
Title Grid-Enabled Hydropad: a Scientific Application for Benchmarking GridRPC-Based

Programming Systems

Authors(s) Guidolin, Michele, Lastovetsky, Alexey

Publication date 2008-12-12

Publication information Guidolin, Michele, and Alexey Lastovetsky. Grid-Enabled Hydropad: A Scientific Application for

Benchmarking GridRPC-Based Programming Systems. University College Dublin. School of

Computer Science and Informatics, December 12, 2008.

Series UCD CSI Technical Reports, ucd-csi-2008-10

Publisher University College Dublin. School of Computer Science and Informatics

Item record/more

information

http://hdl.handle.net/10197/12375

Downloaded 2024-03-29T04:02:15Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=Grid-Enabled+Hydropad%3A+a+Scientific+A...&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F12375

Grid-Enabled Hydropad: a Scientific Application for

Benchmarking GridRPC-Based Programming Systems

Michele Guidolin, Alexey Lastovetsky
School of Computer Science and Informatics

University College Dublin

Belfield, Dublin 4, Ireland

{ michele.guidolin , alexey.lastovetsky } @ucd.ie

Technical Report UCD-CSI-2008-10

December 12, 2008

Abstract

GridRPC is a standard API that allows an application to easily interface with a
Grid environment. It implements a remote procedure call with a single task map and
client-server communication model. In addition to non-performance-related benefits,
scientific applications having large computation and small communication tasks can
also obtain important performance gains by being implemented in GridPRC. However,
such convenient applications are not representative of the majority of scientific applica-
tions and therefore cannot serve as fair benchmarks for comparison of the performance
of different GridRPC-based systems. In this paper, we present Hydropad, a real life as-
trophysical simulation, which is composed of tasks that have a balanced ratio between
computation and communication. While Hydropad is not the ideal application for per-
formance benefits from its implementation with GridRPC middleware, we show how
even its performance can be improved by using GridSolve and SmartGridSolve. We
believe that the Grid-enabled Hydropad is a good candidate application to benchmark
GridRPC-based programming systems in order to justify their use for high performance
scientific computing.

1 Introduction

A typical numerical simulation needs a lot of computational power and memory footprint
to solve a physical problem with a high accuracy. A single hardware platform that has
enough computational power and memory to handle problems of high complexity is not
easy to access. Grid computing provides an easy way to gather computational resources,

1

whether local or geographically separated, that can be pooled together to solve large prob-
lems. GridRPC [8] is a standard API promoted by the Open Grid Forum that allows the
user to smoothly design an application to interface with a Grid environment. Currently
a number of Grid middleware systems are GridRPC compliant including GridSolve [10],
Ninf-G [9] and DIET [4]. Performance improvements are not the only goals of these systems,
however they are designed to achieve high performance in execution of scientific applications.
A good GridRPC-based programming system permits a typical scientific application to gain
non-performance-related benefits, like ease of development and control of the application,
while not compromising or even improving its performance.

A GridRPC middleware works by individually mapping the application’s tasks to appro-
priate servers in the Grid and communicating the data between the servers and the client
computer. In a remote execution all the data used by a task has to be available on the chosen
server, consequently for each task there is a high quantity of data communication. A scien-
tific application, that obviously benefits from the use of GridRPC, consists of tasks that are
highly computationally intensive and low in data communication. These applications, which
are the best suited to run on a Grid environment, are not representative of many real-life
scientific applications. Unfortunately they are typically chosen, or artificially created, to test
and show the performance of a GridRPC middleware system. We believe that to justify the
use of GridRPC for a wide range of applications, we should not use an extremely suitable
application as a benchmark but a real life application that shows the eventual limits and
benefits of the GridRPC middleware systems tested.

In this work, we present Hydropad, a real-life astrophysical application that simulates
the evolution of clusters of galaxies in the universe [6]. This application is composed of tasks
that have a balanced ratio between computation and communication. Hydropad requires
high processing resources because it has to simulate an area comparable to the dimension
of the universe and simultaneously try to achieve a high enough resolution to show how
the stars developed. In section 3, we introduce the motivations and benefits behind the
use of GridRPC in Hydropad and how it is implemented. We also present experimental
results obtained for the GridSolve version of Hydropad demonstrating that in many realistic
situations this GridRPC implementation will outperform the original sequential Hydropad.
In section 4, we introduce SmartGridSolve [2], a new middleware that extends the execution
model of GridRPC to overcome its limitations. We demonstrate that SmartGridSolve can
significantly improve the performance of Hydropad even in situations where GridSolve fails
to do it.

2 Hydropad: a Simulator of Galaxies’ Evolution

Hydropad is a cosmological application, originally written by Claudio Gheller [6], which
simulates the evolution of clusters of galaxies in the universe. The cosmological model
that this application is based on, has the assumption that the universe is composed of two
different kinds of matter. The first is baryonic matter, which is directly observed and forms
all bright objects. The second is dark matter, which is theorised to account for most of

2

the gravitational mass in the Universe. The evolution of this system can only be described
by treating both components at the same time, looking at all of their internal processes,
while their mutual interaction is regulated by a gravitational component. Figure 1 shows an
example of a typical output generated by Hydropad.

Figure 1: Example of Hydropad Output

The dark matter computation can be simulated using N-Body methods [7]. This method
utilises the interactions between a large number, Np, of collision-less particles. These parti-
cles, subjected to gravitational forces, can simulate the process of the formation of galaxies.
The accuracy of this simulation depends on the quantity of particles used. Hydropad utilises
a Particle-Mesh (PM) N-Body algorithm, which has a linear computational cost and depends
on the number of particles O(Np). In the first part this method transforms the particles,
through an interpolation, into a grid of density values. Afterwards the gravitational poten-
tial is calculated from this density grid. In the last part the particles are moved depending
on the gravitational forces of the cell where they were located.

The baryonic matter computation utilises a Piecewise-Parabolic-Method (PPM) Hydro-
dynamic algorithm [5]. This is a higher order method for solving partial differential equations.
PPM reproduces the formation of pressure forces and the heating and cooling processes gen-
erated by the baryonic component during the formation of galaxies. For each time step of
the evolution, the fluid quantities of the baryonic matter are estimated over the cells of the
grid by using the gravitational potential. The density of this matter is then retrieved and
used to calculate the gravitational forces for the next time step. The accuracy of this method
depends on the number of cells of the grid used, Ng, and its computational cost is linear
O(Ng). The application computes the gravitational forces, needed in the two previous algo-
rithms, by using the Fast-Fourier-Transform (FFT) method to solve the Poisson equation.
This method has a computational cost of O(Ng log Ng). All the data, used by the different
components in Hydropad, are stored and manipulated in three-dimensional grid-like struc-
tures. In the application, the uniformity of these base structures permits easy interaction
between the different methods.

3

Figure 2 shows the work-flow of the Hydropad application. It is composed of two parts:
the initialisation of the data and the main computation. The main computation of the
application consists of a number of iterations that simulate the discrete time steps used to
represent the evolution of the universe from the Big Bang to present time. This part consists
of three tasks: the gravitational task (FFT method), the dark matter task (PM method)
and the baryonic matter task (PPM method). For every time step in the evolution of the
universe, the gravitational task generates the gravitational field using the density of the two
matters calculated in the previous time step. Hence the dark and baryonic tasks use the
newly produced gravitational forces to calculate the movement of the matter that happens
during this time step. Then the new density is generated and the lapse of time in the next
time step is calculated from it. It is possible to see in figure 2 that the dark matter task and
baryonic matter task are independent of each other.

Figure 2: Internal structure of Hydropad application

The initialisation part is also divided in two independent tasks. The main characteristic
of dark matter initialisation is that the output data is generated by the external application
grafic, a module of the package COSMICS [1]. Grafic, given the initial parameters as an
input, generates the position and velocity of the particles that will be used in the N-Body
method. The output data is stored in two files which information has to be read by the ap-
plication during the initialisation part. Like the main application, grafic has a high memory
footprint.

An important characteristic of Hydropad is the difference in computational and memory
load of its tasks. Despite both algorithms being linear, the computational load of the baryonic
matter component is far greater than the dark matter one, Cbm ≫ Cdm, when the number
of particles is proportional to the number of cells in the grid, Np = Ng. Furthermore the
quantity of data used by the dark matter computation is greater than the baryonic matter
one, Ddm ≫ Dbm.

4

As previously indicated Hydropad utilises three dimensional grid structures to represent
the data. In the application code these grids are represented as vectors. In the case of the
dark matter component, the application stores the position and velocity in three vectors for
each particle, one for each dimension. The size of these vectors depends on the number of
particles, Np, chosen to run on the simulation. For the gravitational and baryonic components
the different physical variables, such as force or pressure, are stored in vectors, with the size
depending on the given number of grid cells Ng. In a typical simulation the number of
particles is of the order of billions, while the number of cells in a grid can be over 1024 for
each grid side. Given that for the values of Ng = 1283 and Np = 10Mn the total amount of
memory used in the application is roughly 500MB, the memory demand to run a typical
simulation is very high.

3 Enabling Hydropad for Grid Computing

GridRPC provides a simple remote procedure call (RPC) to execute, synchronously or asyn-
chronously, a task in a Grid environment. GridRPC differs from the traditional RPC method
since the programmer does not need to specify the server to execute the task. When the
Grid-enabled application runs, each GridRPC call results in the middleware mapping the call
to a remote server and then the middleware is responsible for the execution of that task on
the mapped server. As a result, each task is mapped separately and independently of other
tasks of the application. Another important aspect of GridRPC is its communication model.
For each task, the GridRPC middleware sends all the input data from the client machine to
the remote server. Then, after the remote task has finished its execution, the middleware
retrieves the output data back to the client machine. Therefore, remote execution of each
task results in significant amount of data communicated between the client machine and
servers.

Hydropad is not the ideal application for execution in a Grid environment because of
the relatively low complexity of its tasks (log-linear at maximum) and the large amount of
input and output data moved between tasks. In this work, we study how such an application
can benefit from implementation in GridRPC. The performance related benefits include the
potential for faster solution of a problem of a given size and solution of problems of larger
sizes.

Faster solution of a given problem. Grid-enabled Hydropad has the potential to per-
form the simulations of the same given size faster than the original Hydropad on the client
machine. There are two main reasons for this:

• The Hydropad application includes two independent tasks, the baryonic matter task
and the dark matter task, that can be executed in parallel. The non-blocking GridRPC
task call API allows us to implement their parallel execution on remote servers of
the Grid environment. This parallelisation will decrease the computation time of the
application.

5

• If the Grid environment contains machines more powerful than the client machine, then
remote execution of the tasks of this application on these more powerful machines will
also decrease the computation time of the application.

However, this decrease of the computation time does not come for free. The application will
pay the communication cost due to remote execution of the tasks. If communication links
connecting the client machine and the remote servers are relatively slow, than the accelera-
tion of computations will be compensated by the communication cost resulting in the total
execution time of the application higher than in the case of its sequential execution on the
client machine. For example, experiments with Hydropad in section 3.2 show that with a 100
Mbit/sec connection between the client machine and the servers the Grid-enabled Hydropad
is slower than the original serial one. At the same time, for a 1 Gbit/sec connection the Grid-
enabled Hydropad was faster than its sequential counterpart. Thus, in many realistic Grid
environments, the Grid-enabled Hydropad can outperform its original sequential version.

Solution of larger problems. Grid-enabled Hydropad has the potential to perform larger
simulations resulting in their higher accuracy. Indeed, the baryonic and dark matter tasks
allocate temporary memory during their execution. Remote execution of these tasks will
decrease the amount of memory used on the client machine as the temporary memory is now
allocated on remote machines. Therefore, within the same memory limitations on the client
machine (say, the amount of memory that can be used by the application without heavy
paging), the Grid-enabled Hydropad will allow for larger simulations.

The use of GridRPC for scientific applications does not only bring performance related
advantages. Other benefits may be more difficult to notice but are equally important.

More control over the application. Hydropad potentially can be executed not only in a
Grid environment but also in a high performance computer (HPC) system. Unfortunately in
a HPC system, where applications are executed in batch mode, the user will not have much
control over the execution. Grid-enabled Hydropad allows the user to have a high control
over its execution because, although the tasks are being computed in remote servers, the
main component of the application is running on the client machine. This can be important
for many types of applications, some examples are:

• Applications that need a direct interaction with the data produced. For example the
user could visualise directly in the client machine the evolution of the universe, while
Hydropad is running on the Grid. Furthermore while the user is checking the simulation
evolution, he could decide on the fly to change some parameters of the simulation or
restart the application. This is possible since in Grid-enabled Hydropad the main data
and the main execution is on the client machine.

• Applications that have a task that is inherently remote. For example in the case
of Hydropad, if grafic cannot be executed on the client machine because it needs a

6

specific hardware, the user has to generate the initial data on the remote server and
then manually retrieve it. The use of GridRPC can simplify this situation by allowing
a special task to interface with grafic directly on the remote server. This task can
communicate immediately the initial data generated by grafic to the application.

An easy and powerful development paradigm. A numerical method, to be executed
remotely, has to avoid internal state changes, like a function with isolated computation and
no global variable. This method of development creates tasks that have a specific interface
for input/output values. Therefore, the GridRPC tasks can be easily reused in other Grid
applications because their execution with the same input always produces the same output.
This situation can reduce the programmer effort on developing a Grid application. For
example the programmer can use already existing tasks that he would not have the time or
skill to write. Additionally if the application needs to use tasks that are inherently remote
because they are made of proprietary code or bound to a specific hardware, like grafic in the
previous example, the programmer can easily include them.

3.1 GridRPC Implementation of Hydropad

Hydropad was originally a sequential Fortran code, we upgraded this program to take ad-
vantage of the GridRPC API and to work with the GridSolve middleware. Table 1 shows the
original Hydropad code of the main loop, written in the C language. Three functions, grav,
dark, and bary, are called in this loop to perform the three main tasks of the application.
In addition, at the first iteration of this loop, a special task, initvel is called to initialise the
velocities of the particles. The dark and baryonic tasks compute the general velocities of the
respective matter. At each iteration, these velocities are used by a local function, timestep,
to calculate the next time step of the simulation. The simulation will continue until this
time becomes equal to the present time of the universe, tsim = tuniv.

Table 1: Hydropad evolve loop

t_sim=0;

while(t_sim<t_univ) {

grav(phi,phiold,rhoddm,rhobm,...);

if(t_sim==0){ initvel(phi,...); }

dark(xdm,vdm,...,veldm);

bary(nes,phi,...,velbm);

timestep(veldm,velbm,...,t_step);

t_sim+=t_step;

}

The GridRPC implementation of Hydropad application uses the APIs grpc call and
grpc call async to execute respectively a blocking and an asynchronous remote call of the
Fortran functions. The first argument of both APIs is the handler of the task executed, the

7

second is the session ID of the remote call while the following arguments are the parameters
of the task. Furthermore, the code uses the method grpc wait to block the execution until
the chosen, previously issued, asynchronous request has completed. When the program runs,
the GridSolve middleware maps each grpc call and grpc call async functions singularly to a
remote server. Then, the middleware communicates the data from the client computer to
the chosen server and then executes the task remotely. At the end of the task execution,
the data is communicated back to the client. In the blocking call method, the client cannot
continue the execution until the task is finished and all the outputs have been returned.
Instead, in the asynchronous method, the client does not wait for the task to finish and
proceeds immediately to execute the next code. The output of the remote task is retrieved
when the respective wait call function is executed.

Table 2: Hydropad implementation in GridRPC

t_sim=0;

while(t_sim<t_total) {

grpc call(grav_hndl,phiold,...);

if(t_sim==0){ grpc call(initvel_hndl,phi,...); }

grpc call async(dark_hndl,&sid_dark,x1,...);

grpc call async(bary_hndl,&sid_bary,nes,...);

grpc wait(sid_dark); /* wait for non blocking calls */

grpc wait(sid_bary); /* to finish */

timestep(t_step,...);

t_sim+=t_step;

}

Table 2 outlines the GridRPC implementation of the main loop of Hydropad that simu-
lates the evolution of universe. At each iteration of the loop, the first grpc call results in the
gravitational task being mapped and then executed. When this task is completed, the client
proceeds to the next call, which is a non-blocking call of the dark matter task. This call
returns after the task is mapped and its execution is initiated. Then, the baryonic matter
call is executed in the same way. Therefore, the baryonic and dark matter tasks are executed
in parallel. After this, the client waits for the outputs of both these parallel tasks using the
grpc wait calls.

3.2 Experiments with the GridSolve-Enabled Hydropad

In this section, we compare the execution times and memory footprints of the GridSolve
implementation of Hydropad against its sequential execution on the client machine. The
hardware configuration used in the experiments consists of three machines: a client and
two remote servers, S1 and S2. The two servers are heterogeneous however they have similar
performance, respectively 498 and 531 MFlops, and they have equal amount of main memory,
1GB each. The client machine is a computer with low hardware specifications, 256MB of

8

memory and 248MFlops of performance, which is not suitable to perform large simulation.
The bandwidth of the communication link between the two servers is 1Gb/s. The client-
to-servers connection varies depending on the experimental setup. We use two setups, C1
with a 1Gb/s connection and C2 with a 100Mb/s communication link. These hardware
configurations represent a situation when a user having a relatively weak computer can
access more powerful machines. For each conducted experiment, table 3 shows the initial
problem parameters and the corresponding data sizes (the total memory used during the
execution of Hydropad on a single machine).

Table 3: Input values and problem sizes for the Hydropad experiments

Problem ID Np Ng Data Size

P1 1203 603 73MB

P2 1403 803 142MB

P3 1603 803 176MB

P4 1403 1003 242MB

P5 1603 1003 270MB

P6 1803 1003 313MB

P7 2003 1003 340MB

P8 2203 1203 552MB

P9 2403 1203 624MB

Table 4 shows the average computation time of one evolution step achieved by the local
computation and by the GridSolve version of Hydropad. The experiments were executed
using C1 as client. This machine has a fast network link to the server S1 and S2. This table
also presents the scale of paging that occurs in the client machine during the executions.
It is possible to see that for the local computation the paging is taking place when the
problem size is equal or greater than the machine memory, 256MB. While for the GridSolve
version the paging is occurring later when the problem size is around 310MB. The GridRPC
implementation can save memory thanks to the temporary data allocated remotely in the
tasks and consequently increase the problem size that will not cause the paging.

Table 4: Experimental results using client C1 that has 1GB/s network link to the servers

Local GridSolve

P.ID Time Step Paging Time Step Paging Sp v Local

P1 14.09s No 7.20s No 1.96

P2 29.95s No 15.51s No 1.93

P3 35.29s No 16.48s No 2.14

P4 55.13s Light 29.11s No 2.14

P5 61.63s Light 29.07s No 2.12

P6 83.66s Yes 36.74s Light 2.28

P7 128.55s Yes 48.06s Yes 2.67

P8 227.89s Heavy 77.91s Heavy 2.92

P9 280.07s Heavy 91.75s Heavy 3.06

In the sequential local execution the paging is taking place during a task computation,
while for the GridSolve version the paging occurs during a remote task data communication.
Hence for the Grid-enabled Hydropad the paging on the client machine does not negatively

9

affect the execution time of the experiments. The results in table 4 show that the speed
up obtained by GridSolve is around 2 until the client machine starts paging, then the local
computation receives a heavily penalty from the paging. Figure 3 shows the execution times
of the evolution step for the local computation and for the GridSolve version of Hydropad.

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700

e
v
o

lv
e

 t
im

e
 s

te
p

 (
s
)

data size (MB)

Local C1
GridSolve C1/S1/S2

Figure 3: Evolution time step of the local and GridSolve computation with client C1

Table 5 shows the results obtained by GridSolve version when the client machine used,
C2, has a slow client-to-servers connection, 100Mb/s. The GridSolve version is slower than
the local computation when the client machine is not paging. This is happening since there
is a large amount of data communication between tasks. So for this configuration, the time
spent by communicating the data compensates the time gain by computing tasks remotely.
However as the problem size gets larger and the client machine start to page, the GridSolve
version is getting faster than the local computation, even in the case of slow communication
between the client and server machines.

Table 5: Experimental results using client C2 that has 100MB/s network link to the servers

Local GridSolve

P.ID Time Step Paging Time Step Paging Sp v Local

P1 14.09s No 18.01s No 0.78

P2 29.95s No 35.02s No 0.86

P3 35.29s No 43.09s No 0.82

P4 55.13s Light 55.66s No 0.97

P5 61.63s Light 58.17s No 1.06

P6 83.66s Yes 72.50s Light 1.15

P7 128.55s Yes 80.05s Yes 1.61

P8 227.89s Heavy 133.47s Heavy 1.71

P9 280.07s Heavy 155.36s Heavy 1.81

10

4 SmartGridSolve and Hydropad

In this section we introduce SmartGridSolve [2], previously implemented as SmartNet-
Solve [3]. SmartGridSolve is an extension of GridSolve that has been designed to bypass the
limitations of the GridRPC model of execution. The GridRPC implementation of Hydropad
has some advantages over the sequential local computation, however it is evident that the
model of execution utilised by GridRPC is not optimal. In a GridRPC system all tasks
are mapped individually. The mapper will always choose the fastest available server at the
instant that a task is called, regardless of the computational size of the task and regardless
of whether the task is to be executed sequentially or in parallel.

A drawback of this behaviour is highlighted by the Hydropad application. The parallel
tasks in Hydropad are not computationally balanced. The baryonic task is computationally
far larger than the dark matter one, Cbm ≫ Cdm. When a GridRPC system goes to map
these two tasks, it does so without the knowledge that they are part of a group to be executed
in parallel. Its only goal is to minimise the execution time of an individual tasks as it is
called by the application. If the smaller dark matter task is called first it will be mapped to
the fastest available server. With the fastest server occupied, the larger baryonic task will
then be mapped to a slower server and the overall execution time of the group of tasks will
be sub-optimal.

Another constraint of the GridRPC model, which influences the performance of Hydropad
or any other application, is that all the data computed remotely and communicated between
remote tasks has to pass through the client machine. Servers computing tasks with data
dependencies on each other cannot communicate with each other directly. It is possible for
the application programmer to avoid this issue by implementing data caching in his tasks.
However it requires the programmer to make heavy modification to the tasks and this is a
clear drawback. It also means that remote tasks passing data to each other must all run on
the same server, where the data they need is cached.

SmartGridSolve addresses all these issues. It expands the single task map and client-
server model of GridRPC by implementing the mapping of groups of tasks, the automatic
data caching on servers and the server to server communication. Collective mapping of groups
of tasks, using a fully connected network, allows SmartGridSolve to find an optimal mapping
solution for an application that fully exploits a Grid environment. Furthermore the direct
server to server communication and automatic data caching that SmartGridSolve implements
minimises the amount of memory used on the client and the volume of communication
necessary between client and server. Data objects can reside only on the servers where they
are needed and they can be moved directly between servers without having to pass through
the client. The main goal of SmartGridSolve is to provide these functionalities to the user in
a practical and simple way. To achieve this it requires only minor changes and addition to
the APIs of GridRPC. An application programmer can gain from the improved performance
using SmartGridSolve by making only minor modifications to any application that is already
GridRPC enabled.

11

4.1 SmartGridSolve Implementation of Hydropad

The code in table 6 shows the modifications required to use the new SmartGridSolve features
in Hydropad, in contrast to those shown in table 2 where we illustrate the changes required
for GridSolve/GridRPC. One can see that the difference between the examples is the minor
additions of: the gs smart map block and gs smart local region condition. These belong to
the SmartGridSolve API.

The code enclosed in the gs smart map block will be iterated through twice. On the first
iteration, each grpc call and grpc call async is discovered but not executed. At the beginning
of the second iteration, when all the tasks within the scope of the block have been discovered,
a task graph for them is generated. The discovered tasks are then executed remotely using
this task graph to aid their mapping [2]. The gs smart local region function, in conjunction
with a conditional statement, is used by the application programmer to indicate when a local
computation is executed. At run time on the first discovery iteration the code within this
conditional statement is not executed. This is to mimic the behaviour that the remote calls
have on the discovering iteration. On the second iteration, the code inside the statement is
executed normally.

Table 6: Hydropad implementation in SmartGridSolve

t_sim=0;

while(t_sim<t_univ) {

gs_smart_map("ex_map"){

grpc call(grav_hndl,phiold,...);

if(t_sim==0){ grpc call(initvel_hndl,phi,...); }

grpc call async(dark_hndl,&sid_dark,x1,...);

grpc call async(bary_hndl,&sid_bary,nes,...);

grpc wait(sid_dark); /* wait for non blocking call */

grpc wait(sid_bary); /* to finish */

if(gs_smart_local_region()){

timestep(t_step,...);

t_sim+=t_step;

}

}

}

The mapping in the code of table 6 is performed at every iteration of the main loop,
this can generate a good mapping solution if the Grid environment is not a stable one. For
example, where there are other applications’ tasks running on the Grid servers. If the Grid
environment is dedicated, where only one application executes at a time, a better mapping
solution may be generated if the area to map contains more tasks, i.e. two or more loop
cycles. A simple solution could be including an inner loop within the gs smart map code
block. The application programmer could increase the number of tasks mapped together by
changing increasing the number of iterations of the inner loop.

12

4.2 Experimental Results Using SmartGridSolve

In this section we show the results obtained by the SmartGridSolve version of Hydropad and
we compare them with those from the GridSolve and local versions shown in section 3.2.
The problem sizes utilised in the experiments (table 3) and the hardware configurations are
the same as in previous experiments. As mentioned before, one of the primary improvements
of SmartGridSolve is its communication model, use of which minimises the amount of data
movement between the client and servers. This advantage is most prominent when the
client connection to the Grid environment is slow. Table 7 shows the results obtained for
the various version of Hydropad using C2 as the client machine which has a slow network
connection of 100Mb/s. One can see that the SmartGridSolve version is much faster than
the GridSolve and the sequential versions. The speed up over GridSolve is over 2 times, this
is primarily due to the improved communication model of SmartGridSolve.

Table 7: Experimental results using client C1 that has 100MB/s network link to the servers

Local GridSolve SmartGridSolve

P.ID Time Step Paging Time Step Paging Sp v Local Time Step Paging Sp v Local Sp v GS

P1 14.09s No 18.01s No 0.78 7.9 No 1.78 2.28

P2 29.95s No 35.02s No 0.86 15.68 No 1.91 2.75

P3 35.29s No 43.09s No 0.82 17.36 No 2.03 2.48

P4 55.13s Light 55.66s No 0.97 28.56 No 1.93 1.98

P5 61.63s Light 58.17s No 1.06 28.77 No 2.14 2.02

P6 83.66s Yes 72.50s Light 1.15 30.09 No 2.78 2.41

P7 128.55s Yes 80.05s Yes 1.61 31.63 Light 4.06 2.53

P8 227.89s Heavy 133.47s Heavy 1.71 52.30 Light 4.36 2.55

P9 280.07s Heavy 155.36s Heavy 1.81 55.47 Light 5.06 2.80

Another important feature of SmartGridSolve is the superior mapping system. Table 8
shows results obtained from experiments using C1 as the client machine. This machine has a
higher speed network connection of 1Gb/s. The results show the performance gain obtained
due to the improved mapping method. The advantage gained by using the communication
model of SmartGridSolve is minimised by the faster communication links (experiments with
a single server were performed to confirm this). Despite Hydropad has only two parallel
tasks the SmartGridSolve mapper can produce faster execution than the GridSolve one.

Table 8: Experimental results using client C1 that has 1GB/s network link to the servers

Local GridSolve SmartGridSolve

P.ID Time Step Paging Time Step Paging Sp v Local Time Step Paging Sp v Local Sp v GS

P1 14.09s No 7.20s No 1.96 6.99s No 2.02 1.03

P2 29.95s No 15.51s No 1.93 14.69s No 2.04 1.06

P3 35.29s No 16.48s No 2.14 15.52s No 2.27 1.06

P4 55.13s Light 29.11s No 2.14 27.22s No 2.03 1.07

P5 61.63s Light 29.07s No 2.12 27.13s No 2.27 1.07

P6 83.66s Yes 36.74s Light 2.28 27.22s No 3.07 1.35

P7 128.55s Yes 48.06s Yes 2.67 29.13s Light 4.41 1.65

P8 227.89s Heavy 77.91s Heavy 2.92 49.21s Light 4.63 1.58

P9 280.07s Heavy 91.75s Heavy 3.06 50.82s Light 5.52 1.81

13

A secondary advantage of the direct server to server communication implemented in
SmartGridSolve is that the quantity of memory used in the client machine is lower that the
GridSolve version. Therefore the SmartGridSolve version of Hydropad can execute larger
problems without the paging on the client machine. This can influence the execution time
for lager problems as it is shown in table 8. The speed up of SmartGridSolve over GridSolve,
when the client machine pages, increases as the problem gets larger. This trend is also seen
in figure 4.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700

e
v
o

lv
e

 t
im

e
 s

te
p

 (
s
)

data size (MB)

GridSolve C1/S1/S2
SmartGridSolve C1/S1/S2

Figure 4: Execution times of the GridSolve and SmartGridSolve versions of Hydropad

5 Conclusions

Grid-enabled Hydropad was originally a sequential code that we upgraded to utilise the
GridRPC API to interface with a Grid environment. The main loop of this application
is composed of three tasks of which two can be executed in parallel. These tasks have at
maximum a log-linear complexity and there is a high amount of data communication between
them. Despite the fact that these types of tasks are not the best suitable to be executed
on a Grid because of the high magnitude of communication involved, Hydropad can obtain
many benefits from being Grid-enabled. These benefits can be related to performance gains
or to the management and development aspect of the application.

The experimental results presented in this paper show that Grid-enabled Hydropad, when
is executed over GridSolve middleware, can achieve better performance than the original
sequential code. However these performance gains are correlated to the link speed of the
connection between the client machine and sever machines. Additional experiments show

14

that SmartGridSolve middleware allows Hydropad to obtain quite significant performance
gains in comparison to the GridSolve version and to the sequential one. Furthermore the
experiment shows that these gains are not influenced negatively by a slow client-servers
connection as much as with the GridSolve version.

Grid-enabled Hydropad is a freely available application that could represent a good
benchmark for GridRPC-based programming systems because it exemplifies typical real-life
scientific applications, which are not perfectly suitable for execution in a Grid environment,
that push the limits of a GridRPC middleware.

This work was supported by Science Foundation Ireland. A package containing the
Hydropad application can be found at the heterogeneous computing laboratory web site:
hcl.ucd.ie.

References

[1] E. Bertschinger. COSMICS: Cosmological Initial Conditions and Microwave Anisotropy Codes.
ArXiv Astrophysics e-prints, June 1995.

[2] T. Brady, M. Guidolin, and A. Lastovetsky. Experiments with SmartGridSolve: Achieving
Higher Performance by Improving the GridRPC Model. In Proceedings of the 9th IEEE/ACM
International Conference on Grid Computing (Grid 2008), Tsukuba, Japan, 29 September -
01 October 2008. IEEE Computer Society.

[3] T. Brady, E. Konstantinov, and A. Lastovetsky. SmartNetSolve: High Level Programming
System for High Performance Grid Computing. In Proceedings of the 20th International Paral-
lel and Distributed Processing Symposium (IPDPS 2006), Rhodes Island, Greece, 25-29 April
2006.

[4] E. Caron and F. Desprez. DIET: A Scalable Toolbox to Build Network Enabled Servers on
the Grid. International Journal of High Performance Computing Applications, 20(3):335–352,
2006. Sage Science Press.

[5] P. Colella and P. Woodward. The piecewise parabolic method (PPM) for gas-dynamical
simulations. Journal of Computational Physics, 54:174–201, 1984.

[6] C. Gheller, O. Pantano, and L. Moscardini. A cosmological hydrodynamic code based on the
Piecewise Parabolic Method. Royal Astronomical Society, Monthly Notices, 295(3):519–533,
1998. Blackwell Publishing.

[7] R. Hockney and J. Eastwood. Computer Simulation Using Particles. McGraw Hill, New York,
1981.

[8] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee, and H. Casanova. Overview of
GridRPC: A Remote Procedure Call API for Grid Computing. In GRID ’02: Proceedings
of the Third International Workshop on Grid Computing, pages 274–278, London, UK, 2002.
Springer-Verlag.

[9] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka. Ninf-G: A Reference
Implementation of RPC-based Programming Middleware for Grid Computing. Journal of
Grid Computing, 1(1):41–51, 2003. Springer.

[10] A. YarKhan, K. Seymour, K. Sagi, Z. Shi, and J. Dongarra. Recent Developments in Grid-
Solve. International Journal of High Performance Computing Applications, 20(1):131–142,
2006. Sage Science Press.

15

