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Abstract 
 
 The abundance of a particular protein varies both over time within a single 
mammalian cell and between cells of a genetically identical population. Here, we 
investigate the properties of such noisy protein expression in mammalian cells by 
combining theoretical and experimental approaches. The gamma distribution model is 
well-known to describe cell-to-cell variability in protein expression in a variety of 
common scenarios. This model predicts, and experiments show, that when protein 
levels are manipulated by altering transcription rates or mRNA half-life, protein 
expression noise, defined as the squared coefficient of variation, is constant. In 
contrast, we also demonstrate that when protein levels are manipulated by changing 
protein half-life, as mean levels increase, noise decreases. Thus, in mammalian cells, 
the scaling relationship between mean protein levels and expression noise depends on 
how mean levels are perturbed. Therefore it may be important to consider how 
common experimental manipulations of protein expression affect not only mean 
levels, but also noise levels. In the context of knockdown experiments, natural cell-to-
cell variability in protein expression implies that a particular cell from the knockdown 
population may have higher protein levels than a cell from the control population. 
Simulations and experimental data suggest that approximately three-fold knockdown 
in mean expression levels can reduce such so-called “overlap probability” to less than 
~10%. This has implications for the interpretation of knockdown experiments when 
the readout is a single cell measure.  
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 Introduction 
 
 Why do genetically identical cells exposed to the same conditions behave 
differently? One major reason seems to be that gene transcription and translation are 
inherently noisy processes; this has been reasonably well-studied in bacteria 1, 2 and 
yeast 3, 4, but to a lesser extent in mammalian systems 5, 6. Most obviously, this noise 
can be viewed as problematic and something that cells must deal with, leading to the 
reinforced presence of network structures such as negative feedback and feedforward 
loop motifs that provide robustness to variability 7, 8. Such non-genetic variability can 
also drive differential sensitivity to cancer drugs 9 and divergent cell-fate decisions 10. 
However, while in some situations noise can hamper biological function, in others it 
may enhance it, by increasing signal sensitivity through stochastic focusing 11 or 
allowing a single cell type to take on a host of phenotypic abilities 12. 

Gene expression noise can be classified as extrinsic or intrinsic. Extrinsic 
noise arises from fluctuations in the levels of entities facilitating gene expression such 
as, RNA polymerases, ribosomes, and translation and transcription factors, while 
intrinsic noise arises from factors internal to expression of the gene itself, such as low 
gene copy number 13, 14. It has been shown in E. coli 15 and thought for other systems 
that for highly expressed genes, extrinsic noise dominates, while for most other genes 
intrinsic noise is more important. Primary influences on intrinsic noise are (i) the rate 
of transcription, which is burst-like due to the low number of genes for a particular 
protein in a cell 5, 16, and (ii) the number of proteins produced per mRNA, which is 
random probably due to competition between ribosomes and RNase for the mRNA 1, 

2, 17. Protein degradation also contributes to intrinsic noise, but in many cases to a 
much lesser extent than the aforementioned factors, since protein copy numbers are 
typically large enough to dampen the small stochastic fluctuations in degradation rate. 

Given the significance of gene expression noise in mammalian systems, we 
asked two main questions to better understand it. First, do the molecular mechanisms 
by which mean protein expression levels are controlled in mammalian systems, such 
as transcription and protein degradation, have different control of noise? Second, how 
much must mean protein levels change such that a perturbed cell population has 
expression levels that are outside of the natural range of variability? This last question 
has implications for knockdown experiments, where the levels of a protein-of-interest 
are decreased (usually by RNAi), and then some biological response is observed in 
control and perturbed populations. In what follows, we combine theoretical modeling 
with experimental data to provide answers to these questions. 
 
Results and Discussion 
 
Relationships between cell-to-cell protein level distribution parameters and gene 
expression mechanisms 
 
 It has been well-established by both theory5, 11, 18, 19 and experiments15, 19-21 
that in many situations, including those common in mammalian cells, cell-to-cell 
variability in protein expression levels is well-described by a gamma distribution. The 
gamma distribution is given by 
 

 
   (1)
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Here, Nobs is the experimentally observed protein expression level in a particular cell, 
f denotes the probability distribution function (pdf) of Nobs, and kobs and !obs are the 
two parameters characterizing the experimentally observed distribution. Experimental 
data for the distributions of several proteins we commonly study are also well-
described by Eq. 1 (Fig. 1A-D). 
 There are multiple mechanisms by which protein expression can be 
manipulated, which include altering: (i) chromatin organization dynamics; (ii) 
transcription rate; (iii) mRNA half-life; (iv) translation rate; and (v) protein half-life. 
However, the gamma distribution, which seems to provide a good description of 
protein expression variability, only contains two parameters, kobs and !obs. Thus, these 
multiple biochemical mechanisms for changing protein expression levels must have at 
least some overlapping effects on protein expression noise, in terms of the parameters 
of the gamma distribution. Despite this inevitable overlap, however, it is possible that 
some of these biochemical mechanisms have unique effects on the gamma 
distribution parameters, and thus unique effects on protein expression noise. 
 Previous theoretical work has given insight into how gamma distribution 
parameters depend on biochemical mechanisms. When the lifetime of an mRNA is 
short relative to that of its corresponding protein (which is a frequent scenario in 
mammalian systems22), proteins are likely to be produced in bursts18, 19. Then, the 
gamma distribution parameter !obs corresponds to the burst size, or amount of protein 
produced per expression burst18, 19. Biochemically, one expects burst size to be 
affected significantly by transcription rate, mRNA half-life and translation rate. The 
former two affect the number of short-lived mRNAs being translated into protein 
during a burst, whereas the latter affects the number of proteins produced per mRNA. 
In fact, a major factor in control of protein levels in mammalian cells is translation 
rate22. The parameter kobs is related to burst timing, i.e., to the number of past bursts 
that “persist” in the cell at any given time18, 19. By “persist”, we mean that at least one 
of the proteins produced as a result of a particular burst is still within the cell and non-
degraded. Biochemically, one might expect burst timing to be affected significantly 
by chromatin organization dynamics, since quicker chromatin opening events would 
lead to more frequent bursts5, and protein half-life, since the quicker a protein is 
degraded, the fewer the number of past bursts that persist in the cell at any given time. 
Thus, it would seem that there is the potential for some level of independent control 
of gamma distribution parameters via biochemical mechanisms. In what follows we 
use this information to test scaling predictions of the gamma distribution model.    
 
Scaling predictions of the gamma distribution model 
 
 One consequence of the gamma distribution is that the mean protein 
abundance (µ) should be linearly proportional to the standard deviation ("), as long as 
kobs is a constant (Fig. 2A) 

     (2) 

Under these same conditions, protein expression noise, commonly defined as the 
squared coefficient of variation, should also be constant (Fig. 2B) 
 

 
        (3)
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Moreover, comparison of Eq. 2 and 3 shows that the slope of the linear dependency 
between µ and " should be equal to the coefficient of variation (CV; CV="#) (Fig. 
2A-B).  
 To test these predictions experimentally, we would need to alter !obs without 
changing kobs. Based on the considerations discussed above, kobs should be 
predominantly related to burst timing, whereas !obs should be predominantly related 
to burst size. We reasoned that mRNA stability would preferentially alter burst size, 
since it would control the number of proteins produced from a particular mRNA. 
Thus, to test these scaling predictions we first used LS174 colon carcinoma cells 
where the levels of Raf Kinase Inhibitor Protein (RKIP) can be conditionally 
regulated using tetracycline (tet) or doxycycline (dox) inducible, shRNA mediated 
downregulation of RKIP23. We indeed saw excellent linear correlation between RKIP 
standard deviation and mean, and moreover, the CV was constant and approximately 
equal to the slope of the relationship between the standard deviation and mean (Fig. 
2C-D).  

It was previously shown that the effect of doxycycline on tet repressor-based 
expression plasmids is to affect transcription rates (burst sizes) but not burst 
frequencies5. We therefore thought that tet-regulated expression systems (for 
production of mRNA and protein as opposed to that for shRNA used above) should 
also follow Eqs. 2 and 3. We tested this prediction using two different engineered 
murine embryonic fibroblasts (MEFs) cell lines, where all three Ras genes had been 
knocked out, and then reconstituted with a tet-repressible wild type or V12 mutant K-
Ras expression vector24 . Both of these systems also obeyed the predicted scaling 
behavior, and the measured CV’s were essentially constant and approximately equal 
to the slope derived from plotting mean vs. standard deviation (Fig. 2E-H). The fact 
that the same antibody was used to detect the wild type and mutant K-Ras proteins in 
different cell lines, yet they showed significantly different CVs, argues strongly that 
the observed noise is to a large extent attributable to biological mechanisms and not 
experimental artifacts. Thus, we propose that when transcription rates and mRNA 
half-lives are manipulated, mean protein levels are linearly proportional to the 
standard deviation, and this proportionality constant is the CV. Consistent with our 
results in mammalian cells, such scaling behavior between mean protein levels and 
the standard deviation was also reported for #-factor induced reporter YFP expression 
in S. cerevisiae 3. Importantly, however, although these results are consistent with the 
predictions of a gamma distribution model, it remains unclear whether the 
fluctuations driving this noise are truly intrinsic, or are simply representing the upper 
extrinsic noise limit 15. Indeed, it may be much more difficult than previously thought 
to clearly separate intrinsic and extrinsic noise contributions 25, and in fact some noise 
may be due to stochastic cell division 26, although in our experiments cells were 
serum-starved so such contribution should be minimal in this context. Nevertheless, 
more experiments will be needed to confirm what sources of fluctuations are driving 
the noise, and moreover, how general these scaling properties are in mammalian 
systems. 
 Our results up to this point suggest that protein expression noise is well-
characterized by the gamma distribution, and that the gamma distribution parameters 
have biochemical meaning when such noise is introduced primarily by intrinsic 
factors. However, others have suggested that the lognormal and Weibull distributions 
also fit cell-to-cell protein expression variability well 10, 27. The pdfs for a lognormal 
and Weibull random variable are, respectively, 
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  , and    (4) 

 

 .     (5) 

 
Here, µLN and $W are the so-called scale parameters, which are analogous to the 
gamma distribution parameter !obs, whereas "LN and kW are the so-called shape 
parameters, which are analogous to the gamma distribution parameter kobs. If one 
varies the scale parameters of these distributions while holding the shape parameter 
constant, then the scaling behaviors of all three distributions are indistinguishable 
(Figs. 3A-D). The gamma distribution has a behavior that is distinct from the 
lognormal and Weibull distributions if one considers how protein expression noise 
scales with the mean protein expression if the scale parameter !obs is constant and the 
shape parameter kobs is varied (Figs. 3E-G) 
  

 .      (6) 

 
Specifically, for the gamma distribution, if !obs is constant, then protein expression 
noise should be inversely proportional to the mean protein expression, similar to what 
has been shown in previous theoretical work 28-30. The above considerations suggested 
that kobs can be altered by changing protein half-life 18, 19. We therefore set out to test 
this prediction experimentally by using flow cytometry and a HEK293 cell line that 
contains a single copy of YFP tagged with a destabilizing domain (DD) domain. This 
system allows one to tune YFP half-life using an exogenous, cell-permeable ligand 
called Shield1, which binds to the DD domain and protects the protein from 
degradation 31. Experimentally, we would expect that at low YFP expression levels, 
the observed CV2 (#) would be equal to some upper limit corresponding to that of 
background autofluorescence and/or shot noise, and that at high expression levels, the 
observed # would correspond to some lower limit corresponding to that of the 
measurement technology, but between these limits we would see the scaling predicted 
by Eq. 6. We indeed confirmed that there is such a relationship between the squared 
coefficient of variation and mean protein expression levels (Fig. 3H). It is important 
to note that the large predicted increase in protein expression noise at low expression 
levels occurs at copy numbers of ~5-10 proteins/cell (Fig. 3G). Thus, with such flow 
cytometry experiments it is natural to expect that cellular autofluorescence will 
dominate the measured noise at these low expression levels, thus leading to the 
experimentally observed flat behavior at low mean levels rather than the theoretically 
predicted large increase. Moreover, these results do not prove that the log-normal and 
Weibull distributions are incorrect per se; their scale and shape parameters simply 
have no clear physical counterparts in a bursting gene expression model. It is in 
principle possible that some combination of parameter changes for the Weibull and 
log-normal distributions can yield similar scaling relationships.  

Interestingly, this scaling behavior predicted by Eq. 6 was also reported for 43 
proteins under 11 different environmental conditions in S. cerevisiae4. The fact that so 
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many different proteins would obey this simple scaling relationship with the same !obs 
parameter is somewhat surprising, and it implies that this parameter has a similar 
value for many different proteins in yeast. It is therefore tempting to speculate that in 
yeast, protein levels may be predominately regulated via control of protein stability 
and/or chromatin dynamics, as opposed to mRNA stability and transcription rate. This 
may explain why in general there seems to be much less correlation between protein 
and transcript levels than expected 15, 32. However, this also depends on what 
mechanisms are controlling burst timing, which may well be due in part to 
translational bursting in mammalian cells 22, 33. 

An evolutionary hypothesis follows from these scaling observations. Since 
noise seems to be differentially controlled by various protein expression mechanisms, 
and these mechanisms can be affected by genetic mutations, it follows that noise may 
be an evolvable trait that is subject to natural selection33, 34. In yeast, it was proposed 
that both essential genes and those involved in multi-unit complexes should evolve to 
have low expression noise; indeed, such genes were found to have a combination of 
high transcription rate with low translation rate that promotes low noise34. For multi-
cellular organisms, however, the link between fitness and expression noise of 
individual genes is less clear. Until such knowledge is available, this point must 
remain an interesting speculation in mammalian systems. Nevertheless, it is 
interesting to note that functionally related proteins tend to have similar mRNA and 
protein half-life combinations 22, which seems to support the idea that expression 
noise is an evolvable trait in mammalian systems.  
  
The impact of protein expression variability on knockdown experiments 
 Regardless of the distribution that cell-to-cell variability in protein expression 
follows, or even whether the system is at steady-state, the above analysis and a large 
body of previous work suggests protein expression variability can be quite large. This 
prompted us to consider noise in the context of a knockdown experiment, where one 
tries to decrease the mean protein expression levels, typically via RNA interference 
methods, and determine whether there is some biological effect of this knockdown. 
Given large amounts of expression noise, it is possible that a cell from the 
“knockdown” population may actually have higher expression levels than a cell from 
the “control” population. Thus, we were interested in how much “control” and 
“knockdown” cell populations overlap in a knockdown experiment, in terms of 
protein expression levels. This would be particularly relevant when the readout of 
such an experiment is a single cell measure. Analogous considerations may also be 
relevant for overexpression experiments, where the mean protein levels are increased 
rather than decreased. However, here we focus on knockdown experiments.   

We mathematically define the overlap for a knockdown experiment as the 
probability that a cell from the knockdown population has higher protein levels than a 
cell in the control population, given a particular fold mean knockdown f=µp/µc, where 
µp and µc denote the mean protein levels in the perturbed and control populations (see 
Methods). For distributions similar to that shown in Fig. 1, this overlap can be 
significant for only two-fold mean knockdown (f=0.5; Fig. 4A-B). This is regardless 
of which gamma distribution parameters are changed to achieve knockdown (Fig. 
4B). Greater than approximately three-fold mean knockdown is predicted to yield less 
than 10% overlap probability (Fig. 4B), which gives 90% confidence that a randomly 
chosen cell from the knockdown population has protein levels that are less than a 
randomly chosen cell from the control population.   
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 To evaluate these predictions, we first used, as above, LS174 colon carcinoma 
cells where shRNA-mediated downregulation of RKIP can be controlled by dox (Fig. 
4C-D). For this system, qualitative western blots suggested, and quantified flow 
cytometry data showed that the dox-induced downregulation of RKIP levels were at 
most two-fold. As predicted by theory, the RKIP distributions still displayed 
significant overlap. We therefore also tested the “Ras-less” MEFs as described above, 
where protein expression could be modulated over a wider dynamic range.  In these 
“Ras-less” MEFs, treatment with dox for 24 hours results in an approximately two-
fold knockdown, and control and knockdown populations substantially overlap. At 48 
hours after dox treatment, however, the knockdown is approximately three-fold and 
the control and perturbed populations are almost completely separated (Fig. 4E-F). 
Transient transfection-based knockdown experiments of others 21(Fig. 4G-H) and our 
own (Fig. 4I) further support this hypothesis that less than three-fold knockdown is 
not sufficient to separate control and perturbed populations cleanly.  

These results lead us to propose that less than three-fold knockdown can lead 
to substantial overlap between control and perturbed populations. We have, however, 
only tested a small subset of cases, and further experiments are required to determine 
how general this observation is. One potentially important consideration is 
transfection efficiency and potential variability in the resulting induction of the 
siRNA pathways. If a certain sub-population of cells did not initiate the RNAi 
pathway, we would expect bimodality in the observed protein expression 
distributions. In all of the cases we tested, which included both transient transfection 
and stable cell lines, this didn’t seem to be an issue as observed by the unimodal, 
rather than bimodal, distribution of protein levels in the perturbed populations.    

In terms of interpreting the results of a knockdown experiment, if one is 
interested in determining the population average effects of a particular knockdown, 
such as for example the mean levels of a downstream protein, then this overlap issue 
is likely not of immediate concern. This is because with enough sampling one can 
determine, to a desired level of confidence, whether a difference of means between 
the control and knockdown populations exists. Obviously, however, a greater 
difference of means gives a lower number of samples needed to observe effects. On 
the other hand, if one is using single-cell measurements as a readout for the effects of 
a knockdown experiment, then overlap may be a concern. Thus, in such cases when 
single-cell measurements are the readout of a knockdown experiment, we would 
propose a three-fold change heuristic for judging the efficacy of the knockdown. 
 
Summary and Conclusions 
 We are starting to recognize that the variability in mammalian protein 
expression is large and can affect biological behavior. Therefore, we need tools to 
analyze it and to gauge its effects on outcomes in knockdown experiments. Such 
experiments are part of the standard repertoire of today’s biology research and are 
facilitated by siRNA, microRNA and inducible expression technologies. One question 
is how much knockdown needs to be achieved to clearly link phenotypes to changes 
in protein expression. Based on our results, we suggest that knockdown of less than 
three-fold is within the physiological range of the variability of protein expression 
observed in individual cells. Thus, as a rule of thumb, any perturbation experiment 
involving changes in protein expression may be difficult to deconvolute in terms of 
single cell responses if the changes are less than threefold. On the other hand, mild 
(i.e. < threefold) knockdown might be practically used to study the population 
average effects of a protein knockdown in most cases. We also found that the 
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mechanism by which mean protein levels are changed can affect how protein 
expression noise scales with the mean. Our results suggest that, when proteins are 
produced in bursts (i.e. when protein half-life is much longer than mRNA half-life), 
changing mRNA half-life or transcription rates keeps noise constant, whereas 
increasing protein half-life decreases noise. Since it is becoming clearer that protein 
expression noise can play a major role in determining biological behavior, we should 
become aware of how our perturbations not only change mean protein expression 
levels, but also their noise levels, as such unrealized changes in noise may have 
confounding effects on the biological response.  
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Materials and Methods 
 
Definition of overlap probability in knockdown experiments. The probability that a 
cell from the control population has lower protein levels than a cell from the 
perturbed population in a knockdown experiment is related to the difference D 
between two independent gamma-distributed random variables, 
 
  ,       (7) 
 
where Nc is the number of proteins in a randomly chosen cell of the control 
population and Np is the number of proteins in a randomly chosen cell of the 
perturbed population. Let the mean fold change be µp/µc, where µc is the mean protein 
level in the control population and µp is the mean protein level in the perturbed 
population. The “overlap probability” is defined as the probability that a random 
variable D is smaller than zero for mean fold changes less than 1, which corresponds 
to artifacts in knockdown experiments. Thus, to investigate the overlap probability, 
we must analyze the pdf of D, fD. In what follows we show how fD can be cast in 
terms of a cross-correlation function.  

Let X1 = Nc and X2 = –Np; X1 and X2 are independent random variables. The 
pdf of D, fD, may be cast in terms of characteristic functions using the inversion 
formula35 
 

  ,     (8) 

 
where %1 and %2 are respectively the characteristic functions of X1 and X2, i is the 
imaginary unit, and t is a dummy integration variable. The characteristic function of 
Nc is exactly that of X1, whereas the characteristic function of Np is the complex 
conjugate of the characteristic function for X2,  
 

(9) 
 
giving 
 

 ,     (10) 
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Eq. 10 is equivalent to a Fourier transform of the product  35. Denote the 
pdfs for Nc and Np, respectively fNc and fNp. From the definition of the cross-
correlation function of fNp and fNc , and from the cross-correlation theorem36 we have, 
 

 fNp fNc  ,   (11) 

 
where & is a dummy integration variable and F denotes a Fourier transform. It has 
been shown that Eq. 11 is equivalent to Eq. 1036. Thus, the pdf of D is given by the 
cross-correlation function of the pdfs of Nc and Np (gamma densities with different 
parameters). We evaluate this cross-correlation function numerically with the 
MATLAB function xcorr.  
 
Flow Cytometry for Intracellular Staining. Approximately 2x106 adherent cells were 
lifted with trypsin, resuspended in growth medium containing full serum, centrifuged, 
and then resuspended in 1 mL of PBS. Then, 1 mL 6% formaldehyde in PBS was 
added and the solution incubated at 37oC for 10 minutes. The formaldehyde solution 
was removed by centrifugation, and then the cells were resuspended in ice-cold, 90% 
MeOH. At this point, cells are fixed and were stored for as long as one week before 
analysis. At the time of analysis, 5x105 cells were taken and the MeOH solution 
removed by centrifugation. Cells were washed twice by centrifugation with 
Incubation Buffer (0.5 g BSA/100 mL PBS), resuspended in 90 µL of Incubation 
Buffer, and then the appropriate amount of primary antibody was added for 1 hour at 
room temperature. The cells were then washed twice by centrifugation in Incubation 
Buffer. If the primary antibody was not directly conjugated to a fluorophore, cells 
were resuspended in 90 µL of incubation buffer, and secondary antibody was added 
for 30 min to 1 hour at room temperature (two-fold the mass of primary antibody). 
Cells were then washed twice by centrifugation with Incubation Buffer, resuspended 
in 0.5 mL PBS, and analyzed on a flow cytometer. For all experiments, equal masses 
of a non-specific control antibody were used in parallel samples to verify that the 
signal of interest was specific to the antibody epitope. Moreover, for each primary 
antibody, dilutions were done to maximize the ratio of mean signal to the non-specific 
signal. Measurements were done using either a Cyan ADP flow cytometer with a 488 
laser and 530/40 emission filter or an Accuri C6 with a 488 laser and 530/30 emission 
filter. Approximately 10,000 raw events were collected for each histogram, and these 
events were gated by forward and side scatter to eliminate debris, and by forward 
scatter height vs. area to eliminate doublets. 
 
Flow Cytometry for YFP Expression. All buffers were supplemented with Shield1 
(Clontech) concentrations matching the samples. Cells were washed with PBS and 
lifted with trypsin. Trypsin was inhibited by adding Soybean Trypsin Inhibitor and the 
cells were fixed in 1% paraformaldehyde for 15 minutes, centrifuged and resuspended 
in PBS. Measurements were done on an Accuri C6 with a 488 laser and 530/30 
emission filter.  Approximately 10,000 raw events were collected for each histogram, 
and these events were gated by forward and side scatter to eliminate debris, and by 
forward scatter height vs. area to eliminate doublets.as described above. 
  



12 
 

Cell Culture. A2780 cells were obtained from Jim Norman and grown in RPMI/10% 
FBS. LS174 cells and the RKIP shRNA variants were obtained and constructed as 
described previously 23, and were kept in RPMI/5% tet-free FBS (PAA, Pennsylvania, 
USA). Ras-less MEFs with inducible, tet-off K-Ras repression were obtained from 
Mariano Barbacid 24, and kept in DMEM/10% FBS with G418 (Sigma). All growth 
media was supplemented with standard concentrations of penicillin/streptomycin and 
L-Glutamine. For experiments with inducible LS174 cells, doxycycline (Sigma) was 
added to the growth media in the indicated concentrations for 48 hours. For 
experiments with inducible Ras-less MEFs, doxycycline was either added to the 
growth media at 100 ng/mL for the indicated times, or added for 48 hrs at the 
indicated concentrations. Both the LS174 and Ras-less MEFs were serum starved for 
16 hours prior to harvesting. The DD-YFP expressing HEK-293 (clone 19-3-1) cells 
were obtained from Christoph Waldner31 and cultivated in DMEM with 10% FBS and 
1 µg/ml puromycin. Cells were plated in a 12-well dish and, prior to FACS analysis, 
starved in serum-free DMEM for 20h. Simultaneously with starvation, YFP-DD was 
stabilized by adding Shield1 (Clontech) at concentrations of 0, 0.00625, 0.0125, 
0.025, 0.04, 0.05, 0.2, 0.5, 1, 2, and 4 µM (all in at least triplicate).  
 
Western Blotting. LS174 cell populations were treated as indicated, then lysed and 
subjected to western blot analysis as previously described23. 
 
Antibodies. For flow cytometry, the following antibodies were used:  rabbit 
polyclonal 07-137 for RKIP (Millipore), rabbit monoclonal 5084 Alexa 488 conjugate 
for Akt (Cell Signaling), rabbit monoclonal 3906 Alexa 488 conjugate for GAPDH 
(Cell Signaling), mouse monoclonal OP40 Anti-pan-ras for K-Ras and K-RasV12 
(Calbiochem), Goat F(ab’)2 fragments of anti-rabbit or anti-mouse Alexa 488 
conjugate for secondaries (Invitrogen), mouse monoclonal 4878 or rabbit monoclonal 
2975 Alexa 488 conjugates for non-specific controls in experiments with fluorescent 
primary antibodies (Cell Signaling), and mouse monoclonal 4097 or rabbit 
monoclonal 3900 for non-specific controls in experiments with fluorescent secondary 
antibodies (Cell Signaling). For western blotting, we used rabbit polyclonal 07-137 
for RKIP (Millipore) and rabbit polyclonal M5670 for ERK (Sigma).  
 
siRNA Knockdown of GAPDH. Approximately 106 exponentially growing A2780 
cells were harvested and then resuspended in Amaxa nucleofector solution T (Lonza) 
containing 5 µL of a 20 pmol/uL solution of a GAPDH or non-targeting pool of 4 
siRNAs (Fisher; Dharmacon ON-TARGETplus Human SMARTpools). The cells 
were then transfected with the siRNA pool via electroporation with the Amaxa 
nucleofector (Lonza) using program T-024. After transfection, cells were plated and 
grown in full growth medium. After 48 hours, the cells were subjected to flow 
cytometry analysis as described above.  
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Figure Legends 
 
Figure 1. Fit of the Gamma Distribution to Various Experimental Data. Dotted 
lines correspond to data, whereas solid black lines correspond to gamma distribution 
fits. Gamma distribution parameter values were obtained by maximum likelihood 
estimation. Cells were serum-starved for at least 16 hours prior to the experiment. (A) 
RKIP abundance in a population of LS174 colon carcinoma cells (kobs=4.6; 
!obs=10,800 [AU]). (B) GAPDH abundance in a population of A2780 ovarian 
carcinoma cells (kobs=7.58; !obs=2,000 [AU]). (C) Akt abundance in a population of 
A2780 cells (kobs=8.15; !obs=13.5 [AU]). (D) K-RasV12 abundance in a population 
of Ras-less MEF cells expressing doxycycline-downregulatable K-RasV12 
(kobs=3.51; !obs=5.47x104 [AU]). 
 
Figure 2. Effects of mRNA Half-Life and Transcription Rates on Protein 
Expression Noise. (A-B) Scaling predictions between the mean (µ) and the standard 
deviation (") or the coefficient of variation (CV) in the scenario that kobs is constant 
and !obs is changed to manipulate mean protein levels. (C-D) Dependence of the 
standard deviation and CV on mean RKIP levels in LS174 cells with tet-inducible 
shRNA against RKIP. Mean RKIP levels were altered using various doses of 
doxycycline semilogarithmically spanned between 5 and 0.1 ng/mL. (E-F) 
Dependence of the standard deviation and CV on mean wild type K-Ras levels in 
engineered MEFs. Mean K-Ras levels were altered using various doses of 
doxycycline. In E-H, dox concentrations were varied semilogarithmically between 1 
and 0.01 ng/mL. (G-H) Dependence of the standard deviation and CV on mean K-
Ras-V12 levels in engineered MEFs. Mean K-Ras-V12 levels were altered using 
various doses of doxycycline as indicated above.  
 
Figure 3. Effects of Protein Half-Life on Protein Expression Noise. (A-B) 
Parametric plots of scaling relationships for the lognormal distribution where the 
shape parameter ($LN) is held constant at 0.1 and the scale parameter (µLN) is varied 
linearly between 0.1 and 8. (C-D) Scaling relationships for the Weibull distribution 
where the scale parameter (%W) is held constant at 0.5 and the shape parameter (kW) is 
varied linearly between 1 and 100. (E) Scaling relationship for the lognormal 
distribution where the shape parameter ($LN) is varied linearly between 0.1 and 4 and 
the scale parameter (µLN) is held constant at 0.1. (F) Scaling relationships for the 
Weibull distribution where the scale parameter is varied linearly between 0.1 and 1 
and the shape parameter is held constant at 0.001. (G) Scaling relationship for the 
gamma distribution where the shape parameter (kobs) is varied between 1 and 100 and 
the scale parameter !obs is held constant at 10. (H) Relative mean YFP fluorescence 
plotted against protein expression noise in a population of isogenic HEK293 cells 
where YFP levels are altered by stabilizing the protein. Black squares correspond to 
flow cytometry data, whereas the black solid line corresponds to . 

 
Figure 4. Effects of Noise on Knockdown Experiments. (A) The simulated effects 
of two- and five-fold mean knockdown (blue) on the protein expression distribution 
given the gamma distribution model with kobs=6, which is typical based on the 
measurements in Fig. 1. Knockdown was simulated by changing the scale parameter 
!obs by the indicated fold change (from 50,000). The relationships between these 



16 
 

distributions were independent of the initial value of !obs. (B) Simulations of the 
overlap probability between control and perturbed cell populations as a function of 
mean fold expression change. The overlap probability quantifies the probability that a 
cell in the control population has lower expression than that of knockdown population 
(see Methods). The mean of the gamma distribution is equal to the product kobs!obs, 
and therefore can be changed by varying either kobs or !obs. We simulated several 
possibilities within the range of observed kobs values (between 4 and 8). All 
combinations show the same trend. Starting with different absolute values of !obs did 
not change these results. (C) Flow cytometery measurements of RKIP abundance in 
LS174 cells with tet-inducible shRNA against RKIP. Western blot data corresponding 
to these same conditions are shown above the flow cytometry data. Data are 
representative of three independent experiments. (D) Population means calculated 
from the flow cytometry data for the conditions shown in Panel C. Only 
approximately 1.5 to two-fold mean knockdown are observed at a maximum, which 
explains the large overlap between the distributions in Panel C. (E) Flow cytometry 
measurements of K-Ras abundance in MEFs where K-Ras expression is controlled 
with a tet-off promoter. (F) Population means calculated from the data in Panel E. 
Approximately three-fold knockdown after 48 hrs of dox treatement separates the 
control and perturbed populations cleanly. Where applicable, errors bars correspond 
to SEM from three independent experiments. (G-H) Data are from Lapan et al., 
200821, Fig. 3A and Fig. 4A. In Panel G, PTEN was knocked down with siRNA in 
MDA-MB-231 cells, and in Panel H, STAT3 was knocked down with siRNA in 
SW480 cells. In both panels, abundance was assayed by immunofluorescence 
microscopy. (I) Effects of approximately 2-fold GAPDH knockdown in A2780 cells 
as measured by flow cytometry.  
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