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ABSTRACT
Motivation: In recent years, work has been carried out on clustering
gene expression microarray data. Some approaches are developed
from an algorithmic viewpoint whereas others are developed via
the application of mixture models. In this paper, a family of eight
mixture models which utilizes the factor analysis covariance structure
is extended to twelve models and applied to gene expression
microarray data. This modelling approach builds on previous work by
introducing a modified factor analysis covariance structure, leading to
a family of twelve mixture models, including parsimonious models.
This family of models allows for the modelling of the correlation
between gene expression levels even when the number of samples
is small. Parameter estimation is carried out using a variant of the
EM algorithm and model selection is achieved using the Bayesian
information criterion. This expanded family of Gaussian mixture
models , known as the EPGMM family, is then applied to two
well-known gene expression data sets.
Results: The performance of the EPGMM family of models is
quantified using the adjusted Rand index. This family of models
gives very good performance, relative to existing popular clustering
techniques, when applied to real gene expression microarray data.
Availability: The reduced, preprocessed data that were analyzed are
available at www.paulmcnicholas.info
Contact: pmcnicho@uoguelph.ca

1 INTRODUCTION
1.1 Model-Based Clustering
Cluster analysis methods are used to find subgroups in a
population. Clustering is of particular interest when analyzing gene
expression data because it can be used to find subgroups that
are well distinguished by their expression profiles. A number of
clustering techniques are commonly used including agglomerative
hierarchical, divisive hierarchical, k-means, k-medoids, and
model-based clustering. Model-based clustering is a technique for
estimating group membership based on parametric finite mixture
models. The density of a parametric finite mixture model can be
written

f(x | π1, . . . , πG, θ1, . . . , θG) =
GX

g=1

πgr(x | θg),

∗To whom correspondence should be addressed.

where πg ∈ [0, 1], such that
PG

g=1 πg = 1, is the probability of
membership of sub-population g, and r(x | θg) is the density of a
multivariate random variable X with parameters θg . Overviews of
finite mixture models are given by McLachlan and Peel (2000a) and
Frühwirth-Schnatter (2006).

In the model-based clustering literature, the finite Gaussian
mixture model is most commonly used (examples include Fraley
and Raftery, 2002; McLachlan et al., 2002; McNicholas and
Murphy, 2008, 2010). The density of a finite Gaussian mixture
model is given by,

f(x | ϑ) =
GX

g=1

πgφ(x | µg,Σg), (1)

where φ(x | µg,Σg) is the density of a multivariate Gaussian
random variable X with mean µg and covariance matrix Σg ,
and ϑ = (π1, . . . , πG, µ1, . . . , µG,Σ1, . . . ,ΣG). Note that the
Gaussian mixture model has been used within the bioinformatics
literature for purposes other than clustering: for example,
McLachlan et al. (2006) apply a two-component mixture model to
detect differential gene expression.

Gaussian mixture models offer an advantage over other
commonly used approaches because the covariance structure can
potentially account for correlation between expression levels within
an expression profile. Consequently, these models are more flexible
than k-means or hierarchical clustering which commonly use
Euclidean distance when clustering. However, due to the high
dimensional nature of expression data, additional structure needs
to be assumed for the covariance matrices, so that the model can
be fitted in high dimensional settings. The MCLUST (Fraley and
Raftery, 2002) approach to model-based clustering, which utilizes
eigen-decomposed covariance matrices, can only be applied to
clustering expression profiles if a diagonal covariance structure is
assumed; Yeung et al. (2001) were able to cluster genes using
MCLUST but not expression profiles. By assuming a highly
parsimonious but non-diagonal covariance structure, it is possible
to cluster expression profiles whilst allowing for correlation between
gene expressions.

In general, a structure like that given in Equation 1 can
be used to model such data. Then the parameters, and hence
group memberships, can be estimated using some variant of the
expectation-maximization (EM) algorithm (Dempster et al., 1977).
The covariance matrices Σg can be decomposed to allow the
construction of more parsimonious models.

c© Oxford University Press 2010. 1
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1.2 Parsimonious Gaussian Mixture Models
The factor analysis model (Spearman, 1904) assumes that a
p-dimensional random vector Xi can be modeled using a q-
dimensional vector of latent factors Ui, where q # p. The model
can be written Xi = µ + ΛUi + εi, where Λ is a p × q
matrix of factor weights, the latent variables Ui ∼ N (0, Iq) and
εi ∼ N (0,Ψ), where Ψ is a p× p diagonal matrix. Therefore, the
marginal distribution of Xi is N (µ,ΛΛ′ + Ψ).

To illustrate the implications of the covariance matrix attached to
this marginal distribution, Σ = ΛΛ′+Ψ, suppose that Xij and Xik

are expression levels from a sample Xi. Then, Cov(Xij , Xik) =
σjk =

Pq
s=1 λjsλks for j &= k, and Var(Xij) = σjj =Pq

s=1 λ2
js + ψqq . Hence, the matrix Λ models the covariance

between expression levels, and a combination of the Λ and Ψ
matrices models the variance of expression levels. The factor
analysis model allows for the modelling of a high-dimensional
non-diagonal covariance matrix with a low number of parameters.

Ghahramani and Hinton (1997) proposed a mixture of factor
analyzers model given by the finite Gaussian mixture model in
Equation 1, with Σg = ΛgΛ

′
g + Ψ. McLachlan and Peel (2000b)

used the more general covariance structure Σg = ΛgΛ
′
g + Ψg .

Tipping and Bishop (1999) proposed the mixtures of probabilistic
principal component analyzers model, for which the component
covariance matrix is Σg = ΛgΛ

′
g + ψgIp.

McNicholas and Murphy (2008) further generalized the factor
analysis covariance structure by including the possibility of
imposing the constraints: Λg = Λ, Ψg = Ψ and Ψg = ψgIp.
The result of imposing, or not, each of these three constraints is the
family of eight parsimonious Gaussian mixture models (PGMMs)
that are described in Table 1. Each member of this family of
models has a number of covariance parameters that is linear in data-
dimensionality. This is one of the reasons that this family of models
is particularly well suited to the analysis of high-dimensional
data. The constraints allow for assuming common structure in the
component covariance matrix Σg , if appropriate. By assuming
common covariance structure, a more parsimonious model can be
used and this can be estimated in a more stable manner.

Table 1. The covariance structure of each parsimonious Gaussian mixture
model — note that the UCU, UUC, and UUU models previously existed
under different names, as described in Section 1.2.

Λg = Λ Ψg = Ψ Isotropic Covariance Structure
C C C Σg = ΛΛ′ + ψIp

C C U Σg = ΛΛ′ + Ψ
C U C Σg = ΛΛ′ + ψgIp

C U U Σg = ΛΛ′ + Ψg

U C C Σg = ΛgΛ′
g + ψIp

U C U Σg = ΛgΛ′
g + Ψ

U U C Σg = ΛgΛ′
g + ψgIp

U U U Σg = ΛgΛ′
g + Ψg

C = constrained, U = unconstrained.

The PGMM family has another significant advantage that is
particularly important in applications involving high-dimensional
data. When running the alternating expectation-conditional
maximization (AECM) algorithm (Meng and van Dyk, 1997) for

these models, it is advantageous to make use of the Woodbury
identity (Woodbury, 1950) to avoid inverting any non-diagonal p×p
matrices. Given an n × n matrix A, an n × k matrix H, a k × k
matrix C and a k × n matrix V, the Woodbury identity states that

(A+HCV)−1 = A−1−A−1H(C−1+VA−1H)−1VA−1. (2)

Setting H = Λ, V = Λ′, A = Ψ and C = Iq in Equation 2 gives

(Ψ + ΛΛ′)−1 = Ψ−1 −Ψ−1Λ(Iq + Λ′Ψ−1Λ)−1Λ′Ψ−1. (3)

Now, the left hand side of Equation 3 involves inversion of a p ×
p matrix but the right hand side leaves only diagonal and q × q
matrices to be inverted. This is a major computational advantage
when modelling expression data, since q # p. A related identity for
the determinant of the covariance matrix is given by

|ΛΛ′ + Ψ| = |Ψ|/|Iq −Λ′(ΛΛ′ + Ψ)−1Λ|. (4)

Equations 3 and 4 are used by McLachlan and Peel (2000b) for the
mixtures of factor analyzers model and by McNicholas and Murphy
(2008) and McNicholas et al. (2010) for the PGMM family.

2 METHODOLOGY
2.1 Modified Factor Analysis Covariance Structure
The factor analysis covariance structure (cf. McLachlan and Peel,
2000b) can be further parameterized by writing Ψg = ωg∆g,
where ωg ∈ R and ∆g = diag{δ1, δ2, . . . , δp} such that
|∆g| = 1, for g = 1, 2, . . . , G. The resulting covariance structure
Σg = ΛgΛ

′
g + ωg∆g shall be known as the modified factor

analysis covariance structure. Now, this covariance structure can
be used within the model-based clustering framework, opening up
the possibility of models that are more parsimonious than their
PGMM counterparts. Specifically, constraints can be imposed on the
parameters Λg , ωg and ∆g leading to the twelve Gaussian mixture
models illustrated in Table 2. The family of models in Table 2 will
be referred to as the expanded PGMM (EPGMM) family hereafter.
Table 2 contains a total of four new, parsimonious, models when
compared to Table 1. Notably, all twelve members of the EPGMM
family have a number of covariance parameters that is linear in
the dimensionality of the data. Furthermore, the identities given in
equations 3 and 4 can be used for all twelve models.

2.2 Parameter Estimation for the EPGMM Family
2.2.1 Introduction Estimation of the model parameters, via the
AECM algorithm, is analogous to that of the PGMM parameter
estimation procedure described by McNicholas and Murphy (2008).
The estimates for the eight pre-existing models are obtained from
the PGMM estimates by writing Ψg = |Ψg|1/gΨg/|Ψg|1/g, and
then setting ωg = |Ψg|1/g and ∆g = Ψg/|Ψg|1/g. However,
the derivation of the maximum likelihood estimates of the model
parameters for the new models, requires the method of Lagrange
multipliers (Lagrange, 1788). Parameter estimates for the CCUU
model are derived in Section 2.2.2 and derivations for the other three
new models are given at the end of said section.

2.2.2 AECM Algorithm The EM algorithm is an iterative
technique for finding maximum likelihood estimates when data are

2
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Table 2. The covariance structure, number of covariance parameters and nomenclature for each member of the EPGMM family, along with the name of the
equivalent member of the PGMM family where applicable.

EPGMM Nomenclature
Λg = Λ ∆g = ∆ ωg = ω ∆g = Ip PGMM Equivalent Covariance Structure Number of Covariance Parameters

C C C C CCC Σg = ΛΛ′ + ωIp [pq − q(q − 1)/2] + 1
C C U C CUC Σg = ΛΛ′ + ωgIp [pq − q(q − 1)/2] + G
U C C C UCC Σg = ΛgΛ′

g + ωIp G[pq − q(q − 1)/2] + 1
U C U C UUC Σg = ΛgΛ′

g + ωgIp G[pq − q(q − 1)/2] + G
C C C U CCU Σg = ΛΛ′ + ω∆ [pq − q(q − 1)/2] + p
C C U U – Σg = ΛΛ′ + ωg∆ [pq − q(q − 1)/2] + [G + (p− 1)]
U C C U UCU Σg = ΛgΛ′

g + ω∆ G[pq − q(q − 1)/2] + p
U C U U – Σg = ΛgΛ′

g + ω∆g G[pq − q(q − 1)/2] + [G + (p− 1)]
C U C U – Σg = ΛΛ′ + ω∆g [pq − q(q − 1)/2] + [1 + G(p− 1)]
C U U U CUU Σg = ΛΛ′ + ωg∆g [pq − q(q − 1)/2] + Gp
U U C U – Σg = ΛgΛ′

g + ω∆g G[pq − q(q − 1)/2] + [1 + G(p− 1)]
U U U U UUU Σg = ΛgΛ′

g + ωg∆g G[pq − q(q − 1)/2] + Gp

C = constrained, U = unconstrained.

incomplete, or are treated as incomplete. In the expectation step (E-
step), the expected value of the complete-data log-likelihood (Q,
say) is computed, where the complete-data is the missing data plus
the observed data. Then in the maximization step (M-step), Q is
maximized with respect to the model parameters.

In the expectation-conditional maximization (ECM) algorithm
(Meng and Rubin, 1993), the M-step is replaced by a number of
conditional maximization (CM) steps. The AECM algorithm (Meng
and van Dyk, 1997) is an extension of the ECM algorithm that
permits different specification of the complete-data at each stage.
Extensive details on the EM algorithm and variants thereof are given
by McLachlan and Krishnan (2008).

Since there are two sources of missing data for the EPGMM
family, the group memberships and the latent factors, the AECM
algorithm is used for parameter estimation. We shall use zig to
denote the group membership of sample i, so that zig = 1 if
sample i is in group g and zig = 0 otherwise. At the first stage
of the algorithm, the complete-data are (xi, zig) and in the E-step
the zig are replaced by their expected values

E[Zig | π̂g, µ̂g, Λ̂g, ∆̂g, ω̂g] =
π̂gφ(xi | µ̂g, Λ̂g, ∆̂g, ω̂g)

PG
h=1 π̂hφ(xi | µ̂h, Λ̂h, ∆̂h, ω̂h)

,

to give the expected value of the complete data log-likelihood, Q1

say. In the interest of brevity, the expected value of Zig will be
denoted ẑig herein. The function Q1 is then maximized in the CM-
step to give µ̂g =

Pn
i=1 ẑigxi/ng and π̂g = ng/n, where ng =Pn

i=1 ẑig and n =
PG

g=1 ng .
At the second stage, the complete-data is (xi, zig,uig) and in the

E-step the zig are replaced by ẑig and the sufficient statistics for the
factors Uig are replaced by

E[Uig | xi, µg,Λg, ωg,∆g] = βg(xi − µg),

E[UigU
′
ig | xi, µg,Λg, ωg,∆g] =

Iq − βgΛg + βg(xi − µg)(xi − µg)′β′g,

respectively, where βg = Λ′
g(ΛgΛ

′
g + ωg∆g)−1, to give Q2. The

CM-step at this second stage will depend on the model. Consider
the CCUU model, so that Λg = Λ and ∆g = ∆. In this case,

the expected complete-data log-likelihood Q2(Λ, ωg,∆) can be
written

C +
1
2

GX

g=1

ng

h
p log ω−1

g + log |∆−1|− ω−1
g tr

˘
∆−1Sg

¯

+ 2ω−1
g tr

˘
∆−1Λβ̂gSg

¯
− ω−1

g tr
˘
Λ′∆−1ΛΘg

¯i
,

where C is constant with respect to Λ, ωg and ∆, and Θg = Iq −
β̂gΛ̂ + β̂gSgβ̂

′
g .

To maximize Q2 with respect to Λ, ωg and ∆, it is necessary to
use the method of Lagrange multipliers. First, form the Lagrange
function L(Λ, ωg,∆, κ) = Q(Λ, ωg,∆)− κ(|∆|− 1). Note that
we use κ to denote the Lagrange multiplier to avoid confusion with
the elements of the matrix Λ. Differentiating L with respect to Λ,
ω−1

g , ∆−1 and κ, respectively, gives the following score functions.

S1(Λ, ωg,∆, κ) =
∂L
∂Λ

=
GX

g=1

ng

ωg

h
∆−1Sgβ̂

′
g −∆−1ΛΘ̃g

i
,

S2(Λ, ωg,∆, κ) =
∂L

∂ω−1
g

=
ng

2

h
pωg − tr

˘
∆−1Sg

¯

+ 2 tr
˘
∆−1Λβ̂gSg

¯
− tr

˘
∆−1ΛΘgΛ

′¯i,

S3(Λ, ωg,∆, κ) =
∂L

∂∆−1
=

1
2

GX

g=1

ng

h
∆− ω−1

g S′g

+ 2ω−1
g Λβ̂gSg − ω−1

g ΛΘ′
gΛ

′
i

+ κ|∆|∆,

S4(Λ, ωg,∆, κ) =
∂L
∂κ

= |∆|− 1.

Note that S4 is included for completeness only and solving
S4 (Λ, ωg,∆, κ) = 0 just returns the constraint |∆| = 1. Now,
solving S1(Λ̂

new, ω̂g, ∆̂, κ) = 0 gives

Λ̂new =

"
GX

g=1

ng

ω̂g
Sgβ̂

′
g

#"
GX

g=1

ng

ω̂g
Θg

#−1

,

3
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and solving S2(Λ̂
new, (ω̂g)new, ∆̂, κ) = 0 gives

(ω̂g)new =
1
p

tr
n
∆̂−1

h
Sg − 2Λ̂newβ̂gSg + Λ̂newΘg(Λ̂new)′

io
.

Solving diag{S3(Λ̂
new, (ω̂g)new, ∆̂new, κ)} = 0 leads to

∆̂new =

1
n + 2κ

diag

(
GX

g=1

ng

(ω̂g)new

h
Sg − 2Λ̂newβ̂gSg + Λ̂newΘ′

g(Λ̂new)′
i)

.

But ∆̂new is a diagonal matrix with |∆̂new| = 1, therefore

n + 2κ =

 
pY

j=1

ξj

! 1
p

,

where ξj is the jth element along the diagonal of the matrix
GX

g=1

ng

(ω̂g)new

h
Sg − 2Λ̂newβ̂gSg + Λ̂newΘ′

g(Λ̂new)′
i
.

Therefore, it follows that

κ =
1
2

2

4
 

pY

j=1

ξj

! 1
p

− n

3

5 . (5)

The derivations for the other three new models are similar. The
estimates in the UCUU case are

Λ̂new
g = Sgβ̂gΘ

−1
g ,

(ω̂g)new =
1
p

tr
˘
∆̂−1Sg − ∆̂−1Λ̂new

g β̂gSg

¯
,

∆̂new =
1

n + 2κ
diag

(
GX

g=1

ng

(ω̂g)new

h
Sg − Λ̂new

g β̂gSg

i)
,

where κ is as defined in Equation 5 but, in this case, ξj is the jth
element along the diagonal of the matrix

GX

g=1

ng

(ω̂g)new

h
Sg − Λ̂new

g β̂gSg

i
.

In the CUCU case, the estimate for Λ is derived in a row-by-row
fashion as

λ̂
new
i = ri

 
GX

g=1

ng

δ̂g(i)

Θg

!−1

,

for i = 1, . . . , p where ri is the ith row of the matrixPG
g=1(ng/δ̂g(j))Sgβ̂

′
g, and δ̂g(i) is the ith element along the

diagonal of the matrix ∆̂g . The other estimates are

(ω̂)new =
1
p

GX

g=1

π̂g tr
n
∆̂−1

g

h
Sg − 2Λ̂newβ̂gSg − Λ̂newΘg(Λ̂new)′

io
,

∆new
g =

ng

ω̂new (ng + 2κg)
diag

˘
Sg − 2Λ̂newβ̂gSg + Λ̂newΘg(Λ̂new)′

¯
,

κg =
ng

2

2

4 1
(ω̂g)new

 
pY

j=1

ξgj

! 1
p

− 1

3

5 ,

where ξgj is the jth element along the diagonal of the matrix Sg −
2Λ̂newβ̂gSg + Λ̂newΘg(Λ̂new)′.

In the CCUU case, the parameter estimates are given by

Λ̂new
g = Sgβ̂gΘ

−1
g ,

(ω̂)new =
1
p

GX

g=1

π̂g tr
˘
∆̂−1

g (Sg − Λ̂new
g β̂gSg)

¯
,

∆̂new
g =

1
(ω̂g)new (1 + 2κg/ng)

diag
˘
S′g − Λ̂newβ̂gSg

¯
,

and κg is as in the CUCU case but with ξgj given by the jth element
along the diagonal of the matrix S′g − Λ̂newβ̂gSg .

Note that the predicted clustering for each member of
the EPGMM family is given by the maximum a posteriori
(MAP) classification. That is, the posterior predicted component
membership of tissue i is the value of g for which ẑig is greatest.

2.3 Convergence & Model Selection
2.3.1 Convergence Criterion Aitken’s acceleration (Aitken,
1926) is used in the analyses herein to estimate the asymptotic
maximum of the log-likelihood at each iteration. This allows
a decision about whether or not a given AECM algorithm has
converged. Aitken’s acceleration at iteration t is given by

a(t) =
l(t+1) − l(t)

l(t) − l(t−1)
,

where l(t+1), l(t) and l(t−1) are the log-likelihood values from
iterations t + 1, t and t − 1, respectively. The asymptotic estimate
of the log-likelihood at iteration t + 1 is given by

l(t+1)
∞ = l(t) +

1

1− a(t)
(l(t+1) − l(t))

(Böhning et al., 1994). Herein, the stopping criterion proposed by
McNicholas et al. (2010) is used, so that the algorithm can be
stopped when l(t+1)

∞ − l(t) < ε. More specifically, ε = 0.1 is used.
Note that this criterion is very similar to that proposed by Lindsay
(1995), who suggested stopping when l(t+1)

∞ − l(t+1) < ε.

2.3.2 Model Selection The Bayesian information criterion (BIC
Schwarz, 1978) is used to select the best member of the EPGMM
family, in terms of both model and number of factors. Note that the
BIC can also be used to select the number of mixture components
(cf. Fraley and Raftery, 1999; McNicholas and Murphy, 2008) but
this is not necessary for the analyses herein since we fix G = 2.
For a model with parameters θ, the Bayesian information criterion
(BIC) is given by BIC = 2l(x, θ̂) −m log n, where l(x, θ̂) is the
maximized log-likelihood, θ̂ is the maximum likelihood estimate
of θ, m is the number of free parameters in the model and n
is the number of observations. The effectiveness of the BIC for
choosing the number of factors in a factor analysis model has been
established by Lopes and West (2004), while McNicholas et al.
(2010) provide practical evidence that the BIC performs well in
choosing the number of factors for the PGMM family of models.

A number of other model selection criteria could be used
including the Akaike information criterion (AIC Akaike, 1974), the
integrated completed likelihood (ICL Biernacki et al., 2000) and
clustering stability (cf. von Luxburg, 2009). However, we found that
the BIC gave a quick solution and generally good clustering results.

4
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3 ANALYSES
3.1 Dimensionality Reduction
McLachlan et al. (2002) analyzed two microarray gene expression
data sets — one on leukaemia data and another on colon tissue
samples — using the EMMIX-GENE approach. The first stage of
this approach focuses on data reduction where, initially, one and
two-component mixtures of t-distributions are fitted to the data.
Then a gene is retained only if two conditions are satisfied.

One of these conditions is that the minimum cluster size exceeds
some pre-specified threshold a1. The other condition concerns the
result of a likelihood ratio test, or tests. First, the hypothesis H0 :
G = 1 is tested against H1 : G = 2 and the gene is retained if

−2 log λ > a2, (6)

where λ is the likelihood ratio statistic. However, if the condition
in Equation 6 is not met then the hypothesis H0 : G = 2 is tested
against H1 : G = 3 and the gene is retained if the same condition
is satisfied, with the same a2, for this test statistic λ and at least two
of the three components contain at least a1 tissues.

When fitting the two and three-component mixture models for
this purpose, starting values for the component memberships are
defined randomly or by using starting values based on k-means
clustering results. This whole process represents the first stage
of the EMMIX-GENE approach and can be carried out using
the select-genes software that accompanies McLachlan et al.
(2004). For the analyses herein, the select-genes software is
used with thresholds a1 = a2 = 8, as in McLachlan et al. (2002),
and 50 random and 50 k-means starts.

3.2 Leukaemia Data
3.2.1 The Data Golub et al. (1999) presented data on two forms
of acute leukaemia: acute lymphoblastic leukaemia (ALL) and
acute myeloid leukaemia (AML). Affymetrix arrays were used to
collect measurements for 7,129 genes on 72 tissues. There were
a total of 47 ALL tissues and 25 with AML. The data were
sourced from the website accompanying McLachlan et al. (2004,
www.maths.uq.edu.au/∼gjm/emmix-gene/) and so they
had been preprocessed (Dudoit et al., 2002; McLachlan et al., 2002)
as follows.

1. Genes with expression less than 100 or greater than 16,000
were removed.

2. Genes with expressions satisfying max/min≤5 and max−min≤500
were removed.

3. The natural logarithm was taken.

Following this preprocessing, a total of 3,731 genes remained. This
number was further reduced to 2,030 following application of the
select-genes software (cf. Section 3.1).

3.2.2 The EPGMM Approach Treating this as a clustering
problem where the form of leukaemia is unknown, all twelve
members of the EPGMM family (Table 2) were fitted to these data
for G = 2, q = 1, . . . , 6 and ten different random starting values
for the ẑig . The BIC for the best q for each of the 12 members of the
EPGMM family is given in Table 3.

Table 3. The BIC for the best q for each of the 12 members of the EPGMM
family for the leukaemia data.

Model q BIC Model q BIC
CCCC 3 -411,646.50 CCUC 3 -411,566.29
UCCC 1 -416,954.56 UCUC 1 -416,803.57
CCCU 4 -414,615.22 CCUU∗ 5 -413,207.29
UCCU 1 -423,354.79 UCUU∗ 1 -422,089.38
CUCU∗ 4 -413,966.90 CUUU 5 -413,978.04
UUCU∗ 1 -423,933.46 UUUU 1 -423,532.04

∗ denotes one of the four new models.

The best of these models, in terms of BIC, was a CCUC model
with q = 3 latent factors. The chosen model has a non-diagonal
covariance structure where the covariance between pairs of genes
is equal across different clusters but the variance of each gene
is unequal across different clusters (see Section 1.2). The MAP
classifications arising from the parameter estimates associated with
this model are given in Table 4; only five tissue samples were
misclassified.

Table 4. Estimated group membership for the best EPGMM model for the
leukaemia data.

1 2
Acute lymphoblastic leukaemia (ALL) 42 0
Acute myeloid leukaemia (AML) 5 25

3.2.3 Hierarchical Clustering, k-means, k-medoids & MCLUST
In addition to the EPGMM technique, several other techniques
were applied to these data using the R software (R Development
Core Team, 2010). Agglomerative hierarchical clustering was
used, with Euclidean distance and three different linkage methods:
complete, average, and single. The k-means (cf. Hartigan and
Wong, 1979) and k-medoids techniques were also used. In the
latter case, the partitioning around medoids (PAM; cf. Kaufman
and Rousseeuw, 1990, Chapter 2) algorithm was used. Finally,
in order to compare our model-based clustering approach to the
well-established MCLUST approach, we used the mclust package
(Fraley and Raftery, 1999) for the R software.

Table 5. Summary results for all of the clustering techniques that were
applied to the leukaemia data.

BIC Rand Index Adjusted Rand Index
Hierarchical (Complete) – 0.532 0.058
Hierarchical (Average) – 0.525 -0.024
Hierarchical (Single) – 0.532 -0.013
k-means – 0.593 0.187
PAM – 0.518 0.023
MCLUST (VII) -416,293.2 0.593 0.186
EPGMM (CCUC, q = 3) -411,566.3 0.869 0.738

The results, which are summarized in Table 5, give the
Rand and adjusted Rand indices as measures of class agreement.

5



McNicholas and Murphy

The Rand index (Rand, 1971) is based on pairwise agreements
and disagreements, and the adjusted Rand index (Hubert and
Arabie, 1985) is effectively the Rand index corrected for random
chance. These indices reveal that the best of the non-model-based
approaches was k-means clustering, with an adjusted Rand index of
0.187. In fact, k-means clustering outperformed mclust on these
data, but the EPGMM model with the greatest BIC (CCUC, q = 4)
was the best model overall.

3.2.4 The EMMIX-GENE Approach McLachlan et al. (2002)
analyzed the same data using the EMMIX-GENE approach with
four random and four k-means starts in the first stage, which reduced
the number of genes to 2,015. In the second stage, a mixture of 40
normal distributions with isotropic covariance structure was fitted
to the 2,015 genes. Two of these groups (Groups 1 and 3) provided
clusterings that were most similar to the type of luekaemia — of
course, in a real clustering scenario this could not be established. A
two-component mixture of factor analyzers, with q = 6 factors, was
fitted to the data using the genes from groups 1 and 3, respectively.
Using the genes from Group 1 led to the misclassification of 13
tissues and using those from Group 3 led to the misclassification
of 6 tissues. Note that McLachlan et al. (2002) did not specify how
many different random starts were used but, based on other analyses,
it seems likely that 50 random and 50 k-means starts were used.

3.2.5 Two Other Approaches In addition to the EMMIX-Gene
approach, McLachlan et al. (2002) used two other approaches to
cluster the leukaemia tissues. In both cases, the first stage was
identical to that described in Section 3.2.4. The first alternative
approach was to cluster the tissues based on the 40 fitted group
means and the top 50 of the 2,015 genes. Fitting a two-component
mixture of factor analyzers with q = 8 factors to these data, using
50 random and 50 k-means starts, led to the misclassification of just
one tissue. The second alternative approach was to base the analysis
on the top fifty genes. Fitting a two-component mixture of factor
analyzers, with q = 8 factors to these data, using 50 random and 50
k-means starts, led to the misclassification of ten tissues.

3.2.6 Comments The EPGMM approach gave very good
clustering performance when applied to the leukaemia data. This
approach used ten random starts and led to the misclassification of
just five tissues. This performance far exceeds that of agglomerative
hierarchical clustering, k-means clustering, PAM, and MCLUST.
In fact, the best of all of these techniques had an adjusted Rand
index of 0.189, while the best EPGMM model had an adjusted
Rand index of 0.738. Although, in one instance, one of the
approaches of McLachlan et al. (2002) returned a better predicted
classification, it is difficult to make a direct comparison to the
EPGMM approach. This difficulty arises because the EPGMM
approach is a genuine clustering approach, while the methods
described in sections 3.2.4 and 3.2.5 assumed, to some extent,
knowledge of the truth. This knowledge was clearly used in the
analyses described in Section 3.2.4 but was used in a less obvious
fashion in the analyses given in Section 3.2.5. In this latter case,
the choice of the number of clusters (40) was validated in some
sense by the fact that two of the groups give classifications that
were similar to the true leukaemia type. In fact, as mentioned
by McLachlan et al. (2002), an objective technique for choosing
this number is not possible since genes cannot be assumed to be

independently distributed within a tissue sample. Furthermore, it is
quite likely that the number of factors q was selected, in each case,
to give the best classification. This could be done objectively, as in
Section 3.2.2, using the BIC. Finally, any comparison between the
EPGMM approach and the approaches of McLachlan et al. (2002)
would have to be taken in context with the fact that different subsets
of the 3,731 genes are used in each case.

3.3 Colon Data
3.3.1 The Data Alon et al. (1999) presented gene expression
data on 62 colon tissue samples, of which 40 were tumours and
the remaining 22 were normal. Affymetrix arrays were used to
collect measurements for 6,500 gene expressions on all 62 tissues.
Following Alon et al. (1999) and McLachlan et al. (2002), only
the 2,000 genes with the highest minimal intensity are focused
upon. The data were again sourced from the website mentioned in
Section 3.2.1 and, this time, the only preprocessing was the taking
of natural logarithms, followed by normalization. Application
of the select-genes software, with the settings specified in
Section 3.1, led to the reduction of the number of genes from 2,000
to just 461.

3.3.2 The EPGMM Approach Treating this as a clustering
problem where the type of tissue is unknown, all twelve members
of the EPGMM family (Table 2) were fitted to these data for G = 2,
q = 1, . . . , 10 and ten different random starting values for the ẑig .
The BIC for the best q for each of the 12 members of the EPGMM
family is given in Table 6.

Table 6. The BIC for the best q for each of the 12 members of the EPGMM
family for the colon data.

Model q BIC Model q BIC
CCCC 4 -79,085.73 CCUC 6 -70,937.72
UCCC 3 -77,267.65 UCUC 3 -77,268.16
CCCU 8 -71,064.11 CCUU∗ 7 -71,063.71
UCCU 3 -77,310.19 UCUU∗ 4 -77,532.97
CUCU∗ 8 -71,609.10 CUUU 8 -71,631.35
UUCU∗ 2 -78,458.83 UUUU 2 -78,306.33

∗ denotes one of the four new models.

The best of these models, again in terms of BIC, was a CCUC
model with q = 6 latent factors; the covariance structure in this
model is the same as that chosen for the leukaemia data (see Section
3.2.2). The MAP classifications given by the parameter estimates
associated with this model are given in Table 7 ; only five tissue
samples were misclassified.

Table 7. Estimated group membership for the best EPGMM model for the
colon data.

1 2
Tumour 37 3
Normal 2 20

3.3.3 Hierarchical Clustering, k-means, k-medoids & MCLUST
In addition to the EPGMM technique, the methods used in
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Section 3.2.3 were run on these colon data using the R software.
The results, which are summarized in Table 8, suggest that the
best of the non-model-based approaches was PAM, with an adjusted
Rand index of 0.218. This time, mclust outperformed k-means
clustering but PAM outperformed mclust. The EPGMM model
with the greatest BIC (CCUC, q = 6) was the best model,
misclassifying just five tissues based on ten random starts.

Table 8. Summary results for all of the clustering techniques that were
applied to the colon data.

BIC Rand Index Adjusted Rand Index
Hierarchical (Complete) – 0.497 -0.018
Hierarchical (Average) – 0.526 -0.005
Hierarchical (Single) – 0.526 -0.014
k-means – 0.494 -0.016
PAM – 0.611 0.218
MCLUST (VII) -81,124.36 0.500 -0.006
EPGMM (CCUC, q = 6) -70,937.72 0.849 0.697

3.3.4 Correspondence with McLachlan et al. (2002) Using
various techniques, McLachlan et al. (2002) found five different
clusterings of these data. However, none of these clusterings
corresponded to the tissue type. While, once again, the EPGMM
results are not directly comparable to those of McLachlan et al.
(2002), it is interesting to look at the second best of the EPGMM
models. The second best of the EPGMM models, in terms of BIC,
was a CCUU model with q = 7 latent factors. Note that this is
one of the four new models that were introduced herein and, again,
this model has equal covariance between pairs of genes, however
the variance structure is more complex than for the CCUC model.
The MAP classification given by the parameter estimates associated
with this CCUU model do not separate tumour from normal tissue.
However, they are similar to what McLachlan et al. (2002) call
C1, in that they seem sensible when one considers that there was
a change of protocol during the experiment (Getz et al., 2000;
McLachlan et al., 2002). Specifically, tissues 1–11 and 41–51 were
all extracted from the first 11 patients using a poly detector, while
the remaining samples were taken from the other patients using total
extraction of RNA. Looking at the tissues by extraction method,
rather than by tissue type, leads to the estimated classifications given
in Table 9; only eight of the tissues were misclassified by this CCUU
model when the data are considered by extraction method.

Table 9. Estimated group membership for the second best EPGMM model
for the colon data.

1 2
Poly Detector 19 3
Total Extraction of RNA 5 35

The results from applying the other methods to the colon data
(cf. Table 8), can also be viewed in terms of extraction method,
rather than tissue type. These results are given, along with our best
CCUU model, in Table 10. From this table, it is clear that our CCUU
model gives the best clustering performance of all of the approaches.

Furthermore, the hierarchical (complete and average linkage), k-
means, and MCLUST clustering results are all better when viewed
in terms of extraction method.

Table 10. Summary results, by extraction method, for all of the clustering
techniques that were applied to the colon data.

BIC Rand Index Adjusted Rand Index
Hierarchical (Complete) – 0.518 0.024
Hierarchical (Average) – 0.545 0.035
Hierarchical (Single) – 0.526 -0.014
k-means – 0.526 0.048
PAM – 0.581 0.158
MCLUST (VII) -81,124.36 0.526 0.045
EPGMM (CCUU, q = 7) -71,063.71 0.772 0.542

3.3.5 Comments The EPGMM approach gave very good
clustering performance when applied to the colon data. Our
approach led to the misclassification of just five tissues, when
these data were viewed by tissue type. This performance far
exceeded that of all of the other techniques that were used — in
fact, the performance of these other approaches was surprisingly
poor, with only PAM giving better than random classifications (cf.
Table 8). This phenomenon is partly explained when one looks
at the classifications by extraction method, rather than by tissue
(cf. Table 10). In this case, only one method performed worse
than random, which might suggest that techniques like k-means
clustering and MCLUST were picking up extraction method more-
so than tissue type. That said, the performance of these methods was
only slightly better than random which suggests that the restrictive
cluster shapes imposed by k-means clustering and MCLUST were
not at all suited to the data. On the other hand, the best of
the new EPGMM models gave the based clustering performance,
misclassifying just eight samples.

4 DISCUSSION
The EPGMM family of models has been shown to give good
clustering performance when applied to gene expression microarray
data. These applications, concerning leukaemia and colon tissue
data, respectively, were conducted as genuine clustering examples.
That is, no information on the true tissue classification was used for
parameter estimation or model selection. In fact, this information
was only used to assess the performance of the selected model.
In this context, the clustering performance of the EPGMM family
can be looked upon favourably. Moreover, the performance of the
EPGMM family on both data sets far exceeded that of a number of
popular clustering techniques, including agglomerative hierarchical
clustering and k-means clustering.

However, like the techniques of McLachlan et al. (2002), the
EPGMM family relies on multiple random starts. In addition to the
obvious drawback of the sensitivity of results to the starting values,
there is the computation time that is required. Furthermore, there is
no guarantee that increasing the number of random starts will lead
to better clustering results. This is due, in the main, to the fact that
models with greater BIC do not necessarily give better clustering
performance. This phenomenon has been observed previously and
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work into finding better model selection techniques is ongoing.
That said, the EPGMM family did perform well in the analyses in
Section 3, based on random starting values and using the BIC.

5 CONCLUSION
The EPGMM family of mixture models, for the model-based
clustering of gene expression microarray data, has been introduced.
This family of models is an extension of the PGMM family of
models which, in turn, is an extension of the mixtures of factor
analyzers model. The EPGMM family of models are very well
suited to the analysis of high dimensional data. The reason for
this suitability is three-fold. First, each member of the EPGMM
family has a number of covariance parameters that is linear in
the data-dimensionality. Second, as shown herein, the Woodbury
identity can be used to avoid the inversion of any non-diagonal
p × p matrices, leading to efficient computation. Thirdly, as
shown by McNicholas et al. (2010) in the context of the PGMM
family, these models are ‘trivially parallelizable’, opening up
the possibility of even more efficient parameter estimation using
parallel computing. The EPGMM family was applied to two well
known gene expression microarray data sets. In both cases, the
EPGMM family performed well and gave much better clusterings
than several popular clustering techniques. Herein, we took G = 2
for all of the analysis but future work will focus on the selection
of G.
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Böhning, D., Dietz, E., Schaub, R., Schlattmann, P., and Lindsay, B. (1994). The
distribution of the likelihood ratio for mixtures of densities from the one-parameter
exponential family. Annals of the Institute of Statistical Mathematics, 46, 373–388.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society.
Series B, 39(1), 1–38.

Dudoit, S., Fridlyand, J., and Speed, T. P. (2002). Comparison of discrimination
methods for the classification of tumors using gene expression data. Journal of
the American Statistical Association, 97(457), 77–87.

Fraley, C. and Raftery, A. E. (1999). MCLUST: Software for model-based cluster
analysis. Journal of Classification, 16, 297–306.

Fraley, C. and Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and
density estimation. Journal of the American Statistical Association, 97, 611–631.
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