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Abstract—Neuroblastoma is the most common cancer in
infancy with an extremely heterogeneous phenotype that is mainly
driven by the MYCN oncogene. TheMYCN transcription factor
and its amplification is commonly associated with poor prognosis
in patients, although it has also been shown that elevatedMYCN
levels correlates with apoptosis sensitization in cells. HMGA1 is
one of MYCN target genes and is involved in triggering apoptosis
through a DNA Damage Response (DDR) by inducing ataxia-
telangiectasia-mutated (ATM) gene expression. But HMGA1 is
also involved in preventing apoptosis by directly binding HIPK2
and decreasing its presence in the nucleus, therefore decreasing
phosphorylation of p53 at serine 46 which is required for the
activation of p53 apoptotic targets. In this article, we propose
a model in which MYCN protein regulates the HMGA1-ATM-
p53 and HMGA1-HIPK2-p53 subsystems. Because the molecular
details concerning the HIPK2-HMGA1 interaction are uncertain
several possibilities were explored in simulations. Our model
points towards an important role of MYCN-dependent regula-
tion of HMGA1 expression levels and the subsequent HIPK2
nuclear/cytoplasmic re-localization and led to experimentally
testable predictions that can discern between alternativemodel
structures.

I. I NTRODUCTION

Neuroblastoma is the most common extracranial solid
tumour in childhood and the most common cancer in in-
fancy. It is an extremely heterogeneous disease stratified
in low-, intermediate- and high-risk tumours. Whereas low-
risk tumours often undergo spontaneous regression, high-risk
tumours can be very aggressive despite multi-modal treat-
ments. TheMYCN gene encodes for MYCN transcription
factor and its amplification is commonly associated with
high-risk tumours although it has been shown thatMYCN
gene amplification also correlates with apoptosis sensitization.
Thus, MYCN seems to have an interesting biphasic effect
on Neuroblastoma. In patients, moderately increased MYCN
levels are associated with improved prognosis, whereasMYCN
gene amplification and greatly increased levels are associated
with poor prognosis [1], [2]. These MYCN-amplified, highly
aggressive tumours usually evade even extensive multimodal
chemotherapy resulting in high death rates. Because tumour
aggressiveness and evasion to chemotherapy is intimately
linked to the cellular DNA damage response (DDR) and p53
[3], we sought to investigate how MYCN affects the p53 DDR
in Neuroblastoma.

The protein p53 is a tumour suppressor that regulates
the cell fate in response to DNA damage and other stresses

[4]. Depending on its response dynamics, p53 can promote
DNA repair, senescence or apoptosis. p53 is often mutated
or otherwise inactivated in cancer. In Neuroblastoma, p53
mutations are rare (occurring in 5% of cases), indicating that
the p53 system is functionally inactivated at the level of
upstream or downstream regulators. MYCN is one of these
upstream regulators. A particularly attractive hypothesis arising
from the clinical data is that MYCN would exert a dual dosage-
dependent effect on the p53 system. In this hypothesis, slightly
increased MYCN levels would result in an increased p53 DNA
damage response whereas excessively increased MYCN levels,
such as found in MYCN-amplified tumours, would impair
the p53 apoptotic response. Here, we explored whether this
hypothesis is theoretically possible.

The p53 system is complex, containing multiple negative
and positive feedback loops, which in turn generate complex
dynamics ranging from sustained to pulsatile oscillatory re-
sponses [4]–[6]. This complexity hinders a straight forward
intuitive understanding of the p53 network. Therefore we took
a computational systems biology approach and build a dynamic
model of the p53 DNA damage response and its regulation by
MYCN. In the following, we first describe the implementation
of the model and then proceed by exploring its dynamics.

II. M ODELS AND METHODS

The response of p53 to DNA damage can be understood
as an input-output signal transduction system (Fig. 1), [6].
The input layer consists of ATM which senses the DNA
damage. The output or effector layer consists of p53 which
depending on its phosphorylation status promotes cell-cycle
arrest or apoptosis. When phosphorylated at S46, p53 promotes
apoptosis, and this proapototic form of p53 (hereafter referred
to as p53-killer) was chosen as output [7]. The core of our
model is based on established models in the literature [4]–[6]
and is explained briefly in the following.

Upon DNA damage, ATM is phosphorylated at S1981,
most likely through DNA-damage induced autophosphoryla-
tion [8], [9]. For simplicity, the ATM phosphorylation reaction
in our model is dependent on the DNA damage input, but
does not describe the detailed autophosphorylation events.
S1981 ATM is also involved in inactivating phosphorylationof
MDM2 [10], [11] and SIAH1/SIAH2/WSB1 [12], [13] which
all lead to activation of p53. Finally, ATM s1981 directly
phosphorylates p53 at serine 15 [14], [15]. Due to overlapping
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Fig. 1. Schematic of the model.

functions between ATM and ATR, and less efficient kinase
activity towards p53, ATR is neglected in this model [14]. By
phosphorylating MDM2, ATM S1981 reduces MDM2 binding
on p53 which results in decreased MDM2 ubiquitin ligase
activity and higher p53 level [11]. Based on [16] we assume
that p53 can in turn induce MDM2 gene expression if at least
phosphorylated at serine 15, i.e p53 is primarily activated.
On the other hand, ATM exerts a similar mechanism on
the ubiquitin ligase SIAH1. SIAH1 is responsible for HIPK2
degradation and by phosphorylating SIAH1, ATM reduces the
binding affinity between SIAH1 and HIPK2 and allows HIPK2
accumulation [12]. HIPK2 is one of the main kinases involved
in p53 serine 46 phosphorylation, also called ”p53 killer”
[17], [18]. In order for HIPK2 to phosphorylate p53 on serine
46, p53 needs to be first phosphorylated at serine 15 (here
referred as the ”arrester” conformation) [6], which is achieved
by ATM. p53 ”arrester” upregulates WIP-1 phosphatase at the
transcriptional level. WIP1 dephoshphorylates serine 1981 of
ATM [19] and serine 15 of p53 [20]. For a detailed description
of this model we refer to the original literature [4]–[6].

In addition to the above described core interactions, our
model accounts for the regulation of the p53 system by
MYCN. HMGA1 is one of MYCN target genes and is involved
in triggering apoptosis through the DDR by inducing ATM
gene expression [21]–[24]. But HMGA1 is also involved in
preventing apoptosis by directly binding HIPK2 and decreasing
its presence in the nucleus, therefore decreasing phosphoryla-
tion of p53 at serine 46 which is required for the activation of

p53 apoptotic targets [25], [26]. Taking these experimental ob-
servations into account, our extended model includes HMGA1
induced ATM expression [21], ATM/ATR induced HMGA1
phosphorylation [22], HMGA1 dependent HIPK2 cytoplasmic
relocalisation [25], [26] and MYCN induced HMGA1 and
MDM2 expression [23], [24], [27]. For simplicity, we modelled
HMGA1-dependent inactivation and cytoplasmic relocalisation
of HIPK2 as a simple sequestration reaction, i.e. HMGA1
binds HIPK2 and the resulting complex is inactive. Because
the molecular details for the HMGA1-HIPK2 interaction are
uncertain, several possibilities were explored in the model as
described in the results section.

Based on the described interactions a dynamic model in
form of a system of ordinary differential equations can be
derived [28]. This system of ordinary differential equations was
implemented and simulated in Matlab. The parameter values
were chosen based on established models in the literature
and within biologically reasonable bounds [5], [6]. A detailed
account of all reactions, rate equations and parameters in the
model is provided in Tables I - IV.

In all simulations, we excite the system with a step input
of DNA damage att = 0, i.e. UDDR = 0 for t < 0 and
UDDR = 10 for t ≥ 0 and solve the system of ordinary
differential equations numerically (Matlab, ode15s solver). To
explore the dynamics of the system, interesting static param-
eters, such as the level of MYCN, are then varied between
multiple simulation runs and the resulting output (p53killer)
trajectories are analysed.
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Fig. 2. Time course simulations for different values of MYCNin response
to DNA damageUDDR = 10 at time t = 0. (a) System relaxes to a monos-
table steady-state. (b) System exhits sustained oscillations. MYCN-dependent
MDM2 mRNA synthesis rateksynt,MDM21 = 0.05 min−1. p53i denotes
unphosphorylated p53,p53a denotes p53-arrester phosphorylated at serine 15,
p53k denotes p53-killer phosphorylated at serine 46.

III. R ESULTS

A. DNA damage response exhibits distinct dynamics depend-
ing on parameter values and MYCN levels.

It is well established that the p53 DNA damage response
system exhibits qualitatively distinct dynamics such as sus-
tained and oscillatory responses in a cell-type, stimulus and
dosage dependant manner [4]. For example, it was shown
that UV radiation triggered a sustained p53 response, whereas
gamma radiation resulted in oscillatory response dynamics. As
one would expect form a system containing several positive
and negative feedback loops, our model is well capable of
simulating these different dynamic behaviours by changing
the particular parameter values used in the simulations (Fig.
2). Because MYCN is intrinsically linked to the prognosis of
Neuroblastoma patients, the parameter we were particularly
interested in was the MYCN level. Interestingly, we observed
that p53 response can switch from a sustained to an oscillatory
response just by changing the level of MYCN (Fig. 2). Further,
we observed that particularly high levels of MYCN markedly
reduced the p53 response amplitude in our simulations. This
is explored in more detail in the following.

B. p53 exhibits biphasic behaviour in response to MYCN.

An attractive hypothesis arising from the clinical data on
MYCN described in the introduction is that the cancer cell

fate and thus clinical outcome depends on the level of MYCN.
Slightly increased levels of MYCN would promote cancer cell
apoptosis, whereas hugely increased levels of MYCN would
inhibit apoptosis. To test whether the p53-MYCN network
(Fig. 1) is at least theoretically capable of exhibiting such
a biphasic response, we simulated the model with increasing
levels of MYCN (Fig. 3(a)). Our simulations show that p53
exhibits indeed a biphasic response to increasing MYCN
levels; first increasing and then decreasing. Thus our com-
putational analysis confirms that the p53-MYCN network is
theoretically capable of explaining the dual, dosage-dependent
MYCN effect.

C. Biphasic MYCN response does not depend on the dynamic
regime.

Considering that the dynamic behaviour of the p53 system
is highly context dependent and critically depends on the val-
ues of the kinetic parameters, we sought to investigate whether
the above described biphasic MYCN response is robust. In
particular, we asked whether the biphasic response can be
observed in both the sustained and the oscillatory parameter
regime. It is known that the oscillatory p53 dynamics depend
on the mdm2-p53 negative feedback [29] and increasing this
parameter in our model switches the response dynamics from
sustained to oscillatory. Holding the MYCN-dependent MDM2
mRNA synthesis parameter (ksynt,MDM21) constant at a low
value and increasing the level of MYCN switched the p53
responses from non-responding to sustained responses to non-
responding (Fig. 3(a)). At intermediateksynt,MDM21 values
the system transitioned from non-responding to oscillatory
responses and then to sustained responses with decreased
amplitudes and finally switched off completely (Fig. 3(b)).
For highksynt,MDM21 the system switched directly from non-
responding to oscillations, which then diminished in amplitude
for further increasing MYCN values (Fig. 3(c)). Thus, the
p53 system exhibited a robust biphasic MYCN response.
In particular, the biphasic nature of this response was not
dependent on whether the p53 system operated in the sustained
or oscillatory parameter regime.

D. The HIPK2-HMGA1 interaction is crucial for the biphasic
response.

Both the sustained and oscillatory regimes exhibited a
biphasic response thus demonstrating that the biphasic be-
haviour is a robust result. But what is the underlying mecha-
nism? Using simulations, we found that the MYCN mediated
regulation of HMGA1, but not MDM2, caused the biphasic
responses (Fig. 4). This can be intuitively explained as follows.
On the one hand, moderately increased HMGA1 levels in
response to slight MYCN increases lead to increased ATM
expression, thus resulting in the activation of the ATM-HIPK2-
p53 axis. On the other hand MYCN amplification causes
excessive HMGA1 levels to an extent at which HMGA1
binds and sequesters HIPK2, thus inhibiting the pro-apoptotic
phosphorylation of p53. Thus, MYCN-induced HMGA1 ex-
hibits a dosage-dependent dual effect, first promoting the DNA
damage response by inducing ATM, and then inhibiting the
pro-apoptotic phosphorylation of p53 by sequestering HIPK2.
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Fig. 3. Simulation showing the p53-killer response as a function of MYCN.
The plot shows the asymptotic behaviour of the p53-killer response after DNA
damage induction (t > 2000 min); solid lines indicate monostable steady-
states values, circles the minimum and maximum of sustainedoscillations.

E. Exploring different mechanisms of HMGA1-HIPK2 inter-
action.

The above results demonstrated a central role of HMGA1
for the cell fate decision in response to DNA damage. How-
ever, the HMGA1-HIPK2 interaction is not well characterised
experimentally. For example, HMGA1 is phosphorylated by
ATM [22] and this phosphorylation might promote or inhibit
the interaction with HIPK2. We therefore explored these differ-
ent possibilities in simulations using an ensemble of different
models with different HMGA1-HIPK2 interactions patterns.
We found that models in which HMGA1 does not bind
HIPK2 or in which only the phosphorylated form of HMGA1
binds HIPK2 do not exhibit a biphasic MYCN response (Fig.

4(a),4(b)). In contrast, models in which only the unphospho-
rylated form of HMGA1 binds HIPK2 or in which HMGA1
binds irrespective of its phosphorylation status exhibited a
biphasic response (Fig. 4(c),4(d)). Notably, the biphasiceffect
was most pronounced when only unphosphorylated HMGA1
bound HIPK2. These simulation results demonstrate that the
nature of the MYCN-p53 response - biphasic or not - critically
depends on the nature of the HMGA1-HIPK2 interaction.
Further, these results provide a means of validating or in-
validating the different possible biochemical mechanism of
the HMGA1-HIPK2 interaction once experimental data on the
MYCN-p53 response become available.

IV. CONCLUSIONS

Complex reaction networks are often difficult to understand
intuitively making it necessary to describe and analyse them
formally. The complexity of the present system lies in the
multiple nested feedback loops within the p53 system, namely
the ATM-p53-WIP1 and the p53-MDM2 feedbacks, and the
dual role of HMGA1 which both positively regulates the
ATM-p53 axis and negatively regulates the ATM-HIPK2-p53
axis. Here, we constructed a dynamic model of the p53
system that integrates a core network of the DNA damage
response described in [5], [6] with extended knowledge about
how MYCN affects the components within that system via
its transcription factor activity. A key target of MYCN in
our model is the gene HMGA1, which caused biphasic p53
responses for increasing MYCN levels in our simulations. This
biphasic behaviour mimics the clinical pathology of MYCN
neuroblastoma biology.

The prediction of the biphasic MYCN and HMGA1 be-
haviour can be validated experimentally by measuring the
different components after DNA damage induction (drugs or
radiation) in neuroblastoma cell lines, for example by Western
blotting. Hereby, our model can be used to guide the experi-
mental design. For example, to assess the effect of HMGA1
one experiment is to transfect a cell line expressing relatively
low level of MYCN with increasing dosages of HMGA1 vector
resulting in range of artificially induced HMGA1 expression
levels. Observing a biphasic behaviour would be consistent
with models (c) and (d) in Fig. 4, but not models (a) and
(b). Vice-versa observing a monotone response would validate
models (a) and (b). It is also possible to perform an experiment
in a similar setup selecting a range of neuroblastoma cell lines
naturally expressing different MYCN levels ranging from low
to high, although different genetic backgrounds might limit the
interpretation of this experiment.

The present model focused on MYCN feed forward effect
which allowed us to use MYCN as an independent parameter.
In a future work it will be of interest to investigate the feedback
regulation of MYCN via MDM2 and p53 [30], [31]

In conclusion, our model allowed us to dissect complex
dynamic behaviours related to MYCN biology and more
specifically its dual role as pro-apoptotic and anti-apoptotic
molecule. Simulation analyses allowed us to optimally design
future experiments aimed at validating or invalidating the
hypotheses generated by the model.

This model was deposited in BioModels Database [32] and
assigned the identifier MODEL1410080001
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(b) k1,HMGA1 = 0, k1,HMGA1p = 4, only HMGA1p
binds HIPK2
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(c) k1,HMGA1 = k1,HMGA1p = 4, both bind HIPK2
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(d) k1,HMGA1 = 4, k1,HMGA1p = 0, only HMGA1
binds HIPK2

Fig. 4. The biphasic response of p53 depends of the model structure and the
nature of the HIPK2-HMGA1 interaction (a) HIPK2 does not bind HMGA1,
(b) HIPK2 binds only the phosphorylated form of HMGA1, (c) HIPK2 binds
both unphosphorylated and phosphorylated HMGA1, (d) HIPK2binds only
the non-phosphorylated form of HMGA1.



TABLE I. TABLE OF PHOSPHORYLATION AND BINDING REACTIONS

Reaction Forward rate law Reverse rate law KD K−D k1 k−1

[ATM ]
UDDR
−−−−−⇀↽−−−−− [ATM∗]

k1UDDR
UDDR+kD1

×
[ATM]

[ATM+kD2]

k
−1[ATM∗][WIP1]

k
−D+[ATM∗]

1, 5 2.3 10 2

[p53]
[ATM∗]
−−−−−−⇀↽−−−−−− [p53s15]

k1[p53][ATM∗]

[p53]+kD

k
−1[p53s15][WIP1]

k
−D+[p53s15]

0.4 1.0 0.07 0.1

[p53s15]
[HIPK2]
−−−−−−⇀↽−−−−−− [p53s46]

k1[p53s15][HIPK2]

[p53s15]+kD

k
−1[p53s46]

k
−D+[p53s46]

0.5 0.2 0.6 1.0

[MDM2]
[ATM∗]
−−−−−−⇀↽−−−−−− [MDM2p]

k1[MDM2][ATM∗]

[MDM2]+kD

k
−1[MDM2p]

k
−D+[MDM2p]

0.1 0.1 0.1 0.1

[HMGA1]
[ATM∗]
−−−−−−⇀↽−−−−−− [HMGA1p]

k1[HMGA1][ATM∗]

[HMGA1]+kD

k
−1[HMGA1p]

k
−D+[HMGA1p]

0.1 0.1 0.1 0.1

[SIAH1]
[ATM∗]
−−−−−−⇀↽−−−−−− [SIAH1p]

k1[SIAH1][ATM∗]

[SIAH1]+kD

k
−1[SIAH1p]

k
−D+[SIAH1p]

0.1 0.1 0.1 0.1

[HMGA1] + [HIPK2] ⇀↽ [HMGA1/HIPK2] k1[HMGA1][HIPK2] k−1[HMGA1/HIPK2] − − 4∗ 2

[HMGA1p] + [HIPK2] ⇀↽ [HMGA1p/HIPK2] k1[HMGA1p][HIPK2] k−1[HMGA1p/HIPK2] − − 0∗∗ 2

* parameter varied in Fig. 4:k1,HMGA1

** parameter varied in Fig. 4:k1,HMGA1p

TABLE II. TABLE OF MRNA SYNTHESIS AND DEGRADATION

Reaction Forward rate law Reverse rate law K ksynt kdeg

∅ ⇀↽ [ATMm] ksynt kdeg [ATMm] − 0.1 0.1

∅
[HMGA1]
−−−−−−−→ [ATMm]

ksynt[HMGA1]2

[HMGA1]2+K2 − 1 0.2 −

∅
[HMGA1p]
−−−−−−−−→ [ATMm]

ksynt[HMGA1p]2

[HMGA1p]2+K2 − 1 0.4 −

∅ ⇀↽ [MDM2m] ksynt kdeg [MDM2m] − 0.002 0.003

∅
[p53s15]+[p53s46]
−−−−−−−−−−−−−→ [MDM2m]

ksynt[p53s15+p53s46]4

[p53s15+p53s46]4+K4 − 1 0.024 −

∅
[MY CN ]
−−−−−−→ [MDM2m]

ksynt[MY CN ]2

[MY CNp]2+K2 − 0.7 0.01∗ −

∅ ⇀↽ [WIP1m] ksynt kdeg[WIP1m] − 0.01 0.05

∅
[p53s15]
−−−−−−→ [WIP1m]

ksynt [p53s15]3

[p53s15]3+K3 − 0.5 0.1 −

∅ ⇀↽ [HMGA1m] ksynt kdeg [HMGA1m] − 0.06 0.1

∅
[MY CN ]
−−−−−−→ [HMGA1m]

ksynt[MY CN ]2

[MY CN ]2+K2 − 10 1.0 −

* the parameter varied in Fig. 3:ksynt,MDM21

TABLE III. T ABLE OF PROTEIN SYNTHESIS AND DEGRADATION

Reaction Forward rate law Reverse rate law ksynt kdeg K

∅ ⇀↽ [p53] ksynt kdeg [p53] 0.4 0.2 −

[p53s15] → ∅ − kdeg [p53s15] − 0.1 −

[p53s46] → ∅ − kdeg [p53s46] − 0.1 −

∅ ⇀↽ [HIPK2] ksynt kdeg [HIPK2] 0.4 0.1 −

∅
[HMGA1m]
−−−−−−−−⇀↽−−−−−−−− [HMGA1] ksynt[HMGA1m] kdeg[HMGA1] 0.2∗ 0.1 −

[HMGA1p] → ∅ − kdeg [HMGA1p] − 0.1 −

∅
[WIP1m]
−−−−−−−⇀↽−−−−−−− [WIP1] ksynt[WIP1m] kdeg [WIP1] 0.2 0.05 −

∅
[ATMm]
−−−−−−⇀↽−−−−−− [ATM ] ksynt[ATMm] kdeg [ATM ] 0.1 0.1 −

∅
[MDM2m]
−−−−−−−−⇀↽−−−−−−−− [MDM2] ksynt[MDM2m] kdeg [MDM2] 0.004 0.003 −

[MDM2p] → ∅ − kdeg[MDM2p] − 0.05 −

[HMGA1/HIPK2] → [HMGA1] kdeg [HMGA1/HIPK2] − − 0.1 −

[HMGA1/HIPK2] → [HIPK2] kdeg [HMGA1/HIPK2] − − 0.1 −

[HMGA1p/HIPK2] → [HMGA1p] kdeg [HMGA1p/HIPK2] − − 0.1 −

[HMGA1p/HIPK2] → [HIPK2] kdeg [HMGA1p/HIPK2] − − 0.1 −

[p53]
[MDM2]
−−−−−−→ ∅

kdeg [MDM2][p53]

K+[p53]
− − 0.1 1.0

[HIPK2]
[SIAH1]
−−−−−−→ ∅

kdeg [SIAH1][HIPK2]

K+[HIPK2]
− − 0.1 1.0

* the parameter varied in Fig. 4:ksynt,HMGA1



TABLE IV. TABLE OF INITIAL VALUES

Variable Description Initial value

[p53] Concentration of unphosphorylated p53 protein 0.8

[p53s15] Concentration of p53 phosphorylated at serine 15 0.1

[p53s46] Concentration of p53 phosphorylated at serine 46 0

[SIAH1p] Concentration of SIAH1 phosphorylated by ATM 0

[HIPK2] Concentration of HIPK2 protein 0.2

[WIP1m] Concentration of WIP1 mRNA 0.2

[WIP1] Concentration of WIP1 protein 0.2

[HMGA1/HIPK2] Concentration of HMGA1/HIPK2 dimer 0.1

[ATM∗] Concentration of ATM activated by DNA damage 0

[HMGA1p] Concentration of HMGA1 phosphorylated by ATM 0.1

[ATMm] Concentration of ATM mRNA 5

[ATM ] Concentration of ATM protein 5

[HMGA1m] Concentration of HMGA1 mRNA 1.0

[HMGA1] Concentration of HMGA1 protein 1.0

[MDM2m] Concentration of MDM2 mRNA 0.26

[MDM2] Concentration of MDM2 protein 0.26

[MDM2p] Concentration of MDM2 phosphorylated by ATM 0.4

[HMGA1p/HIPK2] Concentration of dimer of HMGA1 phosphorylated by ATM and HIPK2 0.1


