierarchical multi-granular model in which
datasets are generalised to generate less detailed representations of reduced size.
Thus, the mining can first be applied to the reduced dataset, and then refined only
for those objects, which have been filtered through the first step. In other words,
the mining can be further deepened on spatial areas or temporal intervals of in-
terest. The corresponding objects are converted at finer spatial and temporal gran-
ularity before applying the mining.  Our approach handles the data at  different
levels of detail both from a spatial and a temporal point of view. The conversions
of data at different levels of detail are performed by applying the operators avail-
able in the underlying multi-granular spatio-temporal model, whose definitions are
described in (Camossi et al., 2006).

The paper is organised as follows. In Section 2 we present recent related work.
In Section 3 we describe a multi-granular spatio-temporal model that enables the
conversion of spatio-temporal data at different levels of detail. In Section 4 we in-
troduce the spatio-temporal data mining system and show how we apply it to spa-
tio-temporal data represented at higher spatial and temporal levels of granularity.
In Section 5 we discuss some experimental results. Finally, Section 6 concludes
the paper and outlines future research directions.

2 Related Work

The proposals for the integrated management of spatio-temporal information can
be mainly classified into: temporal extensions of GIS (Claramunt and Thériault,
1995, Langran, 1992); extensions of relational, object relational (Chen and Zani-
olo, 2000) and object oriented standards (Griffiths et al., 2004, Huang and Clara-
munt, 2002); algebraic frameworks for moving points and regions (Güting et al.,
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2000); and independent frameworks (Tryfona  and Jensen, 1999, Worboys, 1994).
Recent systems have addressed the issues related to multi-granularity, multi-res-

olution and multiple representations of spatial (Balley et al., 2004, Fonseca et al.,
2002, Kulik et al., 2005, Vangenot, 2001) and spatio-temporal data (Bittner, 2002,
Camossi et al., 2006, Claramunt and Jiang, 2000, Hornsby and Egenhofer, 2002),
Hurtado and Mendelzon, 2001, Khatri et al., 2002). In particular, Claramunt and
Jiang (2000) defined nested hierarchies for modelling space and time from which
quantitative information about spatio-temporal relationships are obtained. Khatri
et al. (2002) extended a semantic formalism to support the specifications of spatio-
temporal data at multiple granularities, relying on the concepts of temporal inde-
terminacy and spatial imprecision. The resulting model and the granularity sys-
tems described are effective for data specification.  In (Camossi  et  al.,  2006) a
framework enabling the conversion of spatio-temporal values at different spatial
and temporal granularities is defined as extension of the ODMG data model (Cat-
tel et al., 1999). In the spatial domain, Fonseca et al. (2002) and Kulik et al. (2005)
proposed the use of anthologies to multi-resolution.

The progressive application of data mining techniques for spatio-temporal data
to improve efficiency is discussed in (Mennis and Liu, 2005, Tsoukatos and Gun-
opulos,  2001).  Tsoukatos  and  Gunopulos  (2001)  presented  an  incremental  al-
gorithm for discovering frequent spatio-temporal sequences by decomposing the
search space in a hierarchical structure, addressing its application to multi-granu-
lar spatial data. Mennis and Liu (2005) discussed multi-level association rule min-
ing of spatio-temporal data, i.e., mining of rules at varying levels of a concept
hierarchy to fit the best resolution for the rule. Hierarchical data mining is dis-
cussed also for spatial (Koperski, 1999, Shahabi et al., 2001) and temporal (Abra-
ham and Roddick, 1999) data separately. Recently, there has been a growing in-
terest in the application of wavelet transforms in some processes of data mining
(Li et al., 2002, Shahabi et al., 2001).

3 Multi-granular representation of spatio-temporal data

In this section we describe the data model for the representation of data at multiple
spatio-temporal granularities used in our mining approach. The model relies on the
work presented in (Camossi et al., 2006), where the ODMG type system (Cattel et
al., 1999) has been extended to enable the representation and the conversion of
spatio-temporal object attributes at different levels of details, for both the spatial
and the temporal dimensions. The same set of conversions has been applied in the
definition of an object-relational spatio-temporal multigranular model (Bertino et
al., 2005). In this paper we follow the object-relational approach, instead of the
full object oriented approach, because it is adopted by current commercial DBMS.
Furthermore, like most of them (e.g., ORACLE™, 2008, PostgreSQL, 2008), the
model applies an integrated approach for the representation of geometric aspects
of data. In the following, we first present the notion of spatial and temporal granu-
larities supported by the model; then, we describe how multi-granular spatio-tem-
poral data can be represented and converted. 

3.1 A spatio-temporal multi-granular data model

The data model supports the definition of temporal granularity formalised by Bet-
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tini et al. (2000), which is commonly adopted by the temporal databases and reas-
oning community, and integrates the notion of spatial granularity compliant with
the formalization of stratified map spaces proposed by Stell and Worboys (1998).
Temporal and spatial granularities are specified as mappings from an index set to
the power set of the TIME and the SPACE domains, respectively. TIME is totally
ordered. The supported SPACE domain is 2-dimensional (i.e., a proper subset of
R2). For instance, days, weeks, years are temporal granularities; meters, kilometres,
feet, yards, provinces and countries are spatial granularities. Each portion of the
temporal and spatial domain corresponding to a granularity mapping is referred to
as a (temporal or spatial) granule. Spatial granularities can include 2-dimensional
granules (e.g.,  units  of area: m2, acre, etc.; administrative boundaries classifica-
tions: municipalities, countries, etc.), or in 1-dimensional granules (e.g., measures
of length: km, mile, etc.; map scales: 1:24 000, 1:62 500, etc.). Granules give the
validity bounds of spatio-temporal for the definition of spatio-temporal values. For
instance, we can say that a value reporting the measure of the daily temperature in
Dublin  is  defined  for  the  first  and  the  second  of  January  2000,  and  so  on.
“01/01/2000",  “02/01/2000",  and  “Dublin"  are  textual  labels  that  univocally
identify two temporal and one spatial granule. Granules of the same granularity
cannot overlap. Moreover, non-empty temporal granules must preserve the order
given by the index set. 

Spatial and temporal granularities are related by the finer-than relationship. Such
a relationship formalises the intuitive idea that different granularities correspond
to different partitions of the domain, and that, given a granule of a granularity G,
usually a granule of a coarser granularity exists that properly includes it. For ex-
ample, granularity days is finer than months, and granularity months is finer than
years. Likewise, municipalities is finer than countries. If a granularity G is finer-
than H, we also say that H is coarser-than G. According to the finer-than relation-
ship, spatial and temporal granularities are related to form two directed graphs,
usually two lattices.

Beyond the  conventional  relational  and object-relational  database values,  the
database schemas can include spatial, temporal, and spatio-temporal values. 2-di-
mensional geometric vector features (i.e., points, lines, and polygon) can then be
represented. Multi-granular spatial and temporal data are uniformly defined by in-
stances of two parametric types, spatial and temporal, which are specified accord-
ing to granularities (spatial and temporal, respectively) and an inner conventional
(i.e., without spatio-temporal characteristics) or geometric type. 

The model enables the conversion of multigranular spatio-temporal data at dif-
ferent granularities, to improve or reduce the level of detail employed for data rep-
resentation. Granularity conversions are crucial in order to represent data at the
most appropriate level of detail for a specific task, and enable consistent comparis-
ons of data defined in the schema at different granularities, improving the express-
ive power of spatio-temporal query languages. Granularity conversions enable to
apply different conversion semantics. 

The conversion of multi-granular geometrical features is obtained through com-
positions of model-oriented and cartographic map generalisation operators (Muller
et  al.,  1995) that  guarantee topological  consistency (Bertolotto,  1998,  Saalfeld,
1999), an essential property for data usability, and refinement operators that per-
form the inverse functions. Such operators can be classified with respect to the se-
mantics of the conversion performed: contraction and thinning operators reduce
the dimension of vector features, whereas expansion operators increase their di-
mension; merge operators merge adjacent features of the same dimension into a
single one, while splitting operators subdivide single features in adjacent features
of the same dimension; abstraction and simplification operators discard isolated
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features from polygons and remove shape points from a line, respectively, whereas
addition operators add isolated features to polygons and shape points to lines. 

On the other hand, to retrieve for instance the annual trend of a phenomenon
with a daily frequency (e.g., the national values of sales in shops located in several
countries, the model supports also the conversion of quantitative (i.e., not geomet-
rical) attribute values supported for both temporal and spatial data. These conver-
sions are classified in families according to the semantics of the operation per-
formed (Camossi et al., 2006): selection (e.g., projection); aggregation (e.g., sum,
average); restriction, by which, if a granular value assumes value v in a granule g,
value v also refers to any finer granule g' included in g; splitting, which subdivides
each coarser value among the finer granules included in it either uniformly (i.e., all
the finer values are the same), or according to non-uniform distribution. 

The  given  set  of  granularity  conversions  can  be  extended  with  user-defined
granularity conversions that are specified as class methods in a database schema.
Granularity conversions have been proved to return legal values of the type system
defined,  and to  preserve the  semantics  of  the  spatio-temporal  data  represented
(Camossi et al., 2006).

3.2 Multi-granularity to Improve Mining

In this paper, we take advantage of the multi-granularity support provided by the
data model to enhance the effectiveness of the clustering algorithm. In particular,
the mining process can benefit of multi-granularity in different ways. 
First of all, multi-granularity enables to apply the mining to data represented at
different levels of detail, e.g., semantically homogeneous data coming from differ-
ent sources. In this case, data can be converted into uniform spatial and temporal
granularities before applying the mining process. The level of detail is chosen in
order  to  represent  the specific dataset.  Usually the choice falls  on the greatest
lower bound (glb),  or  the least upper bound (lub),  of the spatial  and temporal
granularity  available.  Given  two  granularities G and H of  the  same type  (i.e.,
either spatial or temporal), glb(G,H) is the coarsest granularity K (not necessarily
different from G and H) among the granularities finer than both G and H. By con-
trast, lub(G,H) is the finest granularity J (not necessarily different from G and H)
among the granularities coarser than both G and H.

Then,  once the level  of  detail  used for  the representation is  uniform for  the
whole dataset, granularity conversions are applied before the refinement process.
Indeed, spatio-temporal data are pre-processed for reducing the size of the starting
dataset, i.e., data are converted to coarser spatial and temporal granularities. This
conversion allows us to focus on the relevant dataset, which is, in general, much
smaller than the original data, hence, improving response time of the overall min-
ing process. The choice of the level of detail can be iterative, and depends on a
trade-off between mining efficiency and maximum detail required by the mining
process. Finally, the conversion depends on the generalisation process used for a
given dataset. Once the semantics for generalising certain dimensions or attributes
of the data has been defined, the conversion is straightforward and mainly for the
model defined above. Therefore, the mining process needs only the level of accur-
acy as an input parameter and the conversion and even the number of levels of de-
tail that need to be explored is done automatically through hierarchical navigation.
The way that these levels are explored depends on the type of the algorithm imple-
mented.

After the application of the clustering algorithm, the selected spatio-temporal
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data of interest are converted into finer granularities, for more detailed representa-
tion, once a deepen analysis is required on significant data. In the first case, granu-
larity conversions are applied globally, to the whole dataset to materialise those
objects, which will be accessed frequently and in more detail. In the second case,
granularity conversions are applied locally, zooming in on specified and restricted
pieces of information, whenever the user asks for a more detailed mining of such
data, specified with respect to a given spatio-temporal area. In both cases, spatio-
temporal data are converted to different granularities without losing information.
Indeed,  the conversions are performed by applying the granularity conversions
supported by the data model that preserve semantics and then usability of the data.

4 Proposed System

To address the issues of mining and managing spatio-temporal datasets we have
proposed a 2-layer system architecture (Bertolotto et al., 2007, Compieta et al.,
2007) including a mining layer and a visualisation layer. The mining layer imple-
ments a mining process along with the data preparation and interpretation steps.
For instance, the data may need some cleaning and transformation according to
possible constraints imposed by some tools, algorithms, or users. The interpreta-
tion step consists of visualising the selected models returned during the mining
phase to effectively study the application behaviour. The interpretation is carried
out in the visualisation layer. More details on the visualisation tools can be found
in  (Bertolotto et al., 2007, Compieta et al., 2007). In the next section we will fo-
cus on the mining strategy implemented in the mining layer.

4.1  2-Pass Strategy

To reduce the amount of memory and computational complexity that these data
spaces require without affecting the information presented by the data, the first
task in our strategy is to find the data points that are most similar according to
their static (non spatial and temporal) attributes. This part of the strategy is the key
to the whole success of the generalisation process, so that we do not lose any im-
portant information that might have an adverse effect on the results. To further re-
duce the complexity in space of the algorithm, the raw datasets are pre-processed
in order to obtain, through granularity conversions defined in Section 3, a coarser
representation of their spatio-temporal dimensions. Since the granularity conver-
sion preserves the semantics of data (Camossi et al., 2006), the application of spa-
tio-temporal mining algorithms to coarser representation does not affect the al-
gorithm outputs.

The second task is to cluster these groups of closely related data points in a
meaningful way to produce a new (meta-)dataset suitable and acceptable for fur-
ther analysis (i.e., models, patterns, rules, etc.).

4.2 First Pass

The algorithm for this first pass produces clusters of data points that are closely re-
lated. The goal here is to produce new data objects, where each object represents
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one cluster of raw data. Therefore, the main objective is to reduce the size of the
initial data without losing any relevant information. Figure 1 shows a high level
view of the steps carried out by the algorithm for this first phase of this approach.
It is important to note that only the data points that have a very high similarity
between them will be grouped together. As a result, the new dataset is much smal-
ler than the original data. It contains more information about individual clusters.
This will help the clustering performed during the second pass.

This pass is  basically implementing the generalisation and conversion model
defined above. The process of exploring the generalised data and its conversion
either from top-to-bottom or bottom-to-top is  linear.  Usually the generalisation
process is implemented as a tree structure, which is efficient in exploring relevant
branches and the memory space needed to store them. In this phase, we access the
higher-level generalised data. The second pass will deal with the detail when ne-
cessary.

Figure 1: Step-by-step view of the first pass of the strategy.

4.3 Second Pass

The second pass involves clustering the tightly grouped data points from the first
pass to produce a new representation of the data (meta-dataset). This meta-dataset
should be reduced by a certain degree of magnitude so that it can now be analysed
and mined more easily. In Figure 2, a 2-D example shows how a larger dataset is
processed to create a much smaller meta-dataset. There are locations in the space
that are highly similar;  these are represented within each of the small location
groups (small circular shapes). It is important that no location group overlaps with
another so that the integrity of the data is not affected. The next step shows data

7



mining on the meta-data using clustering for an example. 
The clustering technique proposed for this second phase of the strategy will be

DBSCAN (Ester et al., 1996). It is a density-based clustering algorithm that pro-
duces disjoint clusters, in which the number of clusters is automatically determ-
ined by the algorithm. It is relatively resistant to noise (as it detects noisy data and
outliers) and can handle clusters of arbitrary shapes and sizes. The main reason for
choosing DBSCAN is twofold: 1) to illustrate our methodology and our conver-
sion model, and 2) while DBSCAN is not highly scalable; it is interesting to study
its performance on very large datasets using our methodology as from our first
phase the amount of tiny clusters representing highly similar data is very large,
and we would like to take advantage of finding the regions that are very similar.
These regions can then form clusters that will present a new compact representa-
tion of the dataset.

Figure 2:  A 2-d example of dataset compression.

The next step is to mine this new representation of the dataset. The space and
computational complexities for these algorithms have been reduced greatly from
the original data. This strategy and mainly the mining algorithm is also suitable for
interactive data mining and visualisation since it is so quick and efficient that it
can be incorporated in a visualisation tool of the data. The data can be explored
and analysed using this approach interactively and with ease as shown in the next
section.

5 Preliminary Experimental Results 

We have implemented a 2-pass strategy that uses the DBSCAN algorithm for the
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mining process. The technique has been implemented within a data-mining engine
and includes also a visualisation layer for interactive data interpretation. The ex-
periments conducted so far were obtained from the Hurricane Isabel dataset (Na-
tional Hurricane Center, 2003), which is a proper instance for geographical spatio-
temporal dataset. Figure 3 lists different variables contained in the dataset and for
more details about these variables we refer the reader to (National Hurricane Cen-
ter, 2003). 

Figure 3:  Description of the dataset layers.

All variables are real-valued (4 bytes) and were observed along 48 time steps
(hourly-sampled), in a space having 500 x 500 x 100 = 25x106 total points. So,
each variable in each time step is stored in a different file, resulting in 624 files of
100MB each. This raw data can be represented by the following parameters; the
number of time steps (Nts), the number of data points (N), and the number of stat-
ic parameters (Nsp). Nts = 48 time steps, N = 25x106 data points, and Nsp = 13.
This fine fragmentation allows for great flexibility in choosing different subset of
data for each mining task.

Figure 4 shows one of the clusters we extracted, whose shape resembles the
shape of the hurricane or one of its features. In Figure 4, DBSCAN algorithm out-
puts a spherical type cluster that represents the shape of the Hurricane’s eye for
different values of pressure. The eye is clearly visible in the low, where the cluster
represents high values for pressure in pink with the hole in the middle representing
very low values for pressure. These clusters provide some clues about direction or
strength of the hurricane. We can track and represent in real time the movement of
the hurricane eye over time by clustering different time steps of the dataset. 

The application of the mining algorithm on the reduced dataset produces results
visually comparable to those obtained with the fully detailed one, and with im-
proved efficiency  in response time and memory occupation. The results we ob-
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tained on the test-bed application (i.e., the Hurricane Isabel) are very promising,
and this technique suites very well interactive environments. Our technique is de-
signed according to the multi-level granularity model explained above. In this pa-
per, we presented our results by using a 2-pass (i.e., 2-level) algorithm. The first
level generalises the dataset to reduce its size and complexity. The second pass re-
fines only the data of interest. However, these improved results may depend on the
specific dataset. For instance, if the final patterns cover different objects, which
were not identified to be neighbours in the first pass, the cost will be higher as one
has to explore different spatio-temporal regions to refine the final results. This can
be solved by adapting our algorithm to support multiple levels of clustering rely-
ing on the model  defined above.  We are currently implementing a version for
multi-level clustering using decision-tree approach.  

 

Figure 4:  The eye of the Hurricane in isolation. This is represented by one cluster.

6 Conclusion

The approach proposed in this paper is different from the approaches presented in
the  literature  (Abraham and Roddick,  1999,  Koperski,  1999,  Mennis  and  Liu,
2005, Tsoukatos and Gunopulos, 2001) with respect to the specific data mining
problem addressed, and mainly the use of multi-granularity concept to both be
able to design scalable technique for data mining and analysis and speed up the
process of the mining and its accuracy. The work presented in (Tsoukatos and
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Gunopulos, 2001) focuses on mining frequent patterns, while (Abraham and Rod-
dick, 1999, Koperski, 1999, Mennis and Liu, 2005) address the mining of associ-
ation rules, meta-rules and classification. (Tsoukatos and Gunopulos, 2001) uses
spatial granularities defined according to boundary regions, and the operator sup-
ported to perform granularity conversions is region merge. Likewise, only spatial
concept hierarchy are supported in (Abraham and Roddick, 1999, Koperski, 1999,
Mennis and Liu, 2005). In all these projects, spatial granularities are employed for
rules representations. Instead, we focus on clustering, and the multi-granularity
concept is used to reduce the size of the datasets, mainly at the beginning. Further-
more, we apply multi-granularity for both the spatial and the temporal domains,
supporting a wide range of granularity conversions, specifically designed to pre-
serve data usability. We will extend this approach to other clustering techniques
and also we will study their effectiveness in real-world environments. Moreover,
we have planned further experimentations considering different spatio-temporal
datasets to the test of the efficiency of the approach. 

Acknowledgement

The work of Elena Camossi is supported by the Irish Research Council for Sci-
ence, Engineering and Technology.

References

Abraham T., Roddick J.F. (1999) Incremental Meta-Mining from Large Temporal
Datasets. Advances in Database Technologies, In Proc. of the 1st Int’l Work-
shop on Data Warehousing and Data Mining, Springer-Verlag Berlin. LNCS
1552:41-54.

Balley  S., Parent  C., Spaccapietra  S.  (2004)  Modelling  Geographic  Data  with
Multiple Representations. International Journal of Geographical Information
Science, Taylor & Francis. 18(4):327-352. 

Bertino E., Cuadra D., Martìnez P. (2005) An Object-Relational Approach to the
Representation of Multi-granular Spatio-Temporal Data. In Proc. of the 17th

Int’l  Conf.  on  Advanced Information  Systems Engineering,  Springer-Verlag
Berlin. LNCS 3520:119-134.

Bertolotto M. (1998) Geometric Modeling of Spatial Entities at Multiple Levels of
Resolution. Ph.D. Thesis, Università degli Studi di Genova, Italy. 

Bertolotto M.,  Di  Martino  S.,  Ferrucci  F.,  Kechadi  T.  (2007)  A Visualisation
System for Collaborative Spatio-Temporal Data Mining. International Journal
of Geographical Information Science, Taylor & Francis. 21(7): 895-906. 

Bettini C., Jajodia S., Wang X. (2000) Time Granularities in Databases, Data Min-
ing, and Temporal Reasoning, Springer-Verlag Berlin. 

Bittner T. (2002) Reasoning about qualitative spatio-temporal relations at multiple
levels of granularity. In Proc. of the 15th European Conf. on Artificial Intelli-
gence, IOS Press. 317-321. 

Camossi  E.,  Bertolotto  M.,  Bertino  E.  (2006)  A multigranular  Object-oriented
Framework Supporting Spatio-temporal Granularity Conversions. Internation-
al Journal of Geographical Information Science. Taylor & Francis. 20(5): 511-
534. 

11



Cattel R., Barry D., Berler M., Eastman J., Jordan D., Russel C., Schadow O.,
Stanienda  T.,  Velez  F  (1999).  The  Object  Database  Standard:  ODMG 3.0.
Morgan-Kaufmann. 

Claramunt C., Thériault M. (1995) Managing Time in GIS: an event oriented ap-
proach.  In Proc.  of  the Int’l Workshop on Temporal Databases: Recent Ad-
vances in Temporal Databases, Springer-Verlag. 23-42. 

Claramunt C., Jiang B. (2000) Hierarchical Reasoning in Time and Space. In Proc.
of the 9th Int’l Symposium on Spatial Data Handling. 41-51. 

Compieta P.,  Di  Martino  S.,  Bertolotto  M.,  Ferrucci  F.,  Kechadi  T.  (2007)
Exploratory spatio-temporal data mining and visualization. Journal of Visual
Languages and Computing, Elsevier. 18(3):255-279. 

Chen C.X, Zaniolo C. (2000) SQL: A Spatio-Temporal Data Model and Query
Language. In Proc. of 19th Int’l Conf. on Conceptual Modeling / the Entity Re-
lational Approach. Springer-Verlag Berlin. LNCS 1920:96-111. 

Ester M., Kriegel H.-P., Sander J., Xu X. (1996) A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise. In Proc. of the
2nd Int’l Conf. on Knowledge Discovery and Data Mining. 226-231.

Fayyad U.M., Grinstein G.G. (2001) Introduction. Information Visualization in
Data Mining and Knowledge Discovery, Los Altos, CA: Morgan Kaufmann.
1-17.

Fonseca F., Egenhofer M.J, Davis C., Cãmara G. (2002) Semantic Granularity in
Ontology  Driven  Geographic  Information  Systems. Annals  of  Mathematics
and Artificial Intelligence, Special Issue on Spatial and Temporal Granularity.
36(1-2). 

Griffiths T., Fernandes A.A.A., Paton N.W., Barr R. (2004). The Tripod spatio-his-
torical data model. Data Knowledge and Engineering, Elsevier. 49(1): 23-65.

Güting R.H., Bhölen M.H., Erwig M., Jensen C.S., Lorentzos N.A., Shneider M.,
Vazirgiannis M. (2000) A Foundation for Representing and Querying Moving
Objects. ACM Transaction On Database Systems, 25:1-42. 

Hornsby  K.,  Egenhofer  M.J.  (2002)  Modeling  Moving  Objects  over  Multiple
Granularities. Annals of Mathematics and Artificial Intelligence. Special Issue
on Spatial and Temporal Granularity. Kluwer Academic Press. 36(1-2):177-
194. 

Hurtado C.A., Mendelzon A.O. (2001) Reasoning about summarizability in Het-
erogeneous Multidimensional Schemas. In Proc. of the 8th Int’l Conf. on Data-
base Theory. 375-389. 

Huang B., Claramunt C. (2002) STOQL: An ODMG-based Spatio-Temporal Ob-
ject Model and Query Language. In Proc. of the 10th Int’l Symposium on Spa-
tial Data Handling, Springer-Verlag Berlin. 225-237. 

Khatri V., Ram S., Snodgrass R.T., O’Brien G. (2002) Supporting User Defined
Granularities and Indeterminacy in a Spatio-temporal Conceptual Model. An-
nals of Mathematics and Artificial Intelligence. Special Issue on Spatial and
Temporal Granularity, 36(1):195-232. 

Koperski K.(1999) A Progressive Refinement Approach to Spatial Data Mining.
Ph.D. Thesis, Simon Fraser University, Canada. 

Kulik L., Duckham M., Egenhofer M.J. (2005) Ontology driven Map Generaliza-
tion. Journal of Visual Language and Computing, 16(3):245-267. 

Langran G. (1992) Time in Geographic Information Systems. Taylor & Francis. 
Li T., Li Q., Zhu S., Ogihara M. (2002) A Survey on Wavelet Applications in Data

Mining. ACM SIGKDD Explorations Newsletter. 4(2):49-68. 
Mennis J., Liu J.W. (2005) Mining Association Rules in Spatio-Temporal Data: An

Analysis of Urban Socioeconomic and Land Cover Change. Transactions in

12



GIS, Blackwell Publishing. 9(1):5–17. 
Muller J-C., Lagrange J.P., Weibel R. (eds.) (1995) GIS and Generalization: meth-

odology and practice. Taylor and Francis. 
National  Hurricane  Center  (2003), Tropical  Cyclone Report:  Hurricane Isabel,

http://www.tpc.ncep.noaa.gov/2003isabel.shtml. 
Ng R.T.,  Han J.  (1994) Efficient  and Effective Clustering Methods for  Spatial

Data Mining. In Proc. of  the  20th Int’l Conf. on Very Large Data Bases. 144-
155. 

ORACLE™ (2008),   Oracle  Corp. http://www.oracle.com.  Last  date  accessed:
01/2008.

PostgreSQL (2008),  PostgreSQL  Inc. http://www.postgresql.org.  Last  date
accessed: 01/2008.

Roddick J.F., Lees B.G. (2001) Paradigms for Spatial and Spatio-Temporal Data
Mining. Geographic  Data  Mining  and  Knowledge  Discovery.  Taylor  and
Francis. 33-50.

Saalfeld A. (1999) Topologically consistent line simplification with the Douglas-
Peucker  algorithm. Cartography  and  Geographic  Information  Science.
26(1):7-18. 

Shahabi C., Chung S., Safar M., Hajj G. (2001) 2D TSA-tree: A Wavelet-Based
Approach to Improve the Efficiency of MultiLevel Spatial Data Mining. In
Proc.  of the 13th  Int’l Conf. on Scientific and Statistical Database Manage-
ment. 59-68. 

Stell J.G., Worboys M. (1998) Stratified Map Spaces: A Fomal Basis for Multi-
Resolution Spatial Databases. In Proc.  of the 8th Int’l Symposium on Spatial
Data Handling.  180-189.

Tsoukatos I., Gunopulos D. (2001) Efficient Mining of Spatiotemporal Patterns. In
Proc.  of the 7th Int’l Symposium on Spatial and Temporal Databases. LNCS
2121:425-442. 

Tryfona N., Jensen C.S. (1999) Conceptual Modeling for Spatiotemporal Applica-
tions. Geoinformatica, Springer Netherlands. 3(3):245-268. 

Vangenot C. (2001) Supporting Decision-Making with Alternative Data Repres-
entations. Journal of Geographic Information and Decision Anaysis. 5(2):66-
82. 

Worboys M. (1994) A Unified Model for Spatial and Temporal Information. The
Computer Journal, Oxford University Press. 37(1):26-34. 

13


